1
|
Kim G, Grams RJ, Hsu KL. Advancing Covalent Ligand and Drug Discovery beyond Cysteine. Chem Rev 2025. [PMID: 40404146 DOI: 10.1021/acs.chemrev.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Targeting intractable proteins remains a key challenge in drug discovery, as these proteins often lack well-defined binding pockets or possess shallow surfaces not readily addressed by traditional drug design. Covalent chemistry has emerged as a powerful solution for accessing protein sites in difficult to ligand regions. By leveraging activity-based protein profiling (ABPP) and LC-MS/MS technologies, academic groups and industry have identified cysteine-reactive ligands that enable selective targeting of challenging protein sites to modulate previously inaccessible biological pathways. Cysteines within a protein are rare, however, and developing covalent ligands that target additional residues hold great promise for further expanding the ligandable proteome. This review highlights recent advancements in targeting amino acids beyond cysteine binding with an emphasis on tyrosine- and lysine-directed covalent ligands and their applications in chemical biology and therapeutic development. We outline the process of developing covalent ligands using chemical proteomic methodology, highlighting recent successful examples and discuss considerations for future expansion to additional amino acid sites on proteins.
Collapse
Affiliation(s)
- Gibae Kim
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - R Justin Grams
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Gupta A, Kherudkar A, Laha JK. Denitrogenative Radical Transacetylation of Amines Using Acetohydrazide in Water at Room Temperature. J Org Chem 2025; 90:6392-6406. [PMID: 40325499 DOI: 10.1021/acs.joc.5c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
A nonconventional oxidative denitrogenative radical transacetylation method for the chemoselective N-acetylation of primary and secondary aryl/heteroaryl amines using acetohydrazide as a new source of acetyl radical has been discussed. This method, conducted under mild, transition-metal-free conditions in water, offers significant advantages over existing acetylation strategies, which largely rely on harsh reagents such as acetic anhydride, acetyl chloride, or enzyme catalysts. The process utilizes environmentally friendly reagents, namely, tert-butyl hydroperoxide (TBHP) and tert-butyl ammonium iodide (TBAI), to generate acetyl radicals through the oxidative cleavage of acetohydrazide, enabling efficient and selective N-acetylation of a wide variety of amines, including those bearing other sensitive functional groups. Control experiments with radical scavengers confirmed the in situ generation of the acetyl radical, providing strong evidence for the proposed mechanism. Importantly, this protocol demonstrates excellent scalability with successful application in the synthesis and late-stage functionalization of pharmaceutical compounds and advanced drug intermediates. The method not only expands the toolkit for amine functionalization but also offers a sustainable and scalable approach for industrial applications in drug discovery and development.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India
| | - Aditya Kherudkar
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India
| |
Collapse
|
3
|
Yang C, Zhong M, Jiao X, Cao H, Qin Y, Xu H, Guo F, Tang Z, Lv T, Guan L, Wang Y, Gao Y, Zhang K. Polysaccharides from Dicliptera chinensis (L.) Juss. Attenuates drug-induced liver injury by phosphorylating AMPK and thus facilitating the entry of FOXO3 into the cell nucleus. Int Immunopharmacol 2025; 155:114633. [PMID: 40239335 DOI: 10.1016/j.intimp.2025.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Isoniazid and rifampicin, frontline tuberculosis drugs, frequently induce drug-induced liver injury (DILI), marked by hepatitis and hepatocyte necrosis. Polysaccharides from Dicliptera chinensis (L.) Juss. (DCP) exhibit anti-inflammatory, antioxidant, and hepatoprotective properties, but their effects on DILI remain unexplored OBJECTIVE: This study investigated DCP therapeutic potential against DILI and elucidated its molecular mechanisms METHODS: In vivo (using C57BL/6 mice) and in vitro (using HepG2 cells) DILI models were established and treated with DCP. Transcriptomics, qRT-PCR, and Western blotting were employed to analyze pathway regulation RESULTS: DCP significantly attenuated hepatocyte apoptosis, inflammation, and oxidative stress in DILI mice. Transcriptomic analysis linked DCP'S effects to the modulation of AMPK-FOXO3, p53, and NF-κB pathways, alongside regulation of antioxidant and cell cycle genes. In HepG2 cells, DCP similarly protected against DILI by enhancing AMPK phosphorylation, which facilitated the FOXO3 nuclear translocation. Both models demonstrated DCP'S suppression of p53 and NF-κB activation, restoration of antioxidant defenses, and correction of cell cycle dysregulation CONCLUSION: DCP mitigates DILI by reducing apoptosis, oxidative stress, and inflammation through activation of the AMPK-FOXO3 pathway, inhibition of p53/NF-κB signaling, and stabilization of the cell cycle. These findings highlight DCP'S potential as a therapeutic agent for DILI prevention and treatment.
Collapse
Affiliation(s)
- Chaoyue Yang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Mingli Zhong
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541100, China
| | - Xuefei Jiao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541100, China
| | - Yandan Qin
- Guangxi Vocational University of Agriculture,Nanning 530009, China
| | - Hengjie Xu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Fengyue Guo
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Zixuan Tang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Tiansong Lv
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Lilin Guan
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Yongwang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541100, China.
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541100, China.
| |
Collapse
|
4
|
Wang X, Zhang J, Xia X, Fang Y, Yang L, Zhou Y, Hu S, Jiang L, Xiong K, Wang J. Sodium alginate alleviated isoniazid-induced liver injury by modulating fecal metabolites and gut microbiota. Int J Biol Macromol 2025; 305:141149. [PMID: 39961567 DOI: 10.1016/j.ijbiomac.2025.141149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Previous studies found that sodium alginate (SA) was protective against several liver diseases. However, the effect of SA on drug-induced liver injury is not clear. This study investigated the effect and mechanism of SA on isoniazid (INH)-induced liver injury in mice. Twenty-one male BALB/c mice were randomly divided into three groups: the control (AIN-93 M diet), the INH (AIN-93 M diet with 0.66 g INH/kg diet) and the SA group (AIN-93 M diet with 0.66 g INH/kg diet and 0.8 g SA/kg diet). After 10 weeks, the liver function indices, histopathological changes, fecal metabolites, and gut microbiota compositions were measured. Compared with the INH group, the SA group had significantly reduced alanine aminotransferase (ALT) and histopathological liver injury. Also, the SA treatment significantly reduced the content of several fecal metabolites including the indole, phenylalanine, and tyrosine derivatives. In addition, the SA treatment significantly increased the content of seven gut bacteria including Dorea, Eubacterium xylanophilum group, and Papillibacter and reduced the content of 11 gut bacteria including Alloprevotella. The changes in fecal metabolites and gut bacteria were associated with those in serum ALT and histopathological liver injury. In conclusion, SA alleviated INH-induced liver injury in mice by modulating fecal metabolites and gut bacteria.
Collapse
Affiliation(s)
- Xinfang Wang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jingkai Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Xin Xia
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yuanyuan Fang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Leyu Yang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yarui Zhou
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Shouna Hu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Lan Jiang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Ke Xiong
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jinyu Wang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Li JM, Zhang RY, Yang GY, Cai QS, Lang YZ, Zhong FM, Huang JP, Chen YY, Qin Y, Fang LK, Ye B, Lin LH, Lin HH, Cai XJ, Xu K. Model-based precision dosing and remedial dosing recommendations for delayed or missed doses of isoniazid in Chinese patients with tuberculosis. Br J Clin Pharmacol 2025; 91:947-956. [PMID: 38570184 DOI: 10.1111/bcp.16050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/04/2024] [Accepted: 01/20/2024] [Indexed: 04/05/2024] Open
Abstract
AIMS Isoniazid (INH) has been used as a first-line drug to treat tuberculosis (TB) for more than 50 years. However, large interindividual variability was found in its pharmacokinetics, and effects of nonadherence to INH treatment and corresponding remedy regime remain unclear. This study aimed to develop a population pharmacokinetic (PPK) model of INH in Chinese patients with TB to provide model-informed precision dosing and explore appropriate remedial dosing regimens for nonadherent patients. METHODS In total, 1012 INH observations from 736 TB patients were included. A nonlinear mixed-effects modelling was used to analyse the PPK of INH. Using Monte Carlo simulations to determine optimal dosage regimens and design remedial dosing regimens. RESULTS A 2-compartmental model, including first-order absorption and elimination with allometric scaling, was found to best describe the PK characteristics of INH. A mixture model was used to characterize dual rates of INH elimination. Estimates of apparent clearance in fast and slow eliminators were 28.0 and 11.2 L/h, respectively. The proportion of fast eliminators in the population was estimated to be 40.5%. Monte Carlo simulations determined optimal dosage regimens for slow and fast eliminators with different body weight. For remedial dosing regimens, the missed dose should be taken as soon as possible when the delay does not exceed 12 h, and an additional dose is not needed. delay for an INH dose exceeds 12 h, the patient only needs to take the next single dose normally. CONCLUSION PPK modelling and simulation provide valid evidence on the precision dosing and remedial dosing regimen of INH.
Collapse
Affiliation(s)
- Jin-Meng Li
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Ruo-Ying Zhang
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Gao-Yi Yang
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Qing-Shan Cai
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Ya-Zhen Lang
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Fang-Ming Zhong
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Jin-Peng Huang
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Yuan-Yuan Chen
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Yao Qin
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Li-Kui Fang
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Bo Ye
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Li-Hua Lin
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Hui-Hong Lin
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Xin-Jun Cai
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Kan Xu
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| |
Collapse
|
6
|
Jittikoon J, Saengsiwaritt W, Chanhom N, Chaikledkaew U, Wattanapokayakit S, Mahasirimongkol S, Udomsinprasert W. Association of NAT2 promoter hypermethylation with susceptibility to hepatotoxicity due to antituberculosis drugs and biomarker potential. Sci Rep 2025; 15:10197. [PMID: 40133601 PMCID: PMC11937569 DOI: 10.1038/s41598-025-95050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
This study aimed to determine whether promoter methylation of N-acetyltransferase 2 (NAT2), a metabolic enzyme responsible for drug metabolism and detoxification, was correlated with clinical parameters indicating anti-tuberculosis drug-induced liver injury (ATDILI) in tuberculosis patients and might emerge as an ATDILI biomarker. NAT2 promoter methylation in blood leukocyte of 102 tuberculosis patients (49 ATDILI cases and 53 non-ATDILI cases) and 100 healthy controls were quantified using quantitative real-time methylation-specific polymerase chain reaction. Compared to healthy volunteers, tuberculosis patients had significantly reduced NAT2 demethylation index. Compared with non-ATDILI patients, NAT2 demethylation index was significantly decreased in ATDILI patients. An independent association was found between lower NAT2 demethylation index and increased susceptibility to ATDILI. NAT2 demethylation index quantified after starting treatment within 1-7 days was negatively correlated with serum aminotransferases measured within 8-60 days of treatment. ROC curve analysis uncovered that NAT2 demethylation index was found to be a more sensitive and specific biomarker for ATDILI when compared to serum aminotransferases measured following treatment initiation within 1-7 days. Kaplan-Meier analysis unveiled a notable association between lower NAT2 demethylation index and a higher incidence of ATDILI in tuberculosis patients, as confirmed by Cox regression analysis while accounting for confounding variables. A reduction in NAT2 demethylation index could reflect ATDILI progression and potentially be used as a new, specific biomarker for ATDILI.
