1
|
Cao P, Jaeschke H, Ni HM, Ding WX. The Ways to Die: Cell Death in Liver Pathophysiology. Semin Liver Dis 2025. [PMID: 40199509 DOI: 10.1055/a-2576-4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Liver diseases are closely associated with various cell death mechanisms, including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis. Each process contributes uniquely to the pathophysiology of liver injury and repair. Importantly, these mechanisms are not limited to hepatocytes; they also significantly involve nonparenchymal cells. This review examines the molecular pathways and regulatory mechanisms underlying these forms of cell death in hepatocytes, emphasizing their roles in several liver diseases, such as ischemia-reperfusion injury, metabolic dysfunction-associated steatotic liver disease, drug-induced liver injury, and alcohol-associated liver disease. Recent insights into ferroptosis and pyroptosis may reveal novel therapeutic targets for managing liver diseases. This review aims to provide a comprehensive overview of these cell death mechanisms in the context of liver diseases, detailing their molecular signaling pathways and implications for potential treatment strategies.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
- Division of Gastroenterology, Hepatology and Mobility, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
2
|
Jiao X, Li Y, Chen Z, Zhang Q, He R, Huang Y, Zuo Z. Targeting the PDE3B-cAMP-autophagy axis prevents liver injury in long-term supercooling liver preservation. Sci Transl Med 2024; 16:eadk0636. [PMID: 39602509 DOI: 10.1126/scitranslmed.adk0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/11/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
In liver transplantation, donor livers are typically stored in a preservation solution at 4°C for up to 12 hours. However, this short preservation duration can lead to various issues, such as suboptimal donor-recipient matching and limited opportunities for organ sharing. Previous studies have developed a long-term preservation method called supercooling liver preservation (SLP) to address these issues. However, in this study using a rat model, we observed that long-term SLP led to more severe liver damage compared with clinically prevalent traditional static cold storage (SCS) for durations less than 8 hours. To understand the potential mechanism of SLP-induced liver injury, we conducted an integrative metabolomic, transcriptomic, and proteomic analysis. We identified the PDE3B-cAMP-autophagy pathway as a key determinant of SLP-induced liver injury. Specifically, we found that PDE3B was elevated during SLP, which promoted a reduction of cAMP metabolites, triggering an AMPK-dependent autophagy process that led to liver injury in rats. We found that blocking the reduction in cAMP using the PDE3B inhibitor cilostamide inhibited autophagy and substantially ameliorated liver injury during 48-hour SLP in rat livers. Furthermore, we validated the effectiveness of cilostamide treatment in preventing liver injury in pig and human liver 48-hour SLP models. In summary, our results reveal that metabolic reprogramming involving the PDE3B-cAMP-autophagy axis is the key determinant of liver injury in long-term SLP and provide an early therapeutic strategy to prevent liver injury in this setting.
Collapse
Affiliation(s)
- Xingyuan Jiao
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yihu Li
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhihang Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qi Zhang
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Rui He
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yinbing Huang
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China
| |
Collapse
|
3
|
Dery KJ, Yao S, Cheng B, Kupiec-Weglinski JW. New therapeutic concepts against ischemia-reperfusion injury in organ transplantation. Expert Rev Clin Immunol 2023; 19:1205-1224. [PMID: 37489289 PMCID: PMC10529400 DOI: 10.1080/1744666x.2023.2240516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) involves a positive amplification feedback loop that stimulates innate immune-driven tissue damage associated with organ procurement from deceased donors and during transplantation surgery. As our appreciation of its basic immune mechanisms has improved in recent years, translating putative biomarkers into therapeutic interventions in clinical transplantation remains challenging. AREAS COVERED This review presents advances in translational/clinical studies targeting immune responses to reactive oxygen species in IRI-stressed solid organ transplants, especially livers. Here we focus on novel concepts to rejuvenate suboptimal donor organs and improve transplant function using pharmacologic and machine perfusion (MP) strategies. Cellular damage induced by cold ischemia/warm reperfusion and the latest mechanistic insights into the microenvironment's role that leads to reperfusion-induced sterile inflammation is critically discussed. EXPERT OPINION Efforts to improve clinical outcomes and increase the donor organ pool will depend on improving donor management and our better appreciation of the complex mechanisms encompassing organ IRI that govern the innate-adaptive immune interface triggered in the peritransplant period and subsequent allo-Ag challenge. Computational techniques and deep machine learning incorporating the vast cellular and molecular mechanisms will predict which peri-transplant signals and immune interactions are essential for improving access to the long-term function of life-saving transplants.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Siyuan Yao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian Cheng
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
4
|
Liu H, Li J, Jiang C, Yuan T, Ma H. Cellular communication network factor 1 (CCN1) knockdown exerts a protective effect for hepatic ischemia/reperfusion injury by deactivating the MEK/ERK pathway. Clin Res Hepatol Gastroenterol 2021; 45:101737. [PMID: 34144219 DOI: 10.1016/j.clinre.2021.101737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hepatic ischemia/reperfusion injury (IRI) is an unsettled and intractable conundrum in clinical treatment after liver transplantation and resection. Cellular communication network factor 1 (CCN1) is upregulated in liver IRI and may play a key role in this process. The objective of this study is to investigate the regulatory mechanism of CCN1 in liver IRI, which may provide new insight into liver IRI clinical treatment. METHODS The hepatic ischemia/reperfusion model was established in male C57BL/6 mice by occlusion of vessels in the liver followed by reperfusion. The mice were transfected with two small interfering RNAs (siRNAs) against CCN1 for CCN1 knockdown. The hypoxia/reoxygenation (HR) model was established in vitro using mouse hepatic cells followed by transfection with a siRNA and treatment with an ERK activator TPA to confirm the effects of CCN1 on the MEK/ERK pathway in liver IRI. RESULTS In hepatic IRI, CCN1 was upregulated and its knockdown reduced alanine aminotransferase and aspartate transaminase levels, myeloperoxidase activity, and the levels of IL-6 and TNF-α. CCN1 downregulation alleviated inflammatory cell infiltration and apoptosis in the liver. The expressions of cleaved caspase-9, cleaved caspase-3, Bax, and CHOP were decreased with an increased Bcl-2 level after CCN1 knockdown. The phosphorylation and activation of proteins in ER stress and MEK/ERK pathway were inhibited by CCN1 knockdown. In vitro, the levels of proinflammatory cytokines, apoptosis-inducing proteins, and proteins in ER stress and MEK/ERK pathway, which were decreased by CCN1 knockdown in HR, were restored by TPA, confirming that the activation of ERK aggravated cell apoptosis after reoxygenation. CONCLUSION Overall, CCN1 knockdown may suppress the inflammation, apoptosis during hepatic IRI by reducing the MEK/ERK pathway activation, which may be a breakthrough point in clinical alleviation of hepatic IRI caused by liver transplantation and resection.
