1
|
Arrè V, Negro R, Giannelli G. The role of inflammasomes in hepatocellular carcinoma: Mechanisms and therapeutic insights. Ann Hepatol 2024; 30:101772. [PMID: 39701280 DOI: 10.1016/j.aohep.2024.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Hepatocellular carcinoma is among the most frequent forms of primary liver cancer and develops within a context of chronic inflammation, frequently associated with a multitude of risk factors, including viral infections, metabolic dysfunction-associated fatty liver disease, metabolic dysfunction-associated steatohepatitis and liver fibrosis. The tumor microenvironment is crucial for the progression of HCC, as immune cells, tumor-associated fibroblasts and hepatic stellate cells interact to promote chronic inflammation and tumor spread. Inflammasomes, the multiprotein complexes that launch the innate immune response, emerge as important mediators in the pathogenesis of HCC. Among others, the inflammasome Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 3 (NLRP3), and absent in melanoma 2 (AIM2), exhibit a dual role in HCC background. It has been reported that they can exert oncosuppressive functions by triggering the inflammatory death of cancer cells. Vice versa, chronic activation contributes to the development of a pro-tumorigenic environment, thus supporting tumor growth. In addition, other inflammasomes such as Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 6 and 12 (NLRP6 and NLRP12, respectively) regulate HCC onset and progression, although more experimental evidence is required. This review focuses on the molecular mechanisms underpinning the inflammasome's contribution to the onset, progression and spread of HCC. Moreover, we will explore the potential therapeutic approaches currently under investigation, which aim to improve the efficacy and reduce the side effects of the treatments currently available. Targeting inflammasomes may be a promising therapeutic strategy for the treatment of HCC, offering new opportunities to improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
2
|
Adaptive Immune Responses, Immune Escape and Immune-Mediated Pathogenesis during HDV Infection. Viruses 2022; 14:v14020198. [PMID: 35215790 PMCID: PMC8880046 DOI: 10.3390/v14020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known human virus, yet it causes great harm to patients co-infected with hepatitis B virus (HBV). As a satellite virus of HBV, HDV requires the surface antigen of HBV (HBsAg) for sufficient viral packaging and spread. The special circumstance of co-infection, albeit only one partner depends on the other, raises many virological, immunological, and pathophysiological questions. In the last years, breakthroughs were made in understanding the adaptive immune response, in particular, virus-specific CD4+ and CD8+ T cells, in self-limited versus persistent HBV/HDV co-infection. Indeed, the mechanisms of CD8+ T cell failure in persistent HBV/HDV co-infection include viral escape and T cell exhaustion, and mimic those in other persistent human viral infections, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), and HBV mono-infection. However, compared to these larger viruses, the small HDV has perfectly adapted to evade recognition by CD8+ T cells restricted by common human leukocyte antigen (HLA) class I alleles. Furthermore, accelerated progression towards liver cirrhosis in persistent HBV/HDV co-infection was attributed to an increased immune-mediated pathology, either caused by innate pathways initiated by the interferon (IFN) system or triggered by misguided and dysfunctional T cells. These new insights into HDV-specific adaptive immunity will be discussed in this review and put into context with known well-described aspects in HBV, HCV, and HIV infections.
Collapse
|
3
|
Effect of siRNA targeting dengue virus genes on replication of dengue virus: an in vitro experimental study. Virusdisease 2021; 32:518-525. [PMID: 34485626 PMCID: PMC8397848 DOI: 10.1007/s13337-021-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/20/2021] [Indexed: 11/25/2022] Open
Abstract
Dengue is a notorious viral infection, which affects a large segment of world populations in absence of vaccines and anti-viral treatment. The current study evaluates role of effective siRNA in dengue virus replication. Eight siRNA were synthesized against five different genes (Capsid, CprM, NS1, NS3 and NS5) of all serotypes of dengue virus. All serotype of DV were transfected with all synthesized siRNA in vitro, using BHK-21 cell lines. Culture fluid from test and control was tested by Real time PCR for CT value comparison in siRNA treated cell line (test) and untreated cell line (controls). Percent knockdown (%KD) was calculated by ∆∆CT methods to know the difference in test and control CT value. It was found that siRNA targeted against capsid gene worked best and showed inhibition of all four DV serotypes. DV-1, DV-2, DV-3 and DV-4 showed 93.8%, 99.3%, 87.5% and 93.8% knock down (%KD) respectively by siRNA targeted against capsid gene. Additionally, Si2 (target CprM gene 60-899) and Si 6 (target NS1 gene 3007-3025) were also showing inhibition of replication. Most serotypes of DV (with few exceptions) were not inhibited by siRNA targeted against NS-1, NS-3, and NS-5 genes. Animal studies using siRNAs are warranted to establish their therapeutic role.