Collapse
Affiliation(s)
- Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Wacharapol Saengsiwaritt
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Noppadol Chanhom
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Usa Chaikledkaew
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
- Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, 10400, Thailand
| | - Sukanya Wattanapokayakit
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Genomic Medicine Centre, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Surakameth Mahasirimongkol
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Genomic Medicine Centre, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudthaya Road, Rajathevi, Bangkok, 10400, Thailand.
| |
Collapse
|
7
|
Terreiro JFPR, Marquês JT, Antunes I, de Faria CF, Santos S, Martins F, de Almeida RFM. Membrane interaction studies of isoniazid derivatives active against drug-resistant tuberculosis. Eur J Pharm Sci 2025; 205:106986. [PMID: 39674553 DOI: 10.1016/j.ejps.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Tuberculosis is one of the leading causes of mortality worldwide due to the growth of multi-drug resistant strains unsusceptible to currently available therapies. Four compounds, isoniazid (INH) and three derivatives, N'-decanoylisonicotinohydrazide (INHC10), N'-(E)-(4-phenoxybenzylidene)isonicotinohydrazide (N34) and N'-(4-phenoxybenzyl)isonicotinohydrazide (N34red), were studied. Owing to their advantageous in vitro selectivity index against the primary mutation responsible for drug resistance in Mycobacterium tuberculosis (Mtb), as well as their suitable lipophilicity and interaction with human serum albumin, INHC10 and N34 were deemed promising antitubercular compounds. N34red, despite differing from N34 only in the saturation of the N' = C bond, presents a poor selectivity index. To delve deeper into the therapeutic potential of these compounds, their interaction with biomembrane models, mimicking biological barriers on the way to the target inside Mtb cells, was herein evaluated. All compounds, except N34red, weakened the packing of the acyl chains in the rigid lipid gel phase, especially INHC10, which was the only compound disturbing liquid disordered membranes. Notably, all compounds except INH decreased membrane dipole potential, across all types of bilayers studied, but only N34red had a drastic effect. The insertion in gel phase bilayers suggests that the compounds may be able to penetrate the rigid cell wall of Mtb. Förster's resonance energy transfer (FRET) assays in ternary bilayers with liquid ordered/liquid disordered lateral heterogeneity mimicking human cell membranes, showed that the compounds affected neither the size nor the organization of lipid domains. These results provide molecular insights into the low toxicity against human cell lines and improved activity against drug-resistant Mtb of INHC10 and N34.
Collapse
Affiliation(s)
- Joana F P R Terreiro
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal
| | - Joaquim T Marquês
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal.
| | - Inês Antunes
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal
| | - Catarina Frazão de Faria
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal
| | - Susana Santos
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal
| | - Filomena Martins
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal.
| | - Rodrigo F M de Almeida
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal.
| |
Collapse
|
8
|
Ezhilarasan D, Karthikeyan S, Najimi M, Vijayalakshmi P, Bhavani G, Jansi Rani M. Preclinical liver toxicity models: Advantages, limitations and recommendations. Toxicology 2025; 511:154020. [PMID: 39637935 DOI: 10.1016/j.tox.2024.154020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Experimental animal models are crucial for elucidating the pathophysiology of liver injuries and for assessing new hepatoprotective agents. Drugs and chemicals such as acetaminophen, isoniazid, valproic acid, ethanol, carbon tetrachloride (CCl4), dimethylnitrosamine (DMN), and thioacetamide (TAA) are metabolized by the CYP2E1 enzyme, producing hepatotoxic metabolites that lead to both acute and chronic liver injuries. In experimental settings, acetaminophen (centrilobular necrosis), carbamazepine (centrilobular necrosis and inflammation), sodium valproate (necrosis, hydropic degeneration and mild inflammation), methotrexate (sinusoidal congestion and inflammation), and TAA (centrilobular necrosis and inflammation) are commonly used to induce various types of acute liver injuries. Repeated and intermittent low-dose administration of CCl4, TAA, and DMN activates quiescent hepatic stellate cells, transdifferentiating them into myofibroblasts, which results in abnormal extracellular matrix production and fibrosis induction, more rapidly with DMN and CCL4 than TAA (DMN > CCl4 > TAA). Regarding toxicity and mortality, CCl4 is more toxic than DMN and TAA (CCl4 > DMN > TAA). Models used to induce metabolic dysfunction-associated liver disease (MAFLD) vary, but MAFLD's multifactorial nature driven by factors like obesity, fatty liver, dyslipidaemia, type II diabetes, hypertension, and cardiovascular disease makes it challenging to replicate human metabolic dysfunction-associated steatohepatitis accurately. From an experimental point of view, the degree and pattern of liver injury are influenced by various factors, including the type of hepatotoxic agent, exposure duration, route of exposure, dosage, frequency of administration, and the animal model utilized. Therefore, there is a pressing need for standardized protocols and regulatory guidelines to streamline the selection of animal models in preclinical studies.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sivanesan Karthikeyan
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Paramasivan Vijayalakshmi
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Asan Memorial Dental College and Hospital, Chengalpattu, Tamil Nadu, India
| | - Ganapathy Bhavani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Muthukrishnan Jansi Rani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
9
|
Li JQ, Wang AJ, Song P, Feng JJ, Zhou Q, Cheang TY. Electronic structure modulation of ultrathin PtRuMoCoNi high-entropy alloy nanowires for boosting peroxidase-like activity and sensitive colorimetric determination of isoniazid and hydrazine. Mikrochim Acta 2025; 192:82. [PMID: 39810035 DOI: 10.1007/s00604-024-06892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue OXTMB through decomposition of H2O2 to superoxide radicals. Notably, isoniazid and hydrazine effectively scavenge the as-produced superoxide radicals and reduce the blue OXTMB, showing high reduction ability and antioxidant property. Thus, the PtRuMoCoNi HEANW-derived colorimetric method was developed for determination of isoniazid and hydrazine, which exhibited the linear ranges of 1.5 to 50 μM and 25 to 200 μM coupled with the lower detection limits of 2.3 and 12.6 μM for isoniazid and hydrazine, respectively. The excellent analytical performance mainly results from the synergistic catalytic effect of the multiple metals and distinctive ultra-thin nanowires. This work provides a simple and rapid colorimetric method for the determination of isoniazid and hydrazine in actual samples.
Collapse
Affiliation(s)
- Jia-Qi Li
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Jiu-Ju Feng
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China
| | - Tuck Yun Cheang
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China
| |
Collapse
|
10
|
Verma J, Preeti, Annu, Sharma RK, Chopra S, Chopra H, Shin DK. Understanding and using Animal Models of Hepatotoxicity. Curr Pharm Des 2025; 31:943-956. [PMID: 39694965 DOI: 10.2174/0113816128338726241029175250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024]
Abstract
Hepatotoxicity is a critical health hazard, primarily contributing to the increased incidence of deaths globally. The liver is one of the major and extremely vital organs of the human body. Autoimmune diseases, viruses, exposure to toxicants such as carcinogens, and changes in eating habits can all cause liver problems, among other things. Free radical generation, together with raised enzyme levels including SGOT, SGPT, and total bilirubin, are among the pathological changes set off by liver injury. Hepatotoxicity causes changes in cells, such as eosinophilic cytoplasm, nuclear pyknosis, fatty degeneration, too many liver lesions, and hepatic centrilobular necrosis due to lipid peroxidation. Researchers have used animal models to investigate liver diseases and toxicities. Drugs such as azathioprine, alcoholism, paracetamol intoxication, and anti-tuberculosis drugs are some of the most common causes of liver toxicity. These toxins cause calcium ions (Ca2+), reactive oxygen species (ROS), and inflammatory mediators to be released inside cells. This activates immune cells like NK cells, NKT cells, and Kupffer cells. These signaling pathways also play roles in hepatotoxicity. Due to its pathogenesis, no effective drug is currently available for hepatotoxicity due to a lack of understanding related to the signaling factors involved in it. The paper primarily examines different experimental models of hepatotoxicity, including non-invasive and invasive methods, as well as genetic models. As such, these models are crucial tools in advancing our understanding of hepatotoxicity, thus paving the way for new therapeutic interventions.
Collapse
Affiliation(s)
- Jyoti Verma
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela 140111, Ropar (Punjab), India
| | - Preeti
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela 140111, Ropar (Punjab), India
| | - Annu
- Materials Laboratory, School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rahul Kumar Sharma
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela-140111, Ropar (Punjab), India
| | - Shivani Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Dong Kil Shin
- Materials Laboratory, School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Daly AK. Genetic and Genomic Approaches to the Study of Drug-Induced Liver Injury. Liver Int 2025; 45:e16191. [PMID: 39704445 DOI: 10.1111/liv.16191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
Idiosyncratic hepatotoxicity induced by prescribed drugs has been known since the early 20th century. Identifying risk factors, including genetic factors, that trigger this drug-induced liver injury (DILI) has been an important priority for many years, both to prevent drugs that cause liver injury being licensed and as a potential means of preventing at-risk patients being prescribed causative drugs. Improved methods for genomic analysis, particularly the development of genome-wide association studies, have facilitated the identification of genomic risk factors for DILI, but, to date, there are only two main examples, liver injury caused by amoxicillin-clavulanate (AC) and by flucloxacillin, where genetic risk factors causing the injury have been identified and replicated with understanding of the underlying mechanism. There has also been progress on identifying genetic risk factors for liver injury caused by other anti-infective agents, herbal remedies and nonsteroidal anti-inflammatory drugs. The majority of genetic risk factors identified to date are specific human leucocyte antigen (HLA) alleles and evidence that these alleles preferentially present self-peptides inappropriately to T cells in the liver has been obtained. Non-HLA genes also contribute to genetic susceptibility, both as co-factors in T-cell responses and, in the case of isoniazid-only, drug metabolism. Polygenic risk scores to predict DILI have been developed, both a simple score that predicts AC injury and complex scores that may be applied to DILI more generally and provide evidence that additional risk factors other than HLA genes exist.
Collapse
Affiliation(s)
- Ann K Daly
- Faculty of Medical Sciences, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Cheli S, Torre A, Schiuma M, Montrasio C, Civati A, Galimberti M, Battini V, Mariani I, Mosini G, Carnovale C, Radice S, Clementi E, Gori A, Antinori S. NAT2 Slow Acetylator Phenotype as a Significant Risk Factor for Hepatotoxicity Caused by Antituberculosis Drugs: Results From a Multiethnic Nested Case-Control Study. Clin Infect Dis 2024:ciae583. [PMID: 39727196 DOI: 10.1093/cid/ciae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Under standard therapies, the incidence of drug-induced liver injury (DILI) in patients with tuberculosis ranges from 2% to 28%. Numerous studies have identified the risk factors for antituberculosis DILI; however, none have been conducted in a multiethnic real-world setting. The primary outcome of the current study was to identify the risk factors that could be used as the best predictors of DILI in a multiethnic cohort. METHODS A nested case-control study was conducted in patients at the tuberculosis clinic of Luigi Sacco Hospital in Milan. RESULTS The study included 102 patients (mean age [SD], 45.6 [15.6] years). For each patient with hepatotoxicity, 2 controls were matched for sex, age, body mass index, tuberculosis/tuberculosis infection diagnosis, and index date. We found that N-acetyltransferase 2 gene (NAT2) slow acetylator status was the best independent predictor of DILI (odds ratio, 5.97 [95% confidence interval, 1.38-25.76]; P = .02]. CONCLUSIONS NAT2 genotype-guided dosing may help optimize antituberculosis drug treatment and prevent treatment failure. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov NCT06539455.
