1
|
Rabindranath M, Naghibzadeh M, Zhao X, Holdsworth S, Brudno M, Sidhu A, Bhat M. Clinical Deployment of Machine Learning Tools in Transplant Medicine: What Does the Future Hold? Transplantation 2024; 108:1700-1708. [PMID: 39042768 DOI: 10.1097/tp.0000000000004876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Medical applications of machine learning (ML) have shown promise in analyzing patient data to support clinical decision-making and provide patient-specific outcomes. In transplantation, several applications of ML exist which include pretransplant: patient prioritization, donor-recipient matching, organ allocation, and posttransplant outcomes. Numerous studies have shown the development and utility of ML models, which have the potential to augment transplant medicine. Despite increasing efforts to develop robust ML models for clinical use, very few of these tools are deployed in the healthcare setting. Here, we summarize the current applications of ML in transplant and discuss a potential clinical deployment framework using examples in organ transplantation. We identified that creating an interdisciplinary team, curating a reliable dataset, addressing the barriers to implementation, and understanding current clinical evaluation models could help in deploying ML models into the transplant clinic setting.
Collapse
Affiliation(s)
- Madhumitha Rabindranath
- Transplant AI Initiative, Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Maryam Naghibzadeh
- Transplant AI Initiative, Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Xun Zhao
- Transplant AI Initiative, Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Sandra Holdsworth
- Transplant AI Initiative, Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Michael Brudno
- Transplant AI Initiative, Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Aman Sidhu
- Transplant AI Initiative, Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mamatha Bhat
- Transplant AI Initiative, Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Vargas VM, Gutiérrez PA, Rosati R, Romeo L, Frontoni E, Hervás-Martínez C. Exponential loss regularisation for encouraging ordinal constraint to shotgun stocks quality assessment. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
3
|
Zhu H, Shan H, Zhang Y, Che L, Xu X, Zhang J, Shi J, Wang FY. Convolutional Ordinal Regression Forest for Image Ordinal Estimation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:4084-4095. [PMID: 33600323 DOI: 10.1109/tnnls.2021.3055816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Image ordinal estimation is to predict the ordinal label of a given image, which can be categorized as an ordinal regression (OR) problem. Recent methods formulate an OR problem as a series of binary classification problems. Such methods cannot ensure that the global ordinal relationship is preserved since the relationships among different binary classifiers are neglected. We propose a novel OR approach, termed convolutional OR forest (CORF), for image ordinal estimation, which can integrate OR and differentiable decision trees with a convolutional neural network for obtaining precise and stable global ordinal relationships. The advantages of the proposed CORF are twofold. First, instead of learning a series of binary classifiers independently, the proposed method aims at learning an ordinal distribution for OR by optimizing those binary classifiers simultaneously. Second, the differentiable decision trees in the proposed CORF can be trained together with the ordinal distribution in an end-to-end manner. The effectiveness of the proposed CORF is verified on two image ordinal estimation tasks, i.e., facial age estimation and image esthetic assessment, showing significant improvements and better stability over the state-of-the-art OR methods.
Collapse
|
4
|
Xiao Y, Li X, Liu B, Zhao L, Kong X, Alhudhaif A, Alenezi F. Multi-view support vector ordinal regression with data uncertainty. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.12.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Veerankutty FH, Jayan G, Yadav MK, Manoj KS, Yadav A, Nair SRS, Shabeerali TU, Yeldho V, Sasidharan M, Rather SA. Artificial Intelligence in hepatology, liver surgery and transplantation: Emerging applications and frontiers of research. World J Hepatol 2021; 13:1977-1990. [PMID: 35070002 PMCID: PMC8727218 DOI: 10.4254/wjh.v13.i12.1977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/09/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
The integration of artificial intelligence (AI) and augmented realities into the medical field is being attempted by various researchers across the globe. As a matter of fact, most of the advanced technologies utilized by medical providers today have been borrowed and extrapolated from other industries. The introduction of AI into the field of hepatology and liver surgery is relatively a recent phenomenon. The purpose of this narrative review is to highlight the different AI concepts which are currently being tried to improve the care of patients with liver diseases. We end with summarizing emerging trends and major challenges in the future development of AI in hepatology and liver surgery.
Collapse
Affiliation(s)
- Fadl H Veerankutty
- Comprehensive Liver Care, VPS Lakeshore Hospital, Cochin 682040, Kerala, India
| | - Govind Jayan
- Hepatobiliary Pancreatic and Liver Transplant Surgery, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - Manish Kumar Yadav
- Department of Radiodiagnosis, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - Krishnan Sarojam Manoj
- Department of Radiodiagnosis, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - Abhishek Yadav
- Comprehensive Liver Care, VPS Lakeshore Hospital, Cochin 682040, Kerala, India
| | - Sindhu Radha Sadasivan Nair
- Hepatobiliary Pancreatic and Liver Transplant Surgery, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - T U Shabeerali
- Hepatobiliary Pancreatic and Liver Transplant Surgery, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - Varghese Yeldho
- Hepatobiliary Pancreatic and Liver Transplant Surgery, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - Madhu Sasidharan
- Gastroenterology and Hepatology, Kerala Institute of Medical Sciences, Thiruvananthapuram 695029, India
| | - Shiraz Ahmad Rather
- Hepatobiliary Pancreatic and Liver Transplant Surgery, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| |
Collapse
|
6
|
Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation. PLoS One 2021; 16:e0252068. [PMID: 34019601 PMCID: PMC8139468 DOI: 10.1371/journal.pone.0252068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022] Open
Abstract
Donor-Recipient (D-R) matching is one of the main challenges to be fulfilled nowadays. Due to the increasing number of recipients and the small amount of donors in liver transplantation, the allocation method is crucial. In this paper, to establish a fair comparison, the United Network for Organ Sharing database was used with 4 different end-points (3 months, and 1, 2 and 5 years), with a total of 39, 189 D-R pairs and 28 donor and recipient variables. Modelling techniques were divided into two groups: 1) classical statistical methods, including Logistic Regression (LR) and Naïve Bayes (NB), and 2) standard machine learning techniques, including Multilayer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB) or Support Vector Machines (SVM), among others. The methods were compared with standard scores, MELD, SOFT and BAR. For the 5-years end-point, LR (AUC = 0.654) outperformed several machine learning techniques, such as MLP (AUC = 0.599), GB (AUC = 0.600), SVM (AUC = 0.624) or RF (AUC = 0.644), among others. Moreover, LR also outperformed standard scores. The same pattern was reproduced for the others 3 end-points. Complex machine learning methods were not able to improve the performance of liver allocation, probably due to the implicit limitations associated to the collection process of the database.
