1
|
Yu K, Huang Y, Wang Y, Wu Q, Wang Z, Li F, Chen J, Yibulayin M, Zhang S, Su Z, Yan F. PEGylated gas vesicles: a promising novel ultrasound contrast agent for diagnosis and guiding radiofrequency ablation of liver tumor. J Nanobiotechnology 2025; 23:344. [PMID: 40369524 PMCID: PMC12076873 DOI: 10.1186/s12951-025-03377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Ultrasound contrast agents (UCAs) play an important role in diagnosis and the imaging-guided treatment of liver tumor in clinical settings. However, most commercially available UCAs are micro-sized and fabricated through a chemical synthesis route. Here, we developed a new class of biosynthesized nanoscale contrast agent (PEG-GVs) and comprehensively compared its physicochemical characteristics and imaging performance with commercial Sonovue and Sonazoid. Our results revealed PEG-GVs may produce more stable and durable contrast signals, contributing to their penetration beyond blood vessels and long-time retention in liver. Interestingly, we found that PEG-GVs did not exhibit a continuously enhanced accumulation in the liver tumor due to the EPR effect, but displayed a rapid regression. The long-time retention of PEG-GVs in normal liver tissue and rapid regression from liver tumor lead to distinct display of liver tumor boundaries, enabling the early diagnosis of small liver metastases and presenting advantages in guiding radiofrequency ablation of liver tumor. Moreover, we have also verified that PEG-GVs exhibit excellent imaging performance and biosafety in macaques. Our study provides new insights into the roles of PEG-GVs in liver tumor diagnosis and ablation guidance.
Collapse
Affiliation(s)
- Kezhi Yu
- Department of Ultrasound, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong Province, China
| | - Yongquan Huang
- Department of Ultrasound, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.
| | - Yuanyuan Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong Province, China
| | - Qunyan Wu
- Department of Ultrasound, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Zihang Wang
- Department of Echocardiography, Xinjiang Key Laboratory of Ultrasound Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Fei Li
- Research Center for Advanced Detection Materials and Medical lmaging Devices, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Jianri Chen
- Research Center for Advanced Detection Materials and Medical lmaging Devices, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Maierhaba Yibulayin
- Department of Echocardiography, Xinjiang Key Laboratory of Ultrasound Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Shushan Zhang
- Department of Ultrasound, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Zhongzhen Su
- Department of Ultrasound, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.
| | - Fei Yan
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong Province, China.
| |
Collapse
|
2
|
van Elburg B, Lassus A, Cherkaoui S, Lajoinie G, Versluis M, Segers T. Controlling the stability of monodisperse phospholipid-coated microbubbles by tuning their buckling pressure. J Colloid Interface Sci 2025; 685:449-457. [PMID: 39855090 DOI: 10.1016/j.jcis.2025.01.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
HYPOTHESIS Monodisperse phospholipid-coated microbubbles, with a size and resonance frequency tuned to the ultrasound driving frequency, have strong potential to enhance sensitivity, efficiency, and control in emerging diagnostic and therapeutic applications involving bubbles and ultrasound. A key requirement is that they retain their gas volume and shell material during physiologic pressure changes and withstand the overpressure during intravenous injection. The shell typically comprises a mixture of a phospholipid (e.g., DSPC) mixed with a PEGylated phospholipid (e.g., DPPE-PEG5000). We hypothesize that (i) lipid-coated microbubbles destabilize when shell buckling occurs under pressurization, (ii) the overpressure at which buckling occurs (buckling pressure) is linked to the molar fraction of PEGylated lipid in the shell, and (iii) PEGylated lipid can be selectively expelled from the shell by fluidizing it at elevated temperatures. EXPERIMENTS The buckling pressure was measured using ultrasound attenuation spectroscopy while the ambient pressure was varied. When the ambient pressure increased, the microbubble resonance frequency dropped sharply due to shell buckling and the associated loss of elasticity. The buckling pressure Pb was obtained for monodisperse microbubbles formed by microfluidic flow-focusing, with DPPE-PEG5000 mixed with DSPC at molar fractions from 1.5% to 10%. Additionally, Pb was quantified for microbubbles containing 10 mol% PEG after heating at temperatures ranging from 40∘C to 70∘C. The molar PEG content of the microbubbles was analyzed using high-performance liquid chromatography. FINDINGS Quasi-static compression of a microbubble above its buckling pressure leads to its destabilization. Lowering the PEG molar fraction from 10 to 1.5% increased the buckling pressure from 3 kPa to 27 kPa. Similarly, heating the 10 mol% bubble suspension at 60∘C for one hour raised the buckling pressure by 20 kPa, due to the selective loss of PEGylated lipid from the shell, without affecting the monodispersity of the bubbles. The higher buckling pressure significantly improved microbubble stability, allowing them to withstand pressurization cycles of up to 45 kPa, nearly three times the systolic blood pressure in vivo.
Collapse
Affiliation(s)
- Benjamin van Elburg
- Physics of Fluids Group, TechMed Centre, University of Twente, P.O. Box 217, Enschede, 7500 AE, the Netherlands
| | - Anne Lassus
- Bracco Suisse S.A., Route de la Galaise 31, Geneva, 1228, Switzerland
| | - Samir Cherkaoui
- Bracco Suisse S.A., Route de la Galaise 31, Geneva, 1228, Switzerland
| | - Guillaume Lajoinie
- Physics of Fluids Group, TechMed Centre, University of Twente, P.O. Box 217, Enschede, 7500 AE, the Netherlands
| | - Michel Versluis
- Physics of Fluids Group, TechMed Centre, University of Twente, P.O. Box 217, Enschede, 7500 AE, the Netherlands
| | - Tim Segers
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, Enschede, 7500 AE, the Netherlands.
| |
Collapse
|
3
|
Dong Y, Cheng J, Huang YL, Qiu YJ, Cao JY, Lu XY, Wang WP, Möller K, Dietrich CF. Characterization of non-alcoholic fatty liver disease-related hepatocellular carcinoma on contrast-enhanced ultrasound with Sonazoid. Ultrasonography 2025; 44:232-242. [PMID: 40200415 PMCID: PMC12081131 DOI: 10.14366/usg.24205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 04/10/2025] Open
Abstract
PURPOSE This study aimed to evaluate the contrast-enhanced ultrasound with Sonazoid (Sonazoid-CEUS) features of hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD). METHODS In this retrospective study, patients who underwent surgical resection and were histopathologically diagnosed with NAFLD or cirrhosis-related HCC were included. All patients received Sonazoid-CEUS examinations within 1 week prior to hepatic surgery. The enhancement patterns of HCC lesions were evaluated and compared between the two groups according to the current World Federation for Ultrasound in Medicine and Biology guidelines. Multivariate logistic regression analysis was used to assess the correlations between Sonazoid-CEUS enhancement patterns and clinicopathologic characteristics. RESULTS From March 2022 to April 2023, a total of 151 patients with HCC were included, comprising 72 with NAFLD-related HCC and 79 with hepatitis B virus (HBV) cirrhosis-related HCC. On Sonazoid-CEUS, more than half of the NAFLD-related HCCs exhibited relatively early and mild washout within 60 seconds (54.2%, 39/72), whereas most HBV cirrhosis-related HCCs displayed washout between 60 and 120 seconds (46.8%, 37/79) or after 120 seconds (39.2%, 31/79) (P<0.001). In the patients with NAFLD-related HCC, multivariate analysis revealed that international normalized ratio (odds ratio [OR], 0.002; 95% confidence interval [CI], 0.000 to 0.899; P=0.046) and poor tumor differentiation (OR, 21.930; 95% CI, 1.960 to 245.319; P=0.012) were significantly associated with washout occurring within 60 seconds. CONCLUSION Characteristic Sonazoid-CEUS features are useful for diagnosing HCC in patients with NAFLD.
Collapse
Affiliation(s)
- Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Cheng
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Lin Huang
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Jie Qiu
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Ying Cao
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiu-Yun Lu
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kathleen Möller
- Medical Department I/Gastroenterology, SANA Hospital Lichtenberg, Berlin, Germany
| | - Christoph F. Dietrich
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department Allgemeine Innere Medizin, Kliniken Hirslanden, Beau Site, Salem and Permanence, Bern, Switzerland
| |
Collapse
|
4
|
Hawley J, Tang Y, Sjöström A, Fuentes-Alburo A, Tranquart F. The Clinical Utility of Liver-Specific Ultrasound Contrast Agents During Hepatocellular Carcinoma Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:415-427. [PMID: 39674715 DOI: 10.1016/j.ultrasmedbio.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 12/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of hepatic malignancy, with high mortality rates recorded globally. Early detection through clinical biomarkers, medical imaging and histological assessment followed by rapid intervention are integral for positive patient outcomes. Although contrast-enhanced computed tomography scans and magnetic resonance imaging are recognised as the reference standard for the diagnosis and staging of HCC in international guidelines, ultrasound (US) examination is recommended as a screening tool for patients at risk. Contrast-enhanced US (CEUS) elevates the standard of an US examination using US contrast agents (UCAs), capable of diagnosing focal liver lesions with high efficacy. Most UCAs are purely intravascular, offering clinicians a dynamic representation of a lesions' arterial phase vascular kinetics, which is seldom seen in such detail during computed tomography or magnetic resonance imaging assessments. Despite its benefits, there is incongruity between international societies on the role of CEUS in the HCC clinical pathway. The transient nature of pure blood-pool agents is suggested to be insufficient to justify CEUS as a primary modality due to the inability to consistently perform whole liver imaging, alongside disputes regarding its capabilities to differentiate HCC from intrahepatic cholangiocarcinoma. A sinusoidal phase UCA affords clinicians the opportunity to perform whole liver imaging through Kupffer cell uptake in addition to visualising lesion vascular kinetics in the arterial and portal venous phases. Therefore, the purpose of this review was to examine the role of CEUS in the HCC clinical pathway in its current practice and observe how a Kupffer cell sinusoidal phase UCA may supplement contemporary diagnostic techniques through a multi-modality, multi-agent approach.
Collapse
Affiliation(s)
- Joshua Hawley
- GE HealthCare Pharmaceutical Diagnostics, Chalfont St. Giles, UK; Chesterfield Royal Hospital Foundation NHS Trust, Chesterfield, UK.
| | - Yongqing Tang
- GE HealthCare Pharmaceutical Diagnostics, Chalfont St. Giles, UK
| | - Anders Sjöström
- GE HealthCare Pharmaceutical Diagnostics, Chalfont St. Giles, UK
| | | | | |
Collapse
|
5
|
Solomon C, Petea-Balea DR, Dudea SM, Bene I, Silaghi CA, Lenghel ML. Role of Ultrasound Elastography and Contrast-Enhanced Ultrasound (CEUS) in Diagnosis and Management of Malignant Thyroid Nodules-An Update. Diagnostics (Basel) 2025; 15:599. [PMID: 40075847 PMCID: PMC11898416 DOI: 10.3390/diagnostics15050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The aim of this paper is to highlight the combined role of ultrasound elastography and contrast-enhanced ultrasound in terms of diagnosis, staging, and follow-up of the post-treatment response. Contrast-enhanced ultrasound (CEUS) and ultrasound elastography are natural extensions of conventional USs that have created new opportunities, facilitating the implementation of multiparametric ultrasounds in the characterization of thyroid nodules, in risk stratification, and in the selection of nodules that request Fine Needle Aspiration (FNA), management, and follow-up of the nodules with indeterminate cytology, evaluation of pre-operative prognostic features, and treatment efficiency.
Collapse
Affiliation(s)
- Carolina Solomon
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (S.M.D.); (I.B.); (M.L.L.)
| | - Diana-Raluca Petea-Balea
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (S.M.D.); (I.B.); (M.L.L.)
| | - Sorin Marian Dudea
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (S.M.D.); (I.B.); (M.L.L.)
| | - Ioana Bene
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (S.M.D.); (I.B.); (M.L.L.)
| | - Cristina Alina Silaghi
- Department of Endocrinology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Manuela Lavinia Lenghel
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (S.M.D.); (I.B.); (M.L.L.)
| |
Collapse
|
6
|
Li H, Shi M, Long X, Huang P, Peng C, He W, Li Y, Li B, Yuan Y, Qiu J, Zou R. Contrast-enhanced intraoperative ultrasound improved hepatic recurrence-free survival in initially unresectable colorectal cancer liver metastases. Dig Liver Dis 2025; 57:467-476. [PMID: 39343654 DOI: 10.1016/j.dld.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND We aimed to evaluate the role of Contrast-enhanced intraoperative ultrasound (CE-IOUS) with perfluorobutane microbubbles (Sonazoid) in improving the prognosis of patients with unresectable colorectal cancer liver metastases (CRLM). METHODS A total of 130 Patients with unresectable CRLM who underwent curative hepatic resection at our institute were retrospectively analyzed. Of these 130 enrolled patients, 67 underwent intraoperative ultrasound alone (IOUS group); 63 underwent additional CE-IOUS and IOUS (CE-IOUS group). Normalized inverse probability treatment weighting (IPTW) was employed to balance baseline characteristics between groups. Hepatic recurrence-free survival (HRFS) and overall survival (OS) were compared. RESULTS The treatment strategy was altered in 25 patients (25/63, 39.9%) due to the additional use of CE-IOUS. After applying IPTW, the CE-IOUS group exhibited a significantly lower rate of hepatic recurrence (hazard ratio [HR], 0.55; 95% confidence interval [CI] 0.32-0.95; P = 0.032). Subgroup analysis showed that CE-IOUS provided a significant benefit over IOUS in patients with bilobar liver metastases (P = 0.007), or with a number of live tumors < 3 (P = 0.021), or without DLM (P = 0.018), or with extrahepatic metastasis (P = 0.034), or with a minimum of 6 cycles of systemic therapy (P = 0.03). CONCLUSIONS CE-IOUS is necessary for unresectable CRLM after preoperative chemotherapy, as it enhances detection accuracy and improves the prognosis of unresectable CRLM patients.