Collapse
Affiliation(s)
- Stefania Cheli
- ICPS, Pharmacovigilance & Clinical Research, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University Hospital Luigi Sacco, Università Degli Studi di Milano, Milan, Italy
| | - Alessandro Torre
- III Infectious Disease Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Marco Schiuma
- II Infectious Disease Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Cristina Montrasio
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milan, Italy
| | - Aurora Civati
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Miriam Galimberti
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Vera Battini
- ICPS, Pharmacovigilance & Clinical Research, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University Hospital Luigi Sacco, Università Degli Studi di Milano, Milan, Italy
| | - Ilaria Mariani
- ICPS, Pharmacovigilance & Clinical Research, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University Hospital Luigi Sacco, Università Degli Studi di Milano, Milan, Italy
| | - Giulia Mosini
- ICPS, Pharmacovigilance & Clinical Research, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University Hospital Luigi Sacco, Università Degli Studi di Milano, Milan, Italy
| | - Carla Carnovale
- ICPS, Pharmacovigilance & Clinical Research, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University Hospital Luigi Sacco, Università Degli Studi di Milano, Milan, Italy
| | - Sonia Radice
- ICPS, Pharmacovigilance & Clinical Research, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University Hospital Luigi Sacco, Università Degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- ICPS, Pharmacovigilance & Clinical Research, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University Hospital Luigi Sacco, Università Degli Studi di Milano, Milan, Italy
- III Infectious Disease Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
- II Infectious Disease Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Andrea Gori
- II Infectious Disease Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Spinello Antinori
- III Infectious Disease Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
- II Infectious Disease Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Mahajan R, Tyagi AK. Pharmacogenomic insights into tuberculosis treatment shows the NAT2 genetic variants linked to hepatotoxicity risk: a systematic review and meta-analysis. BMC Genom Data 2024; 25:103. [PMID: 39639188 PMCID: PMC11622454 DOI: 10.1186/s12863-024-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) patients undergoing anti-tuberculosis treatment often face serious adverse drug reactions, such as hepatotoxicity. Genetic variants of the N-acetyltransferase 2 (NAT2) gene have been linked to an increased risk of these toxic events. OBJECTIVE This study aims to provide a comprehensive evaluation of the evidence linking NAT2 genetic variants to anti-tuberculosis drug-related hepatotoxicity (ATDH). METHOD A comprehensive review and meta-analysis was performed by accessing databases such as PubMed, Scopus, and Web of Science. A total of 24 articles were incorporated into the dataset. Meta-analyses were conducted to gather estimates of the association between the slow acetlylators (SA) genotype and ATDH. The studies were stratified by ethnicity, regimen, genotyping methods, criteria for liver toxicity, and dosage. Also, meta-analysis for the specific SA type that was most likely responsible for the ATDH was also conducted. RESULTS The included studies showed individuals with a slow NAT2 acetylator had a significantly greater risk of experiencing hepatotoxicity ATDH (odds ratio [OR] 2.52 (95% CI: 1.95-3.27; p value < 0.001) compared to individuals with other types of acetylator (i.e., rapid and immediate). Among individuals with slow acetylator NAT2*5/7, NAT2*5/6, and NAT2*6/6 genotypes, there is a greater likelihood of association compared to other variations. CONCLUSION Our meta-analysis confirms a significant association between slow NAT2 acetylator and increased hepatotoxicity risk. The findings from the present underscore the potential of pharmacogenomic testing to improve TB treatment outcomes. By identifying patients with the slow acetylator NAT2 genotype, healthcare providers can predict an increased risk of anti-tuberculosis drug-induced hepatotoxicity. This allows for personalized treatment strategies, such as adjusting drug dosages or selecting alternative therapies, to minimize adverse effects and optimize efficacy.
Collapse
Affiliation(s)
- Rashmi Mahajan
- Dr. Bhimrao Ramji Ambedkar Government Medical College, Kannauj, India
| | - Anuj Kumar Tyagi
- Dr. Bhimrao Ramji Ambedkar Government Medical College, Kannauj, India.
| |
Collapse
|
14
|
Mondal S, Roy V, Meshram GG, Khanna A, Velpandian T, Garg S. Pharmacokinetics-pharmacodynamics of first-line antitubercular drugs: a comparative study in tuberculosis patients with and without concomitant diabetes mellitus. Eur J Clin Pharmacol 2024; 80:1945-1958. [PMID: 39287783 DOI: 10.1007/s00228-024-03754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE To observe the variability in the plasma concentrations and pharmacokinetic-pharmacodynamic (PK-PD) profiles of first-line antitubercular drugs in pulmonary tuberculosis (TB) patients with and without diabetes mellitus (DM). METHODS Newly diagnosed pulmonary TB patients aged 18-60 years with or without DM were included in the study. Group I (n = 20) included patients with TB, whereas group II (n = 20) included patients with both TB and DM. After 2 weeks of therapy, plasma concentrations and other PK-PD parameters were determined. Improvements in clinical features, X-ray findings, sputum conversion, and adverse drug reactions (ADRs) were assessed after 2 months of therapy. RESULTS Isoniazid displayed non-significantly higher plasma concentrations in diabetic patients, along with a significantly (P < 0.05) longer elimination half-life (t1/2). Rifampicin plasma concentrations at 4, 8, and 12 h were significantly (P < 0.05) lower, and it displayed significantly (P < 0.05) lower area under the curve (AUC0-12 and AUC0-∞), shorter t1/2, higher clearance (Cl), and a lower AUC0-∞/MIC ratio in diabetic patients. Pyrazinamide and ethambutol showed non-significantly higher plasma concentrations, AUC0-12, AUC0-∞, and t1/2 in diabetic patients. The improvements in clinical features, X-ray findings, sputum conversion, and ADRs were comparable in both groups. CONCLUSIONS The presence of DM in TB patients affects the PK-PD parameters of isoniazid, rifampicin, pyrazinamide, and ethambutol variably in the Indian population. Studies with a larger number of patients are required to further elucidate the role of DM on the PK-PD profile of first-line antitubercular drugs and treatment outcomes in TB patients with concomitant DM. TRIAL REGISTRATION CTRI/2021/08/035578 dated 11/08/2021.
Collapse
Affiliation(s)
- Sourav Mondal
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, 110002, India
- Department of Clinical Pharmacology, Seth GS Medical College and King Edward Memorial Hospital, Mumbai, 400012, India
| | - Vandana Roy
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, 110002, India.
| | - Girish Gulab Meshram
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, 110002, India
| | - Ashwani Khanna
- TB and Chest Clinic, Lok Nayak Hospital, New Delhi, 110002, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology and Pharmacy Division of Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sandeep Garg
- Department of General Medicine, Maulana Azad Medical College, New Delhi, 110002, India
| |
Collapse
|
15
|
Zeng L, Jin X, Xiao QA, Jiang W, Han S, Chao J, Zhang D, Xia X, Wang D. Ferroptosis: action and mechanism of chemical/drug-induced liver injury. Drug Chem Toxicol 2024; 47:1300-1311. [PMID: 38148561 DOI: 10.1080/01480545.2023.2295230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Drug-induced liver injury (DILI) is characterized by hepatocyte injury, cholestasis injury, and mixed injury. The liver transplantation is required for serious clinical outcomes such as acute liver failure. Current studies have found that many mechanisms were involved in DILI, such as mitochondrial oxidative stress, apoptosis, necroptosis, autophagy, ferroptosis, etc. Ferroptosis occurs when hepatocytes die from iron-dependent lipid peroxidation and plays a key role in DILI. After entry into the liver, where some drugs or chemicals are metabolized, they convert into hepatotoxic substances, consume reduced glutathione (GSH), and decrease the reductive capacity of GSH-dependent GPX4, leading to redox imbalance in hepatocytes and increase of reactive oxygen species (ROS) and lipid peroxidation level, leading to the undermining of hepatocytes; some drugs facilitated the autophagy of ferritin, orchestrating the increased ion level and ferroptosis. The purpose of this review is to summarize the role of ferroptosis in chemical- or drug-induced liver injury (chemical/DILI) and how natural products inhibit ferroptosis to prevent chemical/DILI.
Collapse
Affiliation(s)
- Li Zeng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xueli Jin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Wei Jiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Jin Chao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
16
|
Sankar J, Chauhan A, Singh R, Mahajan D. Isoniazid-historical development, metabolism associated toxicity and a perspective on its pharmacological improvement. Front Pharmacol 2024; 15:1441147. [PMID: 39364056 PMCID: PMC11447295 DOI: 10.3389/fphar.2024.1441147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Despite the extraordinary anti-tubercular activity of isoniazid (INH), the drug-induced hepatotoxicity and peripheral neuropathy pose a significant challenge to its wider clinical use. The primary cause of INH-induced hepatotoxicity is in vivo metabolism involving biotransformation on its terminal -NH2 group owing to its high nucleophilic nature. The human N-acetyltransferase-2 enzyme (NAT-2) exploits the reactivity of INH's terminal -NH2 functional group and inactivates it by transferring the acetyl group, which subsequently converts to toxic metabolites. This -NH2 group also tends to react with vital endogenous molecules such as pyridoxine, leading to their deficiency, a major cause of peripheral neuropathy. The elevation of liver functional markers is observed in 10%-20% of subjects on INH treatment. INH-induced risk of fatal hepatitis is about 0.05%-1%. The incidence of peripheral neuropathy is 2%-6.5%. In this review, we discuss the genesis and historical development of INH, and different reported mechanisms of action of INH. This is followed by a brief review of various clinical trials in chronological order, highlighting treatment-associated adverse events and their occurrence rates, including details such as geographical location, number of subjects, dosing concentration, and regimen used in these clinical studies. Further, we elaborated on various known metabolic transformations highlighting the involvement of the terminal -NH2 group of INH and corresponding host enzymes, the structure of different metabolites/conjugates, and their association with hepatotoxicity or neuritis. Post this deliberation, we propose a hydrolysable chemical derivatives-based approach as a way forward to restrict this metabolism.
Collapse
Affiliation(s)
- Jishnu Sankar
- Centre for Drug Discovery, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Anjali Chauhan
- Centre for Drug Discovery, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Centre for Tuberculosis Research, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ramandeep Singh
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Dinesh Mahajan
- Centre for Drug Discovery, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Centre for Tuberculosis Research, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
17
|
Opperman M, Mason S, van der Westhuizen J, Loots DT, du Preez I. Urinary drug metabolite profiling of tuberculosis treatment failure using proton nuclear magnetic resonance. J Pharm Biomed Anal 2024; 248:116297. [PMID: 38906071 DOI: 10.1016/j.jpba.2024.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
The underlying cause of tuberculosis (TB) treatment failure is still largely unknown. A 1H NMR approach was applied to identify and quantify a subset of TB drugs and drug metabolites: ethambutol (EMB), acetyl isoniazid (AcINH), isonicotinic acid, pyrazinamide (PZA), pyrazinoic acid and 5-hydroxy-pyrazinoic acid, from the urine of TB patients. Samples were collected before, during (weeks one, two and four) and after standardised TB treatment. The median concentrations of the EMB and PZA metabolites were comparable between the samples from patients with eventually cured and failed treatment outcomes. The INH metabolites showed comparatively elevated concentrations in the treatment failure patients during and after treatment. Variation in INH metabolite concentrations couldn't be associated with the varying acetylator genotypes, and it is therefore suggested that treatment failure is influenced more so by other conditions, such as environmental factors, or individual variation in other INH metabolic pathways.
Collapse
Affiliation(s)
- Monique Opperman
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa
| | - Shayne Mason
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa
| | - Jessica van der Westhuizen
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa
| | - Ilse du Preez
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa.
| |
Collapse
|
18
|
Lin R, Wu P, Wu Y, Huang L, Lin B, Huang L. Effects of compound Anoectochilus roxburghii (Wall.) Lindl. oral liquid on relative metabolic enzymes and various biochemical indices in Wistar rats with isoniazid-induced liver injury. J Pharm Biomed Anal 2024; 248:116249. [PMID: 38936169 DOI: 10.1016/j.jpba.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/29/2024]
Abstract
Isoniazid (INH) is the first-line anti-tuberculosis drug in clinical practice, and its main adverse effect is drug-induced liver injury (DILI). This study aimed to investigate the hepatoprotective effect of Compound Anoectochilus roxburghii (Wall.) Lindl. Oral Liquid (CAROL) and to provide a new strategy for the search of potential drugs against INH-induced liver injury in Wistar rats. Animal experiment was based on INH (100 mg/kg) induced liver injury to explore the intervention effects of CAROL at doses of 1.35, 2.70, and 5.40 mL/kg. LC-QTOF-MS/MS was used to identify hepatoprotective components in CAROL and its' exposed components in rat serum. The hepatoprotective effect of CAROL was evaluated by pathological observation of rat liver tissue and changes in levels of biochemical indices and cytokines in serum or liver tissue. Of the 58 hepatoprotective components identified, 15 were detected in the serum of rats with liver-injured treated by high-dose CAROL. Results of animal experiments showed that the levels of various biochemical indexes and cytokines were significantly reversed with CAROL intervention. In particular, the expression level of cytokeratin-18 and high-mobility group box 1, as specific and sensitive indicators of DILI, was significantly reduced in the serum of rats with CAROL intervention compared with the INH model group. The same reversal was observed in the levels of TBIL, ALP, ALT, and AST in serum, as well as in the levels of TNF-α, IL-6, SOD, and MDA in liver tissue. For INH-metabolizing enzymes, an evident expression inhibition was observed in N-acetyltransferase 2 and glutathione S-transferases with CAROL intervention, which may be the key to controlling INH hepatotoxicity. CAROL has a favorable hepatoprotective effect on INH-induced liver injury. This study takes the first step in studying the hepatoprotective mechanism of CAROL against INH hepatotoxicity and provides reference for wider clinical applications.