Collapse
|
4
|
Gong Y, Cheng X, Tian J, Li J, Zhu Y, Yang Y, Zou D, Peng X, Luo J, Zhao L, Mei S, Wang X, Yang N, Ke J, Gong J, Chang J, Wang Y, Zhong R. Integrative analysis identifies genetic variant modulating MICA expression and altering susceptibility to persistent HBV infection. Liver Int 2019; 39:1927-1936. [PMID: 31033131 DOI: 10.1111/liv.14127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Genome-wide association studies have identified multiple genetic signals associated with the risk of persistent hepatitis B virus (HBV) infection and HBV-related hepatocellular carcinoma. However, the majority of the associated variants may only be markers of functional variants and the underlying biological mechanisms remain elusive. We hypothesized that the functional variants with modulating transcription factor (TF) binding affinity in genome-wide association studies-identified loci may influence the risk of persistent HBV infection in Chinese people. METHODS A systematic bioinformatics approach was implemented to prioritize potential functional variants that may influence TF binding. A two-stage case-control study, including 1595 HBV-persistent carriers and 1590 subjects with HBV natural clearance, was conducted to examine the associations between candidate variants and susceptibility to persistent HBV infection. Biological assays were carried out to elucidate the underlying mechanism of the associated genetic variants. RESULTS Twelve candidate variants were identified, and rs2523454 G > A increased the risk of persistent HBV infection (dominant model: ORcombined = 1.37, 95% CI = 1.19-1.58, P = 1.610 × 10-5 ). Functional assays indicated that the rs2523454 A allele significantly decreased transcriptional activity compared to the G allele by influencing TF-binding affinity. In addition, expression quantitative trait loci analyses revealed that the A allele was associated with the reduced expression of MICA (P < 0.01). CONCLUSIONS Our findings suggest that the germline G > A variation at rs2523454 may influence TF-DNA interaction, downregulate the expression of MICA and play an important role in the development of persistent HBV infection in the Chinese population.
Collapse
Affiliation(s)
- Yajie Gong
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhuo Luo
- Department of Infectious Disease, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Disease, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Mei
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Yang X, Kuang S, Wang L, Wei Y. MHC class I chain-related A: Polymorphism, regulation and therapeutic value in cancer. Biomed Pharmacother 2018; 103:111-117. [PMID: 29635123 DOI: 10.1016/j.biopha.2018.03.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
MICA and MICB are stress-induced molecules recognized by NKG2D, one of major activation receptors of natural killer (NK) cells. Upon binding to NKG2D, NKG2D-mediated cytolytic immune response of immune effector cells will be activated against virally infected and tumor cells expressing MICA. In the early oncogenic development, membrane-bound MICA serves as a key signal to recruit anti-tumor immune effectors. Nevertheless, both MICA polymorphic features and its dysregulated expression in evolving tumors have resulted in tumor evasion in various cancer types. Therefore, in order to reconstitute tumor immunosurveilance, it is of great significance that we understand MICA genetics, polymorphisms, mechanisms of MICA-associated tumor escape and molecular/cellular modulation of MICA. In this review, the MICA-associated co-expression networks involving microRNAs (miRNAs) and novel candidate long non-coding RNAs (lncRNAs) were also discussed. Given the current importance in the study of MICA gene, this review paper focuses on the role of MICA in different cancer types, and strategies that we manipulate MICA regulation against tumor proliferation.