Collapse
Affiliation(s)
- Huanqiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ji Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Tong Yuan
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
5
|
Trevisan AM, Cogliati B, Homem AR, Aloiav TPA, de Aquino N, Moreira JM, Reno LDC, Naumann AM, Galvão FHF, Andraus W, D'Albuquerque LAC. The liver injury following ischemia and reperfusion is worse in experimental knockout heterozygote mouse model for expression of connexin 431. Acta Cir Bras 2019; 34:e201901003. [PMID: 31851211 PMCID: PMC6912844 DOI: 10.1590/s0102-865020190100000003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/12/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To evaluate that Connexin (Cx43) plays a role in lesions after hepatic ischemia/reperfusion (IR) injury. METHODS We use Cx43 deficient model (heterozygotes mice) and compared to a wild group. The groups underwent 1 hour ischemia and 24 hours reperfusion. The heterozygote genotype was confirmed by PCR. We analyzed the hepatic enzymes (AST, ALT, GGT) and histology. RESULTS The mice with Cx43 deficiency showed an ALT mean value of 4166 vs. 307 in the control group (p<0.001); AST mean value of 7231 vs. 471 in the control group (p<0.001); GGT mean value of 9.4 vs. 1.7 in the control group (p=0.001); histology showed necrosis and inflammation in the knockout group. CONCLUSIONS This research demonstrated that the deficiency of Cx43 worses the prognosis for liver injury. The topic is a promising target for therapeutics advancements in liver diseases and procedures.
Collapse
Affiliation(s)
- Alexandre Maximiliano Trevisan
- Fellow PhD degree and MSc degree, Postgraduate Program in
Medicine Science in Gastroenterology, Department of Gastroenterology, School of
Medicine, Medical Investigation Laboratory (LIM 37), Universidade de São Paulo
(USP), Brazil. Technical procedures, acquisition of data, statistical analysis,
manuscript writing
| | - Bruno Cogliati
- PhD, Department of Pathology, School of Veterinary Medicine and
Animal Science, USP, Sao Paulo-SP, Brazil. Technical procedures
| | - Adriana Ribeiro Homem
- PhD, Department of Gastroenterology, School of Medicine,
Medical Investigation Laboratory (LIM 37), USP, Sao Paulo-SP, Brazil. Manuscript
writing
| | | | - Nelson de Aquino
- Fellow Master degree, Postgraduate Program in Medicine Surgical
Gastroenterology, School of Medicine, USP, Sao Paulo-SP, Brazil. Statistical
analysis, manuscript writing
| | - Jairo Marques Moreira
- Biologist, Hospital Albert Einstein, Sao Paulo-SP, Brazil.
Technical procedures, acquisition of data
| | - Leonardo da Cruz Reno
- Fellow Master degree, Postgraduate Program in Medicine
Surgical Gastroenterology, School of Medicine, USP, Sao Paulo-SP, Brazil.
Technical procedures, acquisition of data, manuscript writing
| | - Alexandre Moulin Naumann
- Fellow Master degree, Postgraduate Program in Medicine
Surgical Gastroenterology, School of Medicine, USP, Sao Paulo-SP, Brazil.
Technical procedures, acquisition of data, manuscript writing
| | - Flavio Henrique Ferreira Galvão
- Assistant Professor, Liver and Gastrointestinal Transplant
Division, Department of Gastroenterology, School of Medicine, Coordinator,
Medical Investigation Laboratory (LIM 37), USP, Sao Paulo-SP, Brazil. Surgical
procedures, manuscript writing, critical revision
| | - Wellington Andraus
- Assistant Professor, Coordinator, Liver and Gastrointestinal
Transplant Division, Department of Gastroenterology, School of Medicine, Medical
Investigation Laboratory (LIM 37), USP, Sao Paulo-SP, Brazil. Surgical
procedures, manuscript writing, critical revision
| | - Luiz Augusto Carneiro D'Albuquerque
- Full Professor, Chairman, Liver and Gastrointestinal Transplant
Division, Department of Gastroenterology, School of Medicine, Medical
Investigation Laboratory (LIM 37), USP, Sao Paulo-SP, Brazil. Conception and
design of the study, manuscript writing, critical revision
| |
Collapse
|
6
|
Xiong Y, Fan L, Tu Q, Peng G, Wang Y, Ye Q. Cytochrome b5 Interacts With Cytochrome C and Inhibits Hepatocyte Apoptosis in Brain-dead Rabbit Donors. Transplant Proc 2019; 51:2108-2115. [PMID: 31399187 DOI: 10.1016/j.transproceed.2019.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Donation after brain death (BD) liver grafts undergo the process of hypoxia-ischemia, which induces hepatocyte apoptosis, but the underlying mechanisms remain unclear. Cytochrome (Cyt) b5 expression was shown to be low in BD rabbits. This study aimed to investigate if Cyt b5 and Cyt c are involved in liver apoptosis after BD. METHODS AND RESULTS Liver tissue samples were obtained from donors after BD and from BD rabbit models. Tissues were analyzed by immunofluorescence, western blotting, and reverse-transcriptase polymerase chain reaction to detect Cyt b5 and Cyt c protein expressions and mRNA. Normal liver cells (LO-2) were cultured under serum deprivation and hypoxia, and analyzed as above. Cyt b5 protein and mRNA levels had decreased, while Cyt c levels had increased in BD liver donors and rabbits. Similar results were obtained in LO-2 cells cultured under hypoxia. After 6 and 12 hours of serum deprivation and hypoxia, apoptosis was increased, the levels of Cyt b5 gradually decreased, and the levels of Cyt c gradually increased over time; meanwhile, the Cyt b5-Cyt c combination was gradually reduced. A negative linear correlation between Cyt b5 and Cyt c was also observed. CONCLUSIONS Cyt b5 might be an anti-apoptotic protein that could protect the liver after BD and this protective effect might involve increased binding to Cyt c. This study provides some clues for improving the quality of donor livers.
Collapse
Affiliation(s)
- Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, China; Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, China
| | - Qiang Tu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, China
| | - Guizhu Peng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, China; The Research Center of the National Health Ministry on Transplantation Medicine Engineering and Technology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
de Vries RJ, Tessier SN, Banik PD, Nagpal S, Cronin SEJ, Ozer S, Hafiz EOA, van Gulik TM, Yarmush ML, Markmann JF, Toner M, Yeh H, Uygun K. Supercooling extends preservation time of human livers. Nat Biotechnol 2019; 37:1131-1136. [PMID: 31501557 PMCID: PMC6776681 DOI: 10.1038/s41587-019-0223-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/12/2019] [Indexed: 12/25/2022]
Abstract
The inability to preserve vascular organs beyond several hours contributes to the scarcity of organs for transplantation1,2. Standard hypothermic preservation at +4 °C (refs. 1,3) limits liver preservation to less than 12 h. Our group previously showed that supercooled ice-free storage at -6 °C can extend viable preservation of rat livers4,5 However, scaling supercooling preservation to human organs is intrinsically limited because of volume-dependent stochastic ice formation. Here, we describe an improved supercooling protocol that averts freezing of human livers by minimizing favorable sites of ice nucleation and homogeneous preconditioning with protective agents during machine perfusion. We show that human livers can be stored at -4 °C with supercooling followed by subnormothermic machine perfusion, effectively extending the ex vivo life of the organ by 27 h. We show that viability of livers before and after supercooling is unchanged, and that after supercooling livers can withstand the stress of simulated transplantation by ex vivo normothermic reperfusion with blood.
Collapse
Affiliation(s)
- Reinier J de Vries
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, University of Amsterdam, Amsterdam, the Netherlands
- Shriners Hospital for Children, Boston, MA, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
| | - Peony D Banik
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
| | - Sonal Nagpal
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
| | - Stephanie E J Cronin
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
| | - Sinan Ozer
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
| | - Ehab O A Hafiz
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
- Department of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Thomas M van Gulik
- Department of Surgery, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin L Yarmush
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
| | - James F Markmann
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.