Collapse
Affiliation(s)
- Renyi Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Pingping Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Youjia Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Lingyi Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Bixia Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350002, China.
| | - Liying Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
19
|
Masubuchi Y, Miyauchi K. Metabolism-dependent inhibition of CYP2E1 by isoniazid, a mediator of idiosyncratic liver injury. Chem Biol Interact 2024; 400:111160. [PMID: 39047805 DOI: 10.1016/j.cbi.2024.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Liver injury is a well-known adverse effect of the anti-tuberculosis drug isoniazid (INH); however, animal models that accurately replicate this effect as seen in humans have not been constructed, and the mechanism of its pathogenesis remains unclear. Recently, an immune-mediated mechanism have been proposed based on clinical studies, suggesting the involvement of cytochrome P450-mediated formation of reactive metabolites and covalent adducts in severe cases. In the present study, we investigated the role of CYP2E1 in this mechanism. Liver microsomes from humans, rats, and mice were preincubated with INH and NADPH; thereafter, residual CYP2E1 activity was measured. The inhibition of CYP2E1 by INH was potentiated by preincubation, indicating time-dependent inhibition. There were no major species-based differences in inhibition among humans, rats, and mice. Further to our findings on the inhibition kinetics, resistance of the inhibition to glutathione and catalase indicated that the reactive metabolites of INH covalently bonded to CYP2E1 in a suicidal manner. A similar time-dependent inhibition was also observed for the known metabolites acetylhydrazine and hydrazine; however, the conditions that inhibited the hydrolysis or activated the acetylation of INH did not affect inhibition by INH, suggesting that the reactive metabolites contributing to the inhibition were generated via alternative pathways. This indicates that CYP2E1 alone generates reactive INH metabolites and that haptenized CYP2E1 may be involved in immune-mediated liver injury.
Collapse
Affiliation(s)
- Yasuhiro Masubuchi
- Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, Japan.
| | - Kyohei Miyauchi
- Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, Japan
| |
Collapse
|
20
|
Zhang X, Geng Q, Lin L, Zhang L, Shi C, Liu B, Yan L, Cao Z, Li L, Lu P, Tan Y, He X, Zhao N, Li L, Lu C. Insights gained into the injury mechanism of drug and herb induced liver injury in the hepatic microenvironment. Toxicology 2024; 507:153900. [PMID: 39079402 DOI: 10.1016/j.tox.2024.153900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Drug-Induced Liver Injury (DILI) and herb Induced Liver Injury (HILI) continues to pose a substantial challenge in both clinical practice and drug development, representing a grave threat to patient well-being. This comprehensive review introduces a novel perspective on DILI and HILI by thoroughly exploring the intricate microenvironment of the liver. The dynamic interplay among hepatocytes, sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, cholangiocytes, and the intricate vascular network assumes a central role in drug metabolism and detoxification. Significantly, this microenvironment is emerging as a critical determinant of susceptibility to DILI and HILI. The review delves into the multifaceted interactions within the liver microenvironment, providing valuable insights into the complex mechanisms that underlie DILI and HILI. Furthermore, we discuss potential strategies for mitigating drug-induced liver injury by targeting these influential factors, emphasizing their clinical relevance. By highlighting recent advances and future prospects, our aim is to shed light on the promising avenue of leveraging the liver microenvironment for the prevention and mitigation of DILI and HILI. This deeper understanding is crucial for advancing clinical practices and ensuring patient safety in the realm of DILI and HILI.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changqi Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Meshcheva D, Krekhova F, Shishov A, Bulatov A. Natural deep eutectic solvent for the simultaneous derivatization and microextraction of isoniazid from human plasma. Anal Chim Acta 2024; 1320:343007. [PMID: 39142784 DOI: 10.1016/j.aca.2024.343007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Personalized medicine is a rapidly revolving field that offers new opportunities for tailoring disease treatment to individual patients. The main idea behind this approach is to carefully select safe and effective medications and treatment plant based on each patient's unique pharmacokinetic profile. Isoniazid is a first-line anti-tuberculosis drug that has interindividual variability in its metabolic processing, leading to significant differences in plasma concentrations among patients receiving equivalent doses. This variability necessitates the creation of individualized treatment regimens as part of personalized medicine to achieve more effective therapy. RESULTS In this work, a deep eutectic solvent-based liquid-liquid microextraction approach for the separation and determination of isoniazid in human plasma by high-performance liquid chromatography with UV-Vis detection was developed for the first time. A new natural deep eutectic solvent based on thymol as a hydrogen bond donor and 4-methoxybenzaldehyde as a hydrogen bond acceptor was proposed as the extraction solvent. The developed microextraction procedure assumed two simultaneous processes during the mixing of the sample and extraction solvent: the derivatization of the polar analyte in the presence of 4-methoxybenzaldehyde (component of the natural deep eutectic solvent) with the formation of a hydrophobic Schiff base (1); mass transfer of the Schiff base from the sample phase to the extraction solvent phase (2). Under optimal conditions, the limits of detection and quantification were 20 and 60 μg L-1, respectively. The RSD value was <10 %, the extraction recovery was 95 %. SIGNIFICANCE In this work, the possibility of isoniazid derivatization in the natural deep eutectic solvent phase with the formation of the Schiff base was presented for the first time. The approach provided the separation and preconcentration of polar isoniazid without the use of expensive derivatization agents and solid-phase extraction cartridges. The formation of the Schiff base was confirmed by mass spectrometry.
Collapse
Affiliation(s)
- Daria Meshcheva
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Firuza Krekhova
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.
| | - Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
22
|
Liu Q, Huang L, Yan H, Zong Z, Chen Z, Wu X, Chen L, Lan Y. Clinical risk factors for moderate and severe antituberculosis drug-induced liver injury. Front Pharmacol 2024; 15:1406454. [PMID: 39108745 PMCID: PMC11300277 DOI: 10.3389/fphar.2024.1406454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/08/2024] [Indexed: 05/27/2025] Open
Abstract
OBJECTIVE To analyze the clinical and laboratory characteristics and to identify predictors of moderate to severe anti-tuberculosis drug-induced liver injury (ATB-DILI) in patients with tuberculosis. METHODS This prospective study enrolled Tuberculosis (TB) patients treated with first-line anti-tuberculosis drugs at the Affiliated Hospital of Zunyi Medical University between May 2022 and June 2023. The occurrence of ATB-DILI was monitored, and demographic and clinical data were gathered. We analyzed risk factors for the development of moderate to severe ATB-DILI. RESULTS ATB-DILI was detected in 120 (10.7%) of the patients, with moderate to severe ATB-DILI occurring in 23 (2.0%) of the 1,124 patients treated with anti-tuberculosis treatment. Multivariate cox regression analysis identified malnutrition (HR = 4.564, 95% CI: 1.029-20.251, p = 0.046) and hemoglobin levels <120 g/L (HR = 2.825, 95% CI: 1.268-11.540, p = 0.017) as independent risk factors for moderate to severe ATB-DILI. CONCLUSION The incidence of moderate to severe ATB-DILI was found to be 2.0%. Malnutrition and hemoglobin levels below 120 g/L emerged as significant independent risk factors for the occurrence of moderate to severe ATB-DILI in this patient population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ling Chen
- Department of Tuberculosis, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanbo Lan
- Department of Tuberculosis, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
23
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
24
|
Wang C, Lou C, Yang Z, Shi J, Niu N. Plasma metabolomic analysis reveals the metabolic characteristics and potential diagnostic biomarkers of spinal tuberculosis. Heliyon 2024; 10:e27940. [PMID: 38571585 PMCID: PMC10987919 DOI: 10.1016/j.heliyon.2024.e27940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 02/16/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Objectives This study aimed to conduct a non-targeted metabolomic analysis of plasma from patients with spinal tuberculosis (STB) to systematically elucidate the metabolomic alterations associated with STB, and explore potential diagnostic biomarkers for STB. Methods From January 2020 to January 2022, 30 patients with spinal tuberculosis (STBs) clinically diagnosed at the General Hospital of Ningxia Medical University and 30 age- and sex-matched healthy controls (HCs) were selected for this study. Using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) based metabolomics, we analyzed the metabolic profiles of 60 plasma samples. Statistical analyses, pathway enrichment, and receiver operating characteristic (ROC) analyses were performed to screen and evaluate potential diagnostic biomarkers. Results Metabolomic profiling revealed distinct alterations between the STBs and HCs cohorts. A total of 1635 differential metabolites were screened, functionally clustered, and annotated. The results showed that the differential metabolites were enriched in sphingolipid metabolism, tuberculosis, cutin, suberine and wax biosynthesis, beta-alanine metabolism, methane metabolism, and other pathways. Through the random forest algorithm, LysoPE (18:1(11Z)/0:0), 8-Demethyl-8-formylriboflavin 5'-phosphate, Glutaminyl-Gamma-glutamate, (2R)-O-Phospho-3-sulfolactate, and LysoPE (P-16:0/0:0) were determined to have high independent diagnostic value. Conclusions STBs exhibited significantly altered metabolite profiles compared with HCs. Here, we provide a global metabolomic profile and identify potential diagnostic biomarkers of STB. Five potential independent diagnostic biomarkers with high diagnostic value were screened. This study provides novel insights into the pathogenesis, diagnosis, and treatment strategies of STB.
Collapse
Affiliation(s)
- Chaoran Wang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Caili Lou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Zongqiang Yang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiandang Shi
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Ningkui Niu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Research Center for Prevention and Control of Bone and Joint Tuberculosis, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| |
Collapse
|
25
|
Park Y, Tung PM, Anh NK, Cho YS, Shin JG. Application of the Hollow-Fiber Infection Model to Personalized Precision Dosing of Isoniazid in a Clinical Setting. J Korean Med Sci 2024; 39:e104. [PMID: 38599596 PMCID: PMC11004774 DOI: 10.3346/jkms.2024.39.e104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The hollow-fiber infection model (HFIM) is a valuable tool for evaluating pharmacokinetics/pharmacodynamics relationships and determining the optimal antibiotic dose in monotherapy or combination therapy, but the application for personalized precision medicine in tuberculosis treatment remains limited. This study aimed to evaluate the efficacy of adjusted antibiotic doses for a tuberculosis patient using HFIM. METHODS Model-based Bayesian forecasting was utilized to assess the proposed reduction of the isoniazid dose from 300 mg daily to 150 mg daily in a patient with an ultra-slow-acetylation phenotype. The efficacy of the adjusted 150-mg dose was evaluated in a time-to-kill assay performed using the bacterial isolate Mycobacterium tuberculosis (Mtb) H37Ra in a HFIM that mimicked the individual pharmacokinetic profile of the patient. RESULTS The isoniazid concentration observed in the HFIM adequately reflected the target drug exposures simulated by the model. After 7 days of repeated dose administration, isoniazid killed 4 log10 Mtb CFU/mL in the treatment arm, while the control arm without isoniazid increased 1.6 log10 CFU/mL. CONCLUSION Our results provide an example of the utility of the HFIM for predicting the efficacy of specific recommended doses of anti-tuberculosis drugs in real clinical setting.
Collapse
Affiliation(s)
- Yumi Park
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Korea
| | - Pham My Tung
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Korea
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
| | - Nguyen Ky Anh
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Korea
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Korea
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Korea.
