1
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
2
|
Mathi P, Veeramachaneni GK, Raj KK, Talluri VR, Bokka VR, Botlagunta M. In vitro and in silico characterization of angiogenic inhibitors from Sophora interrupta. J Mol Model 2016; 22:247. [PMID: 27683258 DOI: 10.1007/s00894-016-3102-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/01/2016] [Indexed: 02/03/2023]
Abstract
Sophora interrupta Bedd, (Fabaceae) is used in Indian folk medicine to treat cancer. Angiogenesis is one of the crucial characteristics of cancer metastasis and is regulated by vascular endothelial growth factor (VEGF). In this study, we examined the antiangiogenic properties of the root ethyl acetate extract of Sophora interrupta by various methods. In vitro antioxidant activity (100-600 μg/ml) of S. interrupta ethyl acetate (SEA) extract was evaluated by DPPH and ABTS, anti-inflammatory activity (50, 100 and 150 μg/ml) by estimating nitric oxide (NO) levels, anti-angiogenic activity (200 and 500 μg/ml) was validated by chorio allantoic membrane (CAM) assay and in silico molecular dynamic (MD) simulations analyses (25 ns) were performed to identify the anti-angiogenic compounds extracted from root extract. The antioxidative activity of SEA extract at IC50 (200 ± 0.6 μg/mL) is equal to that of ascorbic acid at IC50 (50 ± 0.6 μg/mL), and the anti-inflammatory activity of SEA extract at IC50 (150 ± 0.2 μg/mL) was inhibited significantly by nitric oxide (NO) production. The SEA extract significantly reduced the sprouting of new blood vessels at ID50 500 ± 0.13 μg/mL in the CAM assay. Gas chromatography-mass spectrometry analysis of the SEA extract detected 34 secondary metabolites, of which 6a,12a-dihydro-6H-(1,3)dioxolo(5,6)benzofuro(3,2-c)chromen-3-ol (maackiain) and funiculosin formed strong hydrogen bond interactions with Lys 920, Thr 916 and Cys 919 (2H), as well as Glu 917 of VEGFR2, and these interactions were similar to those of the anti-angiogenic compound axitinib. Significant findings in all the assays performed indicate that SEA extract has potential anti-angiogenic compounds that may interfere with VEGF-induced cancer malignancy.
Collapse
Affiliation(s)
- Pardhasaradhi Mathi
- Biomedical Research Laboratory, Department of Biotechnology, KLEF University (Koneru Lakshmaiah Educational Foundation), Green fields; Vaddeswaram, Guntur (Dist), 522502, Andhra Pradesh, India.,Upstream Process Development Team, Lupin Limited, Biotechnology R&D, 1156, Ghotawade Village, Mulshi Taluka, Pune-411042, India
| | - Ganesh Kumar Veeramachaneni
- Biomedical Research Laboratory, Department of Biotechnology, KLEF University (Koneru Lakshmaiah Educational Foundation), Green fields; Vaddeswaram, Guntur (Dist), 522502, Andhra Pradesh, India
| | - K Kranthi Raj
- Biomedical Research Laboratory, Department of Biotechnology, KLEF University (Koneru Lakshmaiah Educational Foundation), Green fields; Vaddeswaram, Guntur (Dist), 522502, Andhra Pradesh, India
| | - Venkateswara Rao Talluri
- Biomedical Research Laboratory, Department of Biotechnology, KLEF University (Koneru Lakshmaiah Educational Foundation), Green fields; Vaddeswaram, Guntur (Dist), 522502, Andhra Pradesh, India
| | - Venkata Raman Bokka
- Department of Basic Sciences-Chemistry, Madanapalle Institute of Technology and Science (MITS), Madanapalle, Chittoor, 517325, Andhra Pradesh, India
| | - Mahendran Botlagunta
- Biomedical Research Laboratory, Department of Biotechnology, KLEF University (Koneru Lakshmaiah Educational Foundation), Green fields; Vaddeswaram, Guntur (Dist), 522502, Andhra Pradesh, India.