- Shriners Hospital for Children, Boston, MA, USA.
| |
Collapse
|
8
|
Lima LCD, Miranda AS, Ferreira RN, Rachid MA, Simões E Silva AC. Hepatic encephalopathy: Lessons from preclinical studies. World J Hepatol 2019; 11:173-185. [PMID: 30820267 PMCID: PMC6393717 DOI: 10.4254/wjh.v11.i2.173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/19/2018] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy (HE) is a major complication that is closely related to the progression of end-stage liver disease. Metabolic changes in advanced liver failure can promote cognition impairment, attention deficits and motor dysfunction that may result in coma and death. HE can be subdivided according to the type of hepatic injury, namely, type A, which results from acute liver failure, type B, which is associated with a portosystemic shunting without intrinsic liver disease, and type C, which is due to chronic liver disease. Several studies have investigated the pathogenesis of the disease, and most of the mechanisms have been explored using animal models. This article aimed to review the use of preclinical models to investigate HE. The most used animal species are rats and mice. Experimental models of type A HE include surgical procedures and the administration of hepatotoxic medications, whereas models of types B and C HE are generally surgically induced lesions in liver tissue, which evolve to hepatic cirrhosis. Preclinical models have allowed the comprehension of the pathways related to HE.
Collapse
Affiliation(s)
- Luiza Cioglia Dias Lima
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Aline Silva Miranda
- Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Minas Gerais 30130-100, Brasil
| | - Rodrigo Novaes Ferreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Minas Gerais 30130-100, Brasil
| | - Milene Alvarenga Rachid
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, UFMG, Belo Horizonte, Minas Gerais 30130-100, Brasil.
| |
Collapse
|
9
|
Jeong JS, Kim D, Kim KY, Ryu S, Han S, Shin BS, Kim GS, Gwak MS, Ko JS. Ischemic Preconditioning Produces Comparable Protection Against Hepatic Ischemia/Reperfusion Injury Under Isoflurane and Sevoflurane Anesthesia in Rats. Transplant Proc 2018; 49:2188-2193. [PMID: 29149981 DOI: 10.1016/j.transproceed.2017.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/30/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Various volatile anesthetics and ischemic preconditioning (IP) have been demonstrated to exert protective effect against ischemia/reperfusion (I/R) injury in liver. We aimed to determine whether application of IP under isoflurane and sevoflurane anesthesia would confer protection against hepatic I/R injury in rats. METHODS Thirty-eight rats weighing 270 to 300 grams were randomly divided into 2 groups: isoflurane (1.5%) and sevoflurane (2.5%) anesthesia groups. Each group was subdivided into sham (n = 3), non-IP (n = 8; 45 minutes of hepatic ischemia), and IP (n = 8, IP consisting of 10-minute ischemia plus 15-minute reperfusion before prolonged ischemia) groups. The degree of hepatic injury and expressions of B-cell lymphoma 2 (Bcl-2) and caspase 3 were compared at 2 hours after reperfusion. RESULTS Hepatic ischemia induced significant degree of I/R injuries in both isoflurane and sevoflurane non-IP groups. In both anesthetic groups, introduction of IP dramatically attenuated I/R injuries as marked by significantly lower aspartate aminotransferase and aminotransferase levels and better histologic grades compared with corresponding non-IP groups. There were 2.3- and 1.7-fold increases in Bcl-2 mRNA levels in isoflurane and sevoflurane IP groups, respectively, compared with corresponding non-IP groups (both P < .05). Caspase 3 level was significantly high in the isoflurane non-IP group compared with the sham group; however, there were no differences among the sevoflurane groups. CONCLUSIONS The degree of hepatic I/R injury was significantly high in both isoflurane and sevoflurane groups in rats. However, application of IP significantly protected against I/R injury in both volatile anesthetic groups to similar degrees, and upregulation of Bcl-2 might be an important mechanism.
Collapse
Affiliation(s)
- J S Jeong
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - D Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - K Y Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S Ryu
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S Han
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - B S Shin
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - G S Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - M S Gwak
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J S Ko
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Garcimartín A, López-Oliva ME, Sántos-López JA, García-Fernández RA, Macho-González A, Bastida S, Benedí J, Sánchez-Muniz FJ. Silicon Alleviates Nonalcoholic Steatohepatitis by Reducing Apoptosis in Aged Wistar Rats Fed a High-Saturated Fat, High-Cholesterol Diet. J Nutr 2017; 147:1104-1112. [PMID: 28446627 DOI: 10.3945/jn.116.243204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/10/2016] [Accepted: 03/27/2017] [Indexed: 01/12/2023] Open
Abstract
Background: Lipoapoptosis has been identified as a key event in the progression of nonalcoholic fatty liver disease (NAFLD), and hence, antiapoptotic agents have been recommended as a possible effective treatment for nonalcoholic steatohepatitis (NASH). Silicon, included in meat as a functional ingredient, improves lipoprotein profiles and liver antioxidant defenses in aged rats fed a high-saturated fat, high-cholesterol diet (HSHCD). However, to our knowledge, the antiapoptotic effect of this potential functional meat on the liver has never been tested.Objective: This study was designed to evaluate the effect of silicon on NASH development and the potential antiapoptotic properties of silicon in aged rats.Methods: One-year-old male Wistar rats weighing ∼500 g were fed 3 experimental diets containing restructured pork (RP) for 8 wk: 1) a high-saturated fat diet, as an NAFLD control, with 16.9% total fat, 0.14 g cholesterol/kg diet, and 46.8 mg SiO2/kg (control); 2) the HSHCD as a model of NASH, with 16.6% total fat, 16.3 g cholesterol/kg diet, and 46.8 mg SiO2/kg [high-cholesterol diet (Chol-C)]; and 3) the HSHCD with silicon-supplemented RP with amounts of fat and cholesterol identical to those in the Chol-C diet, but with 750 mg SiO2/kg (Chol-Si). Detailed histopathological assessments were performed, and the NAFLD activity score (NAS) was calculated. Liver apoptosis and damage markers were evaluated by Western blotting and immunohistochemical staining.Results: Chol-C rats had a higher mean NAS (7.4) than did control rats (1.9; P < 0.001). The score in Chol-Si rats (5.4) was intermediate and different from that in both other groups (P < 0.05). Several liver apoptosis markers-including hepatocyte terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate (dUTP) nick end labeling, cytosolic cytochrome c, apoptosis-inducing factor, caspases 9 and 3, and the mitochondrial Bcl-2-associated X protein (BAX)-to-B-cell lymphoma 2 (BCL2) ratio-were 9-45% lower in Chol-Si than in Chol-C rats (P < 0.05) and did not differ from values in the control group.Conclusions: Supplemental silicon substantially affects NASH development in aged male Wistar rats fed an HSHCD by partially blocking apoptosis. These results suggest that silicon-enriched RP could be used as an effective nutritional strategy in preventing NASH.