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Korea
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Korea.
| |
Collapse
|
26
|
Ulanova V, Kivrane A, Viksna A, Pahirko L, Freimane L, Sadovska D, Ozere I, Cirule A, Sevostjanovs E, Grinberga S, Bandere D, Ranka R. Effect of NAT2, GSTM1 and CYP2E1 genetic polymorphisms on plasma concentration of isoniazid and its metabolites in patients with tuberculosis, and the assessment of exposure-response relationships. Front Pharmacol 2024; 15:1332752. [PMID: 38584604 PMCID: PMC10995391 DOI: 10.3389/fphar.2024.1332752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Objectives: Isoniazid is a key drug in the chemotherapy of tuberculosis (TB), however, interindividual variability in pharmacokinetic parameters and drug plasma levels may affect drug responses including drug induced hepatotoxicity. The current study investigated the relationships between isoniazid exposure and isoniazid metabolism-related genetic factors in the context of occurrence of drug induced hepatotoxicity and TB treatment outcomes. Methods: Demographic characteristics and clinical information were collected in a prospective TB cohort study in Latvia (N = 34). Time to sputum culture conversion (tSCC) was used as a treatment response marker. Blood plasma concentrations of isoniazid (INH) and its metabolites acetylisoniazid (AcINH) and isonicotinic acid (INA) were determined at three time points (pre-dose (0 h), 2 h and 6 h after drug intake) using liquid chromatography-tandem mass spectrometry. Genetic variations of three key INH-metabolizing enzymes (NAT2, CYP2E1, and GSTM1) were investigated by application PCR- and Next-generation sequencing-based methods. Depending on variables, group comparisons were performed by Student's t-test, one-way ANOVA, Mann-Whitney-Wilcoxon, and Kruskal-Wallis tests. Pearson correlation coefficient was calculated for the pairs of normally distributed variables; model with rank transformations were used for non-normally distributed variables. Time-to-event analysis was performed to analyze the tSCC data. The cumulative probability of tSCC was obtained using Kaplan-Meier estimators. Cox proportional hazards models were fitted to estimate hazard rate ratios of successful tSCC. Results: High TB treatment success rate (94.1%) was achieved despite the variability in INH exposure. Clinical and demographic factors were not associated with either tSCC, hepatotoxicity, or INH pharmacokinetics parameters. Correlations between plasma concentrations of INH and its metabolites were NAT2 phenotype-dependent, while GSTM1 genetic variants did not showed any effects. CYP2E1*6 (T > A) allelic variant was associated with INH pharmacokinetic parameters. Decreased level of AcINH was associated with hepatotoxicity, while decreased values of INA/INH and AcINH/INH were associated with month two sputum culture positivity. Conclusion: Our findings suggest that CYP2E1, but not GSTM1, significantly affects the INH pharmacokinetics along with NAT2. AcINH plasma level could serve as a biomarker for INH-related hepatotoxicity, and the inclusion of INH metabolite screening in TB therapeutic drug monitoring could be beneficial in clinical studies for determination of optimal dosing strategies.
Collapse
Affiliation(s)
- Viktorija Ulanova
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| | - Agnija Kivrane
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| | - Anda Viksna
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Upeslejas, Latvia
| | - Leonora Pahirko
- Faculty of Physics, Mathematics, and Optometry, University of Latvia, Riga, Latvia
| | - Lauma Freimane
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Darja Sadovska
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| | - Iveta Ozere
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Upeslejas, Latvia
| | - Andra Cirule
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Upeslejas, Latvia
| | | | | | - Dace Bandere
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| | - Renate Ranka
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| |
Collapse
|
27
|
Zhang F, Xiang Y, Ma Q, Guo E, Zeng X. A deep insight into ferroptosis in lung disease: facts and perspectives. Front Oncol 2024; 14:1354859. [PMID: 38562175 PMCID: PMC10982415 DOI: 10.3389/fonc.2024.1354859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
In the last decade, ferroptosis has received much attention from the scientific research community. It differs from other modes of cell death at the morphological, biochemical, and genetic levels. Ferroptosis is mainly characterized by non-apoptotic iron-dependent cell death caused by iron-dependent lipid peroxide excess and is accompanied by abnormal iron metabolism and oxidative stress. In recent years, more and more studies have shown that ferroptosis is closely related to the occurrence and development of lung diseases. COPD, asthma, lung injury, lung fibrosis, lung cancer, lung infection and other respiratory diseases have become the third most common chronic diseases worldwide, bringing serious economic and psychological burden to people around the world. However, the exact mechanism by which ferroptosis is involved in the development and progression of lung diseases has not been fully revealed. In this manuscript, we describe the mechanism of ferroptosis, targeting of ferroptosis related signaling pathways and proteins, summarize the relationship between ferroptosis and respiratory diseases, and explore the intervention and targeted therapy of ferroptosis for respiratory diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - Yu Xiang
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - Qiao Ma
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - E. Guo
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiansheng Zeng
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
28
|
Principi N, Petropulacos K, Esposito S. Genetic Variations and Antibiotic-Related Adverse Events. Pharmaceuticals (Basel) 2024; 17:331. [PMID: 38543117 PMCID: PMC10974439 DOI: 10.3390/ph17030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 11/12/2024] Open
Abstract
Antibiotic-related adverse events are common in both adults and children, and knowledge of the factors that favor the development of antibiotic-related adverse events is essential to limit their occurrence and severity. Genetics can condition the development of antibiotic-related adverse events, and the screening of patients with supposed or demonstrated specific genetic mutations may reduce drug-related adverse events. This narrative review discusses which genetic variations may influence the risk of antibiotic-related adverse events and which conclusions can be applied to clinical practice. An analysis of the literature showed that defined associations between genetic variations and specific adverse events are very few and that, at the moment, none of them have led to the implementation of a systematic screening process for patients that must be treated with a given antibiotic in order to select those at risk of specific adverse events. On the other hand, in most of the cases, more than one variation is implicated in the determination of adverse events, and this can be a limitation in planning a systematic screening. Moreover, presently, the methods used to establish whether a patient carries a "dangerous" genetic mutation require too much time and waiting for the result of the test can be deleterious for those patients urgently requiring therapy. Further studies are needed to definitively confirm which genetic variations are responsible for an increased risk of a well-defined adverse event.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
29
|
Thomas L, Raju AP, Chaithra S, Kulavalli S, Varma M, Sv CS, Baneerjee M, Saravu K, Mallayasamy S, Rao M. Influence of N-acetyltransferase 2 polymorphisms and clinical variables on liver function profile of tuberculosis patients. Expert Rev Clin Pharmacol 2024; 17:263-274. [PMID: 38287694 DOI: 10.1080/17512433.2024.2311314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in the N-acetyltransferase 2 (NAT2) gene as well as several other clinical factors can contribute to the elevation of liver function test values in tuberculosis (TB) patients receiving antitubercular therapy (ATT). RESEARCH DESIGN AND METHODS A prospective study involving dynamic monitoring of the liver function tests among 130 TB patients from baseline to 98 days post ATT initiation was undertaken to assess the influence of pharmacogenomic and clinical variables on the elevation of liver function test values. Genomic DNA was extracted from serum samples for the assessment of NAT2 SNPs. Further, within this study population, we conducted a case control study to identify the odds of developing ATT-induced drug-induced liver injury (DILI) based on NAT2 SNPs, genotype and phenotype, and clinical variables. RESULTS NAT2 slow acetylators had higher mean [90%CI] liver function test values for 8-28 days post ATT and higher odds of developing DILI (OR: 2.73, 90%CI: 1.05-7.09) than intermediate acetylators/rapid acetylators. CONCLUSION The current study findings provide evidence for closer monitoring among TB patients with specific NAT2 SNPs, genotype and phenotype, and clinical variables, particularly between the period of more than a week to one-month post ATT initiation for better treatment outcomes.
Collapse
Affiliation(s)
- Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Arun Prasath Raju
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S Chaithra
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shrivathsa Kulavalli
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Mithu Baneerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Surulivelrajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
30
|
Rana HK, Singh AK, Kumar R, Pandey AK. Antitubercular drugs: possible role of natural products acting as antituberculosis medication in overcoming drug resistance and drug-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1251-1273. [PMID: 37665346 DOI: 10.1007/s00210-023-02679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium which causes tuberculosis (TB). TB control programmes are facing threats from drug resistance. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains need longer and more expensive treatment with many medications resulting in more adverse effects and decreased chances of treatment outcomes. The World Health Organization (WHO) has emphasised the development of not just new individual anti-TB drugs, but also novel medication regimens as an alternative treatment option for the drug-resistant Mtb strains. Many plants, as well as marine creatures (sponge; Haliclona sp.) and fungi, have been continuously used to treat TB in various traditional treatment systems around the world, providing an almost limitless supply of active components. Natural products, in addition to their anti-mycobacterial action, can be used as adjuvant therapy to increase the efficacy of conventional anti-mycobacterial medications, reduce their side effects, and reverse MDR Mtb strain due to Mycobacterium's genetic flexibility and environmental adaptation. Several natural compounds such as quercetin, ursolic acid, berberine, thymoquinone, curcumin, phloretin, and propolis have shown potential anti-mycobacterial efficacy and are still being explored in preclinical and clinical investigations for confirmation of their efficacy and safety as anti-TB medication. However, more high-level randomized clinical trials are desperately required. The current review provides an overview of drug-resistant TB along with the latest anti-TB medications, drug-induced hepatotoxicity and oxidative stress. Further, the role and mechanisms of action of first and second-line anti-TB drugs and new drugs have been highlighted. Finally, the role of natural compounds as anti-TB medication and hepatoprotectants have been described and their mechanisms discussed.
Collapse
Affiliation(s)
- Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Zoology, Feroze Gandhi College, Raebareli, 229001, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Botany, BMK Government. Girls College, Balod, Chhattisgarh, 491226, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India.
| |
Collapse
|
31
|
Eldehna WM, Mahmoud ST, Elshnawey ER, Elsayed ZM, Majrashi TA, El-Ashrey MK, Rashed M, Hemeda LR, Shoun AA, Elkaeed EB, El Hassab MA, Abdel-Aziz MM, Shahin MI. Novel indolinone-tethered benzothiophenes as anti-tubercular agents against MDR/XDR M. tuberculosis: Design, synthesis, biological evaluation and in vivo pharmacokinetic study. Bioorg Chem 2024; 143:107009. [PMID: 38070474 DOI: 10.1016/j.bioorg.2023.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
Joining the global effort to eradicate tuberculosis, one of the deadliest infectious killers in the world, we disclose in this paper the design and synthesis of new indolinone-tethered benzothiophene hybrids 6a-i and 7a-i as potential anti-tubercular agents. The MICs were determined in vitro for the synthesized compounds against the sensitive M. tuberculosis strain ATCC 25177. Potent compounds 6b, 6d, 6f, 6h, 7a, 7b, 7d, 7f, 7h and 7i were furtherly assessed versus resistant MDR-TB and XDR-TB. Structure activity relationship investigation of the synthesized compounds was illustrated, accordingly. Superlative potency was unveiled for compound 6h (MIC = 0.48, 1.95 and 7.81 µg/mL for ATCC 25177 sensitive TB strain, resistant MDR-TB and XDR-TB, respectively). Moreover, validated in vivo pharmacokinetic study was performed for the most potent derivative 6h revealing superior pharmacokinetic profile over the reference drug. For further exploration of the anti-tubercular mechanism of action, molecular docking was carried out for the former compound in DprE1 active site as one of the important biological targets of TB. The binding mode and the docking score uncovered exceptional binding when compared to the co-crystallized ligand suggesting that it maybe the underlying target for its outstanding anti-tubercular potency.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Sally Tarek Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
| | - Esraa R Elshnawey
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir 61421, Saudi Arabia
| | - Mohamed K El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, 46612, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Loah R Hemeda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Aly A Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Mahmoud A El Hassab
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, 46612, Egypt
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt
| | - Mai I Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
32
|
Rajalakshmi K, Muthusamy S, Lee HJ, Kannan P, Zhu D, Silviya Lodi R, Xie M, Xie J, Song JW, Xu Y. Quinoline-derived electron-donating/withdrawing fluorophores for hydrazine detection and applications in environment and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123282. [PMID: 37657372 DOI: 10.1016/j.saa.2023.123282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Substitution can be employed to competently tune the photophysical properties of chemosensors. The effect of substituents on the absorption and emission properties of quinoline probes was investigated. Therefore, salicylaldehyde (S), N-diethylamino-salicylaldehyde (D), and nitro-salicylaldehyde (W)-based quinoline Schiff base derivatives were investigated with hydrazine and studied for their photophysical properties. The nucleophilic substitution reaction was used as a sensing mechanism between the probes and hydrazine and investigated with 1H NMR, HR-MS characterizations, and DFT calculations. The sensitivity of QW-R is greater than that of QS-R and QD-R because of the stronger intramolecular charge transfer (ICT) in QW-R. The calculated LOD values are 28 nM for QS-R, 30 nM for QD-R, and 9 nM for QW-R. The probes were employed to monitor gaseous hydrazine using a smartphone and analyze solution forms of hydrazine in soil, water, and food samples, and living cells. Moreover, the in situ hydrazine release was monitored with bioimaging by administering an isoniazid drug. Significantly, the electronic effect of substituents over fluorescence showing, ranging from electron-donating to electron-withdrawing was investigated. We anticipate that this approach may be a promising strategy for the rational design of fluorescent sensors.