Collapse
|
7
|
Ordinal classification of the affectation level of 3D-images in Parkinson diseases. Sci Rep 2021; 11:7067. [PMID: 33782476 PMCID: PMC8007580 DOI: 10.1038/s41598-021-86538-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/16/2021] [Indexed: 01/12/2023] Open
Abstract
Parkinson’s disease is characterised by a decrease in the density of presynaptic dopamine transporters in the striatum. Frequently, the corresponding diagnosis is performed using a qualitative analysis of the 3D-images obtained after the administration of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{123}$$\end{document}123I-ioflupane, considering a binary classification problem (absence or existence of Parkinson’s disease). In this work, we propose a new methodology for classifying this kind of images in three classes depending on the level of severity of the disease in the image. To tackle this problem, we use an ordinal classifier given the natural order of the class labels. A novel strategy to perform feature selection is developed because of the large number of voxels in the image, and a method for generating synthetic images is proposed to improve the quality of the classifier. The methodology is tested on 434 studies conducted between September 2015 and January 2019, divided into three groups: 271 without alteration of the presynaptic nigrostriatal pathway, 73 with a slight alteration and 90 with severe alteration. Results confirm that the methodology improves the state-of-the-art algorithms, and that it is able to find informative voxels outside the standard regions of interest used for this problem. The differences are assessed by statistical tests which show that the proposed image ordinal classification could be considered as a decision support system in medicine.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Machine learning techniques play an important role in organ transplantation. Analysing the main tasks for which they are being applied, together with the advantages and disadvantages of their use, can be of crucial interest for clinical practitioners. RECENT FINDINGS In the last 10 years, there has been an explosion of interest in the application of machine-learning techniques to organ transplantation. Several approaches have been proposed in the literature aiming to find universal models by considering multicenter cohorts or from different countries. Moreover, recently, deep learning has also been applied demonstrating a notable ability when dealing with a vast amount of information. SUMMARY Organ transplantation can benefit from machine learning in such a way to improve the current procedures for donor--recipient matching or to improve standard scores. However, a correct preprocessing is needed to provide consistent and high quality databases for machine-learning algorithms, aiming to robust and fair approaches to support expert decision-making systems.
Collapse
|
9
|
|
10
|
Sánchez-Monedero J, Pérez-Ortiz M, Sáez A, Gutiérrez PA, Hervás-Martínez C. Partial order label decomposition approaches for melanoma diagnosis. Appl Soft Comput 2018. [DOI: 10.1016/j.asoc.2017.11.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Nguyen B, Morell C, De Baets B. Distance metric learning for ordinal classification based on triplet constraints. Knowl Based Syst 2018. [DOI: 10.1016/j.knosys.2017.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Wang H, Shi Y, Niu L, Tian Y. Nonparallel Support Vector Ordinal Regression. IEEE TRANSACTIONS ON CYBERNETICS 2017; 47:3306-3317. [PMID: 28371790 DOI: 10.1109/tcyb.2017.2682852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ordinal regression is a supervised learning problem where training samples are labeled by an ordinal scale. The ordering relation and nonmetric property of the label set distinguish it from the multiclass classification and metric regression. To better exploit the inherent structure in the label and benefit from the hidden information in data distribution, we propose a novel ordinal regression model, which is named as nonparallel support vector ordinal regression (NPSVOR) to emphasis the utilization of nonparallel proximal hyperplanes. The new model constructs a hyperplane for each rank such that the patterns of this rank lie in the close proximity while maintaining clear separation with the other ranks. Since the learning of hyperplanes can be carried out independently, NPSVOR can be trained in parallel. Furthermore, we design an efficient solver at the same time for training the hyperplanes in NPSVOR based on the alternating direction method of multipliers. Extensive experimentation demonstrates that NPSVOR yields a large and statistically significant improvement in terms of generalization performance and training speed against nine baselines.
Collapse
|
13
|
Synthetic semi-supervised learning in imbalanced domains: Constructing a model for donor-recipient matching in liver transplantation. Knowl Based Syst 2017. [DOI: 10.1016/j.knosys.2017.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Dorado-Moreno M, Pérez-Ortiz M, Gutiérrez PA, Ciria R, Briceño J, Hervás-Martínez C. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artif Intell Med 2017; 77:1-11. [PMID: 28545607 DOI: 10.1016/j.artmed.2017.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/17/2017] [Accepted: 02/05/2017] [Indexed: 12/11/2022]
|
15
|
Gámez JC, García D, González A, Pérez R. Ordinal classification based on the sequential covering strategy. Int J Approx Reason 2016. [DOI: 10.1016/j.ijar.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|