Collapse
Affiliation(s)
- HuiFang Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Ming Shi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Xingzhang Long
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China; Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Pinzhu Huang
- Department of Colorectal Surgery, the Sixth affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510060, PR China
| | - Chuan Peng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China; Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Wei He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Yuhong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - JiLiang Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
| | - Ruhai Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China; Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
| |
Collapse
|
7
|
Zhang JC, Gou B, Wang TR, Dang WT, Li YH, Wen W, Liu J. Ultrasound stimulated perfluorobutane microbubbles cavitation enhanced the therapeutic effect of colchicine in rats with acute gouty arthritis. Heliyon 2025; 11:e41919. [PMID: 39906862 PMCID: PMC11791222 DOI: 10.1016/j.heliyon.2025.e41919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Objective This study aimed to explore whether cavitation generated by ultrasound-stimulated microbubbles (USMB) can enhance the therapeutic efficacy of colchicine and diminish its gastrointestinal side effects in rats with acute gouty arthritis (AGA). Materials and methods The rat AGA model was established by injection of Monosodium urate (MSU) crystals. The rats were randomly divided into 6 groups (A: control group, B: model control group, C: cavitation group, D: high dose colchicine group, E: cavitation + low dose colchicine group, F: cavitation + high dose colchicine group) according to whether they were given cavitation and different doses of colchicine. The effect of cavitation on blood perfusion was analyzed by comparing contrast-enhanced ultrasound (CEUS) and the area under the curve (AUC) of CEUS with the ankle joint of right hind limb. The AGA symptoms were assessed by referring to the degree of ankle joint swelling within 24 h and the gait score. The infiltration of neutrophils was determined using the hematoxylin-eosin (HE) staining method. For the evaluation of vascular inflammation and dilation, plasma interleukin-1β (IL-1β) and endothelial nitric oxide synthase (eNOS) served as the key indicators. Besides, the severity of gastrointestinal adverse reactions is determined by analyzing the gastrointestinal reaction scores. Results When compared with groups A, B, and D, the AUC was markedly higher in groups C, E, and F (all P < 0.05). In groups E and F, the degree of ankle swelling, gait scores, and the level of plasma IL-1β in AGA rats were lower, while the concentration of plasma eNOS was higher compared to the group D (all P < 0.05). HE staining findings demonstrated that the integration of cavitation and colchicine played a positive role in reducing neutrophil infiltration in the ankle joint synovium and mitigating the gastrointestinal reaction score in AGA rats. In contrast to groups D, E, and F that were given colchicine, group E had a substantially lower gastrointestinal reaction score, with statistically significant differences observed in pairwise comparisons (all P < 0.05). Conclusion In rats with AGA, cavitation generated by USMB exerted a remarkable effect on augmenting the blood perfusion of the ankle joint. This, in turn, not only amplified the anti-gout efficacy of colchicine but also reduced the dosage of colchicine. Concurrently, it effectively mitigated the associated gastrointestinal side effects.
Collapse
Affiliation(s)
- Ji-cheng Zhang
- Department of Ultrasound, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Bo Gou
- Department of Ultrasound, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Tian-rui Wang
- Department of Ultrasound, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wan-tai Dang
- Department of Rheumatic Immunology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yan-hui Li
- Department of Ultrasound, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wen Wen
- Department of Ultrasound, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jian Liu
- Department of Ultrasound, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Wei L, Kang HJ, Huang YL, Cao JY, Lu XY, Dong Y, Lee JM. Perfluorobutane-Enhanced CEUS in Intrahepatic Cholangiocarcinoma: Correlating Imaging Features With Liver Backgrounds and Tumor Sizes. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:70-76. [PMID: 39424496 DOI: 10.1016/j.ultrasmedbio.2024.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE To investigate Sonazoid contrast-enhanced ultrasound (CEUS) features of intrahepatic cholangiocarcinoma (ICC) based on liver backgrounds and tumor sizes. METHODS A retrospective analysis was conducted on patients with histopathologically diagnosed ICC at two centers. Patients underwent Sonazoid CEUS examination at a dose of 0.0165 mL/kg before surgery or biopsy. Continuous imaging was recorded for the first 70 s, followed by intermittent scanning every 15-20 s for 5 min, with a Kupffer phase captured after an 8-min delay. Patients were categorized by liver backgrounds and tumor sizes. Two ultrasound experts evaluated the enhancement patterns of ICCAs during the arterial, portal, delayed, and Kupffer phases according to current guidelines. RESULTS From February 2019 to July 2022, a total of 85 ICC lesions were included. ICCs were categorized into normal liver (n = 24), chronic liver disease with fibrosis (n = 40), and cirrhosis (n = 21) groups based on different liver backgrounds, and into groups measuring ≤30 mm (n = 22), 31-50 mm (n = 32), and >50 mm (n = 31) based on tumor sizes. Most ICCs in liver fibrosis or liver cirrhosis tended to show non-rim enhancement in arterial phase (p = 0.022) and relatively later washout (39.9 ± 8.5 s vs. 39.7 ± 13.0 s) compared with those on a normal liver background (28.1 ± 5.6 s) (p < 0.001). Based on CEUS Liver Imaging Reporting and Data System, the diagnostic performance of LR-M criteria showed an accuracy of 100% in our high-risk populations. ICCs of ≤30 mm more commonly showed non-rim enhancement in arterial phase (p = 0.003) and relatively later washout (41.3 ± 12.5 s) compared with larger ICCs (p = 0.046). In the Kupffer phase, all ICCs showed marked washout with sharp margin delineation on Sonazoid CEUS, regardless of liver backgrounds and tumor sizes. CONCLUSION Sonazoid CEUS features of ICCs differ according to different liver backgrounds and tumor sizes. Arterial phase non-rim enhancement and relatively later washout were more commonly observed in ICCs on liver fibrosis or cirrhosis background or smaller ICCs (≤30 mm).
Collapse
Affiliation(s)
- Li Wei
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Yun-Lin Huang
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Ying Cao
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiu-Yun Lu
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
9
|
Luo Y, Huang Q, Wen D, Yan J, Liu F, Qiao L. Review of Clinical Applications of Sonazoid Ultrasound Contrast for Liver Evaluation. Ultrasound Q 2024; 40:e00692. [PMID: 39293387 DOI: 10.1097/ruq.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
ABSTRACT Sonazoid is a new ultrasound contrast agent with unique Kupffer phase imaging advantages and high mechanical index stability. This paper introduces the basic theories and advantages of Sonazoid ultrasound. Then, the application and latest advances of Sonazoid in the diagnosis and treatment of liver diseases are reviewed in detail. In addition, the advantages and disadvantages of Sonazoid ultrasound and its future directions are discussed. Sonazoid is expected to become an important tool for clinical ultrasound diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Danlin Wen
- Department of Ultrasound, Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Jiaojun Yan
- Department of Ultrasound, Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Fangqin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | |
Collapse
|
10
|
Raval V, Karmakar J, Kannan K, Oza S, Patil J, Mercado-Shekhar KP. Ultrasound Biomarkers: Contrast-enhanced Ultrasound and Nakagami Imaging to Differentiate Benign and Malignant Choroidal Tumor. Curr Eye Res 2024; 49:1208-1214. [PMID: 38881029 DOI: 10.1080/02713683.2024.2366307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE We hypothesized that contrast-enhanced ultrasound (CEUS) using a microbubble technique to quantify microvascular changes and Nakagami imaging for tissue characterization would provide a new approach for diagnosing and differentiating benign and malignant choroidal lesions. METHODS Five patients with choroidal melanoma (CM) and five patients with choroidal hemangioma (CH) were selected. Definity®, which contains perflutren microbubbles, was administered as a slow IV bolus (1 ml). CEUS was performed for 1 min postinjection of the contrast agent with ultrasound radiofrequency data acquired from 10 s to 60 s. The contrast value was calculated for the whole tumor region. A gradient magnitude method was used for each postcontrast frames with 1-second interval, and the time-averaged value in pixel intensity gradient of postinjection frames was estimated and reported. Based on the Nakagami statistical distribution model, two Nakagami parameters, m and Ω, where m (shape parameter), representing tissue heterogeneity, and Ω (scale parameter), representing the average energy of backscattered signals, were studied. RESULTS CEUS analysis showed that the time-averaged estimated contrast was significantly higher (p = 0.008) for CH compared to CM. Furthermore, the time-averaged contrast within the normal choroidal region was significantly higher than the choroidal tumor region for both CH and CM (p = 0.001 for CH cases and p < 0.0001 for CM cases). Nakagami analysis showed that the m estimates were significantly higher (p = 0.032) for CH (m = 0.61) than for CM (m = 0.28), indicating that CH is a more heterogeneous tumor than CM. The Ω estimates were significantly higher (p = 0.0019) for CH (Ω = 0.15) compared to CM (Ω = 0.03). These results may be due to the more vascular structures in CH compared to CM. CONCLUSIONS Quantitative intensity-based perfusion analysis using CEUS and backscattering tissue analysis using Nakagami imaging can provide valuable insights to differentiate benign and malignant choroidal lesions.
Collapse
Affiliation(s)
- Vishal Raval
- Anant Bajaj Retina Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Jayashree Karmakar
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, India
| | - Kiruthika Kannan
- Anant Bajaj Retina Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Sakshi Oza
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, India
| | - Jagruti Patil
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, India
| | | |
Collapse
|
11
|
Shen Q, Wu W, Wang R, Zhang J, Liu L. A non-invasive predictive model based on multimodality ultrasonography images to differentiate malignant from benign focal liver lesions. Sci Rep 2024; 14:23996. [PMID: 39402127 PMCID: PMC11473797 DOI: 10.1038/s41598-024-74740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
We have developed a non-invasive predictive nomogram model that combines image features from Sonazoid contrast-enhanced ultrasound (SCEUS) and Sound touch elastography (STE) with clinical features for accurate differentiation of malignant from benign focal liver lesions (FLLs). This study ultimately encompassed 262 patients with FLLs from the First Hospital of Shanxi Medical University, covering the period from March 2020 to April 2023, and divided them into training set (n = 183) and test set (n = 79). Logistic regression analysis was used to identify independent indicators and develop a predictive model based on image features from SCEUS, STE, and clinical features. The area under the receiver operating characteristic (AUC) curve was determined to estimate the diagnostic performance of the nomogram with CEUS LI-RADS, and STE values. The C-index, calibration curve, and decision curve analysis (DCA) were further used for validation. Multivariate and LASSO logistic regression analyses identified that age, ALT, arterial phase hyperenhancement (APHE), enhancement level in the Kupffer phase, and Emean by STE were valuable predictors to distinguish malignant from benign lesions. The nomogram achieved AUCs of 0.988 and 0.978 in the training and test sets, respectively, outperforming the CEUS LI-RADS (0.754 and 0.824) and STE (0.909 and 0.923) alone. The C-index and calibration curve demonstrated that the nomogram offers high diagnostic accuracy with predicted values consistent with actual values. DCA indicated that the nomogram could increase the net benefit for patients. The predictive nomogram innovatively combining SCEUS, STE, and clinical features can effectively improve the diagnostic performance for focal liver lesions, which may help with individualized diagnosis and treatment in clinical practice.
Collapse
Affiliation(s)
- Qianqian Shen
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Department of Ultrasound Intervention, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Wei Wu
- Department of Anorectal Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030001, China
| | - Ruining Wang
- Department of Ultrasound Intervention, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiaqi Zhang
- Department of Ultrasound Intervention, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Liping Liu
- Department of Ultrasound Intervention, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
- Department of Ultrasound Intervention, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
12
|
Mori N, Li L, Matsuda M, Mori Y, Mugikura S. Prospects of perfusion contrast-enhanced ultrasound (CE-US) in diagnosing axillary lymph node metastases in breast cancer: a comparison with lymphatic CE-US. J Med Ultrason (2001) 2024; 51:587-597. [PMID: 38642268 PMCID: PMC11499517 DOI: 10.1007/s10396-024-01444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/18/2024] [Indexed: 04/22/2024]
Abstract
Accurate diagnosis of lymph node (LN) metastasis is vital for prognosis and treatment in patients with breast cancer. Imaging 1modalities such as ultrasound (US), MRI, CT, and 18F-FDG PET/CT are used for preoperative assessment. While conventional US is commonly recommended due to its resolution and sensitivity, it has limitations such as operator subjectivity and difficulty detecting small metastases. This review shows the microanatomy of axillary LNs to enhance accurate diagnosis and the characteristics of contrast-enhanced US (CE-US), which utilizes intravascular microbubble contrast agents, making it ideal for vascular imaging. A significant focus of this review is on distinguishing between two types of CE-US techniques for axillary LN evaluation: perfusion CE-US and lymphatic CE-US. Perfusion CE-US is used to assess LN metastasis via transvenous contrast agent administration, while lymphatic CE-US is used to identify sentinel LNs and diagnose LN metastasis through percutaneous contrast agent administration. This review also highlights the need for future research to clarify the distinction between studies involving "apparently enlarged LNs" and "clinical node-negative" cases in perfusion CE-US research. Such research standardization is essential to ensure accurate diagnostic performance in various clinical studies. Future studies should aim to standardize CE-US methods for improved LN metastasis diagnosis, not only in breast cancer but also across various malignancies.