Collapse
Affiliation(s)
- Kanagaraj Rajalakshmi
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Selvaraj Muthusamy
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| | - Ho-Jin Lee
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN 38134, USA
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| | - Dongwei Zhu
- Department of Laboratory Medicine, The Affiliated People's Hospital and Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | | | - Meng Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Jimin Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Daegudae-ro 201, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea.
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
33
|
Liu X, Ma Y, Liu Y, Li Q, Zhang H, Fu S, Chen S, Li H, Li S, Hou P. Near-infrared molecular sensor for visualizing and tracking ONOO - during the process of anti-tuberculosis drug-induced liver damage. Anal Bioanal Chem 2023; 415:7187-7196. [PMID: 37801118 DOI: 10.1007/s00216-023-04985-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Isoniazid (INH) and pyrazinamide (PZA) are both the first-line anti-tuberculosis drugs in clinical treatment. It is notable that there are serious side effects of the drugs along with upregulation of reactive nitrogen species, mainly including peripheral neuritis, gastrointestinal reactions, and acute drug-induced liver injury (DILI). Among them, DILI is the most common clinical symptom as well as the basic reason of treatment interruption, protocol change, and drug resistance. As vital reactive nitrogen species (RNS), peroxynitrite (ONOO-) has been demonstrated as a biomarker for evaluation and pre-diagnosis of drug-induced liver injury (DILI). In this work, we developed a red-emitting D-π-A type fluorescence probe DIC-NP which was based on 4'-hydroxy-4-biphenylcarbonitrile modified with dicyanoisophorone as a fluorescent reporter and diphenyl phosphinic chloride group as the reaction site for highly selective and sensitive sensing ONOO-. Probe DIC-NP displayed a low detection limit (14.9 nM) and 60-fold fluorescent enhancement at 669 nm in the sensing of ONOO-. Probe DIC-NP was successfully applied to monitor exogenous and endogenous ONOO- in living HeLa cells and zebrafish. Furthermore, we verified the toxicity of isoniazid (INH) and pyrazinamide (PZA) by taking the oxidative stress induced by APAP as a reference, and successfully imaged anti-tuberculosis drug-induced endogenous ONOO- in HepG2 cells. More importantly, we developed a series of mice models of liver injury and investigated the hepatotoxicity caused by the treatment of anti-tuberculosis drugs. At the same time, H&E of mice organs (heart, liver, spleen, lung, kidney) further confirmed the competence of probe DIC-NP for estimating the degree of drug-induced liver injury, which laid a solid foundation for medical research.
Collapse
Affiliation(s)
- Xiangbao Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Yukun Ma
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Yitong Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Qi Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Hongguang Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Shuang Fu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Hongmei Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Shuang Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China.
| |
Collapse
|
34
|
Akkahadsee P, Sawangjit R, Phumart P, Chaiyakunapruk N, Sakloetsakun D. Systematic review and network meta-analysis of efficacy and safety of interventions for preventing anti-tuberculosis drug induced liver injury. Sci Rep 2023; 13:19880. [PMID: 37963954 PMCID: PMC10645982 DOI: 10.1038/s41598-023-46565-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Anti-tuberculosis drug induced liver injury (Anti-TB DILI) is the most common adverse events (AEs) necessitating therapy interruption but there is no preventing regimen. This study aimed to examine the efficacy and safety of herbs/alternative medicines for preventing anti-TB DILI. Relevant articles were identified through a systematic search in 5 international databases from inception till March 2022. All randomized controlled trials (RCT) assessing the effects of herbal or alternative medicines against anti-TB DILI were included. The network meta-analysis (NMA) was used to synthesize the evidence for preventing hepatotoxicity using a random-effects model. A total of 3423 patients from 14 RCTs were included. The NMA indicated that supplementation of Turmeric plus Tinospora cordifolia (RR 0.07; 95% CI 0.02 to 0.28), and N-acetyl cysteine (NAC) (RR 0.09; 95% CI 0.01 to 0.75) significantly reduced the incidence of anti-TB DILI compared with placebo. In addition, poly herbal product significantly reduced alkaline phosphatase (ALP) (MD - 21.80; 95% CI - 33.80 to - 9.80) and total bilirubin (Tbil) compared with placebo (MD - 0.51; 95% CI - 0.76 to - 0.26). There was no statistically significant difference in the occurrence of AEs in any intervention. In conclusion, Turmeric plus Tinospora cordifolia, NAC and poly-herbal product may provide benefit for preventing anti-TB DILI in TB patients. However, these findings are based on a small number of studies. Additional studies are warranted to confirm the findings.
Collapse
Affiliation(s)
- Pattaraporn Akkahadsee
- Master Degree of Clinical Pharmacy, Faculty of Pharmacy, Mahasarakham University, MahaSarakham, Thailand
| | - Ratree Sawangjit
- Clinical Trials and Evidence-Based Syntheses Research Unit (CTEBs RU), Mahasarakham University, MahaSarakham, Thailand.
| | - Panumart Phumart
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Duangkamon Sakloetsakun
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
35
|
Amaeze OU, Isoherranen N. Application of a physiologically based pharmacokinetic model to predict isoniazid disposition during pregnancy. Clin Transl Sci 2023; 16:2163-2176. [PMID: 37712488 PMCID: PMC10651660 DOI: 10.1111/cts.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/08/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023] Open
Abstract
Pregnancy can increase the risk of latent tuberculosis infection (LTBI) progression to tuberculosis (TB) disease. Isoniazid (INH) is the preferred preventative treatment for LTBI in pregnancy. INH is mainly cleared by N-acetyltransferase 2 (NAT2) but the pharmacokinetics (PK) of INH in different NAT2 phenotypes during pregnancy is not well characterized. To address this knowledge gap, we used physiologically based pharmacokinetic (PBPK) modeling to evaluate NAT2 phenotype-specific effects of pregnancy on INH disposition. A whole-body PBPK model for INH was developed and verified for non-pregnant NAT2 fast (FA), intermediate (IA), and slow (SA) acetylators. Model predictive performance was assessed using a drug-specific model acceptance criterion for mean plasma area under the curve (AUC) and peak plasma concentration (Cmax ), and the absolute average fold error (AAFE) for individual plasma concentrations. The verified model was extended to simulate INH disposition during pregnancy in NAT2 SA, IA, and FA populations. A sensitivity analysis was conducted using the verified PBPK model and known changes in INH disposition during pregnancy to determine whether NAT2 activity changes during pregnancy or other INH clearance pathways are altered. This analysis suggested that NAT2 activity is unchanged while other INH clearance pathways increase by ~80% during pregnancy. The model was applied to explore the effect of pregnancy on INH disposition in two ethnic populations with different NAT2 phenotype distributions and with high TB burden. Our PBPK model can be used to predict INH disposition during pregnancy in diverse populations and expanded to other drugs cleared by NAT2 during pregnancy.
Collapse
Affiliation(s)
- Ogochukwu U. Amaeze
- Department of PharmaceuticsUniversity of Washington, School of PharmacySeattleWashingtonUSA
| | - Nina Isoherranen
- Department of PharmaceuticsUniversity of Washington, School of PharmacySeattleWashingtonUSA
| |
Collapse
|
36
|
Ripa L, Sandmark J, Hughes G, Shamovsky I, Gunnarsson A, Johansson J, Llinas A, Collins M, Jung B, Novén A, Pemberton N, Mogemark M, Xiong Y, Li Q, Tångefjord S, Ek M, Åstrand A. Selective and Bioavailable HDAC6 2-(Difluoromethyl)-1,3,4-oxadiazole Substrate Inhibitors and Modeling of Their Bioactivation Mechanism. J Med Chem 2023; 66:14188-14207. [PMID: 37797307 DOI: 10.1021/acs.jmedchem.3c01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation. We also observe that the inherent electrophilicity of the oxadiazoles makes them prone to degradation in water solution and the generation of potentially toxic products cannot be ruled out, limiting the developability for chronic diseases. However, the oxadiazoles demonstrate high oral bioavailability and low in vivo clearance and are excellent tools for studying the role of HDAC6 in vitro and in vivo in rats and mice.
Collapse
Affiliation(s)
- Lena Ripa
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Jenny Sandmark
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Glyn Hughes
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Igor Shamovsky
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Julia Johansson
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Antonio Llinas
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mia Collins
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Bomi Jung
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anna Novén
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Nils Pemberton
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mickael Mogemark
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Yao Xiong
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Qing Li
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Stefan Tångefjord
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Margareta Ek
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Annika Åstrand
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| |
Collapse
|
37
|
Liu Y, Li H, Huang L, Wan C, Wang H, Jiao X, Zeng L, Jia Z, Cheng G, Zhang L, Zhang W, Zhang L. Liver injury in children: signal analysis of suspected drugs based on the food and drug administration adverse event reporting system. BMC Pediatr 2023; 23:492. [PMID: 37770847 PMCID: PMC10537493 DOI: 10.1186/s12887-023-04097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/27/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Evidence of drug-induced liver injury is abundant in adults but is lacking in children. Our aim was to identify suspected drug signals associated with pediatric liver injury. METHODS Hepatic adverse events (HAEs) among children reported in the Food and Drug Administration Adverse Event Reporting System were analyzed. A descriptive analysis was performed to summarize pediatric HAEs, and a disproportionality analysis was conducted by evaluating reporting odds ratios (RORs) and proportional reporting ratios to detect suspected drugs. RESULTS Here, 14,143 pediatric cases were reported, specifically 49.6% in males, 45.1% in females, and 5.2% unknown. Most patients (68.8%) were 6-18 years old. Hospitalization ranked first among definite outcomes (7,207 cases, 37.2%). In total, 264 disproportionate drug signals were identified. The top 10 drugs by the number of reports were paracetamol (1,365; ROR, 3.6; 95% confidence interval (CI), 3.4-3.8), methotrexate (878; ROR, 2.5; 95% CI, 2.3-2.7), vincristine (649; ROR, 3.0; 95% CI, 2.8-3.3), valproic acid (511; ROR, 3.2; 95% CI, 2.9-3.6), cyclophosphamide (490; ROR, 2.4; 95% CI, 2.2-2.6), tacrolimus (427; ROR, 2.4; 95% CI, 2.2-2.7), prednisone (416; ROR, 2.1; 95% CI, 1.9-2.3), prednisolone (401; ROR, 2.3; 95% CI, 2.1-2.5), etoposide (378; ROR, 2.3; 95% CI, 2.1-2.6), and cytarabine (344; ROR, 2.8; 95% CI, 2.5-3.2). After excluding validated hepatotoxic drugs, six were newly detected, specifically acetylcysteine, thiopental, temazepam, nefopam, primaquine, and pyrimethamine. CONCLUSIONS The hepatotoxic risk associated with 264 signals needs to be noted in practice. The causality of hepatotoxicity and mechanism among new signals should be verified with preclinical and clinical studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Hailong Li
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Liang Huang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Chaomin Wan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Huiqing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuefeng Jiao
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Linan Zeng
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Zhijun Jia
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Guo Cheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Sichuan University, Chengdu, 610041, China
| | - Lei Zhang
- College of Computer Science, Sichuan University, Chengdu, 610041, China
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| | - Lingli Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
38
|
Fu Y, Du X, Cui Y, Xiong K, Wang J. Nutritional intervention is promising in alleviating liver injury during tuberculosis treatment: a review. Front Nutr 2023; 10:1261148. [PMID: 37810929 PMCID: PMC10552157 DOI: 10.3389/fnut.2023.1261148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Liver injury is a main adverse effect of first-line tuberculosis drugs. Current management of tuberculosis-drug-induced liver injury (TBLI) mainly relies on withdrawing tuberculosis drugs when necessary. No effective treatment exists. Various nutrients and functional food ingredients may play a protective role in TBLI. However, a comprehensive review has not been conducted to compare the effects of these nutrients and functional food ingredients. We searched Pubmed and Web of Science databases from the earliest date of the database to March 2023. All available in-vitro, animal and clinical studies that examined the effects of nutritional intervention on TBLI were included. The underlying mechanism was briefly reviewed. Folic acid, quercetin, curcumin, Lactobacillus casei, spirulina and Moringa oleifera possessed moderate evidence to have a beneficial effect on alleviating TBLI mostly based on animal studies. The evidence of other nutritional interventions on TBLI was weak. Alleviating oxidative stress and apoptosis were the leading mechanisms for the beneficial effects of nutritional intervention on TBLI. In conclusion, a few nutritional interventions are promising for alleviating TBLI including folic acid, quercetin, curcumin, L. casei, spirulina and M. oleifera, the effectiveness and safety of which need further confirmation by well-designed randomized controlled trials. The mechanisms for the protective role of these nutritional interventions on TBLI warrant further study, particularly by establishing the animal model of TBLI using the tuberculosis drugs separately.