Collapse
Affiliation(s)
- Alba Garcimartín
- Department of Pharmacology.,Department of Nutrition and Bromatology I, and
| | - M Elvira López-Oliva
- Department of Nutrition and Bromatology I, and.,Departmental Section of Physiology, Faculty of Pharmacy, and
| | | | - Rosa A García-Fernández
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Ohana G, Cohen S, Rath-Wolfson L, Fishman P. A3 adenosine receptor agonist, CF102, protects against hepatic ischemia/reperfusion injury following partial hepatectomy. Mol Med Rep 2016; 14:4335-4341. [PMID: 27666664 DOI: 10.3892/mmr.2016.5746] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Ischemia/reperfusion (IR) injury during clinical hepatic procedures is characterized by inflammatory conditions and the apoptosis of hepatocytes. Nuclear factor‑κB (NF‑κB), nitric oxide and the expression levels of inflammatory cytokines, tumor necrosis factor‑α and interleukin‑1 were observed to increase following IR and mediate the inflammatory response in the liver. CF102 is a highly selective A3 adenosine receptor (A3AR) agonist, and has been identified to induce an anti‑inflammatory and protective effect on the liver via the downregulation of the NF‑κB signaling pathway. The present study aimed to determine the effect of CF102 on protecting the liver against IR injury. The potential protective effect of CF102 (100 µg/kg) was assessed using an IR injury model on 70% of the liver of Wistar rats, which was induced by clamping the hepatic vasculature for 30 min. The regenerative effect of CF102 was assessed by the partial hepatectomy of 70% of the liver during 10 min of IR. CF102 reduced the levels of liver enzymes following IR injury. A higher regeneration rate in the CF102 treatment group was observed compared with the control group, suggesting that CF102 had a positive effect on the proliferation of hepatocytes following hepatectomy. CF102 had a protective effect on the liver of Wistar rats subsequent to IR injury during hepatectomy. This may be due to an anti‑inflammatory and anti‑apoptotic effect mediated by the A3AR.
Collapse
Affiliation(s)
- Gil Ohana
- Department of Surgery A/B, Rabin Medical Center, Campus Golda, Sackler Faculty of Medicine Tel‑Aviv University, Petah Tikva 49100, Israel
| | - Shira Cohen
- Can‑Fite BioPharma, Ltd., Kiryat‑Matalon, Petah Tikva 49170, Israel
| | - Lea Rath-Wolfson
- Department of Pathology, Rabin Medical Center, Campus Golda, Sackler Faculty of Medicine Tel‑Aviv University, Petah Tikva 49100, Israel
| | - Pnina Fishman
- Can‑Fite BioPharma, Ltd., Kiryat‑Matalon, Petah Tikva 49170, Israel
| |
Collapse
|
12
|
Gao L, Chen X, Peng T, Yang D, Wang Q, Lv Z, Shen J. Caveolin-1 protects against hepatic ischemia/reperfusion injury through ameliorating peroxynitrite-mediated cell death. Free Radic Biol Med 2016; 95:209-15. [PMID: 27021966 DOI: 10.1016/j.freeradbiomed.2016.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 12/24/2022]
Abstract
Nitrative stress is considered as an important pathological process of hepatic ischemia and reperfusion injury but its regulating mechanisms are largely unknown. In this study, we tested the hypothesis that caveolin-1 (Cav-1), a plasma membrane scaffolding protein, could be an important cellular signaling against hepatic I/R injury through inhibiting peroxynitrite (ONOO(-))-induced cellular damage. Male wild-type mice and Cav-1 knockout (Cav-1(-/-)) were subjected to 1h hepatic ischemia following 1, 6 and 12h of reperfusion by clipping and releasing portal vessels respectively. Immortalized human hepatocyte cell line (L02) was subjected to 1h hypoxia and 6h reoxygenation and treated with Cav-1 scaffolding domain peptide. The major discoveries included: (1) the expression of Cav-1 in serum and liver tissues of wild-type mice was time-dependently elevated during hepatic ischemia-reperfusion injury. (2) Cav-1 scaffolding domain peptide treatment inhibited cleaved caspase-3 expression in the hypoxia-reoxygenated L02 cells; (3) Cav-1 knockout (Cav-1(-/-)) mice had significantly higher levels of serum transaminases (ALT&AST) and TNF-α, and higher rates of apoptotic cell death in liver tissues than wild-type mice after subjected to 1h hepatic ischemia and 6hour reperfusion; (4) Cav-1(-/-) mice revealed higher expression levels of iNOS, ONOO(-) and 3-nitrotyrosine (3-NT) in the liver than wild-type mice, and Fe-TMPyP, a representative peroxynitrite decomposition catalyst (PDC), remarkably reduced level of ONOO(-) and 3-NT and ameliorated the serum ALT, AST and TNF-α levels in both wild-type and Cav-1(-/-) mice. Taken together, we conclude that Cav-1 could play a critical role in preventing nitrative stress-induced liver damage during hepatic ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Lei Gao
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingmiao Chen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; Research Centre of Heart, Brain, Hormone & Healthy Aging, the University of Hong Kong, Hong Kong, China
| | - Tao Peng
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; Research Centre of Heart, Brain, Hormone & Healthy Aging, the University of Hong Kong, Hong Kong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Møller LNO, Knudsen AR, Andersen KJ, Nyengaard JR, Hamilton-Dutoit S, Okholm Møller EM, Svendsen P, Møller HJ, Moestrup SK, Graversen JH, Mortensen FV. Anti-CD163-dexamethasone protects against apoptosis after ischemia/reperfusion injuries in the rat liver. Ann Med Surg (Lond) 2015; 4:331-7. [PMID: 26566435 PMCID: PMC4600939 DOI: 10.1016/j.amsu.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022] Open
Abstract
Aim The Pringle maneuver is a way to reduce blood loss during liver surgery. However, this may result in ischemia/reperfusion injury in the development of which Kupffer cells play a central role. Corticosteroids are known to have anti-inflammatory effects. Our aim was to investigate whether a conjugate of dexamethasone and antibody against the CD163 macrophage cell surface receptor could reduce ischemia/reperfusion injury in the rat liver. Methods Thirty-six male Wistar rats were used for the experiments. Animals were randomly divided into four groups of eight receiving anti-CD163-dexamethasone, high dose dexamethasone, low dose dexamethasone or placebo intravenously 18 h before laparotomy with subsequent 60 min of liver ischemia. After reperfusion for 24 h the animals had their liver removed. Bloods were drawn 30 min and 24 h post ischemia induction. Liver cell apoptosis and necrosis were analyzed by stereological quantification. Results After 24 h' reperfusion, the fraction of cell in non-necrotic tissues exhibiting apoptotic profiles was significantly lower in the high dose dexamethasone (p = 0.03) and anti-CD163-dex (p = 0.03) groups compared with the low dose dexamethasone and placebo groups. There was no difference in necrotic cell volume between groups. After 30 min of reperfusion, levels of haptoglobin were significantly higher in the anti-CD163-dex and high dose dexamethasone groups. Alanine aminotransferase and alkaline phosphatase were significantly higher in the high dose dexamethasone group compared to controls after 24 h' reperfusion. Conclusions We show that pharmacological preconditioning with anti-CD163-dex and high dose dexamethasone reduces the number of apoptotic cells following ischemia/reperfusion injury.
We investigated the effect of pharmacologic preconditioning with HDD, LDD and anti-CD163-dex on ischemia/reperfusion injury. Liver cell apoptosis and necrosis were analyzed by stereological quantification. Anti-CD163-dex and high dose dexamethasone reduces the number of apoptotic cells following ischemia/reperfusion injury.