Collapse
Affiliation(s)
- Naoko Mori
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan.
| | - Li Li
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Masazumi Matsuda
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
- Division of Image Statistics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
14
|
Lou C, Li YX, Tan BB, Tao CJ, Xu CC, Liao YY. Clinical value of contrast-enhanced ultrasound versus conventional ultrasound in biopsy of focal liver lesions. Acta Radiol 2024; 65:700-707. [PMID: 38856151 DOI: 10.1177/02841851241257607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND Focal liver lesions (FLLs) are a common form of liver disease, and identifying accurate pathological types is required to guide treatment and evaluate prognosis. PURPOSE To compare and analyze the application effect of contrast-enhanced ultrasound (CEUS) and conventional ultrasound (US) in the clinical diagnosis of focal liver lesions. MATERIAL AND METHODS A retrospective analysis was performed on 682 patients with space-occupying liver lesions admitted to our hospital between December 2015 and August 2021. Of these, 280 underwent CEUS-guided biopsies and 402 underwent conventional US biopsies, with the results of each biopsy subsequently compared between the two groups. The success rate and accuracy of the biopsies and their relationship with different pathological features were also analyzed. RESULTS The success rate, sensitivity, diagnostic accuracy, positive predictive value, and negative predictive value of the CEUS group were significantly higher than those of the US group (P < 0.05). Lesion size accuracy in the CEUS group was significantly higher than that in the US group (89.29% vs. 40.55%; P < 0.05). Lesion type accuracy in the CEUS group was significantly higher than that in the US group (86.49% vs. 43.59%), and the difference between the two groups was statistically significant (P < 0.05). The logistic regression analysis indicated that malignant lesions, lesions ≥5 cm, and lesions ≤1 cm were independent factors affecting the success rate of the puncture procedure (P < 0.05). CONCLUSION The sensitivity, specificity, and diagnostic accuracy of lesion size and type in the CEUS group were higher than those in the US group.
Collapse
Affiliation(s)
- Cheng Lou
- Department of Oncology, Third Affiliated Hospital of the Naval Medical University, Shanghai, PR China
| | - Yin-Xia Li
- Department of Imaging Medicine Ultrasound Diagnosis Teaching and Research, Naval Medical University, Shanghai, PR China
| | - Bi-Bo Tan
- Department of Ultrasound and Therapy, Third Affiliated Hospital of the Naval Medical University, Shanghai, PR China
| | - Chen-Jie Tao
- Department of Oncology, Third Affiliated Hospital of the Naval Medical University, Shanghai, PR China
| | - Cheng-Chuan Xu
- Department of Ultrasound and Therapy, Third Affiliated Hospital of the Naval Medical University, Shanghai, PR China
| | - Ying-Ying Liao
- Department of Ultrasound and Therapy, Third Affiliated Hospital of the Naval Medical University, Shanghai, PR China
| |
Collapse
|
15
|
Zhang Y, Guo ZX, Liao Y, Yu Y, Guo R, Han X, Lan L, Zhou J. Contrast-enhanced ultrasound features of hepatic angiomyolipoma: comparison with AFP-negative and non-viral hepatocellular carcinoma. Ultrasound Int Open 2024; 10:a23186654. [PMID: 39411752 PMCID: PMC11476071 DOI: 10.1055/a-2318-6654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/01/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose This study aimed to compare contrast-enhanced ultrasound (CEUS) features of hepatic angiomyolipoma (HAML) and challenging cases of HCC, mainly those with no hepatitis infection but also with a low level of AFP (non-viral AFP- HCC). Materials and Methods The study included pathologically confirmed HAMLs and non-viral AFP- HCCs undergoing CEUS from 2012 to 2023. Sonovue (SV) CEUS and Sonazoid (SZ) CEUS characteristics of the two groups were compared. Results The study included 50 HAMLs (24% on SZ-CEUS) and 88 non-viral AFP- HCCs (21.6% on SZ-CEUS). The CEUS characteristics on SZ-CEUS were similar to those on SV-CEUS to a certain extent. HAMLs more frequently displayed no washout and partial washout with partial no washout, so-called PWNW, in the late phase and post-vascular phase, whereas HCCs more commonly exhibited mild washout. In the post-vascular phase, all non-viral AFP- HCCs exhibited washout, thereby facilitating differentiation from no-washoutHAMLs, superior to SV-CEUS, where some non-viral AFP- HCCs still exhibited no washout in late phase that could not be distinguished from HAMLs. It is noteworthy that PWNW was exclusively found in nodules exhibiting hyper- and hypoechoic separation of the nodules, and hyper- and hypoechoic separation of HAMLs in the post-vascular phase on SZ-CEUS demonstrated PWNW more frequently compared to the late phase, which can potentially help distinguish nodules with hyper- and hypoechoic separation as either HAML or non-viral AFP- HCC. Conclusion: This study highlighted the usefulness of SV- and SZ-CEUS for distinguishing HAML and non-viral AFP- HCC and filled in existing gaps regarding the SZ-CEUS features of HAML.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Ultrasound, State Key Laboratory of Oncology in South
China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen
University Cancer Center, Guangzhou, China
| | - Zhi-xing Guo
- Department of Ultrasound, State Key Laboratory of Oncology in South
China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen
University Cancer Center, Guangzhou, China
| | - Ying Liao
- Department of Ultrasound, State Key Laboratory of Oncology in South
China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen
University Cancer Center, Guangzhou, China
| | - Yiwen Yu
- Department of Ultrasound, State Key Laboratory of Oncology in South
China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen
University Cancer Center, Guangzhou, China
| | - Ruohan Guo
- Department of Ultrasound, State Key Laboratory of Oncology in South
China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen
University Cancer Center, Guangzhou, China
| | - Xu Han
- Department of Ultrasound, State Key Laboratory of Oncology in South
China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen
University Cancer Center, Guangzhou, China
| | - Lilong Lan
- Department of Pathology, State Key Laboratory of Oncology in South
China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen
University Cancer Center, Guangzhou, China
| | - Jianhua Zhou
- Department of Ultrasound, State Key Laboratory of Oncology in South
China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen
University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Fu Y, Cui LG, Ma JY, Fang M, Lin YX, Li N. Development of a Novel Contrast-Enhanced Ultrasound-Based Nomogram for Superficial Lymphadenopathy Differentiation: Postvascular Phase Value. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:852-859. [PMID: 38448315 DOI: 10.1016/j.ultrasmedbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE The aim of this study was to develop and prospectively validate a prediction model for superficial lymphadenopathy differentiation using Sonazoid contrast-enhanced ultrasound (CEUS) combined with ultrasound (US) and clinical data. METHODS The training cohort comprised 260 retrospectively enrolled patients with 260 pathological lymph nodes imaged between January and December 2020. Two clinical US-CEUS models were created using multivariable logistic regression analysis and compared using receiver operating characteristic curve analysis: Model 1 included clinical and US characteristics; Model 2 included all confirmed predictors, including CEUS characteristics. Feature contributions were evaluated using the SHapley Additive exPlanations (SHAP) algorithm. Data from 172 patients were prospectively collected between January and May 2021 for model validation. RESULTS Age, tumor history, long-axis diameter of lymph node, blood flow distribution, echogenic hilus, and the mean postvascular phase intensity (MPI) were identified as independent predictors for malignant lymphadenopathy. The area under the curve (AUC), sensitivity, specificity, and accuracy of MPI alone was 0.858 (95% confidence interval [CI], 0.817-0.891), 86.47%, 74.55%, and 81.2%, respectively. Model 2 had an AUC of 0.919 (95% CI, 0.879-0.949) and good calibration in training and validation cohorts. The incorporation of MPI significantly enhanced diagnostic capability (p < 0.0001 and p = 0.002 for training and validation cohorts, respectively). Decision curve analysis indicated Model 2 as the superior diagnostic tool. SHAP analysis highlighted MPI as the most pivotal feature in the diagnostic process. CONCLUSION The employment of our straightforward prediction model has the potential to enhance clinical decision-making and mitigate the need for unwarranted biopsies.
Collapse
Affiliation(s)
- Ying Fu
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Li-Gang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, China.
| | - Jiu-Yi Ma
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Mei Fang
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu-Xuan Lin
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
Guo D, Wan W, Bai X, Wen R, Peng J, Lin P, Liao W, Huang W, Liu D, Peng Y, Kang T, Yang H, He Y. Intra-individual comparison of Sonazoid contrast-enhanced ultrasound and SonoVue contrast-enhanced ultrasound in diagnosing hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:1432-1443. [PMID: 38584190 DOI: 10.1007/s00261-024-04250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE To assess whether the diagnostic performance of Sonazoid contrast-enhanced ultrasound (SZUS) is non-inferior to that of SonoVue contrast-enhanced ultrasound (SVUS) in diagnosing hepatocellular carcinoma (HCC) in individuals with high risk. MATERIALS AND METHODS This prospective study was conducted from October 2020 to May 2022 and included participants with a high risk of HCC who underwent SZUS and SVUS. All lesions were confirmed by clinical or pathological diagnosis. Each nodule was classified according to the Contrast-Enhanced Ultrasound Liver Imaging Reporting and Data System version 2017 (CEUS LI-RADS v2017) for SVUS and SZUS and the modified CEUS LI-RADS (using Kupffer phase defect instead of late and mild washout) for SZUS. The diagnostic performance of both two modalities for all observations was compared. Analysis of the vascular phase and Kupffer phase imaging characteristics of CEUS was performed. RESULTS One hundred and fifteen focal liver lesions from 113 patients (94 HCCs, 12 non-HCC malignancies, and 9 benign lesions) were analysed. According to CEUS LI-RADS (v2017), SVUS and SZUS showed similar sensitivity (71.3% vs. 72.3%) and specificity (85.7% vs. 81.0%) in HCC diagnosis. However, the modified CEUS LI-RADS did not significantly improve the diagnostic efficacy of Sonazoid compared to CEUS LI-RADS v2017, having equivalent sensitivity (73.4% vs. 72.3%) and specificity (81.0% vs. 81.0%). The agreement between SVUS and SZUS for all observations was 0.610 (95% CI 0.475, 0.745), while for HCCs it was 0.452 (95% CI 0.257, 0.647). CONCLUSION Using LI-RADS v2017, SZUS and SVUS showed non-inferior efficacy in evaluating HCC lesions. In addition, adding Kupffer phase defects to SZUS does not notably improve its diagnostic efficacy.
Collapse
Affiliation(s)
- Danxia Guo
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Weijun Wan
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xiumei Bai
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Rong Wen
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jinbo Peng
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Peng Lin
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Wei Liao
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Weiche Huang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Dun Liu
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yuye Peng
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Tong Kang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Hong Yang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yun He
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
18
|
Yang P, Zhong Y, Zhang C, Zhang Y, Fan X, Shi H. Contrast Agent Reflux in Transvaginal 4-D Hysterosalpingo-Contrast Sonography: Influencing Factors and Coping Strategies. Ultrasound Q 2024; 40:61-65. [PMID: 37771069 DOI: 10.1097/ruq.0000000000000661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ABSTRACT Transvaginal 4-D hysterosalpingo-contrast sonography (TV 4-D HyCoSy) plays an important role in the detection and diagnosis of clinical female infertility. The purposes of this study were to analyze the influencing factors of TV 4murD HyCoSy complicated with contrast agent reflux and to provide evidence for clinical diagnosis and treatment. Female patients diagnosed as infertility by transvaginal hysterosalpingography from January 2021 to December 2022 were included. The characteristics of patients with and without contrast agent reflux were evaluated. Pearson correlation and logistic regression were conducted to analyze the related factors affecting the occurrence of contrast reflux. A total of 416 patients undergoing TV 4-D HyCoSy were included, and the incidence of contrast agent reflux in patients undergoing TV 4-D HyCoSy was 38.94%. Pearson correlation analysis results indicated that history of uterine cavity operation ( r = 0.556), adenomyosis of uterus ( r = 0.584), examination on less than 5 days after menstruation ( r = 0.602), endometrial thickness ( r = 0.566), and endometrial polyps ( r = 0.575) are all correlated with contrast agent reflux in patients undergoing 4-D HyCoSy (all P < 0.05). Logistic regression analysis showed that history of uterine cavity operation (odds ratio [OR], 1.109; 95% confidence interval [CI], 1.012-1.872), adenomyosis of uterus (OR, 2.026; 95% CI, 1.864-2.425), examination on less than 5 days after menstruation (OR, 2.465; 95% CI, 2.118-2.851), endometrial thickness less than 6 mm (OR, 2.866; 95% CI, 2.095-2.957), and endometrial polyps (OR, 1.587; 95% CI, 1.137-1.744) were the influencing factors of contrast agent reflux in patients undergoing (all P < 0.05). The incidence of contrast agent reflux in TV 4-D HyCoSy is high, and there are many influencing factors. Clinical medical workers should take early measures based on these influencing factors to reduce the contrast agent reflux.