Collapse
Affiliation(s)
- Xi Yang
- Department of Biological Sciences, Clemson University, USA
| | - Shuzhen Kuang
- Department of Biological Sciences, Clemson University, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, USA.
| | - Yanzhang Wei
- Department of Biological Sciences, Clemson University, USA.
| |
Collapse
|
6
|
Different antiviral effects of IFNα subtypes in a mouse model of HBV infection. Sci Rep 2017; 7:334. [PMID: 28336921 PMCID: PMC5428457 DOI: 10.1038/s41598-017-00469-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/27/2017] [Indexed: 01/05/2023] Open
Abstract
Interferon alpha (IFNα) is commonly used for the treatment of chronic hepatitis B (CHB) patients. There are 13 different IFNα subtypes in humans, but only the subtype IFNα2 is used for clinical treatment. The antiviral activities of all other IFNα subtypes against HBV have not been studied. To obtain basic knowledge about the direct antiviral as well as the immunomodulatory effects of IFNα subtypes, we used the HBV hydrodynamic injection (HI) mouse model. Application of most IFNα subtype proteins inhibited HBV replication in vivo, with IFNα4 and IFNα5 being the most effective subtypes. Decreased viral loads after therapeutic application of IFNα4 and IFNα5 correlated with expanded effector cell populations of NK cells and T cells in both liver and spleen. Hydrodynamic injection of plasmids encoding for the effective IFNα subtypes (pIFNα) was even more potent against HBV than injecting IFNα proteins. The combination of pIFNα4 and pIFNα5 showed a synergistic antiviral effect on HBV replication, with a strong increase in NK cell and T cell activity. The results demonstrate distinct anti-HBV effects of different IFNα subtypes against HBV in the mouse model, which may be relevant for new therapeutic approaches.
Collapse
|
7
|
Goto K, Annan DA, Morita T, Li W, Muroyama R, Matsubara Y, Ito S, Nakagawa R, Tanoue Y, Jinushi M, Kato N. Novel chemoimmunotherapeutic strategy for hepatocellular carcinoma based on a genome-wide association study. Sci Rep 2016; 6:38407. [PMID: 27910927 PMCID: PMC5133582 DOI: 10.1038/srep38407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Pharmacotherapeutic options are limited for hepatocellular carcinoma (HCC). Recently, we identified the anti-tumor ligand MHC class I polypeptide-related sequence A (MICA) gene as a susceptibility gene for hepatitis C virus-induced HCC in a genome-wide association study (GWAS). To prove the concept of HCC immunotherapy based on the results of a GWAS, in the present study, we searched for drugs that could restore MICA expression. A screen of the FDA-approved drug library identified the anti-cancer agent vorinostat as the strongest hit, suggesting histone deacetylase inhibitors (HDACis) as potent candidates. Indeed, the HDACi-induced expression of MICA specific to HCC cells enhanced natural killer (NK) cell-mediated cytotoxicity in co-culture, which was further reinforced by treatment with an inhibitor of MICA sheddase. Similarly augmented anti-tumor activity of NK cells via NK group 2D was observed in vivo. Metabolomics analysis revealed HDACi-mediated alterations in energy supply and stresses for MICA induction and HCC inhibition, providing a mechanism for the chemoimmunotherapeutic actions. These data are indicative of promising strategies for selective HCC innate immunotherapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Coculture Techniques
- Combined Modality Therapy
- Cytotoxicity, Immunologic/drug effects
- Gene Expression Regulation, Neoplastic
- Genome-Wide Association Study
- Hep G2 Cells
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Hydroxamic Acids/pharmacology
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Metabolome/drug effects
- Metabolome/genetics
- Metabolome/immunology
- Mice
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Peptide Hydrolases/pharmacology
- Small Molecule Libraries/pharmacology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Vorinostat
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kaku Goto
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Dorcas A. Annan
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan
| | - Tomoko Morita
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan
| | - Wenwen Li