Collapse
Key Words
- ALT, alanine aminotransferase
- AP, alkaline phosphatase
- AST, aspartate transaminase
- Anti-CD163-dex, anti-CD163-dexamethasone
- BR, bilirubin
- CD-163
- Dexamethasone
- GGT, gamma-glutamyl transferase
- HDD, high-dose dexamethasone
- HE, hematoxylin & eosin
- Hp, haptoglobin
- IL-1, interleukin 1
- IL-6, interleukin 6
- IRI, ischemia/reperfusion injury
- Inflammatory response
- Ischemia/reperfusion injury
- LDD, low-dose dexamethasone
- Liver
- MP, methylprednisolone
- NVR, necrotic volume ratio
- PM, pringles maneuver
- ROS, reactive oxygen species
- SURS, systematic, uniform, random sampling
- TNF-α, tumor necrosis factor α
Collapse
Affiliation(s)
- Lin Nanna Okholm Møller
- Department of Surgical Gastroenterology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Anders Riegels Knudsen
- Department of Surgical Gastroenterology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Kasper Jarlhelt Andersen
- Department of Surgical Gastroenterology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Jens Randel Nyengaard
- Stereology & Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | | | - Elise Marie Okholm Møller
- Department of Surgical Gastroenterology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Pia Svendsen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Søren Kragh Moestrup
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Jonas Heilskov Graversen
- Affinicon ApS, Aabogade 15, 8200 Aarhus N, Denmark ; Institute of Molecular Medicine, University of Southern Denmark, J. B. Winsløws vej 21-25, 5000 Odense C, Denmark
| | - Frank Viborg Mortensen
- Department of Surgical Gastroenterology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Kang JW, Lee SM. Impaired expression of caveolin-1 contributes to hepatic ischemia and reperfusion injury. Biochem Biophys Res Commun 2014; 450:1351-7. [PMID: 24997335 DOI: 10.1016/j.bbrc.2014.06.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/27/2014] [Indexed: 01/08/2023]
Abstract
Caveolae are membrane structures enriched in glycosphingolipids and cholesterol, and caveolin-1 (Cav-1) has been recognized to be pivotal in ischemic tolerance. Sphingosine-1-phosphate (S1P), one of the sphingolipid metabolites, is well known for its anti-apoptotic properties, counteracting ischemia and reperfusion (IR) injury. Here, we investigated the cytoprotective mechanism of Cav-1 against IR injury. Male C57BL/6 mice underwent 70% hepatic ischemia for 60 min, followed by reperfusion. Mice were pretreated with methyl-beta-cyclodextrin (MβCD, 10, 25 and 50mg/kg, i.p.), a caveolae disruptor, or saline 48 and 24h before ischemia. Serum and liver tissues were collected at the end of ischemia, at 0, 1, 4 and 24h of reperfusion. Decreases in the expression of Cav-1 protein and in the number of caveolae of the liver ultrastructure were observed during IR, which were augmented by pretreatment with MβCD. MβCD also augmented the IR-induced increases in serum alanine aminotransferase and tumor necrosis factor-α levels. IR decreased the levels of sphingosine kinase 2 (SK2) and S1P receptor 2 (S1P2) mRNA expressions, while MβCD also augmented these decreases. Moreover, IR resulted in increases of mitochondrial cytochrome c release, caspase 3, 8 activities and Bax/Bcl-xL ratio, and MβCD augmented all of these apoptotic parameters. MβCD also increased p38 MAPK and JNK phosphorylation, but did not affect ERK and PI3K/Akt. Our findings demonstrate that downregulation of Cav-1 mediates IR-induced liver damage by inhibiting SK2/S1P2 signaling and enhancing the apoptotic pathway.
Collapse
Affiliation(s)
- Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
15
|
Abstract
Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of "programmed" necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article.
Collapse
Affiliation(s)
- Maria Eugenia Guicciardi
- 1Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
16
|
Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats. Shock 2013; 39:380-8. [PMID: 23423194 DOI: 10.1097/shk.0b013e31828aab7f] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatocellular apoptosis commonly occurs in ischemia/reperfusion (I/R) injury. The binding of tumor necrosis factor (TNF) to TNF receptor 1 (TNFR1) leads to the formation of a death-inducing signaling complex (DISC), which subsequently initiates a caspase cascade resulting in apoptosis. Heme oxygenase 1 (HO-1) confers cytoprotection against cell death in I/R injury and inhibits stress-induced apoptotic pathways in vitro. This study investigated the role of HO-1 in modulating TNF/TNFR1-mediated cell death pathways in hepatic I/R injury. Rats were pretreated with hemin, an HO-1 inducer, and zinc protoporphyrin (ZnPP), an HO-1 inhibitor, before undergoing hepatic I/R. Heme oxygenase 1 activity increased after reperfusion. Ischemia/reperfusion-induced hepatocellular apoptosis was attenuated by hemin, as determined by the caspase-3 and -8 activity assays and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling). Zinc protoporphyrin eliminated the cytoprotective effect of hemin. Hepatic TNFR1 protein expression was unchanged among the experimental groups, whereas mitochondrial TNFR1 protein increased after I/R. Ischemia/reperfusion increased the quantity of DISC components, including TRADD (TNFR1-associated death domain), FADD (Fas-associated death domain), and caspase-8, as well as the assembly of DISCs within the liver. In the mitochondrial fraction, TNFR1-associated caspase-8 was increased after I/R. These increases were attenuated by hemin; zinc protoporphyrin eliminated this effect. Our findings suggest that the cytoprotective effects of HO-1 are mediated by suppression of TNF/TNFR1-mediated apoptotic signaling, specifically by modulating apoptotic DISC formation and mitochondrial TNFR1 translocation during hepatic I/R.
Collapse
|
17
|
Impact of fluid therapy on apoptosis and organ injury during haemorrhagic shock in an oxygen-debt-controlled pig model. Eur J Trauma Emerg Surg 2013; 39:405-14. [PMID: 26815402 DOI: 10.1007/s00068-013-0279-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/16/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Apoptosis, or programmed cell death, seems to play a role in the physiology of shock. The influence of fluid resuscitation on the occurrence of apoptosis during haemorrhage is still unclear. Using an experimental randomised study, the goal of this investigation was to find a relation between different frequently used resuscitation fluids and evidence of apoptosis. MATERIALS AND METHODS Sixty female pigs with a mean body weight of 20 kg were randomised into six groups, each receiving a different resuscitation fluid therapy: malated Ringer, lactated Ringer, hypertonic saline, hypertonic saline solution/Dextran 60, carbonate/gelatine and a sham group (no shock, no resuscitation). A haemorrhagic shock with a predefined oxygen debt with high mortality expected was induced for a period of 60 min. Then, the resuscitation fluid therapy within each group was initiated. At the beginning, after 1 h of shock and 1 and 2 h after resuscitation, biopsies from the liver were taken, as one of the most important metabolism organs of shock. Three hours after the beginning of the resuscitation period, the animals were allowed to recover under observation for 3 days. At the end of this period, a state of narcosis was induced and another liver biopsy was taken. Finally, the animals were sacrificed and samples were taken from the liver, kidney, heart and hippocampus. The TUNEL method was used for identifying apoptosis. Impairment of liver function was indicated by the measurement of transaminase levels. RESULTS There was no observed difference in the rate of apoptosis in all groups and a low number of apoptotic cells were found in all the organs sampled. The sham group also showed a low count of apoptosis. The hypoxia-sensitive neurons within the hippocampus did not show any signs of apoptosis. The high oxygen debt during haemorrhage led to a high mortality. The non-treated animals died very quickly, as an indicator for severe shock. Animals treated with hypertonic saline showed a significant increase in aspartate transaminase (AST) plasma levels on the first day after shock. CONCLUSION The different resuscitation fluids used in the treatment of haemorrhagic shock in this experimental model showed no evidence of a different apoptosis rate in the end organs.