Collapse
Affiliation(s)
- Ping Yang
- Department of Ultrasound, The First People's Hospital of Neijiang
| | - Yue Zhong
- Department of Ultrasound, The First People's Hospital of Neijiang
| | - Chao Zhang
- Department of Cardiovascular Medicine, The First People's Hospital of Neijiang, Neijiang, China
| | - Yaping Zhang
- Department of Ultrasound, The First People's Hospital of Neijiang
| | - Xu Fan
- Department of Ultrasound, The First People's Hospital of Neijiang
| | - Hong Shi
- Department of Ultrasound, The First People's Hospital of Neijiang
| |
Collapse
|
19
|
Han F, Wang Y, Dong X, Lin Q, Wang Y, Gao W, Yun M, Li Y, Gao S, Huang H, Li N, Luo T, Luo X, Qiu M, Zhang D, Yan K, Li A, Liu Z. Clinical sonochemotherapy of inoperable pancreatic cancer using diagnostic ultrasound and microbubbles: a multicentre, open-label, randomised, controlled trial. Eur Radiol 2024; 34:1481-1492. [PMID: 37796294 DOI: 10.1007/s00330-023-10210-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES Sonochemotherapy, which uses microbubble (MB)-assisted ultrasound (US) to deliver chemotherapeutic agents, has the potential to enhance tumour chemotherapy. The combination of US and MB has been demonstrated to prolong the survival of patients with pancreatic cancer. This phase 2 clinical trial aimed to determine the clinical efficacy and safety of sonochemotherapy for inoperable pancreatic ductal adenocarcinoma by using US and MB. METHODS Eighty-two patients with stage III or IV pancreatic cancer were recruited from July 2018 to March 2021 and followed up until September 2022. US treatment was performed with a modified diagnostic US scanner for 30 min after chemotherapeutic infusion. The primary endpoint was overall survival (OS), and the secondary endpoints were Eastern Cooperative Oncology Group (ECOG) status < 2, progression-free survival (PFS), disease control rate (DCR), and adverse events. RESULTS Seventy-eight patients were randomly allocated (40 to chemotherapy and 38 to sonochemotherapy). The median OS was longer with sonochemotherapy than with chemotherapy (9.10 vs. 6.10 months; p = 0.037). The median PFS with sonochemotherapy was 5.50 months, compared with 3.50 months (p = 0.080) for chemotherapy. The time of ECOG status < 2 was longer with sonochemotherapy (7.20 months) than with chemotherapy (5.00 months; p = 0.029). The DCR was 73.68% for sonochemotherapy compared with 42.50% for the control (p = 0.005). The incidence of overall adverse events was balanced between the two groups. CONCLUSIONS The use of sonochemotherapy can extend the survival and well-being time of stage III or IV pancreatic cancer patients without any increase in serious adverse events. TRIAL REGISTRATION ChineseClinicalTrials.gov ChiCTR2100044721 CLINICAL RELEVANCE STATEMENT: This multicentre, randomised, controlled trial has proven that sonochemotherapy, namely, the combination of diagnostic ultrasound, microbubbles, and chemotherapy, could extend the overall survival of patients with end-stage pancreatic ductal adenocarcinoma from 6.10 to 9.10 months without increasing any serious adverse events. KEY POINTS • This is the first multicentre, randomised, controlled trial of sonochemotherapy for clinical pancreatic cancer treatment using ultrasound and a commercial ultrasound contrast agent. • Sonochemotherapy extended the median overall survival from 6.10 (chemotherapy alone) to 9.10 months. • The disease control rate increased from 42.50% with chemotherapy to 73.68% with sonochemotherapy.
Collapse
Affiliation(s)
- Feng Han
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Yanjie Wang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 of Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaoxiao Dong
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qingguang Lin
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Yixi Wang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 of Fucheng Road, Haidian District, Beijing, 100142, China
| | - Wenhong Gao
- Department of Ultrasound, General Hospital of Central Theater, Wuhan, China
| | - Miao Yun
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Yan Li
- Department of Gastrointestinal Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shunji Gao
- Department of Ultrasound, General Hospital of Central Theater, Wuhan, China
| | - Huilong Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ningshan Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Tingting Luo
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiao Luo
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Miaozhen Qiu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dongsheng Zhang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kun Yan
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 of Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Anhua Li
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China.
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
20
|
Qin S, Chen Y, Wang Y, Li F, Cui R, Liu G. Contrast-enhanced ultrasound with microbubbles containing sulfur hexafluoride and perfluorobutane with Kupffer phase for the detection of colorectal liver metastases. Eur Radiol 2024; 34:622-631. [PMID: 37566263 DOI: 10.1007/s00330-023-10051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE To compare contrast-enhanced ultrasound (CEUS) with microbubbles containing sulfur hexafluoride (SHF) and perfluorobutane (PFB) for the detection of colorectal liver metastasis (CRLM). METHODS In this prospective study, conducted from September to November 2021, patients with colorectal cancer were consecutively recruited and underwent same-day ultrasound, SHF-CEUS, and PFB-CEUS. The reference standard was contrast-enhanced MRI and follow-up imaging. The size, depth, echogenicity, and calcification of each focal liver lesion were recorded. The number and conspicuity of CRLMs, based on washout appearance during the late phase (LP) (> 120 s)/Kupffer phase (KP), were evaluated offsite by two blinded readers. RESULTS Overall, 230 lesions (CRLMs, n = 219; benign lesions, n = 11) in 78 patients were evaluated. Lesion conspicuity (p = 0.344) and accuracy in the detection of CRLM were comparable for SHF- and PFB-CEUS (0.877 for SHF vs. 0.770 for PFB, p = 0.087). More CRLMs ≥ 10 mm were identified by LP contrast washout in SHF-CEUS than in KP PFB-CEUS (p < 0.001). More CRLMs < 10 mm were identified by KP washout in PFB-CEUS than in LP SHF-CEUS (p < 0.001). Conspicuity was better on PFB-CEUS than on SHF-CEUS (p = 0.027). In hyperechoic lesions, lesions located deeper than 80 mm, and calcified lesions, CRLM conspicuity on PFB-CEUS was inferior to that on SHF-CEUS (p < 0.05). CONCLUSIONS The overall accuracy of detection and conspicuity of washout in CRLMs were comparable between SHF and PFB-CEUS. PFB-CEUS has the advantage of identifying washout in small CRLMs. However, larger, hyperechogenic, deep-seated, or calcified lesions were better identified using SHF-CEUS. CLINICAL RELEVANCE STATEMENT Accuracy of detection and conspicuity of washout in CRLMs were comparable between SHF- and PFB-CEUS. PFB-CEUS has the advantage in detecting small CRLMs, whereas SHF-CEUS is better for detecting larger, hyperechogenic, deep-seated, or calcified lesions. KEY POINTS Contrast-enhanced ultrasound with sulfur hexafluoride in the late phase and perfluorobutane microbubbles in the Kupffer phase were comparable in terms of accuracy in the detection and conspicuity of colorectal liver metastases. Small colorectal liver metastases (< 10 mm) were more often identified in the Kupffer phase contrast-enhanced ultrasound imaging when using perfluorobutane microbubbles. Larger, hyperechogenic, deep-seated, or calcified lesions were better identified in the late phase contrast-enhanced ultrasound imaging (> 120 s) when using sulfur hexafluoride microbubbles.
Collapse
Affiliation(s)
- Si Qin
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - Yao Chen
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - YiMin Wang
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - FangQian Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Cui
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - GuangJian Liu
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
21
|
Pan Y, Liu D, Liang F, Kong Z, Zhang X, Ai Q. Perfluorobutane application value in microwave ablation of small hepatocellular carcinoma (<3 cm). Clin Hemorheol Microcirc 2024; 87:323-331. [PMID: 38277286 DOI: 10.3233/ch-232055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND No studies have been retrieved comparing perfluorobutane with sulfur hexafluoride for microwave ablation (MWA) in small hepatocellular carcinoma(sHCC). OBJECTIVE To retrospective investigate the value of perfluorobutane ultrasonography contrast agent in ultrasonography (US)-guided MWA of sHCC. METHODS We conducted a retrospective clinical controlled study about US-guided percutaneous MWA in patients with sHCC, and in patients undergoing intra-operative treatment with perfluorobutane or sulfur hexafluoride. In both groups, a contrast agent was injected to clear the tumor and then a needle was inserted. A 5-point needle prick difficulty score was developed to compare needle prick difficulty in the two groups of cases. RESULTS A total of 67 patients were included: 25 patients in group perfluorobutane, aged 41-82 (60.64±9.46), tumor size 1.1-2.8 (1.78±0.45) cm. 42 patients in group sulfur hexafluoride, aged 38-78 (62.26±9.27), with tumor size of 1.1-3.0 (1.89±0.49) cm. There was no significant difference in age or tumor size in both groups (P > 0.05). Puncture difficulty score (5-point): 2.0-2.7 (2.28±0.29) in group perfluorobutane, and 2.0-4.7 (2.95±0.85) in group sulfur hexafluoride, and the difference between the two groups was statistically significant (P < 0.05). Enhanced imaging results within 3 months after surgery: complete ablation rate was 100% (25/25) in the group perfluorobutane, 95.2% (40/42 in the group sulfur hexafluoride), with no significant difference between the two groups (P > 0.05). CONCLUSION Perfluorobutane kupffer phase can make the operator accurately deploy the ablation needle and reduce the difficulty of operation.
Collapse
Affiliation(s)
- Yanghong Pan
- Department of Emergency, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Delin Liu
- Department of Ultrasonography, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Fei Liang
- Department of Ultrasonography, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Zixiang Kong
- Department of Ultrasonography, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Xu Zhang
- Department of Ultrasonography, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Qinqin Ai
- Department of Hepatology, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Chen S, Qiu YJ, Zhang Q, Lu XY, Huang YL, Dong Y, Wang WP. Impact of Hepatocellular Carcinoma Tumor Size on Sonazoid Contrast-Enhanced Ultrasound Enhancement Features. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:39-46. [PMID: 37778901 DOI: 10.1016/j.ultrasmedbio.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE The aim of the work described here was to evaluate the impact of hepatocellular carcinoma (HCC) tumor size on Sonazoid contrast-enhanced ultrasound (CEUS) enhancement features, especially in tumors with diameters ≤30 mm and <10 mm. METHODS In this retrospective study, we included patients with histopathologically confirmed HCC lesions and divided them into three groups on the basis of tumor size. All patients underwent Sonazoid-enhanced CEUS examinations before surgery. B-mode ultrasound (BMUS) features and CEUS enhancement patterns were evaluated according to current World Federation for Ultrasound in Medicine and Biology Guidelines criteria. The χ2- and Student t-tests were used to compare differences between groups. RESULTS We included 132 patients with histopathologically confirmed HCC lesions from November 2020 to September 2022. On the basis of tumor size, patients were divided into group 1 (<10 mm, n = 5), group 2 (10-30 mm, n = 54) and group 3 (>30 mm, n = 73). On BMUS, most HCCs appeared heterogeneous but predominantly hypo-echoic (61.4%, 81/132) with ill-defined margins and irregular shapes. Meanwhile, iso-echoic features were more common in small HCCs ≤30 mm (15.3%, 9/59), but a mixed hyper- and hypo-echoic appearance was more common in HCCs >30 mm (17.8%, 13/73) (p = 0.003). On Sonazoid-enhanced CEUS, all HCCs presented arterial phase hyperenhancement (APHE) (100.0%, 132/132). Most HCCs >30 mm exhibited heterogeneous hyperenhancement (86.3%, 63/73), whereas nearly one-third of small HCCs ≤30 mm exhibited homogeneous hyperenhancement (35.6%, 21/59) (p = 0.003). In the portal venous phase, there was a significantly higher proportion of washout in HCCs >30 mm (84.9%, 62/73) than in small HCCs ≤30 mm (64.4%, 38/59) (p = 0.006). During the Kupffer phase, 11 additional hypo-enhanced lesions (mean size: 14.1 ± 4.1 mm, iso-echoic on BMUS), which were also suspected to be HCC lesions, were detected in 5 patients with small HCCs ≤30 mm and 4 patients with HCCs >30 mm. All 5 cases of HCCs <10 mm exhibited APHE and late washout (>60 s). The majority (3/5, 60%) exhibited washout in the portal venous phase (70, 74 and 75 s), one case did so in the late phase (125 s) and another in the Kupffer phase (420 s). CONCLUSION Tumor size had a significant impact on the washout features of HCC lesions on Sonazoid-enhanced CEUS. Small HCC lesions ≤30 mm had a higher proportion of relatively late washout in comparison to larger lesions. Sonazoid-enhanced CEUS might be helpful in the detection and characterization of HCC lesions <10 mm.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Jie Qiu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiu-Yun Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China
| | - Yun-Lin Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Wang R, Wang Q, Li P. Significance of carcinoembryonic antigen detection in the early diagnosis of colorectal cancer: A systematic review and meta-analysis. World J Gastrointest Surg 2023; 15:2907-2918. [PMID: 38222002 PMCID: PMC10784816 DOI: 10.4240/wjgs.v15.i12.2907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/30/2023] [Accepted: 11/14/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignant tumor involving adenomas that develop into malignant lesions. Carcinoembryonic antigen (CEA) is a non-specific serum biomarker upregulated in CRC. The concentration of CEA is modulated by tumor stage and grade, tumor site in the colon, ploidy status, and patient smoking status. This study aimed to evaluate current evidence regarding the diagnostic power of CEA levels in the early detection of CRC recurrence in adults. AIM To evaluate current evidence regarding the diagnostic power of CEA levels in the early detection of CRC recurrence in adults. METHODS A systematic search was performed using four databases: MEDLINE, Cochrane Trials, EMBASE, and the Web of Science. The inclusion criteria were as follows: Adult patients aged ≥ 18 years who had completed CRC curative treatment and were followed up postoperatively; reporting the number of CRC recurrences as an outcome; and randomized, clinical, cohort, and case-control study designs. Studies that were not published in English and animal studies were excluded. The following data were extracted by three independent reviewers: Study design, index tests, follow-up, patient characteristics, and primary outcomes. All statistical analyses were performed using the RevMan 5.4.1. RESULTS A total of 3232 studies were identified, with 73 remaining following the elimination of duplicates. After screening on predetermined criteria, 12 studies were included in the final analysis. At a reference standard of 5 mg/L, CEA detected only approximately half of recurrent CRCs, with a pooled sensitivity of 59% (range, 33%-83%) and sensitivity of 89% (range, 58%-97%). CONCLUSION CEA is a significant marker for CRC diagnosis. However, it has insufficient sensitivity and specificity to be used as a single biomarker of early CRC recurrence, with an essential proportion of false negatives.