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryosuke Muroyama
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasuo Matsubara
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Sayaka Ito
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryo Nakagawa
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasushi Tanoue
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masahisa Jinushi
- Institute for Advanced Medical Research, Keio University Graduate School of Medicine, Tokyo 160-8582, Japan
| | - Naoya Kato
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
8
|
Koumbi L, Pollicino T, Raimondo G, Kumar N, Karayiannis P, Khakoo SI. Hepatitis B viral replication influences the expression of natural killer cell ligands. Ann Gastroenterol 2016; 29:348-57. [PMID: 27366037 PMCID: PMC4923822 DOI: 10.20524/aog.2016.0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is accounting for over one million deaths annually due to immune-mediated chronic liver damage. Natural killer (NK) cells are abundant in the liver and contribute in HBV persistence. NK cytotoxic effects are controlled by signals from activating and inhibitory receptors. HBV may circumvent host antiviral immunity via the regulation of NK receptors and their ligands. We investigated the effect of viral replication and HBeAg mutations on NK mediators expression in the livers of chronic HBV (CHB) patients and in cell cultures. METHODS HBV monomers bearing hotspot mutations in the basal core promoter and precore region were transfected into HepG2 cells using a plasmid-free assay. Serum viremia and liver HBV RNA were measured in 19 CHB patients. The expression of HBV RNA and of NKG2D ligands, B7H6, DNAX accessory molecule-1, lectin-like transcript 1 (LLT1), LFA-1 and TRAIL was measured in the livers of CHB patients and transfected cells. RESULTS In general, high HBV replication in CHB patients and cell lines upregulated the mRNA of all NK cell ligands and particularly the inhibitory NK cell ligand, LLT1. The exception was the NKG2D ligand, MICA, that was significantly decreased in patients with high serum viremia and intrahepatic HBV RNA levels. CONCLUSIONS HBV replication has differential effects on NK cell ligands suggesting a potential escape mechanisms through up-regulation of LLT1 and down-regulation of MICA. A general trend towards upregulating NK cell ligands can be counteracted by decreasing MICA and hence weakening NK surveillance.
Collapse
Affiliation(s)
- Lemonica Koumbi
- Department of Medicine, Hepatology and Gastroenterology Section, Imperial College, St. Mary's Campus, London, UK (Lemonia Koumbi, Naveenta Kumar)
| | - Teresa Pollicino
- Department of Pediatric, Gynecologic, Microbiologic, and Biomedical Sciences, University Hospital of Messina, Messina, Italy (Teresa Pollicino)
| | - Giovanni Raimondo
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy (Giovanni Raimondo)
| | - Naveenta Kumar
- Department of Medicine, Hepatology and Gastroenterology Section, Imperial College, St. Mary's Campus, London, UK (Lemonia Koumbi, Naveenta Kumar)
| | - Peter Karayiannis
- University of Nicosia Medical School, Nicosia, Cyprus (Peter Karayiannis)
| | - Salim I Khakoo
- Henry Welcome Laboratories, Southampton General Hospital, Southampton, UK (Salim I. Khakoo)
| |
Collapse
|
9
|
Li HJ, Zhai NC, Song HX, Yang Y, Cui A, Li TY, Tu ZK. The Role of Immune Cells in Chronic HBV Infection. J Clin Transl Hepatol 2015; 3:277-83. [PMID: 26807384 PMCID: PMC4721896 DOI: 10.14218/jcth.2015.00026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/20/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major cause of chronic liver diseases that may progress to liver cirrhosis and hepatocellular carcinoma. Host immune responses are important factors that determine whether HBV infection is cleared or persists. After infection, viral replication occurs inside hepatocytes, and the secretion of infectious virions can take place at high rates for decades. Consequently, HBV DNA and viral proteins, like HBV early antigen (HBeAg) and HBV surface antigen (HBsAg), can be easily detected in serum. Chronic infection with HBV is the result of an ineffective antiviral immune response towards the virus. In this review, we discuss the role of immune cells in chronic HBV infection.