| |
Collapse
|
3
|
Kubota M, Shimizu M, Baba A, Ohno T, Kochi T, Shirakami Y, Moriwaki H. Combination of bevacizumab and acyclic retinoid inhibits the growth of hepatocellular carcinoma xenografts. J Nutr Sci Vitaminol (Tokyo) 2015; 60:357-62. [PMID: 25744425 DOI: 10.3177/jnsv.60.357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The prognosis of patients with hepatocellular carcinoma (HCC) is poor and the development of effective treatments for this malignancy, including combination chemotherapy, is required. This study examined the possible combined inhibitory effects of bevacizumab, an anti-vascular endothelial growth factor monoclonal antibody, and acyclic retinoid (ACR), which can prevent the development of HCC, on the growth of Huh7 human HCC cells. Xenograft tumors were produced by subcutaneously injecting Huh7 cells into nude mice. Starting 1 wk after the tumor cell injection, the mice were treated with bevacizumab alone (5 mg/kg body weight, subcutaneous injection, twice a week), ACR alone (given in a diet containing 0.03%), or their combination for 6 wk, and the effects of these regimens on xenograft growth were examined. Combined treatment with bevacizumab plus ACR significantly suppressed the growth of Huh7 xenografts. The combination of these agents significantly inhibited the phosphorylation of the Akt protein in tumor tissues. With combination therapy, the population of Ki-67-positive cells in xenografts decreased, while that of TUNEL-positive cells increased. The combination of bevacizumab and ACR exerts growth-suppressing effects on HCC cells by inhibiting cell proliferation and inducing apoptosis. This combination might be an effective regimen for the treatment of HCC.
Collapse
Affiliation(s)
- Masaya Kubota
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine
| | | | | | | | | | | | | |
Collapse
|
4
|
Talaat RM, Salem TA, El-Masry S, Imbarek A, Mokhles M, Abdel-Aziz A. Circulating pro- and anti-angiogenic mediators in patients infected with hepatitis C at different stages of hepatocellular carcinoma. J Med Virol 2014; 86:1120-9. [DOI: 10.1002/jmv.23932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Roba M. Talaat
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Tarek A. Salem
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Samir El-Masry
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Arafat Imbarek
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Mohamed Mokhles
- Medical Biochemistry Department; Medical Division, National Research Center (NRC); Sadat City Egypt
| | - Amal Abdel-Aziz
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| |
Collapse
|
5
|
He AR, Goldenberg AS. Treating hepatocellular carcinoma progression following first-line sorafenib: therapeutic options and clinical observations. Therap Adv Gastroenterol 2013; 6:447-58. [PMID: 24179481 PMCID: PMC3808569 DOI: 10.1177/1756283x13498540] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Despite the established efficacy of sorafenib in advanced hepatocellular carcinoma (HCC), a significant number of sorafenib-treated patients experience disease progression. Current guidelines recommend either best supportive care or clinical trial enrollment for this population. As such, there remains an unmet need for tolerable, life-prolonging strategies in the second-line setting. New information regarding the molecular pathogenesis of resistance to antiangiogenic therapy and positive post-progression experience with antiangiogenics in other tumor types has led to trials investigating the effect of continued use of sorafenib, alone or combined with other agents. Trials investigating the effect of switching from sorafenib to alternate antiangiogenic agents, phosphatidylinositol 3 kinase/AKT/mammalian target of rapamycin inhibitors, or cMet inhibitors are also underway. As these data emerge, clinicians may consider a new paradigm for managing advanced HCC. This article briefly reviews the mechanisms of disease resistance to antiangiogenic therapy as a vehicle for discussing clinical strategies to prolong survival in patients with advanced HCC that are currently employed at our institutions or are under investigation. Key ongoing trials investigating the use of molecularly targeted therapies in patients with progressive disease are also highlighted.