Collapse
|
18
|
Matsuda A, Jacob A, Wu R, Zhou M, Aziz M, Wang P. Milk fat globule--EGF factor VIII ameliorates liver injury after hepatic ischemia-reperfusion. J Surg Res 2012; 180:e37-46. [PMID: 22487387 DOI: 10.1016/j.jss.2012.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/15/2012] [Accepted: 03/09/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is a serious clinical complication that may compromise liver function because of extensive hepatocyte loss. Therefore, the development of novel and effective therapies for hepatic I/R is critical for the improvement of patient outcome. It has been previously shown that administration of milk fat globule-EGF factor VIII (MFG-E8), a membrane-associated secretory glycoprotein, exerts significant beneficial effects under acute inflammatory conditions through multiple physiological processes associated with tissue remodeling. METHODS To determine whether administration of recombinant human (rh) MFG-E8 attenuates liver injury in an animal model of hepatic I/R, male adult rats were subjected to 70% hepatic ischemia for 90 min, followed by reperfusion. At the beginning of reperfusion, rats were treated intravenously with normal saline (vehicle) or rhMFG-E8 (160 μg/kg) over a period of 30 min. MFG-E8 levels and various measurements were assessed 4 h after reperfusion. In addition, survival study was conducted in MFG-E8(-/-) and rhMFG-E8-treated wild-type (WT) mice using a total hepatic ischemia model. RESULTS Liver and plasma MFG-E8 protein levels were significantly decreased after hepatic I/R. Administration of rhMFG-E8 significantly improved liver injury, suppressed apoptosis, attenuated inflammation and oxidative stress, and downregulated NF-κB pathway. We also noticed that rhMFG-E8 treatment restored the downregulated PPAR-γ expression after hepatic I/R. MFG-E8(-/-) mice showed deterioration on survival and, in contrast, rhMFG-E8-treated WT mice showed a significant improvement of survival compared with vehicle-treated WT mice. CONCLUSIONS MFG-E8-mediated multiple physiological events may represent an effective therapeutic option in tissue injury following an episode of hepatic I/R.
Collapse
Affiliation(s)
- Akihisa Matsuda
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | | | | | | | | | | |
Collapse
|
19
|
Russo L, Gracia-Sancho J, García-Calderó H, Marrone G, García-Pagán JC, García-Cardeña G, Bosch J. Addition of simvastatin to cold storage solution prevents endothelial dysfunction in explanted rat livers. Hepatology 2012; 55:921-30. [PMID: 22031447 DOI: 10.1002/hep.24755] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/29/2011] [Indexed: 12/11/2022]
Abstract
UNLABELLED Pathophysiological alterations in the endothelial phenotype result in endothelial dysfunction. Flow cessation, occurring during organ procurement for transplantation, triggers the endothelial dysfunction characteristic of ischemia/reperfusion injury, partly due to a reduction in the expression of the vasoprotective transcription factor Kruppel-like Factor 2 (KLF2). We aimed at (1) characterizing the effects of flow cessation and cold storage on hepatic endothelial phenotype, and (2) ascertaining if the consequences of cold stasis on the hepatic endothelium can be pharmacologically modulated, improving liver graft function. Expression of KLF2 and its vasoprotective programs was determined in (i) hepatic endothelial cells (HEC) incubated under cold storage conditions with or without the KLF2-inducer simvastatin, and (ii) rat livers not cold stored or preserved in cold University of Wisconsin solution (UWS) supplemented with simvastatin or its vehicle. In addition, upon warm reperfusion hepatic vascular resistance, endothelial function, nitric oxide vasodilator pathway, apoptosis, inflammation, and liver injury were evaluated in not cold stored livers or livers preserved in cold UWS supplemented with simvastatin or vehicle. Expression of KLF2 and its vasoprotective programs decrease in HEC incubated under cold storage conditions. Cold-stored rat livers exhibit a time-dependent decrease in KLF2 and its target genes, liver injury, increased hepatic vascular resistance, and endothelial dysfunction. The addition of simvastatin to the storage solution, maintained KLF2-dependent vasoprotective programs, prevented liver damage, inflammation, and oxidative stress and improved endothelial dysfunction. CONCLUSION Our results provide a rationale to evaluate the beneficial effects of a vasoprotective preservation solution on human liver procurement for transplantation.
Collapse
Affiliation(s)
- Lucia Russo
- Hepatic Hemodynamic Lab, Liver Unit, IMDIM, Hospital Clínic de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Lee SW, Kim SH, Min SO, Kim KS. Ideal Experimental Rat Models for Liver Diseases. KOREAN JOURNAL OF HEPATO-BILIARY-PANCREATIC SURGERY 2011; 15:67-77. [PMID: 26421020 PMCID: PMC4582547 DOI: 10.14701/kjhbps.2011.15.2.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and diverse clinical symptoms, adverse reactions, and complications due to the pathological physiology. Also, it is not easy to reproduce identically various clinical situations in animal models. Recently, the Guide for the Care and Use of Laboratory Animals has tightened up the regulations, and therefore it is advisable to select the appropriate animals and decide upon the appropriate quantities through scientific and systemic considerations before conducting animal testing. Therefore, in this review article the authors examined various white rat animal testing models and determined the appropriate usable rat model, and the pros and cons of its application in liver disease research. The authors believe that this review will be beneficial in selecting proper laboratory animals for research purposes.
Collapse
Affiliation(s)
- Sang Woo Lee
- Department of Surgery, Yonsei University College of Medicine, Korea. ; Graduate School of Yonsei University, Graduate Program of Nano Science and Technology, Korea
| | - Sung Hoon Kim
- Department of Surgery, Yonsei University College of Medicine, Korea. ; Cell Therapy Center, Severance Hospital, Korea
| | - Seon Ok Min
- Department of Surgery, Yonsei University College of Medicine, Korea. ; Graduate School of Yonsei University, Graduate Program of Nano Science and Technology, Korea
| | - Kyung Sik Kim
- Department of Surgery, Yonsei University College of Medicine, Korea. ; Cell Therapy Center, Severance Hospital, Korea
| |
Collapse
|
21
|
Tarrab E, Huet PM, Brault A, Rocheleau B, Laurens M, Crenesse D. Cyclosporin-A does not prevent cold ischemia/reperfusion injury of rat livers. J Surg Res 2011; 175:333-42. [PMID: 21696775 DOI: 10.1016/j.jss.2011.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/28/2011] [Accepted: 04/07/2011] [Indexed: 01/07/2023]
Abstract
Cyclosporin-A (CsA) has been reported to protect livers from warm ischemia/reperfusion (I/R) injury. To study if CsA has also a protective effect on cold I/R injury, two models were used: the isolated perfused rat liver (IPRL) and the orthotopic rat liver transplantation (ORLT). (1) IPRL: Livers were preserved for 24 h (5°C) in University of Wisconsin (UW) solution alone (group 1), with CsA (400 nM) dissolved in dimethylsulfoxide (50 μM) (group 2), and with dimethylsulfoxide (DMSO) alone (group 3). Livers were reperfused for 60 min (37°C) (n = 8/group). Cell necrosis was evaluated by trypan blue uptake and apoptosis by laddering and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and by caspase-3 activation. Marked and similar sinusoidal endothelial cell necrosis was found in the three groups while apoptosis was found similarly deceased in groups 2 and 3 compared with group 1. (2) ORLT: Donors received either CsA (5 mg/kg) or corn oil 24 h before transplantation. Recipients were sacrificed after 240 min; cell necrosis and apoptosis were then evaluated. No difference was found between treated and control groups. The current data strongly suggest that CsA has no protective effect on hepatic cold I/R injury. Hepatocyte apoptosis can be reduced by antioxidants, as occurred with DMSO, but introduction of CsA does not provide additional protective effect.