Collapse
Affiliation(s)
- Yujin Fu
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Xianfa Du
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingchun Cui
- Department of Infectious Diseases, The 971 Naval Hospital, Qingdao, China
| | - Ke Xiong
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jinyu Wang
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Pornin W, Phatchana R, Somboon T, Ruangpornvisuti V, Sang-Aroon W. A DFT study on non-enzymatic degradations of anti-tuberculosis drug isoniazid. J Mol Model 2023; 29:291. [PMID: 37615715 DOI: 10.1007/s00894-023-05700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
CONTEXT Isoniazid (INH) is one of the medications most used for tuberculosis (TB) treatment. However, long-term continuous therapy can cause hepatotoxicity and peripheral neuritis. The degradation of INH is an important aspect of the research in the field of drug stability as well as drug formulation for controlling release. It is thought that tautomerization, hydrolysis as well as nucleophilic substitutions can cause decrease in INH as non-enzymatic degradation. Therefore, it is crucial to understand the mechanisms and energies of the major reactions in order to provide reference for future drug formulation and application. This study is an effort to understand the kinetic and thermodynamic properties of the non-enzymatic degradation reactions. The chemical reaction phenomena are investigated using the density functional theory (DFT) method. This study shows that major degradation of INH can be done via tautomerization followed by hydrolysis. The general trends in nucleophilic degradation presented here are consistent with experimental pKa of nucleophiles. METHODS All DFT calculations were performed using the Gaussian Software Packages (Gaussian 09 revision B.01 and GaussView 5.0.8). MOLEKEL 4.3 software was utilized to visualize the molecular graphics of all relevant species. The optimized molecular geometries were calculated using B3LYP/6-311 + G(d,p) level in the gas phase. The IEF-PCM/B3LYP/6-311 + G(d,p) level was selected for single-point and frequency calculations in aqueous media.
Collapse
Affiliation(s)
- Wirachai Pornin
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, KhonKaen Campus, KhonKaen, 40000, Thailand
| | - Ratchanee Phatchana
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, KhonKaen Campus, KhonKaen, 40000, Thailand
| | - Titikan Somboon
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, KhonKaen Campus, KhonKaen, 40000, Thailand
| | - Vithaya Ruangpornvisuti
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10320, Thailand
| | - Wichien Sang-Aroon
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, KhonKaen Campus, KhonKaen, 40000, Thailand.
| |
Collapse
|
40
|
Dimitrov S, Slavchev I, Simeonova R, Mileva M, Pencheva T, Philipov S, Georgieva A, Tsvetanova E, Teneva Y, Rimpova N, Dobrikov G, Valcheva V. Evaluation of Acute and Sub-Acute Toxicity, Oxidative Stress and Molecular Docking of Two Nitrofuranyl Amides as Promising Anti-Tuberculosis Agents. Biomolecules 2023; 13:1174. [PMID: 37627241 PMCID: PMC10452431 DOI: 10.3390/biom13081174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB) remains a widespread infectious disease and one of the top 10 causes of death worldwide. Nevertheless, despite significant advances in the development of new drugs against tuberculosis, many therapies and preventive measures do not lead to the expected favorable health results for various reasons. The aim of this study was to evaluate the acute and sub-acute toxicity and oxidative stress of two selected nitrofuranyl amides with high in vitro antimycobacterial activity. In addition, molecular docking studies were performed on both compounds to elucidate the possibilities for further development of new anti-tuberculosis candidates with improved efficacy, selectivity, and pharmacological parameters. Acute toxicity tests showed that no changes were observed in the skin, coat, eyes, mucous membranes, secretions, and vegetative activity in mice. The histological findings include features consistent with normal histological architecture without being associated with concomitant pathological conditions. The observed oxidative stress markers indicated that the studied compounds disturbed the oxidative balance in the mouse liver. Based on the molecular docking, compound DO-190 showed preferable binding energies compared to DO-209 in three out of four targets, while both compounds showed promising protein-ligand interactions. Thus, both studied compounds displayed promising activity with low toxicity and can be considered for further evaluation and/or lead optimization.
Collapse
Affiliation(s)
- Simeon Dimitrov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
| | - Ivaylo Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (G.D.)
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.S.); (Y.T.)
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
| | - Tania Pencheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Stanislav Philipov
- Department of Human Anatomy, Histology, General and Clinical Pathology and Forensic Medicine, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria;
| | - Almira Georgieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Yoanna Teneva
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.S.); (Y.T.)
| | - Nadezhda Rimpova
- Department of Paediatrics, University Children’s Hospital, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Georgi Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (G.D.)
| | - Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
| |
Collapse
|
41
|
Sileshi T, Telele NF, Burkley V, Makonnen E, Aklillu E. Correlation of N-acetyltransferase 2 genotype and acetylation status with plasma isoniazid concentration and its metabolic ratio in ethiopian tuberculosis patients. Sci Rep 2023; 13:11438. [PMID: 37454203 PMCID: PMC10349800 DOI: 10.1038/s41598-023-38716-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Unfavorable treatment outcomes for tuberculosis (TB) treatment might result from altered plasma exposure to antitubercular drugs in TB patients. The present study investigated the distribution of the N-Acetyltransferase 2 (NAT2) genotype, isoniazid acetylation status, genotype-phenotype concordance of NAT2, and isoniazid plasma exposure among Ethiopian tuberculosis patients. Blood samples were collected from newly diagnosed TB patients receiving a fixed dose combination of first-line antitubercular drugs daily. Genotyping of NAT2 was done using TaqMan drug metabolism assay. Isoniazid and its metabolite concentration were determined using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 120 patients (63 male and 57 female) were enrolled in this study. The mean daily dose of isoniazid was 4.71 mg/kg. The frequency of slow, intermediate, and fast NAT2 acetylators genotypes were 74.2%, 22.4%, and 3.3% respectively. The overall median isoniazid maximum plasma concentration (Cmax) was 4.77 µg/mL and the AUC0-7 h was 11.21 µg.h/mL. The median Cmax in slow, intermediate, and fast acetylators were 5.65, 3.44, and 2.47 μg/mL, respectively. The median AUC0-7 h hour in slow, intermediate, and fast acetylators were 13.1, 6.086, and 3.73 mg•h/L, respectively. The majority (87.5%) of the study participants achieved isoniazid Cmax of above 3 µg/mL, which is considered a lower limit for a favorable treatment outcome. There is 85% concordance between the NAT2 genotype and acetylation phenotypes. NAT2 genotype, female sex, and dose were independent predictors of Cmax and AUC0-7 h (p < 0.001). Our finding revealed that there is a high frequency of slow NAT2 genotypes. The plasma Cmax of isoniazid was higher in the female and slow acetylators genotype group. The overall target plasma isoniazid concentrations in Ethiopian tuberculosis patients were achieved in the majority of the patients. Therefore, it is important to monitor adverse drug reactions and the use of a higher dose of isoniazid should be closely monitored.
Collapse
Affiliation(s)
- Tesemma Sileshi
- Department of Pharmacy, Ambo University, Ambo, Ethiopia.
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Nigus Fikrie Telele
- Department of Laboratory Medicines, Karolinska Institutet, Stockholm, Sweden
| | - Victoria Burkley
- Department of Laboratory Medicines, Karolinska Institutet, Stockholm, Sweden
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Eleni Aklillu
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Patil VS, Harish DR, Sampat GH, Roy S, Jalalpure SS, Khanal P, Gujarathi SS, Hegde HV. System Biology Investigation Revealed Lipopolysaccharide and Alcohol-Induced Hepatocellular Carcinoma Resembled Hepatitis B Virus Immunobiology and Pathogenesis. Int J Mol Sci 2023; 24:11146. [PMID: 37446321 DOI: 10.3390/ijms241311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Pukar Khanal
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swarup S Gujarathi
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| |
Collapse
|
43
|
Sharma S, Anand A, Verma N, Sharma V, Bhatia A, Patil AN, Banerjee D. Pharmacokinetic Assessment of Isoniazid and Acetylisoniazid in Carbon Tetrachloride-Induced Liver Injury Model in Wistar Rats. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:139-145. [PMID: 37705856 PMCID: PMC10496850 DOI: 10.4103/jpbs.jpbs_320_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND N-acetyl transferase 2 (NAT2) polymorphism testing could not see the light of success as a biomarker tool in tuberculosis management. Additionally, the antitubercular treatment (ATT) drug's reintroduction regimen variations exist because of the scarcity of robust preclinical evidence on ATT drug metabolism. OBJECTIVE The experiment was planned to understand the pharmacokinetic (PK) behavior of isoniazid and acetylisoniazid (AcINH) in a Wistar rat model of acute liver injury induced by carbon tetrachloride (CCl4) and preclinical drug-induced liver injury (DILI) model induced with CCl4 + anti-Tuberculosis (TB) drugs together. MATERIALS AND METHODS Thirty rats were used for the experiment and were divided into five groups. All rats were administered a single 0.5 ml/kg CCl4 intraperitoneal injection on day 0 to induce an animal model of DILI. Group I rats received CCl4 alone. Groups II-V were started on additional gavage feedings of isoniazid (H) alone, H plus rifampicin (R), H plus pyrazinamide (Z), and H, R, and Z together, respectively, daily for 21 days subsequently. Isoniazid and AcINH PK assessment was accomplished on day 20 of continuous once-daily dosing. Liver function test (LFT) monitoring was done at baseline on days 1, 7, and 21. On the last day of experiments, all experimental rats were sacrificed. RESULTS Three-week ATT administration sustained the CCl4-induced LFT changes. Area under the curve (AUC) values for isoniazid and AcINH were found to be 2.24 and 1.69 times higher in the H + R group compared with the CCl4 + H group, respectively (P < 0.05). Isoniazid and AcINH maximum concentration (Cmax) reached the highest, while isoniazid clearance reached the lowest in the H + R group. AcINH AUC increased by double in the CCl4 + Isoniazid+Rifampicin+Pyrazinamide (HRZ) group compared with the CCl4 + H group (P < 0.05). Biochemical, histological, and antioxidant changes were consistent with the new liver injury model's development. CONCLUSION Rifampicin almost doubles up the isoniazid and AcINH exposure, in presence if DILI.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Aishwarya Anand
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nipun Verma
- Department of Hepatology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amol N. Patil
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
44
|
Nawrot DE, Bouz G, Janďourek O, Konečná K, Paterová P, Bárta P, Novák M, Kučera R, Zemanová J, Forbak M, Korduláková J, Pavliš O, Kubíčková P, Doležal M, Zitko J. Antimycobacterial pyridine carboxamides: From design to in vivo activity. Eur J Med Chem 2023; 258:115617. [PMID: 37423128 DOI: 10.1016/j.ejmech.2023.115617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Tuberculosis is the number one killer of infectious diseases caused by a single microbe, namely Mycobacterium tuberculosis (Mtb). The success rate of curing this infection is decreasing due to emerging antimicrobial resistance. Therefore, novel treatments are urgently needed. As an attempt to develop new antituberculars effective against both drugs-sensitive and drug-resistant Mtb, we report the synthesis of a novel series inspired by combining fragments from the first-line agents isoniazid and pyrazinamide (series I) and isoniazid with the second-line agent 4-aminosalicylic acid (series II). We identified compound 10c from series II with selective, potent in vitro antimycobacterial activity against both drug-sensitive and drug-resistant Mtb H37Rv strains with no in vitro or in vivo cytotoxicity. In the murine model of tuberculosis, compound 10c caused a statistically significant decrease in colony-forming units (CFU) in spleen. Despite having a 4-aminosalicylic acid fragment in its structure, biochemical studies showed that compound 10c does not directly affect the folate pathway but rather methionine metabolism. In silico simulations indicated the possibility of binding to mycobacterial methionine-tRNA synthetase. Metabolic study in human liver microsomes revealed that compound 10c does not have any known toxic metabolites and has a half-life of 630 min, overcoming the main drawbacks of isoniazid (toxic metabolites) and 4-aminosalicylic acid (short half-life).