Collapse
Affiliation(s)
- Rui Wang
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Qin Wang
- Delivery Room, Chengdu Women’s and Children’s Central Hospital, Chengdu 610000, Sichuan Province, China
| | - Pan Li
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
24
|
Wang S, Yao J, Li K, Yang H, Lu S, He G, Wu W, Cheng W, Jiang T, Ding H, Jing X, Yan Y, Liu F, Yu J, Han Z, Cheng Z, Tan S, Li X, Dou J, Li Y, Qi E, Zhang Y, Liang P, Yu X. Nomogram based on Sonazoid contrast-enhanced ultrasound to differentiate intrahepatic cholangiocarcinoma and poorly differentiated hepatocellular carcinoma: a prospective multicenter study. Abdom Radiol (NY) 2023; 48:3101-3113. [PMID: 37436451 DOI: 10.1007/s00261-023-03993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVES The aim of this study was to develop a predictive model based on Sonazoid contrast-enhanced ultrasound (SCEUS) and clinical features to discriminate poorly differentiated hepatocellular carcinoma (P-HCC) from intrahepatic cholangiocarcinoma (ICC). PATIENTS AND METHOD Forty-one ICC and forty-nine P-HCC patients were enrolled in this study. The CEUS LI-RADS category was assigned according to CEUS LI-RADS version 2017. Based on SCEUS and clinical features, a predicated model was established. Multivariate logistic regression analysis and LASSO logistic regression were used to identify the most valuable features, 400 times repeated 3-fold cross-validation was performed on the nomogram model and the model performance was determined by its discrimination, calibration, and clinical usefulness. RESULTS Multivariate logistic regression and LASSO logistic regression indicated that age (> 51 y), viral hepatitis (No), AFP level (≤ 20 µg/L), washout time (≤ 45 s), and enhancement level in the Kupffer phase (Defect) were valuable predictors related to ICC. The area under the receiver operating characteristic (AUC) of the nomogram was 0.930 (95% CI: 0.856-0.973), much higher than the subjective assessment by the sonographers and CEUS LI-RADS categories. The calibration curve showed that the predicted incidence was more consistent with the actual incidence of ICC, and 400 times repeated 3-fold cross-validation revealed good discrimination with a mean AUC of 0.851. Decision curve analysis showed that the nomogram could increase the net benefit for patients. CONCLUSIONS The nomogram based on SCEUS and clinical features can effectively differentiate P-HCC from ICC.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Interventional Ultrasound, First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
- Chinese PLA Medical School, Beijing, 100853, China
| | - Jundong Yao
- Department of Interventional Ultrasound, First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
- Department of Ultrasound, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471000, China
| | - Kaiyan Li
- Department of Ultrasound, Affiliated Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Yang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi medical University, Nanning, 530021, China
| | - Shichun Lu
- Department of Hepatobiliary Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Guangzhi He
- Department of Ultrasound, University of Chinese Academy of Sciences Shenzhen Hospital, Guangming District, Shenzhen, 518000, China
| | - Wei Wu
- Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, Harbin, 150000, China
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Yuanyuan Yan
- Department of Ultrasound, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Henan, 450007, China
| | - Fangyi Liu
- Department of Interventional Ultrasound, Fifth Medical Center of ChinesePLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Jie Yu
- Department of Interventional Ultrasound, Fifth Medical Center of ChinesePLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Zhiyu Han
- Department of Interventional Ultrasound, Fifth Medical Center of ChinesePLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Zhigang Cheng
- Department of Interventional Ultrasound, Fifth Medical Center of ChinesePLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Shuilian Tan
- Department of Interventional Ultrasound, Fifth Medical Center of ChinesePLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Xin Li
- Department of Interventional Ultrasound, Fifth Medical Center of ChinesePLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Jianping Dou
- Department of Interventional Ultrasound, Fifth Medical Center of ChinesePLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Yunlin Li
- Department of Interventional Ultrasound, First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Erpeng Qi
- Department of Interventional Ultrasound, First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Yiqiong Zhang
- Department of Interventional Ultrasound, First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Ping Liang
- Department of Interventional Ultrasound, Fifth Medical Center of ChinesePLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China.
| | - Xiaoling Yu
- Department of Interventional Ultrasound, First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
25
|
Zhang Q, Liang X, Zhang Y, Nie H, Chen Z. A review of contrast-enhanced ultrasound using SonoVue® and Sonazoid™ in non-hepatic organs. Eur J Radiol 2023; 167:111060. [PMID: 37657380 DOI: 10.1016/j.ejrad.2023.111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) is a dependable modality for the diagnosis of various clinical conditions. A judicious selection of ultrasound contrast agent (UCA) is imperative for optimizing imaging and improving diagnosis. Approved UCAs for imaging the majority of organs include SonoVue, a pure blood agent, and Sonazoid, which exhibits an additional Kupffer phase. Despite the fact that the two UCAs are increasingly being employed, there is a lack of comparative reviews between the two agents in different organs diseases. This review represents the first attempt to compare the two UCAs in non-hepatic organs, primarily including breast, thyroid, pancreas, and spleen diseases. Through comparative analysis, this review provides a comprehensive and objective evaluation of the performance characteristics of SonoVue and Sonazoid, with the aim of offering valuable guidance for the clinical application of CEUS. Overall, further clinical evidences are required to compare and contrast the dissimilarities between the two UCAs in non-hepatic organs, enabling clinicians to make an appropriate selection based on actual clinical applications.
Collapse
Affiliation(s)
- Qing Zhang
- Institution of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China; Institution of Medical Imaging, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Xiaowen Liang
- Institution of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China; Institution of Medical Imaging, University of South China, Hengyang, China
| | - Yanfen Zhang
- Department of Ultrasound, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Hongjun Nie
- Department of Ultrasound, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Zhiyi Chen
- Institution of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China; Institution of Medical Imaging, University of South China, Hengyang, China.
| |
Collapse
|
26
|
Kang HJ, Lee JM, Kim SW. Sonazoid-enhanced ultrasonography for noninvasive imaging diagnosis of hepatocellular carcinoma: special emphasis on the 2022 KLCA-NCC guideline. Ultrasonography 2023; 42:479-489. [PMID: 37423603 PMCID: PMC10555687 DOI: 10.14366/usg.23051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Contrast-enhanced ultrasonography (CEUS) is a noninvasive imaging modality used to diagnose hepatocellular carcinoma (HCC) based on specific imaging features, without the need for pathologic confirmation. Two types of ultrasound contrast agents are commercially available: pure intravascular agents (such as SonoVue) and Kupffer agents (such as Sonazoid). Major guidelines recognize CEUS as a reliable imaging method for HCC diagnosis, although they differ depending on the contrast agents used. The Korean Liver Cancer Association-National Cancer Center guideline includes CEUS with either SonoVue or Sonazoid as a second-line diagnostic technique. However, Sonazoid-enhanced ultrasound is associated with several unresolved issues. This review provides a comparative overview of these contrast agents regarding pharmacokinetic features, examination protocols, diagnostic criteria for HCC, and potential applications in the HCC diagnostic algorithm.
Collapse
Affiliation(s)
- Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Se Woo Kim
- Department of Radiology, Armed Forces Daejeon Hospital, Daejeon, Korea
| |
Collapse
|
27
|
Han S, Kim SW, Park S, Yoon JH, Kang HJ, Yoo J, Joo I, Bae JS, Lee JM. Perfluorobutane-Enhanced Ultrasound for Characterization of Hepatocellular Carcinoma From Non-hepatocellular Malignancies or Benignancy: Comparison of Imaging Acquisition Methods. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2256-2263. [PMID: 37495497 DOI: 10.1016/j.ultrasmedbio.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/20/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE The aim of the work described here was to evaluate the diagnostic performance of perfluorobutane (PFB)-enhanced ultrasound in differentiating hepatocellular carcinoma (HCC) from non-HCC malignancies and other benign lesions using different acquisition methods. METHODS This prospective study included 69 patients with solid liver lesions larger than 1 cm who were scheduled for biopsy or radiofrequency ablation between September 2020 and March 2021. Lesion diagnosis was designated by three blinded radiologists after reviewing three different sets of acquired images selected according to the following presumed acquisition methods: (i) method A, acquisition up to 5 min after contrast injection; (ii) method B, acquisition up to 1 min after contrast injection with additional Kupffer phase; and (iii) method C, acquisition up to 5 min after contrast injection with additional Kupffer phase. RESULTS After excluding 7 technical failures, 62 patients with liver lesions (mean size: 24.2 ± 14.8 mm), which consisted of 7 benign lesions, 37 non-HCC malignancies and 18 HCCs. For the HCC diagnosis, method C had the highest sensitivity (75.9%), followed by method B (72.2%) and method A (68.5%), but failed to exhibit statistical significance (p = 0.12). There was no significant difference with respect to the pooled specificity between the three methods (p = 0.28). Diagnostic accuracy was the highest with method C (87.1%) but failed to exhibit statistical significance (p = 0.24). CONCLUSION Image acquisition up to 5 min after contrast injection with additional Kupffer phase could potentially result in high accuracy and sensitivity without loss of specificity in diagnosing HCC with PFB-enhanced ultrasound.
Collapse
Affiliation(s)
- Seungchul Han
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Radiology, Samsung Medical Center, Seoul, Republic of Korea
| | - Se Woo Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungeun Park
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeongin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Zhang G, Liao C, Hu JR, Hu HM, Lei YM, Harput S, Ye HR. Nanodroplet-Based Super-Resolution Ultrasound Localization Microscopy. ACS Sens 2023; 8:3294-3306. [PMID: 37607403 DOI: 10.1021/acssensors.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Over the past decade, super-resolution ultrasound localization microscopy (SR-ULM) has revolutionized ultrasound imaging with its capability to resolve the microvascular structures below the ultrasound diffraction limit. The introduction of this imaging technique enables the visualization, quantification, and characterization of tissue microvasculature. The early implementations of SR-ULM utilize microbubbles (MBs) that require a long image acquisition time due to the requirement of capturing sparsely isolated microbubble signals. The next-generation SR-ULM employs nanodroplets that have the potential to significantly reduce the image acquisition time without sacrificing the resolution. This review discusses various nanodroplet-based ultrasound localization microscopy techniques and their corresponding imaging mechanisms. A summary is given on the preclinical applications of SR-ULM with nanodroplets, and the challenges in the clinical translation of nanodroplet-based SR-ULM are presented while discussing the future perspectives. In conclusion, ultrasound localization microscopy is a promising microvasculature imaging technology that can provide new diagnostic and prognostic information for a wide range of pathologies, such as cancer, heart conditions, and autoimmune diseases, and enable personalized treatment monitoring at a microlevel.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS, Paris 75015, France
| | - Chen Liao
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jun-Rui Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| | - Sevan Harput
- Department of Electrical and Electronic Engineering, London South Bank University, London SE1 0AA, U.K
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| |
Collapse
|
29
|
Matsuoka K, Yamada M, Fukatsu N, Goto K, Shimizu M, Kato A, Kato Y, Yukawa H, Baba Y, Sato M, Sato K. Contrast-enhanced ultrasound imaging for monitoring the efficacy of near-infrared photoimmunotherapy. EBioMedicine 2023; 95:104737. [PMID: 37558554 PMCID: PMC10505829 DOI: 10.1016/j.ebiom.2023.104737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer therapy combining NIR-light irradiation with an antibody and IR700DX, a light-sensitive substance, to destroy tumours. However, homogeneous irradiation is difficult because the light varies depending on the distance and tissue environment. Therefore, markers that indicate sufficient irradiation are necessary. Nanoparticles sized 10∼200 nm show enhanced permeation and retention within tumours, which is further enhanced via NIR-PIT (super enhanced permeability and retention, SUPR). We aimed to monitor the effectiveness of NIR-PIT by measuring SUPR. METHODS A xenograft mouse tumour model was established by inoculating human cancer cells in both buttocks of Balb/C-nu/nu mice, and NIR-PIT was performed on only one side. To evaluate SUPR, fluorescent signal examination was performed using QD800-fluorescent nanoparticles and NIR-fluorescent poly (d,l-lactide-co-glycolic acid) (NIR-PLGA) microparticles. Harmonic signals were evaluated using micro-bubbles of the contrast agent Sonazoid and contrast-enhanced ultrasound (CEUS) imaging. The correlation between SUPR immediately after treatment and NIR-PIT effectiveness on the day after treatment was evaluated. FINDINGS QD800 fluorescent signals persisted only in the treated tumours, and the intensity of remaining signals showed high positive correlation with the therapeutic effect. NIR-PLGA fluorescent signals and Sonazoid-derived harmonic signals remained for a longer time in the treated tumours than in the controls, and the kE value of the two-compartment model correlated with NIR-PIT effectiveness. INTERPRETATION SUPR measurement using Sonazoid and CEUS imaging could be easily adapted for clinical use as a therapeutic image-based biomarker for monitoring and confirming of NIR-PIT efficacy. FUNDING This research was supported by ARIM JAPAN of MEXT, the Program for Developing Next-generation Researchers (Japan Science and Technology Agency), KAKEN (18K15923, 21K07217) (JSPS), CREST (JPMJCR19H2, JST), and FOREST-Souhatsu (JST). Mochida Memorial Foundation for Medical and Pharmaceutical Research; Takeda Science Foundation; The Japan Health Foundation; and Princess Takamatsu Cancer Research Fund. Funders only provided financial support and had no role in the study design, data collection, data analysis, interpretation, and writing of the report.