Collapse
Affiliation(s)
- Hai-Jun Li
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Nai-Cui Zhai
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Hong-Xiao Song
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Yang Yang
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - An Cui
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tian-Yang Li
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Zheng-Kun Tu
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
- Correspondence to: Zheng-Kun Tu, The First Hospital, Jilin University, Changchun 130061, Jilin, China. Tel: +86-0431-88783044, Fax: +86-0431-88783044, E-mail:
| |
Collapse
|
10
|
Sasaki R, Kanda T, Wu S, Nakamoto S, Haga Y, Jiang X, Nakamura M, Shirasawa H, Yokosuka O. Association between hepatitis B virus and MHC class I polypeptide-related chain A in human hepatocytes derived from human-mouse chimeric mouse liver. Biochem Biophys Res Commun 2015. [PMID: 26212443 DOI: 10.1016/j.bbrc.2015.07.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Due to the lack of efficient hepatitis B virus (HBV) infection systems, progress in understanding the role of innate immunity in HBV infection has remained challenging. Here we used human hepatocytes from a humanized severe combined immunodeficiency albumin promoter/enhancer driven-urokinase-type plasminogen activator mouse model for HBV infection. HBV DNA levels in culture medium from these human hepatocytes were 4.8-5.7 log IU/mL between day 16 and day 66 post-infection by HBV genotype C inoculum. HBV surface antigen (HBsAg) was also detected by chemiluminescent immunoassay from day 7 to day 66 post-infection. Western blot analysis revealed that major histocompatibility complex class I-related chain A (MICA), which plays a role in the innate immune system, was induced in HBV-infected human hepatocytes 27 days after infection compared with the uninfected control. MICA was reduced at day 62 and undetectable at day 90. Of interest, MICA expression by human hepatocytes increased after HBV infection and decreased before HBsAg loss. Human hepatocytes derived from chimeric mice with hepatocyte-humanized liver could support HBV genome replication. Further studies of the association between HBV replication and MICA induction should be conducted.
Collapse
Affiliation(s)
- Reina Sasaki
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Molecular Virology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yuki Haga
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Xia Jiang
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroshi Shirasawa
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
11
|
Differential Expression of CX3CL1 in Hepatitis B Virus-Replicating Hepatoma Cells Can Affect the Migration Activity of CX3CR1+ Immune Cells. J Virol 2015; 89:7016-27. [PMID: 25926643 DOI: 10.1128/jvi.00716-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/17/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED In addition to stellate cells and immune cells, inflamed hepatocytes and hepatoma cells express various kinds of chemokines that attract various kinds of immune cells. Previously, we reported that hepatitis B virus (HBV) replication can induce physiological stress. The aim of this study was to analyze the effect of chemokines produced by HBV-infected hepatocytes and hepatoma cells. A real-time PCR array targeting genes related to chemokines and enzyme-linked immunosorbent assay (ELISA) were carried out to detect the specific chemokines produced by Huh7 cells and HepG2 cells infected with various HBV genotypes. A migration assay, flow cytometry analysis, and immunohistochemistry were carried out to analyze the candidate immune cells that can affect the immunopathogenesis of HBV infection. The expressions of CX3CL1 mRNA and protein were significantly different among HBV genotypes A, B, and C and control cells (mock) (P < 0.05). CD56(+) NK cells and CD8(+) T cells migrated to the hepatoma cells with HBV replication. Moreover, the migration activity of both immune cells was partially cancelled after the treatment of CX3CL1 neutralizing antibody. The expression level of NKG2D on CX3CR1(+) NK cells in HCC with HBV infection was significantly lower than that in hepatocellular carcinoma (HCC) with HCV infection and chronic hepatitis B and C patients (P < 0.05). On the other hand, the frequency of PD-1(high) CX3CR1(+) CD8(+) T cells in HCC with HBV infection was significantly higher than that in HCC with HCV infection and chronic hepatitis B and C (P < 0.05). The expression of CX3CL1 in HBV-replicating hepatocytes and hepatoma cells could contribute to the immunopathogenesis of HBV infection. IMPORTANCE The progressions of the disease are significantly different among HBV genotypes. However, it has not been clear that how different HBV genotypes could induce different inflammatory responses. Here, we first report that the levels of expression of CX3CL1 mRNA and protein were significantly different among HBV genotypes A, B, and C and mock. Not only the differential expression of CX3CL1 among the genotypes but also the phenotype of CX3CR1(+) NK cells and T cells were gradually changed during the progression of the disease status. In addition to in vitro study, the analysis of immunohistochemistry with human samples and NOG mice with human lymphocytes and hepatoma cells supports this phenomenon. The quantification of CX3CL1 could contribute to better understanding of the disease status of HBV infection. Moreover, modifying CX3CL1 might induce an immune response appropriate to the disease status of HBV infection.