Collapse
Affiliation(s)
- A Ruth He
- Assistant Professor, Division of Hematology/Oncology, Department of Medicine and Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, DC 20007, USA
| | | |
Collapse
|
6
|
Selimovic D, El-Khattouti A, Ghozlan H, Haikel Y, Abdelkader O, Hassan M. Hepatitis C virus-related hepatocellular carcinoma: An insight into molecular mechanisms and therapeutic strategies. World J Hepatol 2012; 4:342-55. [PMID: 23355912 PMCID: PMC3554798 DOI: 10.4254/wjh.v4.i12.342] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/17/2012] [Accepted: 11/24/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects more than 170 million people worldwide, and thereby becomes a series global health challenge. Chronic infection with HCV is considered one of the major causes of end-stage liver disease including cirrhosis and hepatocellular carcinoma. Although the multiple functions of the HCV proteins and their impacts on the modulation of the intracellular signaling transduction processes, the drive of carcinogenesis during the infection with HCV, is thought to result from the interactions of viral proteins with host cell proteins. Thus, the induction of mutator phenotype, in liver, by the expression of HCV proteins provides a key mechanism for the development of HCV-associated hepatocellular carcinoma (HCC). HCC is considered one of the most common malignancies worldwide with increasing incidence during the past decades. In many countries, the trend of HCC is attributed to several liver diseases including HCV infection. However, the development of HCC is very complicated and results mainly from the imbalance between tumor suppressor genes and oncogenes, as well as from the alteration of cellular factors leading to a genomic instability. Besides the poor prognosis of HCC patients, this type of tumor is quite resistance to the available therapies. Thus, understanding the molecular mechanisms, which are implicated in the development of HCC during the course of HCV infection, may help to design a general therapeutic protocol for the treatment and/or the prevention of this malignancy. This review summarizes the current knowledge of the molecular mechanisms, which are involved in the development of HCV-associated HCC and the possible therapeutic strategies.
Collapse
Affiliation(s)
- Denis Selimovic
- Denis Selimovic, Youssef Haikel, Mohamed Hassan, Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
7
|
Yau T, Wong H, Chan P, Yao TJ, Pang R, Cheung TT, Fan ST, Poon RT. Phase II study of bevacizumab and erlotinib in the treatment of advanced hepatocellular carcinoma patients with sorafenib-refractory disease. Invest New Drugs 2012; 30:2384-90. [PMID: 22402942 PMCID: PMC3484314 DOI: 10.1007/s10637-012-9808-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/26/2012] [Indexed: 12/14/2022]
Abstract
Background The combination of bevacizumab (B) and erlotinib (E) has shown promising clinical outcomes as the first-line treatment of advanced HCC patients. We aimed to evaluate the efficacy and safety of using combination of B + E in treating advanced HCC patients who had failed prior sorafenib treatment. Methods Eligible advanced HCC patients with documented radiological evidence of disease progression with sorafenib treatment were recruited. All patients received bevacizumab(B) at 10 mg/kg every 2 weeks with erlotinib(E) at 150 mg daily for a maximum of 6 cycles. Response assessments using both RECIST and modified RECIST criteria were performed after every 6 weeks. The primary endpoint was clinical benefit (CB) rate and a Simon two-stage design was employed. Results The trial was halted in the first stage according to the pre-set statistical criteria with 10 patients recruited. The median age was 47 years (range, 28–61) and all patients were in ECOG performance status 1. Eighty percent of patients were chronic hepatitis B carriers and all patients had Child A cirrhosis. Among these 10 patients, none of the enrolled patients achieved response or stable disease. The median time-to-progression was 1.81 months (95 % confidence interval [C.I.], 1.08–1.74 months) and overall survival was 4.37 months (95 % C.I., 1.08–11.66 months). Rash (70 %), diarrhea (50 %) and malaise (40 %) were the most commonly encountered toxicities. Conclusion The combination of B + E was well tolerated but had no activity in an unselected sorafenib-refractory advanced HCC population. Condensed abstract The combination of bevacizumab and erlotinib had no clinical activity in sorafenib-refractory HCC population.
Collapse
Affiliation(s)
- Thomas Yau
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Room 211B, 2/F New Clinical Building, 102 Pokfulam Road, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|