Collapse
Affiliation(s)
- Kohei Matsuoka
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Mizuki Yamada
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Noriaki Fukatsu
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Kyoichi Goto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan
| | - Misae Shimizu
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Ayako Kato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Yoshimi Kato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Hiroshi Yukawa
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan; Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Life and Medical Science, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Life and Medical Science, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Kazuhide Sato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan; Nagoya University Graduate School of Medicine, Japan; FOREST-Souhatsu, JST, Tokyo, Japan.
| |
Collapse
|
30
|
Huang J, Zhang L, Zheng J, Lin Y, Leng X, Wang C, Li P, Feng L. Microbubbles-assisted ultrasonication to promote tumor accumulation of therapeutics and modulation of tumor microenvironment for enhanced cancer treatments. Biomaterials 2023; 299:122181. [PMID: 37276797 DOI: 10.1016/j.biomaterials.2023.122181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Abnormal tumor vasculature is reported to severely hinder the therapeutic potency of diverse cancer therapeutics by restricting their intratumoral accumulation and/or causing therapeutic resistance. Herein, a microbubble-assisted ultrasonication technology (MAUT) of systemic administration of octafluoropropane-filled microbubbles together with tumor localized ultrasound (US) exposure is developed to generally promote intratumoral accumulation efficacy of three kinds of anti-tumor drugs with varying sizes through the cavitation effect-induced disruption of tumor blood vessels. MAUT was further shown to enable selective tumor hypoxia attenuation by filling microbubbles with high-purity oxygen and thus reducing the production of immunosuppressive lactic acids by suppressing glycolysis in cancer cells. Resultantly, MAUT markedly enhanced the therapeutic outcome of systemically administered anti-programmed death-1 (anti-PD-1) and chemotherapeutic doxorubicin (DOX) with and without using nanoscale liposomes as delivery vehicles. This work highlights that MAUT is a biocompatible yet versatile strategy to effectively reinforce the therapeutic potency of a broad range of cancer therapeutics, promising for future clinical usage.
Collapse
Affiliation(s)
- Ju Huang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, PR China
| | - Jun Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yi Lin
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, PR China
| | - Xiaojing Leng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' Ai Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
31
|
Paratore M, Garcovich M, Ainora ME, Riccardi L, Gasbarrini A, Zocco MA. Dynamic contrast enhanced ultrasound in gastrointestinal diseases: A current trend or an indispensable tool? World J Gastroenterol 2023; 29:4021-4035. [PMID: 37476588 PMCID: PMC10354578 DOI: 10.3748/wjg.v29.i25.4021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Contrast enhanced ultrasound (CEUS) has been widely implemented in clinical practice because of the enormous quantity of information it provides, along with its low cost, reproducibility, minimal invasiveness, and safety of the second-generation ultrasound contrast agents. To overcome the limitation of CEUS given by the subjective evaluation of the contrast enhancement behaviour, quantitative analysis of contrast kinetics with generation of time-intensity curves has been introduced in recent years. The quantification of perfusion parameters [named as dynamic-CEUS (D-CEUS)] has several applications in gastrointestinal neoplastic and inflammatory disorders. However, the limited availability of large studies and the heterogeneity of the technologies employed have precluded the standardisation of D-CEUS, which potentially represents a valuable tool for clinical practice in management of gastrointestinal diseases. In this article, we reviewed the evidence exploring the application of D-CEUS in gastrointestinal diseases, with a special focus on liver, pancreas, and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mattia Paratore
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Matteo Garcovich
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Maria Elena Ainora
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Laura Riccardi
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Antonio Gasbarrini
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Maria Assunta Zocco
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| |
Collapse
|
32
|
Shen YT, Yue WW, Xu HX. Non-invasive imaging in the diagnosis of combined hepatocellular carcinoma and cholangiocarcinoma. Abdom Radiol (NY) 2023; 48:2019-2037. [PMID: 36961531 DOI: 10.1007/s00261-023-03879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CC) is a rare type of primary liver cancer. It is a complex "biphenotypic" tumor type consisting of bipotential hepatic progenitor cells that can differentiate into cholangiocytes subtype and hepatocytes subtype. The prognosis of patients with cHCC-CC is quite poor with its specific and more aggressive nature. Furthermore, there are no definite demographic or clinical features of cHCC-CC, thus a clear preoperative identification and accurate non-invasive imaging diagnostic analysis of cHCC-CC are of great value. In this review, we first summarized the epidemiological features, pathological findings, molecular biological information and serological indicators of cHCC-CC disease. Then we reviewed the important applications of non-invasive imaging modalities-particularly ultrasound (US)-in cHCC-CC, covering both diagnostic and prognostic assessment of patients with cHCC-CC. Finally, we presented the shortcomings and potential outlooks for imaging studies in cHCC-CC.
Collapse
Affiliation(s)
- Yu-Ting Shen
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Wen-Wen Yue
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, China.
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Chabouh G, van Elburg B, Versluis M, Segers T, Quilliet C, Coupier G. Buckling of lipidic ultrasound contrast agents under quasi-static load. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220025. [PMID: 36774952 DOI: 10.1098/rsta.2022.0025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
Collapse of lipidic ultrasound contrast agents under high-frequency compressive load has been historically interpreted by the vanishing of surface tension. By contrast, buckling of elastic shells is known to occur when costly compressible stress is released through bending. Through quasi-static compression experiments on lipidic shells, we analyse the buckling events in the framework of classical elastic buckling theory and deduce the mechanical characteristics of these shells. They are then compared with that obtained through acoustic characterization. This article is part of the theme issue 'Probing and dynamics of shock sensitive shells'.
Collapse
Affiliation(s)
- Georges Chabouh
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble 38000, France
| | - Benjamin van Elburg
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Tim Segers
- BIOS/Lab-on-a-Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | | | - Gwennou Coupier
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble 38000, France
| |
Collapse
|
34
|
Leong KX, Sharma D, Czarnota GJ. Focused Ultrasound and Ultrasound Stimulated Microbubbles in Radiotherapy Enhancement for Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231176376. [PMID: 37192751 DOI: 10.1177/15330338231176376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Radiation therapy (RT) has been the standard of care for treating a multitude of cancer types. However, ionizing radiation has adverse short and long-term side effects which have resulted in treatment complications for decades. Thus, advances in enhancing the effects of RT have been the primary focus of research in radiation oncology. To avoid the usage of high radiation doses, treatment modalities such as high-intensity focused ultrasound can be implemented to reduce the radiation doses required to destroy cancer cells. In the past few years, the use of focused ultrasound (FUS) has demonstrated immense success in a number of applications as it capitalizes on spatial specificity. It allows ultrasound energy to be delivered to a targeted focal area without harming the surrounding tissue. FUS combined with RT has specifically demonstrated experimental evidence in its application resulting in enhanced cell death and tumor cure. Ultrasound-stimulated microbubbles have recently proved to be a novel way of enhancing RT as a radioenhancing agent on its own, or as a delivery vector for radiosensitizing agents such as oxygen. In this mini-review article, we discuss the bio-effects of FUS and RT in various preclinical models and highlight the applicability of this combined therapy in clinical settings.
Collapse
Affiliation(s)
- Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Chen L, Dong B, Jiang L, Zhang J, Chen L, Li T, Shao Y, Sun X. Microbubble contrast agent SonoVue: An efficient medium for the preoperative lymphatic mapping of thyroid carcinoma. Front Bioeng Biotechnol 2022; 10:1077145. [PMID: 36568294 PMCID: PMC9773067 DOI: 10.3389/fbioe.2022.1077145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Objective: To assess the value of microbubble contrast agent SonoVue in the thorough preoperative lymphatic mapping of patients with thyroid carcinoma, including the lymphatic drainage region, the detection of sentinel lymph node (SLN), and the diagnosis of lymph node metastasis (LNM). Materials and methods: 55 patients with 62 thyroid malignancies proved by surgical pathology (59 papillary thyroid carcinomas and three medullary thyroid carcinomas) who underwent preoperative lymphatic contrast-enhanced ultrasound (LCEUS) with microbubble contrast agent SonoVue were enrolled. All LNM were confirmed by pathology. The location of thyroid lesions, ultrasonic features of lymph nodes, lymphatic drainage region, and detection of SLN were assessed. The diagnostic performance (sensitivity, specificity, positive predictive value, negative predictive value and accuracy) of different parameters for the LNM diagnosis was calculated. Results: SonoVue effectively demonstrated the lymphatic drainage region for all enrolled thyroid carcinomas. The most common lymphatic drainage region for thyroid carcinomas was region VI (93.55%), followed by region III (62.90%), region IV (48.39%) and region II (4.84%). When divided by the lesion location, the most common lymphatic drainage regions for the nodule in isthmus, superior lobe and inferior lobe of the thyroid were region VI, region III, and region VI respectively. SLN was detected in 96.77% (60/62) of cases. The two cases without SLN demonstration had pathologically proven LNM. The most common sonographic sign of LNM was perfusion defect (54.17%). The diagnostic accuracy of SonoVue in central and lateral compartment LNM was 86.67% and 91.67%, respectively. Conclusion: Microbubble contrast agent SonoVue is a valuable imaging contrast medium for thorough preoperative lymphatic mapping in patients with thyroid carcinoma, including the lymphatic drainage region, the detection of SLN, and the diagnosis of LNM. LCEUS with SonoVue alone has limitations of false negatives when there is lymphatic vessel obstruction and may need to be combined with other ultrasound modalities.
Collapse
Affiliation(s)
- Lei Chen
- Department of Ultrasound, Peking University First Hospital, Beijing, China
| | - Bingwan Dong
- Department of ORL-HNS, Peking University First Hospital, Beijing, China
| | - Liu Jiang
- Department of Ultrasound, Peking University First Hospital, Beijing, China
| | - Jixin Zhang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Luzeng Chen
- Department of Ultrasound, Peking University First Hospital, Beijing, China,*Correspondence: Tiancheng Li, ; Luzeng Chen,
| | - Tiancheng Li
- Department of ORL-HNS, Peking University First Hospital, Beijing, China,*Correspondence: Tiancheng Li, ; Luzeng Chen,
| | - Yuhong Shao
- Department of Ultrasound, Peking University First Hospital, Beijing, China
| | - Xiuming Sun
- Department of Ultrasound, Peking University First Hospital, Beijing, China
| |
Collapse
|
36
|
Kang HJ, Lee JM, Yoon JH, Yoo J, Choi Y, Joo I, Han JK. Sonazoid™ versus SonoVue ® for Diagnosing Hepatocellular Carcinoma Using Contrast-Enhanced Ultrasound in At-Risk Individuals: A Prospective, Single-Center, Intraindividual, Noninferiority Study. Korean J Radiol 2022; 23:1067-1077. [PMID: 36196767 PMCID: PMC9614293 DOI: 10.3348/kjr.2022.0388] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE To determine whether Sonazoid-enhanced ultrasound (SZUS) was noninferior to SonoVue-enhanced ultrasound (SVUS) in diagnosing hepatocellular carcinoma (HCC) using the same diagnostic criteria. MATERIALS AND METHODS This prospective, single-center, noninferiority study (NCT04847726) enrolled 105 at-risk participants (71 male; mean age ± standard deviation, 63 ± 11 years; range, 26-86 years) with treatment-naïve solid hepatic nodules (≥ 1 cm). All participants underwent same-day SZUS (experimental method) and SVUS (control method) for one representative nodule per participant. Images were interpreted by three readers (the operator and two independent readers). All malignancies were diagnosed histopathologically, while the benignity of other lesions was confirmed by follow-up stability or pathology. The primary endpoint was per-lesion diagnostic accuracy for HCC pooled across three readers using the conventional contrast-enhanced ultrasound diagnostic criteria, including arterial phase hyperenhancement followed by mild (assessed within 2 minutes after contrast injection) and late (≥ 60 seconds with a delay of 5 minutes) washout. The noninferiority delta was -10%p. Furthermore, different time delays were compared as washout criteria in SZUS, including delays of 2, 5, and > 10 minutes. RESULTS A total of 105 lesions (HCCs [n = 61], non-HCC malignancies [n = 19], and benign [n = 25]) were evaluated. Using the 5-minutes washout criterion, per-lesion accuracy of SZUS pooled across the three readers (72.4%; 95% confidence interval [CI], 64.1%-79.3%) was noninferior to that of SVUS (71.4%; 95% CI, 63.1%-78.6%), meeting the statistical criterion for non-inferiority (difference of 0.95%p; 95% CI, -3.8%p-5.7%p). The arterial phase hyperenhancement combined with the 5-minutes washout criterion showed the same sensitivity as that of the > 10-minutes criterion (59.0% vs. 59.0%, p = 0.989), and the specificities were not significantly different (90.9% vs. 86.4%, p = 0.072). CONCLUSION SZUS was noninferior to SVUS for diagnosing HCC in at-risk patients using the same diagnostic criteria. No significant improvement in HCC diagnosis was observed by extending the washout time delay from 5 to 10 minutes.