Collapse
|
12
|
Pollicino T, Koumbi L. Role natural killer group 2D-ligand interactions in hepatitis B infection. World J Hepatol 2015; 7:819-824. [PMID: 25937859 PMCID: PMC4411524 DOI: 10.4254/wjh.v7.i6.819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/17/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is the leading cause of liver disease and hepatocellular carcinoma (HCC) worldwide, in spite of prophylactic vaccination and antiviral treatment modalities. The immunopathogenesis of HBV infection has been intensively studied and is propelled by complex interactions between the virus and the host immune system. Natural killer group 2D (NKG2D) is a well-characterized activating receptor, expressed on natural killer (NK) cells, NK T cells and CD8+ cytotoxic T cells. This receptor is present in both humans and mice and binds to a diverge family of ligands that resemble the MHC-class I molecules. Increasing evidence shows that NKG2D-ligand interactions are critical in the establishment of HBV persistence and the development of liver injury and HCC. The expression of NKG2D ligands depends on the presence of several polymorphisms and is also modulated post-transcriptionally by HBV. While it is known that HBV circumvents host’s innate immunity via the NKG2D pathway but the exact mechanisms involved are still elusive. This letter discusses previous accomplishments on the role of NKG2D ligand regulation in the development of chronic HBV, liver injury and HCC.
Collapse
|
13
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent causes of cancer-related death globally. Above well-known risk factors for HCC development ranging from various toxins to diseases such as diabetes mellitus, chronic infection with hepatitis B virus and hepatitis C virus (HCV) poses the most serious threat, constituting the cause in more than 80 % of cases. In addition to the viral genes intensively investigated, the pathophysiological importance of host genetic factors has also been greatly and increasingly appreciated. Genome-wide association studies (GWAS) comprehensively search the host genome at the single-nucleotide level, and have successfully identified the genomic region associated with a whole variety of diseases. With respect to HCC, there have been reports from several groups on single nucleotide polymorphisms (SNPs) associated with hepatocarcinogenesis, among which was our GWAS discovering MHC class I polypeptide-related sequence A (MICA) as a susceptibility gene for HCV-induced HCC. MICA is a natural killer (NK) group 2D (NKG2D) ligand, whose interaction with NKG2D triggers NK cell-mediated cytotoxicity toward the target cells, and is a key molecule in tumor immune surveillance as its expression is induced on stressed cells such as transformed tumor cells for the detection by NK cells. In this review, the latest understanding of the MICA-NKG2D system in viral HCC, particularly focused on its antitumor properties and the involvement of MICA SNPs, is summarized, followed by a discussion of targets for state-of-the-art cancer immunotherapy with personalized medicine in view.
Collapse
|
14
|
Schuch A, Hoh A, Thimme R. The role of natural killer cells and CD8(+) T cells in hepatitis B virus infection. Front Immunol 2014; 5:258. [PMID: 24917866 PMCID: PMC4042360 DOI: 10.3389/fimmu.2014.00258] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/19/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) infection is one of the main causes of chronic liver diseases that may progress to liver cirrhosis and hepatocellular carcinoma. Host immune responses are important factors that determine whether HBV infection is cleared or persists. Natural killer (NK) cells represent the main effector population of the innate immune system and are abundant in the human liver. Recently, it has been demonstrated that NK cells not only exhibit antiviral functions but may also regulate adaptive immune responses by deletion of HBV-specific CD8+ T cells. It is well-established that HBV-specific CD8+ T cells contribute to virus elimination. However, the mechanisms contributing to CD8+ T cell failure in chronic HBV infection are not well-understood. In this review, we will summarize the current knowledge about NK cells and CD8+ T cells and illustrate their contribution to viral clearance and persistence in HBV infection. Moreover, novel immunological in vitro model systems and techniques to analyze HBV-specific CD8+ T cells, which are barely detectable using current multimer staining methods, will be discussed.