Collapse
Affiliation(s)
- Daria Elżbieta Nawrot
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Ghada Bouz
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Ondřej Janďourek
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Klára Konečná
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Pavla Paterová
- Department of Clinical Microbiology, University Hospital, Sokolská 581, 500 05, Hradec, Králové, Czech Republic.
| | - Pavel Bárta
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Martin Novák
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolská 581, 50005, Hradec Králové, Czech Republic.
| | - Radim Kučera
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Júlia Zemanová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215, Bratislava, Slovakia.
| | - Martin Forbak
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215, Bratislava, Slovakia.
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215, Bratislava, Slovakia.
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01, Prague 6, Czech Republic.
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01, Prague 6, Czech Republic.
| | - Martin Doležal
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Jan Zitko
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| |
Collapse
|
45
|
Chopra H, Mohanta YK, Rauta PR, Ahmed R, Mahanta S, Mishra PK, Panda P, Rabaan AA, Alshehri AA, Othman B, Alshahrani MA, Alqahtani AS, AL Basha BA, Dhama K. An Insight into Advances in Developing Nanotechnology Based Therapeutics, Drug Delivery, Diagnostics and Vaccines: Multidimensional Applications in Tuberculosis Disease Management. Pharmaceuticals (Basel) 2023; 16:581. [PMID: 37111338 PMCID: PMC10145450 DOI: 10.3390/ph16040581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberculosis (TB), one of the deadliest contagious diseases, is a major concern worldwide. Long-term treatment, a high pill burden, limited compliance, and strict administration schedules are all variables that contribute to the development of MDR and XDR tuberculosis patients. The rise of multidrug-resistant strains and a scarcity of anti-TB medications pose a threat to TB control in the future. As a result, a strong and effective system is required to overcome technological limitations and improve the efficacy of therapeutic medications, which is still a huge problem for pharmacological technology. Nanotechnology offers an interesting opportunity for accurate identification of mycobacterial strains and improved medication treatment possibilities for tuberculosis. Nano medicine in tuberculosis is an emerging research field that provides the possibility of efficient medication delivery using nanoparticles and a decrease in drug dosages and adverse effects to boost patient compliance with therapy and recovery. Due to their fascinating characteristics, this strategy is useful in overcoming the abnormalities associated with traditional therapy and leads to some optimization of the therapeutic impact. It also decreases the dosing frequency and eliminates the problem of low compliance. To develop modern diagnosis techniques, upgraded treatment, and possible prevention of tuberculosis, the nanoparticle-based tests have demonstrated considerable advances. The literature search was conducted using Scopus, PubMed, Google Scholar, and Elsevier databases only. This article examines the possibility of employing nanotechnology for TB diagnosis, nanotechnology-based medicine delivery systems, and prevention for the successful elimination of TB illnesses.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Yugal Kishore Mohanta
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
| | | | - Ramzan Ahmed
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | | | - Paramjot Panda
- School of Biological Sciences, AIPH University, Bhubaneswar 754001, Odisha, India
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Baneen Ali AL Basha
- Laboratory Department, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
46
|
Li J, Cai X, Chen Y, Wang C, Jiao Z. Parametric population pharmacokinetics of isoniazid: a systematic review. Expert Rev Clin Pharmacol 2023; 16:467-489. [PMID: 36971782 DOI: 10.1080/17512433.2023.2196401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
INTRODUCTION Isoniazid (INH) plays an important role in prevention and treatment of tuberculosis (TB). However, large pharmacokinetic (PK) variations are observed in patients receiving standard INH dosages. Considering the influence of PK variations on INH efficacy or adverse reactions, we reviewed the population PK studies of INH and explored significant covariates that influence INH PK. METHODS The PubMed and Embase databases were systematically searched from their inception to 30 January 2023. PPK studies on INH using a parametric nonlinear mixed-effect approach were included in this review. The characteristics and identified significant covariates of the included studies were summarized. RESULTS Twenty-one studies conducted in adults, and seven in pediatrics were included. A two-compartment model with first-order absorption and elimination was the frequently used structural model for INH. NAT2 genotype, body size, and age were identified as significant covariates affecting INH PK variation. The median clearance (CL) value in the fast metabolizers was 2.55-fold higher than that in the slow metabolizers. Infants and children had higher CL per weight values than adults with the same metabolic phenotype. In pediatric patients, CL value increased with postnatal age. CONCLUSIONS Compared with slow metabolizers, the daily dose of INH should be increased by 200-600 mg in fast metabolizers. To achieve effective treatment, pediatric patients need a higher dose per kilogram than adults. Further PPK studies of anti-tuberculosis drugs are needed to comprehensively understand the covariates that affect their PK characteristics and to achieve accurate dose adjustments.
Collapse
|
47
|
Chamboko CR, Veldman W, Tata RB, Schoeberl B, Tastan Bishop Ö. Human Cytochrome P450 1, 2, 3 Families as Pharmacogenes with Emphases on Their Antimalarial and Antituberculosis Drugs and Prevalent African Alleles. Int J Mol Sci 2023; 24:ijms24043383. [PMID: 36834793 PMCID: PMC9961538 DOI: 10.3390/ijms24043383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Precision medicine gives individuals tailored medical treatment, with the genotype determining the therapeutic strategy, the appropriate dosage, and the likelihood of benefit or toxicity. Cytochrome P450 (CYP) enzyme families 1, 2, and 3 play a pivotal role in eliminating most drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes. Therefore, polymorphisms of these enzymes result in alleles with diverse enzymatic activity and drug metabolism phenotypes. Africa has the highest CYP genetic diversity and also the highest burden of malaria and tuberculosis, and this review presents current general information on CYP enzymes together with variation data concerning antimalarial and antituberculosis drugs, while focusing on the first three CYP families. Afrocentric alleles such as CYP2A6*17, CYP2A6*23, CYP2A6*25, CYP2A6*28, CYP2B6*6, CYP2B6*18, CYP2C8*2, CYP2C9*5, CYP2C9*8, CYP2C9*9, CYP2C19*9, CYP2C19*13, CYP2C19*15, CYP2D6*2, CYP2D6*17, CYP2D6*29, and CYP3A4*15 are implicated in diverse metabolic phenotypes of different antimalarials such as artesunate, mefloquine, quinine, primaquine, and chloroquine. Moreover, CYP3A4, CYP1A1, CYP2C8, CYP2C18, CYP2C19, CYP2J2, and CYP1B1 are implicated in the metabolism of some second-line antituberculosis drugs such as bedaquiline and linezolid. Drug-drug interactions, induction/inhibition, and enzyme polymorphisms that influence the metabolism of antituberculosis, antimalarial, and other drugs, are explored. Moreover, a mapping of Afrocentric missense mutations to CYP structures and a documentation of their known effects provided structural insights, as understanding the mechanism of action of these enzymes and how the different alleles influence enzyme function is invaluable to the advancement of precision medicine.
Collapse
Affiliation(s)
- Chiratidzo R Chamboko
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Rolland Bantar Tata
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Birgit Schoeberl
- Translational Medicine, Novartis Institutes for BioMedical Research, 220 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
48
|
Quantitative Analysis of Isoniazid and Its Four Primary Metabolites in Plasma of Tuberculosis Patients Using LC-MS/MS. Molecules 2022; 27:molecules27238607. [PMID: 36500699 PMCID: PMC9740544 DOI: 10.3390/molecules27238607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Isoniazid and its metabolites are potentially associated with hepatotoxicity and treatment outcomes in patients who receive antituberculosis (TB) therapy. To further understand the pharmacokinetic profiles of these molecules, a method based on LC-MS/MS was developed to determine the concentration of these compounds in human plasma. Isoniazid, acetylisoniazid, and isonicotinic acid were directly analyzed, whereas hydrazine and acetylhydrazine were determined after derivatization using p-tolualdehyde. Chromatographic separation was conducted on reversed-phase C18 columns with gradient elution, and detection was carried out in multiple reaction monitoring mode. The calibration curves were linear with correlation coefficients (r) greater than 0.9947 for all analytes. The intra- and inter-day precision was less than 13.43%, and the accuracy ranged between 91.63 and 114.00%. The recovery and matrix effect of the analytes were also consistent (coefficient of variation was less than 9.36%). The developed method successfully quantified isoniazid and its metabolites in TB patients. The method has broad applications in clinical research, including isoniazid one-point-based therapeutic drug monitoring, genotype-phenotype association studies of isoniazid metabolic profile and isoniazid-induced hepatotoxicity, and the initial dose prediction of isoniazid using population pharmacokinetic modeling.
Collapse
|
49
|
Song Y, Qu X, Tao L, Gao H, Zhang Y, Zhai J, Gong J, Hu T. Exploration of the underlying mechanisms of isoniazid/rifampicin-induced liver injury in mice using an integrated proteomics and metabolomics approach. J Biochem Mol Toxicol 2022; 36:e23217. [PMID: 36111668 DOI: 10.1002/jbt.23217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2023]
Abstract
The hepatotoxic mechanism resulting from coadministration of isoniazid (INH) and rifampicin (RIF) are complex and studies remain inconclusive. To systematically explore the underlying mechanisms, an integrated mass-based untargeted metabolomics and label-free quantitative proteomics approach was used to clarify the mechanism of INH/RIF-induced liver injury. Thirty male mice were randomly divided into three groups: control (receiving orally administered vehicle solution), INH (150 mg/kg) + RIF (300 mg/kg) orally administered for either 7 or 14 days, respectively. Serum was collected for the analysis of biochemical parameters and liver samples were obtained for mass spectrum-based proteomics, metabolomics, and lipidomics analysis. Overall, 511 proteins, 31 metabolites, and 23 lipids were dysregulated and identified, and disordered biological pathways were identified. The network of integrated multiomics showed that glucose, lipid, and amino acid metabolism as well as energy metabolism were mainly dysregulated and led to oxidative stress, inflammation, liver steatosis, and cell death induced by INH and RIF. Coadministration of INH and RIF can induce liver injury by oxidative stress, inflammation, liver steatosis, and cell death, and the reduction in glutathione levels may play a critical role in these systematic changes and warrants further study.
Collapse
Affiliation(s)
- Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Qu
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Yueming Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Jinghui Zhai
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Gong
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Tingting Hu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
50
|
Effects of Enzyme Induction and Polymorphism on the Pharmacokinetics of Isoniazid and Rifampin in Tuberculosis/HIV Patients. Antimicrob Agents Chemother 2022; 66:e0227721. [PMID: 36069614 PMCID: PMC9578428 DOI: 10.1128/aac.02277-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis is the most common cause of death in HIV-infected individuals. Rifampin and isoniazid are the backbones of the current first-line antitubercular therapy. The aim of the present study was to describe the time-dependent pharmacokinetics and pharmacogenetics of rifampin and isoniazid and to quantitatively evaluate the drug-drug interaction between rifampin and isoniazid in patients coinfected with HIV. Plasma concentrations of isoniazid, acetyl-isoniazid, isonicotinic acid, rifampin, and 25-desacetylrifampin from 40 HIV therapy-naive patients were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after the first dose and at steady state of antitubercular therapy. Patients were genotyped for determination of acetylator status and CYP2C19 phenotype. Nonlinear mixed-effects models were developed to describe the pharmacokinetic data. The model estimated an autoinduction of both rifampin bioavailability (0.5-fold) and clearance (2.3-fold). 25-Desacetylrifampin clearance was 2.1-fold higher at steady state than after the first dose. Additionally, ultrarapid CYP2C19 metabolizers had a 2-fold-higher rifampin clearance at steady state than intermediate or extensive metabolizers. An induction of isonicotinic acid formation from isoniazid dependent on total rifampin dose was estimated. Simulations indicated a 30% lower isoniazid exposure at steady state during administration of standard rifampin doses than isoniazid exposure in noninduced individuals. Rifampin exposure was correlated with CYP2C19 polymorphism, and rifampin administration may increase exposure to toxic metabolites by isoniazid in patients. Both findings may influence the risk of treatment failure, resistance development, and toxicity and require further investigation, especially with regard to ongoing high-dose rifampin trials.
Collapse
|