Collapse
Affiliation(s)
- Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeongin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Yunhee Choi
- Division of Medical Statistics, Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
37
|
Zheng Z, Xie W, Tian J, Wu J, Luo B, Xu X. Utility of Sonazoid-Enhanced Ultrasound for the Macroscopic Classification of Hepatocellular Carcinoma: A Meta-analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2165-2173. [PMID: 36030130 DOI: 10.1016/j.ultrasmedbio.2022.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
We assessed the diagnostic value of Sonazoid-enhanced ultrasound (SEUS) in determining the macroscopic classification of hepatocellular carcinoma (HCC) because of its strong relevance to the poor prognosis of the non-simple nodular (non-SN) type. The PubMed, EMBASE, Web of Science and Cochrane Library databases were searched for studies investigating patients who underwent surgery for HCC after undergoing SEUS pre-operatively. Five studies involving a total of 334 patients met the inclusion criteria. The summary sensitivity and specificity were 0.74 (95% confidence interval [CI]: 0.63-0.83) and 0.92 (95% CI: 0.82-0.97), respectively. The positive and negative likelihood ratios of SEUS for determining the macroscopic classification of HCC in Kupffer phase were 9.21 (95% CI: 4.02-21.13) and 0.28 (95% CI: 0.19-0.41), respectively. The diagnostic odds ratio of SEUS for determining the macroscopic classification of HCC was 34.2 (95% CI: 11.64-100.51), and the area under the summary receiver operating characteristic curve was 0.87 (95% CI: 0.84-0.90). Subgroup analysis suggested that small HCCs (≤30 mm) and studies including fewer than 70 patients may be associated with a higher diagnostic odds ratio than the corresponding subsets. SEUS had moderate diagnostic value for determining the macroscopic classification of HCC in the Kupffer phase.
Collapse
Affiliation(s)
- Zijie Zheng
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Xie
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jing Tian
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiayi Wu
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Xu
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
38
|
Chen S, Qiu YJ, Zuo D, Shi SN, Wang WP, Dong Y. Imaging Features of Hepatocellular Carcinoma in the Non-Cirrhotic Liver with Sonazoid-Enhanced Contrast-Enhanced Ultrasound. Diagnostics (Basel) 2022; 12:2272. [PMID: 36291962 PMCID: PMC9601233 DOI: 10.3390/diagnostics12102272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To investigate the Sonazoid-enhanced contrast-enhanced ultrasound (CEUS) features of hepatocellular carcinoma (HCC) in a non-cirrhosis liver background, in comparison to those in liver cirrhosis. METHODS In this retrospective study, 19 patients with surgery and histopathologically proven HCC lesions in non-cirrhosis liver background were included regarding Sonazoid-enhanced CEUS characteristics. Two radiologists evaluated the CEUS features of HCC lesions according to the WFUMB (World Federation of Societies for Ultrasound in Medicine and Biology) guidelines criteria. Thirty-six patients with HCC lesions in liver cirrhosis were included as a control group. Final diagnoses were confirmed by surgery and histopathological results. RESULTS Liver background of the non-cirrhosis group including normal liver (n = 7), liver fibrosis (n = 11), and alcoholic liver disease (n = 1). The mean size of non-cirrhosis HCC lesions was 60.8 ± 46.8 mm (ranging from 25 to 219 mm). During the arterial phase of Sonazoid-enhanced CEUS, most HCCs in non-cirrhotic liver (94.7%, 18/19) and in cirrhotic liver (83.3%, 30/36) presented non-rim hyperenhancement. During the portal venous phase, HCC lesions in the non-cirrhosis liver group showed relatively early washout (68.4%, 13/19) (p = 0.090). Meanwhile, HCC lesions in liver cirrhosis background showed isoenhancement (55.6%, 20/36). All lesions in the non-cirrhotic liver group showed hypoenhancement in the late phase and the Kupffer phase (100%, 19/19). Five cases of HCC lesions in liver cirrhosis showed isoenhancement during the late phase and hypoenhancement during the Kupffer phase (13.9%, 5/36). The rest of the cirrhotic HCC lesions showed hypoenhancement during the late phase and the Kupffer phase (86.1%, 31/36). Additional hypoenhanced lesions were detected in three patients in the non-cirrhosis liver group and eight patients in the liver cirrhosis group (mean size: 13.0 ± 5.6 mm), which were also suspected to be HCC lesions. CONCLUSIONS Heterogeneous hyperenhancement during the arterial phase as well as relatively early washout are characteristic features of HCC in the non-cirrhotic liver on Sonazoid-enhanced CEUS.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
39
|
Dong Y, Wang WP, Lee WJ, Meloni MF, Clevert DA, Chammas MC, Tannapfel A, Forgione A, Piscaglia F, Dietrich CF. Contrast-Enhanced Ultrasound Features of Histopathologically Proven Hepatocellular Carcinoma in the Non-cirrhotic Liver: A Multicenter Study. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1797-1805. [PMID: 35710501 DOI: 10.1016/j.ultrasmedbio.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Current literature on the role of contrast-enhanced ultrasound (CEUS) in the diagnosis of hepatocellular carcinoma (HCC) in non-cirrhotic patients is limited. The aim of this retrospective multicenter study was to analyze CEUS features of histologically proven HCC in patients with non-cirrhotic liver. In this multicenter study, 96 patients from eight medical institutions with histologically proven HCC lesions in non-cirrhotic liver were retrospectively reviewed regarding SonoVue-enhanced CEUS features. Two ultrasound experts assessed the CEUS enhancement pattern and came to a consensus using the World Federation of Societies for Ultrasound in Medicine and Biology guideline criteria. The mean size of HCC lesions included was 60.3 ± 37.8 mm (mean ± standard deviation). Most of the lesions were heterogeneous but predominantly hypo-echoic on B-mode ultrasound (64.5%, 62/96), with ill-defined margins and irregular shapes. During the arterial phase of CEUS, most of the HCC lesions in non-cirrhotic liver exhibited heterogeneous hyperenhancement (78.1%, 75/96) compared with the surrounding liver parenchyma. Almost 30% of HCC lesions (28.1%, 27/96) exhibited early wash-out (<60 s). All lesions exhibited wash-out and hypo-enhancement in the late phase. CEUS features of HCC lesions in non-cirrhotic patients typically include hyperenhancement in the arterial phase and relatively rapid wash-out in the portal venous phase, which is different from HCC in cirrhotic livers and more similar to liver metastasis.
Collapse
Affiliation(s)
- Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Won Jae Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Science and Technology and Medical Device Management and Research, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Maria Franca Meloni
- Radiology Department of Interventional Ultrasound casa di Cura Igea, Milan, Italy; Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Dirk-Andre Clevert
- Interdisciplinary Ultrasound Center, Department of Radiology, University of Munich-Grosshadern Campus, Munich, Germany
| | - Maria Cristina Chammas
- Institute of Radiology, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Antonella Forgione
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Christoph Frank Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Beau Site, Salem und Permanence, Hirslanden, Bern, Switzerland.
| |
Collapse
|
40
|
Zhang Y, Numata K, Du Y, Maeda S. Contrast Agents for Hepatocellular Carcinoma Imaging: Value and Progression. Front Oncol 2022; 12:921667. [PMID: 35720001 PMCID: PMC9200965 DOI: 10.3389/fonc.2022.921667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has the third-highest incidence in cancers and has become one of the leading threats to cancer death. With the research on the etiological reasons for cirrhosis and HCC, early diagnosis has been placed great hope to form a favorable prognosis. Non-invasive medical imaging, including the associated contrast media (CM)-based enhancement scan, is taking charge of early diagnosis as mainstream. Meanwhile, it is notable that various CM with different advantages are playing an important role in the different imaging modalities, or even combined modalities. For both physicians and radiologists, it is necessary to know more about the proper imaging approach, along with the characteristic CM, for HCC diagnosis and treatment. Therefore, a summarized navigating map of CM commonly used in the clinic, along with ongoing work of agent research and potential seeded agents in the future, could be a needed practicable aid for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Ultrasound, Ningbo Medical Centre Li Huili Hospital, Ningbo, China.,Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan.,Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yuewu Du
- Department of Medical Ultrasound, Ningbo Medical Centre Li Huili Hospital, Ningbo, China
| | - Shin Maeda
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
41
|
Jacobsen N, Larsen JD, Falster C, Nolsøe CP, Konge L, Graumann O, Laursen CB. Using Immersive Virtual Reality Simulation to Ensure Competence in Contrast-Enhanced Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:912-923. [PMID: 35227531 DOI: 10.1016/j.ultrasmedbio.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) is used in various medical specialties as a diagnostic imaging tool and for procedural guidance. Experience in the procedure is currently attained via supervised clinical practice that is challenged by patient availability and risks. Prior simulation-based training and subsequent assessment could improve and ensure competence before performance on patients, but no simulator currently exists. Immersive virtual reality (IVR) is a new promising simulation tool that can replicate complex interactions and environments that are unfeasible to achieve by traditional simulators. This study was aimed at developing an IVR simulation-based test for core CEUS competencies and gathering validity evidence for the test in accordance with Messick's framework. The test was developed by IVR software specialists and clinical experts in CEUS and medical education and imitated a CEUS examination of a patient with a focal liver lesion with emphasis on the pre-contrast preparations. Twenty-five medical doctors with varying CEUS experience were recruited as test participants, and their results were used to analyze test quality and to establish a pass/fail standard. The final test of 23 test items had good internal reliability (Cronbach's α = 0.85) and discriminatory abilities. The risks of false positives and negatives (9.1% and 23.6%, respectively) were acceptable for the test to be used as a certification tool prior to supervised clinical training in CEUS.
Collapse
Affiliation(s)
- Niels Jacobsen
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark; Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Demark; Regional Center for Technical Simulation (TechSim), Odense University Hospital, Odense, Denmark.
| | - Jonas D Larsen
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Demark; Department of Radiology, Odense University Hospital, Odense, Denmark; Research and Innovation Unit of Radiology, University of Southern Denmark, Odense, Denmark
| | - Casper Falster
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark; Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Demark
| | - Christian P Nolsøe
- Center for Surgical Ultrasound, Department of Surgery, Zealand University Hospital, Køge, Denmark; Copenhagen Academy for Medical Education and Simulation (CAMES), Center for Human Resources and Education, The Capital Region of Denmark, Copenhagen, Denmark
| | - Lars Konge
- Copenhagen Academy for Medical Education and Simulation (CAMES), Center for Human Resources and Education, The Capital Region of Denmark, Copenhagen, Denmark
| | - Ole Graumann
- Department of Radiology, Odense University Hospital, Odense, Denmark; Research and Innovation Unit of Radiology, University of Southern Denmark, Odense, Denmark
| | - Christian B Laursen
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark; Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Demark
| |
Collapse
|
42
|
Bartolotta TV, Randazzo A, Bruno E, Taibbi A. Focal liver lesions in cirrhosis: Role of contrast-enhanced ultrasonography. World J Radiol 2022; 14:70-81. [PMID: 35646291 PMCID: PMC9124982 DOI: 10.4329/wjr.v14.i4.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Contrast-enhanced ultrasound (CEUS) represents a great innovation for the evaluation of focal liver lesions (FLLs). The main advantage of CEUS is the real-time imaging examination and the very low toxicity in patients with renal failure. Liver cirrhosis has been recognized as a major risk factor for the onset of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). HCC in liver cirrhosis develops as the last step of a complex that leads to the gradual transformation from regenerative nodule through dysplastic nodule to HCC. In patients with liver cirrhosis, a surveillance program is recommended consisting of ultrasound (US) for detecting small focal lesions. A wide spectrum of benign and malignant lesions other than HCC may be found in the cirrhotic liver and their differentiation is important to avoid errors in staging diseases that may preclude potentially curative therapies. Several published studies have explored the value of CEUS in liver cirrhosis and they have been shown to have excellent diagnostic and prognostic performances for the evaluation of non-invasive and efficient diagnosis of FLLs in patients at high risk for liver malignancies. The purpose of this article is to describe and discuss CEUS imaging findings of FLLs including HCC and ICC, all of which occur in cirrhotic livers with varying prevalence.
Collapse
Affiliation(s)
- Tommaso Vincenzo Bartolotta
- Department of Radiology, University Hospital "Paolo Giaccone", Palermo 90127, Italy
- Department of Radiology, Fondazione Istituto G. Giglio Hospital, Cefalù 90015, Italy
| | - Angelo Randazzo
- Department of Radiology, University Hospital "Paolo Giaccone", Palermo 90127, Italy
| | - Eleonora Bruno
- Department of Radiology, University Hospital "Paolo Giaccone", Palermo 90127, Italy
| | - Adele Taibbi
- Department of Radiology, University Hospital "Paolo Giaccone", Palermo 90127, Italy
| |
Collapse
|
43
|
Onishi E, Saito K, Kumagai M, Oba R, Murakami T, Sugino S, Yamauchi M. Evaluation of contrast-enhanced ultrasonography with Sonazoid ® in visualization of local anesthetic distribution in rectus sheath block: a prospective, clinical study. J Anesth 2022; 36:405-412. [PMID: 35471253 DOI: 10.1007/s00540-022-03063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Clear visualization of ultrasound (US) images is crucial for successful US-guided nerve block. However, accurate determination of local anesthetic (LA) distribution from US images remains difficult. Sonazoid®, which comprises perflubutane microbubbles, is used to diagnose hepatic and breast tumors. This study aimed to investigate the visibility of Sonazoid® in perioperative US-guided nerve block. METHODS We performed rectus sheath block (RSB) in patients scheduled for laparoscopic abdominal surgery (n = 10). 10 mL of a mixture containing equal amounts of 0.75% ropivacaine and iohexol with the addition of Sonazoid® diluted 100-fold was administered. We investigated the correlation and agreement between Sonazoid® and iohexol distributions. The brightness of the solution and tissues was calculated: a grayscale value between 0 (dark) and 255 (bright) was measured in all pixels of the region of interest. Adverse events were also investigated. RESULTS Sonazoid® was clearly visualized and distinguished from the surrounding tissues both during and after RSB. The spread of Sonazoid® and iohexol was significantly correlated (spearman's ρ = 0.53, p = 0.0004). Bland-Altman analyses revealed significant mean difference between two methods (15.6 mm; 95% confidence interval [CI]: 10.6, 20.6; standard deviation (SD) 15.65; p < 0.0001). Limits of agreement were - 14.94 to 46.24 mm. Sonazoid® significantly increased the mean grayscale values at the posterior rectus sheath (93.7 vs. 201.9, p < 0.0001). There were no complications. CONCLUSION Sonazoid diluted 100-fold® was clearly visualized real-time, and the enhancement was sustained and measurable after RSB. Sonazoid® could potentially be used for the contrast agent of US-guided nerve block.