Collapse
Affiliation(s)
- Anita Schuch
- Department of Medicine II, University Hospital of Freiburg , Freiburg , Germany ; Faculty of Biology, University of Freiburg , Freiburg , Germany
| | - Alexander Hoh
- Department of Medicine II, University Hospital of Freiburg , Freiburg , Germany ; Faculty of Biology, University of Freiburg , Freiburg , Germany ; Spemann Graduate School of Biology and Medicine, University of Freiburg , Freiburg , Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital of Freiburg , Freiburg , Germany
| |
Collapse
|
15
|
Wu J, Zhang XJ, Shi KQ, Chen YP, Ren YF, Song YJ, Li G, Xue YF, Fang YX, Deng ZJ, Xu X, Gao J, Tang KF. Hepatitis B surface antigen inhibits MICA and MICB expression via induction of cellular miRNAs in hepatocellular carcinoma cells. Carcinogenesis 2013; 35:155-63. [PMID: 23917076 DOI: 10.1093/carcin/bgt268] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B surface antigen (HBsAg) seropositivity is an important risk factor for hepatocellular carcinoma (HCC), and HBsAg-transgenic mice have been reported to spontaneously develop HCC. The major histocompatibility complex class I-related molecules A and B (MICA and MICB) are NKG2D ligands that play important roles in tumor immune surveillance. In the present study, we found that HBsAg overexpression in HepG2 cells led to upregulation of 133 and downregulation of 9 microRNAs (miRNAs). Interestingly, several HBsAg-induced miRNAs repressed the expression of MICA and MICB via targeting their 3'-untranslated regions. In addition, the expression of MICA and MICB was significantly reduced upon HBsAg overexpression, which was partially restored by inhibiting the activities of HBsAg-induced miRNAs. Moreover, HBsAg-overexpressing HCC cells exhibited reduced sensitivity to natural killer cell-mediated cytolysis. Taken together, our data suggest that HBsAg supresses the expression of MICA and MICB via induction of cellular miRNAs, thereby preventing NKG2D-mediated elimination of HCC cells.
Collapse
Affiliation(s)
- Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical College, 268 Xueyuan Road, Wenzhou, Zhejiang Province 325000, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Han Q, Lan P, Zhang J, Zhang C, Tian Z. Reversal of hepatitis B virus-induced systemic immune tolerance by intrinsic innate immune stimulation. J Gastroenterol Hepatol 2013; 28 Suppl 1:132-7. [PMID: 23855309 DOI: 10.1111/jgh.12034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2012] [Indexed: 12/19/2022]
Abstract
Systemic immune tolerance induced by chronic hepatitis B virus (HBV) infection is a significant question, but the mechanism of which remains unclear. In this mini-review, we summarize the impaired innate and adaptive immune responses involved in immune tolerance in chronic HBV infection. Furthermore, we delineate a novel dual functional small RNA to inhibit HBV replication and stimulate innate immunity against HBV, which proposed a promising immunotherapeutic intervention to interrupt HBV-induced immunotolerance. A mouse model of HBV persistence was established and used to observe the immune tolerant to HBV vaccination, the cell-intrinsic immune tolerance of which might be reversed by chemically synthesized dual functional small RNA (3p-hepatitis B Virus X gene [HBx]-small interfering RNA) in vitro experiments and by biologically constructed dual functional vector (single-stranded RNA-HBx- short hairpin RNA) in vivo experiment using HBV-carrier mice.