Collapse
Affiliation(s)
- Esther Tarrab
- Centre de Recherche, Centre Hospitalier, Université de Montréal, Hôpital Saint Luc, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Diverse Effects of FK506 on the Apoptosis of Hepatocytes and Infiltrating Lymphocytes in an Allografted Rat Liver. J Surg Res 2011; 167:131-9. [DOI: 10.1016/j.jss.2009.06.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 05/27/2009] [Accepted: 06/12/2009] [Indexed: 12/22/2022]
|
23
|
Ben Said D, Ben Ali R, Ferchichi H, Salouage I, Ouanes L, Gaïes E, Trabelsi S, Kooli E, Kourda N, Abdelmoula J, Lakhal M, Klouz A. Lidocaïne test for easier and less time consuming assessment of liver function in several hepatic injury models. Hepatol Int 2011; 5:941-8. [PMID: 21484114 DOI: 10.1007/s12072-011-9270-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 03/06/2011] [Indexed: 01/21/2023]
Abstract
PURPOSE In this study, we developed an ex vivo functional assay to assess liver metabolic capacity adapted from the lidocaïne test in rats. METHODS Animals used were subjected to different models of liver injury: hypothermic ischemia (H/I, n = 8), ischemia-reperfusion (I/R, n = 8) and CCl4 induced liver cirrhosis (n = 11), and compared with sham operated rats (n = 5). Livers were then extracted and a fragment of whole tissue was incubated with lidocaïne for 15, 30, 60, 120, 240, 360, and 720 min at which both lidocaïne and its major metabolite monoethylglycinexylidide (MEGX) were measured by high performance liquid chromatography (HPLC). A histological study and biochemical assays (transaminase levels) were also performed to further evaluate and confirm our data. RESULTS Pharmacokinetic profile of lidocaïne metabolism in sham-operated animals revealed that the maximum concentration of MEGX is achieved at 120 min. Both lidocaïne metabolism and MEGX formation levels were significantly altered in all three models of hepatic injury. The extent of hepatic damage was confirmed by increased levels of transaminase levels and alteration of hepatocyte's structure with areas of necrosis. CONCLUSION Our method provides reliable and reproducible results using only a small portion of liver which allows for a fast and easy assessment of liver metabolic capacity. Moreover, our method presents an alternative to the in vivo technique and seems more feasible in a clinical setting.
Collapse
Affiliation(s)
- Dorra Ben Said
- Service de Pharmacologie Clinique, Centre National de Pharmacovigilance, Tunis, Tunisia. .,Unité d'expérimentation animale, Faculté de Médecine de Tunis, Tunis, Tunisia.
| | - Ridha Ben Ali
- Service de Pharmacologie Clinique, Centre National de Pharmacovigilance, Tunis, Tunisia.,Unité d'expérimentation animale, Faculté de Médecine de Tunis, Tunis, Tunisia
| | - Henda Ferchichi
- Service de Pharmacologie Clinique, Centre National de Pharmacovigilance, Tunis, Tunisia.,Unité d'expérimentation animale, Faculté de Médecine de Tunis, Tunis, Tunisia
| | - Issam Salouage
- Service de Pharmacologie Clinique, Centre National de Pharmacovigilance, Tunis, Tunisia.,Unité d'expérimentation animale, Faculté de Médecine de Tunis, Tunis, Tunisia
| | - Lobna Ouanes
- Laboratoire de Physiologie, Faculté de Médecine de Tunis, Tunis, Tunisia.,Unité d'expérimentation animale, Faculté de Médecine de Tunis, Tunis, Tunisia
| | - Emna Gaïes
- Service de Pharmacologie Clinique, Centre National de Pharmacovigilance, Tunis, Tunisia.,Unité d'expérimentation animale, Faculté de Médecine de Tunis, Tunis, Tunisia
| | - Sameh Trabelsi
- Service de Pharmacologie Clinique, Centre National de Pharmacovigilance, Tunis, Tunisia.,Unité d'expérimentation animale, Faculté de Médecine de Tunis, Tunis, Tunisia
| | - Emna Kooli
- Service de Pharmacologie Clinique, Centre National de Pharmacovigilance, Tunis, Tunisia
| | - Nadia Kourda
- Service Anatomo-pathologie, Hopital Charles Nicolle, Tunis, Tunisia
| | | | - Mohamed Lakhal
- Service de Pharmacologie Clinique, Centre National de Pharmacovigilance, Tunis, Tunisia.,Unité d'expérimentation animale, Faculté de Médecine de Tunis, Tunis, Tunisia
| | - Anis Klouz
- Service de Pharmacologie Clinique, Centre National de Pharmacovigilance, Tunis, Tunisia.,Unité d'expérimentation animale, Faculté de Médecine de Tunis, Tunis, Tunisia
| |
Collapse
|
24
|
Esch JSA, Jurk K, Knoefel WT, Roeder G, Voss H, Tustas RY, Schmelzle M, Krieg A, Eisenberger CF, Topp S, Rogiers X, Fischer L, Aken HV, Kehrel BE. Platelet activation and increased tissue factor expression on monocytes in reperfusion injury following orthotopic liver transplantation. Platelets 2010; 21:348-59. [DOI: 10.3109/09537101003739897] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Scoazec JY, Mehlen P. [Detection and quantification of apoptosis in tissues: a challenge]. Ann Pathol 2009; 29:367-9. [PMID: 20004834 DOI: 10.1016/j.annpat.2009.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2009] [Indexed: 02/03/2023]
|
26
|
Cao LL, Li YP. Relationship between tumor necrosis factor related apoptosis induced ligand and hepatocyte apoptosis. Shijie Huaren Xiaohua Zazhi 2008; 16:2626-2630. [DOI: 10.11569/wcjd.v16.i23.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (Apo2L/TRAIL) is a member of the tumor necrosis factor gene superfamily that induces apoptosis through engagement of death receptors (DRs). Recent studies have clarified that TRAIL/DR pathway was involved in severe liver diseases. In this review, we focus on the apoptosis signaling pathways stimulated by Apo2L/TRAIL and summarise its relationship with apoptosis of hepatocytes.