Collapse
Affiliation(s)
- Eiko Onishi
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Kazutomo Saito
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Michio Kumagai
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ruri Oba
- Department of Anesthesiology, South Miyagi Medical Center, Ogawara, Miyagi, Japan
| | - Toru Murakami
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shigekazu Sugino
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masanori Yamauchi
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
44
|
Sandulescu LD, Urhut CM, Sandulescu SM, Ciurea AM, Cazacu SM, Iordache S. One stop shop approach for the diagnosis of liver hemangioma. World J Hepatol 2021; 13:1892-1908. [PMID: 35069996 PMCID: PMC8727199 DOI: 10.4254/wjh.v13.i12.1892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatic hemangioma is usually detected on a routine ultrasound examination because of silent clinical behaviour. The typical ultrasound appearance of hemangioma is easily recognizable and quickly guides the diagnosis without the need for further investigation. But there is also an entire spectrum of atypical and uncommon ultrasound features and our review comes to detail these particular aspects. An atypical aspect in standard ultrasound leads to the continuation of explorations with an imaging investigation with contrast substance [ultrasound/ computed tomography/or magnetic resonance imaging (MRI)]. For a clinician who practices ultrasound and has an ultrasound system in the room, the easiest, fastest, non-invasive and cost-effective method is contrast enhanced ultrasound (CEUS). Approximately 85% of patients are correctly diagnosed with this method and the patient has the correct diagnosis in about 30 min without fear of malignancy and without waiting for a computer tomography (CT)/MRI appointment. In less than 15% of patients CEUS does not provide a conclusive appearance; thus, CT scan or MRI becomes mandatory and liver biopsy is rarely required. The aim of this updated review is to synthesize the typical and atypical ultrasound aspects of hepatic hemangioma in the adult patient and to propose a fast, non-invasive and cost-effective clinical-ultrasound algorithm for the diagnosis of hepatic hemangioma.
Collapse
Affiliation(s)
- Larisa Daniela Sandulescu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | | | - Sarmis Marian Sandulescu
- Department of Surgery, Emergency County Hospital of Craiova, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Ana-Maria Ciurea
- Department of Oncology, Emergency County Hospital of Craiova, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Sergiu Marian Cazacu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Sevastita Iordache
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| |
Collapse
|
45
|
Bartolotta TV, Taibbi A, Randazzo A, Gagliardo C. New frontiers in liver ultrasound: From mono to multi parametricity. World J Gastrointest Oncol 2021; 13:1302-1316. [PMID: 34721768 PMCID: PMC8529919 DOI: 10.4251/wjgo.v13.i10.1302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/17/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Modern liver ultrasonography (US) has become a "one-stop shop" able to provide not only anatomic and morphologic but also functional information about vascularity, stiffness and other various liver tissue properties. Modern US techniques allow a quantitative assessment of various liver diseases. US scanning is no more limited to the visualized plane, but three-dimensional, volumetric acquisition and consequent post-processing are also possible. Further, US scan can be consistently merged and visualized in real time with Computed Tomography and Magnetic Resonance Imaging examinations. Effective and safe microbubble-based contrast agents allow a real time, dynamic study of contrast kinetic for the detection and characterization of focal liver lesions. Ultrasound can be used to guide loco-regional treatment of liver malignancies and to assess tumoral response either to interventional procedures or medical therapies. Microbubbles may also carry and deliver drugs under ultrasound exposure. US plays a crucial role in diagnosing, treating and monitoring focal and diffuse liver disease. On the basis of personal experience and literature data, this paper is aimed to review the main topics involving recent advances in the field of liver ultrasound.
Collapse
Affiliation(s)
- Tommaso Vincenzo Bartolotta
- Department of Radiology, University Hospital "Paolo Giaccone", Palermo 90127, Italy
- Radiology Department, Fondazione Istituto G. Giglio Hospital, Cefalù 90015, Italy
| | - Adele Taibbi
- Department of Radiology, University Hospital "Paolo Giaccone", Palermo 90127, Italy
| | - Angelo Randazzo
- Department of Radiology, University Hospital "Paolo Giaccone", Palermo 90127, Italy
| | - Cesare Gagliardo
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo 90127, Italy
| |
Collapse
|
46
|
Yang Y, Liu C, Yan J, Liu K. Perfluorobutane contrast-enhanced ultrasonography for the diagnosis of HCC: a systematic review and meta-analysis. Abdom Radiol (NY) 2021; 46:4619-4628. [PMID: 34086090 DOI: 10.1007/s00261-021-03141-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/06/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Perfluorobutane ultrasound contrast agent as a new type of contrast agent has a good performance in the diagnosis of hepatocellular carcinoma (HCC). This study aim to evaluate the accuracy and reliability of Perfluorobutane contrast-enhanced ultrasonography (P-CEUS) in the diagnosis of HCC with a systematic review and meta-analysis. METHODS Web of Science, EMBASE, Cochrane, Clinical Key, Wan Fang, CBM and CNKI databases were systematically searched and checked for studies using P-CEUS in HCC, from 2007 to 2020. Data necessary to construct 2 × 2 contingency tables were extracted from included studies. The QUADAS tool was utilized to assess the methodologic quality of the studies. Meta-analysis included data pooling, subgroup analyses, meta-regression and investigation of publication bias was comprehensively performed. RESULTS Nine studies were included in this meta-analysis and the overall diagnostic accuracy in characterization of HCC was as follows: pooled sensitivity, 0.90 (95% confidence interval: 0.82-0.95); pooled specificity, 0.97 (0.93-0.98); pooled positive likelihood ratio, 27.2 (14.1 to - 52.3); and pooled negative likelihood ratio, 0.10 (0.06-0.18). The area under the comprehensive receiving operation characteristic curve was 0.98 (0.97-0.99). CONCLUSION The sensitivity and specificity of P-CEUS are more valuable than other imaging techniques (such as computer tomography or magnetic resonance imaging). However, due to the large differences in the data samples collected in this study, statistical heterogeneity results. P-CEUS can significantly improve the diagnostic efficiency of previous contrast-enhanced ultrasound for HCC. PROSPERO registration number: PROSPERO (CRD42020200040).
Collapse
Affiliation(s)
- Yichun Yang
- Department of Ultrasound, Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, No. 16 Airport Road, Baiyun District, Guangzhou, 510000, China
| | - Chengkai Liu
- Department of Ultrasound, Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, No. 16 Airport Road, Baiyun District, Guangzhou, 510000, China
| | - Jin Yan
- Department of Ultrasound, Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, No. 16 Airport Road, Baiyun District, Guangzhou, 510000, China
| | - Kebing Liu
- Department of Ultrasound, Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, No. 16 Airport Road, Baiyun District, Guangzhou, 510000, China.
| |
Collapse
|
47
|
Motz VL, White R, Lee R, Vu T, Shin B, McGillen KL. Contrast-enhanced ultrasound for screening hepatocellular carcinoma: an implemented program at a semi-rural academic center. Abdom Radiol (NY) 2021; 46:4170-4177. [PMID: 33956204 PMCID: PMC8100745 DOI: 10.1007/s00261-021-03104-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
Purpose To describe our early experience using a contrast-enhanced ultrasound (CEUS) protocol for surveillance of hepatocellular carcinoma (HCC) at a semi-rural academic medical center. Methods Retrospective, longitudinal study of the first 100 patients who underwent CEUS liver screening imaging over 2 years. Each patient underwent a standard of care abdominal ultrasound, which was checked with the radiologist, who searched for a focal lesion on the cine clips to target specifically with contrast. If none was present, the HCC contrast-enhanced screening protocol consisting of individual sweeps of the right and left lobes was performed from 0 to 60 s and 3–4 min post contrast—Lumason was utilized. Images, report details, and patient demographics were analyzed. Results 66 men and 34 women (average age, 59 ± 13 years) were included. On average, the distance from patient’s home to our institution was 39 miles (range 2–179 miles). The majority of our patients were covered under Private insurance (46%) with 43% covered by Medicare. CEUS exams on average took 35 min to complete. Lumason was administered in split doses for an average total of 5 mL per exam. Of the 10 lesions identified, there were five LI-RADS 3, two LI-RADS 4, one LI-RADS 5, two LI-RADS M, and one bland portal vein thrombus. There were no complications reported. Conclusion This semi-rural single-center study demonstrates the feasibility of starting a HCC CEUS screening program. CEUS can be performed in conjunction with routine ultrasound imaging with added benefit of identifying and characterizing lesions in one setting.
Collapse
|
48
|
Sun Y, Cui L, Wang S, Shi T, Hao Y, Lei Y. Comparative study of two contrast agents for intraoperative identification of sentinel lymph nodes in patients with early breast cancer. Gland Surg 2021; 10:1638-1645. [PMID: 34164308 DOI: 10.21037/gs-21-87] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The use of contrast-enhanced ultrasound (CEUS) to locate sentinel lymph nodes (SLNs) in breast cancer has been studied more and more in recent years. This prospective study aimed to compare periareolar injection of two different contrast agents, SonoVue® (SNV) and Sonazoid® (SNZ), followed by CEUS to identify SLNs in breast cancer patients with clinically negative nodes. Methods A total of 205 patients with T1-2N0M0 breast cancer were divided into the SNV group and SNZ group. All were administered a periareolar injection of SNV or SNZ and underwent US to identify contrast-enhanced SLNs. Each contrast-enhanced SLN underwent a biopsy with blue dye and examined again by CEUS in vitro. Results In all cases, contrast-enhanced lymphatic vessels were clearly visualized using US soon after the periareolar injection of SNZ, and the SLNs were easily identified. The SLN identification rates were 75.27% (210/279) for SNV and 93.58% (102/109) for SNZ. Although the accuracy of detecting SLN metastasis was slightly different between the two groups, there was no statistically significant difference between those groups (P=0.615). Moreover, it was possible to identify SLNs in vitro in the SNZ group, and these could be compared with the lymph nodes (LNs) located using SNZ during the preoperative stage and with blue dye during the procedure. This helped in determining the resection requirements. Conclusions When comparing the subdermal use of SNV and SNZ, no significant differences in the number of detected SLNs and the diagnosis of metastatic LNs were observed. Because SLNs can be detected for a longer time in living tissues with SNZ, this contrast agent may provide more intraoperative information for complete resection of all preoperative localization of SLN.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Shunmin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Tan Shi
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Yunxia Hao
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Yutao Lei
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
49
|
Chen Y, Wang W. Differentiation between hepatocellular carcinoma and intrahepatic cholangiocarcinoma using contrast-enhanced ultrasound: A systematic review and meta-analysis. Clin Hemorheol Microcirc 2021; 79:293-309. [PMID: 33935070 DOI: 10.3233/ch-211145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM To explore the diagnostic ability of contrast-enhanced ultrasound (CEUS) in distinguishing intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC). MATERIALS AND METHODS PubMed, EMBASE, Cochrane Library, and Web of Science were systematically searched for studies reporting the diagnostic accuracy of CEUS in differentiating ICC from HCC. The diagnostic ability of CEUS was assessed based on the pooled sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and area under the curve (AUC) with 95% confidence intervals (CIs). The methodologic quality was assessed by the QUADAS-2 tool. Subgroup analyses, meta-regression and investigation of publication bias were performed to identify the source of heterogeneity. RESULTS A total of eight studies were included, consisting of 1,116 patients with HCC and 529 with ICC. The general diagnostic performance of CEUS in distinguishing ICC and HCC were as follows: pooled sensitivity, 0.92 (95% CI: 0.84-0.96); pooled specificity, 0.87 (95% CI: 0.79-0.92); pooled PLR, 7.1 (95% CI: 4.1-12.0); pooled NLR, 0.09 (95% CI: 0.05-0.19); pooled DOR, 76 (95% CI: 26-220) and AUC, 0.95(95% CI: 0.93-0.97). Different liver background may be a potential factor that influenced the diagnostic accuracy of CEUS according to the subgroup analysis, with the pooled DOR of 89.67 in the mixed liver background group and 46.87 in the cirrhosis group, respectively. Six informative CEUS features that may help differentiate HCC from ICC were extracted. The three CEUS features favoring HCC were arterial phase hyperenhancement(APHE), mild washout and late washout (>60s); the three CEUS favoring ICC were arterial rim enhancement, marked washout and early washout(<60s). No potential publication bias was observed. CONCLUSION CEUS showed great diagnostic ability in differentiating ICC from HCC, which may be promising for noninvasive evaluation of these diseases.
Collapse
Affiliation(s)
- Yanling Chen
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenping Wang
- Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|