Collapse
Affiliation(s)
- Qiuju Han
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
17
|
Han Q, Zhang C, Zhang J, Tian Z. The role of innate immunity in HBV infection. Semin Immunopathol 2012; 35:23-38. [PMID: 22814721 DOI: 10.1007/s00281-012-0331-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 07/05/2012] [Indexed: 12/20/2022]
Abstract
Hepatitis B virus (HBV) infection is one of the main causes of chronic liver diseases. Whether HBV infection is cleared or persists is determined by both viral factors and host immune responses. It becomes clear that innate immunity is of importance in protecting the host from HBV infection and persistence. However, HBV develops strategies to suppress the antiviral immune responses. A combined therapeutic strategy with both viral suppression and enhancement of antiviral immune responses is needed for effective long-term clearance and cure for chronic HBV infection. We and others confirmed that bifunctional siRNAs with both gene silencing and innate immune activation properties are beneficial for inhibition of HBV and represent a potential approach for treatment of viral infection. Understanding the nature of liver innate immunity and their roles in chronic HBV progression and HBV clearance may aid in the design of novel therapeutic strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Qiuju Han
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
18
|
Wu X, Hong H, Yue J, Wu Y, Li X, Jiang L, Li L, Li Q, Gao G, Yang X. Inhibitory effect of small interfering RNA on dengue virus replication in mosquito cells. Virol J 2010; 7:270. [PMID: 20946645 PMCID: PMC2965154 DOI: 10.1186/1743-422x-7-270] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 10/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue viruses (DENs) are the wildest transmitted mosquito-borne pathogens throughout tropical and sub-tropical regions worldwide. Infection with DENs can cause severe flu-like illness and potentially fatal hemorrhagic fever. Although RNA interference triggered by long-length dsRNA was considered a potent antiviral pathway in the mosquito, only limited studies of the value of small interfering RNA (siRNA) have been conducted. RESULTS A 21 nt siRNA targeting the membrane glycoprotein precursor gene of DEN-1 was synthesized and transfected into mosquito C6/36 cells followed by challenge with DEN. The stability of the siRNA in cells was monitored by flow cytometry. The antiviral effect of siRNA was evaluated by measurement of cell survival rate using the MTT method and viral RNA was quantitated with real-time RT-PCR. The presence of cells containing siRNA at 0.25, 1, 3, 5, 7 days after transfection were 66.0%, 52.1%, 32.0%, 13.5% and 8.9%, respectively. After 7 days incubation with DEN, there was reduced cytopathic effect, increased cell survival rate (76.9 ± 4.5% vs 23.6 ± 14.6%) and reduced viral RNA copies (Ct value 19.91 ± 0.63 vs 14.56 ± 0.39) detected in transfected C6/36 cells. CONCLUSIONS Our data showed that synthetic siRNA against the DEN-1 membrane glycoprotein precursor gene effectively inhibited DEN-1 viral RNA replication and increased C6/36 cell survival rate. siRNA may offer a potential new strategy for prevention and treatment of DEN infection.
Collapse
Affiliation(s)
- Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, 23 Zhongshan 3rd Road, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cuestas ML, Mathet VL, Oubiña JR, Sosnik A. Drug delivery systems and liver targeting for the improved pharmacotherapy of the hepatitis B virus (HBV) infection. Pharm Res 2010; 27:1184-202. [PMID: 20333454 DOI: 10.1007/s11095-010-0112-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/01/2010] [Indexed: 12/17/2022]
Abstract
In spite of the progress made in vaccine and antiviral therapy development, hepatitis B virus (HBV) infection is still the most common cause of liver cirrhosis and hepatocellular carcinoma, with more than 400 million people chronically infected worldwide. Antiviral therapy with nucleos(t)ide analogues and/or immunomodulating peptides is the only option to control and prevent the progression of the disease in chronic hepatitis B (CHB)-infected patients. So far, the current antiviral monotherapy remains unsatisfactory because of the low efficacy and the development of drug resistance mutants. Moreover, viral rebound is frequently observed following therapy cessation, since covalent closed circular DNA (cccDNA) is not removed from hepatocytes by antiviral therapy. First, this review describes the current pharmacotherapy for the management of CHB and the new drug candidates being investigated. Then, the challenges in the development of drug delivery systems for the targeting of antiviral drugs to the liver parenchyma are discussed. Finally, perspectives in the design of a more efficient pharmacotherapy to eradicate the virus from the host are addressed.
Collapse
Affiliation(s)
- María L Cuestas
- Centro para el Estudio de Hepatitis Virales, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 11 (1121), Buenos Aires, Argentina
| | | | | | | |
Collapse
|