Collapse
|
27
|
Makiuchi A, Yamaura K, Mizuno S, Matsumoto K, Nakamura T, Amano J, Ito KI. Hepatocyte growth factor prevents pulmonary ischemia-reperfusion injury in mice. J Heart Lung Transplant 2007; 26:935-43. [PMID: 17845933 DOI: 10.1016/j.healun.2007.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion (IR) injury after lung transplantation leads to significant morbidity and mortality in recipients, which remains the major obstacle in clinical lung transplantation. To reduce pulmonary graft dysfunction and improve prognosis after lung transplantation, prevention of IR-induced lung injury in the peri-operative period is required. In the present study, we investigated the effects of recombinant hepatocyte growth factor (HGF) on pulmonary IR injury using a murine model system. METHODS To assess the protective effect of HGF against lung injury, mice with pulmonary IR were divided into two groups and injected with 500 microg/kg of human recombinant HGF or the same dose of saline alone as a control. RESULTS After pulmonary IR injury, the lung injury score increased in a time-dependent manner up to 24 hours. A significant reduction of lung injury score was observed with the administration of exogenous HGF. Moreover, the ratio of apoptotic cells was significantly reduced in mice treated with HGF. Significantly increased expression of Bcl-xL was observed after IR in mice administered HGF as compared with saline-treated controls. In contrast, expression of Bax was reduced significantly in HGF-treated mice. Serum levels of endogenous murine HGF were increased significantly in HGF-treated mice. CONCLUSIONS Our findings indicate that administration of exogenous HGF ameliorates the pulmonary tissue injury induced by IR, which may provide an alternative for prevention of IR-induced lung injury in the peri-operative period in lung transplantation.
Collapse
Affiliation(s)
- Akiko Makiuchi
- Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Kebis A, Kukan M, Grančič P, Jakubovský J. A novel way of liver preservation improves rat liver viability upon reperfusion. J Zhejiang Univ Sci B 2007; 8:289-95. [PMID: 17542054 PMCID: PMC1859871 DOI: 10.1631/jzus.2007.b0289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND/AIM Currently, the liver is cold-preserved at 0 approximately 4 degrees C for experimental and clinical purposes. Here, we investigated whether milder hypothermia during the initial phase of the preservation period was beneficial for liver viability upon reperfusion. METHODS In the first set of experiments, rat livers were preserved either conventionally in clinically used histidine-trypthopan-ketoglutarate (HTK) solution (Group A: 45 min and Group B: 24 h) or by slow cooling HTK solution (from 13 degrees C to 3 degrees C) during the initial 45 min of preservation (Group C: 24 h). In the second set of experiments, additional groups of livers were evaluated: Group BB--preservation according to Group B and Group CC--preservation according to Group C. Further, some livers were preserved at 13 degrees C for 24 h. Livers were then reperfused using a blood-free perfusion model. RESULTS Bile production was approximately 2-fold greater in Group C compared to Group B. Alanine transaminase (ALT) and aspartate transaminase (AST) release into perfusate were 2 approximately 3-fold higher in Group B compared to Group C. No significant differences were found in ALT and AST release between Group C and Group A. Livers in Group CC compared to Group BB exhibited significantly lower portal resistance, greater oxygen consumption and bromosulfophthalein excretion into bile and lower lactate dehydrogenase (LDH) release into perfusate. Histological evaluation of tissue sections in Group BB showed parenchymal dystrophy of hepatocytes, while dystrophy of hepatocytes was absent in Group CC. Livers preserved at 13 degrees C for 24 h exhibited severe ischemic injury. CONCLUSION These results suggest that the conventional way of liver preservation is not suitable at least for rat livers and that slow cooling of HTK solution during the initial phase of cold storage can improve liver viability during reperfusion.
Collapse
Affiliation(s)
- Anton Kebis
- Laboratory of Perfused Organs, Slovak Center for Organ Transplantation, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Marián Kukan
- Laboratory of Perfused Organs, Slovak Center for Organ Transplantation, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
- †E-mail:
| | - Peter Grančič
- Laboratory of Perfused Organs, Slovak Center for Organ Transplantation, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Ján Jakubovský
- Department of Pathology, School of Medicine, Comenius University, 81372 Bratislava, Slovakia
| |
Collapse
|
29
|
Abstract
Reperfusion injury occurring in the transplanted liver is a complex lesion and has been the focus of considerable research over the past decade. This section will review recent major developments in understanding the mechanisms involved and their application to clinical transplantation.
Collapse
Affiliation(s)
- K Tanigawa
- Department of Emergency and Critical Care Medicine, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
30
|
Hoglen NC, Anselmo DM, Katori M, Kaldas M, Shen XD, Valentino KL, Lassman C, Busuttil RW, Kupiec-Weglinski JW, Farmer DG. A caspase inhibitor, IDN-6556, ameliorates early hepatic injury in an ex vivo rat model of warm and cold ischemia. Liver Transpl 2007; 13:361-6. [PMID: 17318854 DOI: 10.1002/lt.21016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study examined the efficacy of the caspase inhibitor, IDN-6556, in a rat model of liver ischemia-reperfusion injury. Livers from male Sprague-Dawley rats were reperfused for 120 minutes after 24 hours of 4 degrees C cold storage in University of Wisconsin solution. Portal blood flow measurements estimated sinusoidal resistance, and bile production, alanine aminotransferase activities, and Suzuki scores were evaluated as parameters of hepatocyte/liver injury. Treated livers were exposed to 25 or 50 microM of IDN-6556 in University of Wisconsin storage solution and/or the perfusate. All treatment regimens with IDN-6556 significantly improved portal blood flow measured at 120 minutes, and significant improvements were seen as early as 30 minutes when inhibitor was also present in the perfusate (P < 0.01). All treatment groups with IDN-6556 significantly increased bile production by 3-4-fold compared with controls (P < 0.01), and reductions in alanine aminotransferase activities were seen within 90 minutes of reperfusion (P < 0.05). These data were confirmed by improved Suzuki scores (less sinusoidal congestion, necrosis, and vacuolization) in all treated groups. Livers from the IDN-6556-treated groups had markedly reduced caspase activities and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling)-positive cells, suggesting reductions in apoptosis. IDN-6556 present in cold storage media ameliorated liver injury due to cold ischemia and reperfusion injury and may be a rational therapeutic approach to reduce the risk of liver ischemia in the clinical setting.
Collapse
|
31
|
Baskin-Bey ES, Washburn K, Feng S, Oltersdorf T, Shapiro D, Huyghe M, Burgart L, Garrity-Park M, van Vilsteren FGI, Oliver LK, Rosen CB, Gores GJ. Clinical Trial of the Pan-Caspase Inhibitor, IDN-6556, in Human Liver Preservation Injury. Am J Transplant 2007; 7:218-25. [PMID: 17227570 DOI: 10.1111/j.1600-6143.2006.01595.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cold ischemia/warm reperfusion (CI/WR) injury remains a problem in liver transplantation. The aim of the current study was to assess the utility of the pan-caspase inhibitor IDN-6556 on CI/WR injury during human liver transplantation. This report is a post hoc analysis of a Phase II, multi-center, randomized, placebo-controlled, double-blinded, parallel group study. Subjects were assigned to four treatment groups: Group 1 (Organ storage/flush: Placebo-Recipient: Placebo); Group 2 (Organ storage/flush: 15 microg/mL-Recipient: Placebo); Group 3 (Organ storage/flush: 5 microg/mL-Recipient: 0.5 mg/kg); and Group 4 (Organ storage/flush: 15 microg/mL-Recipient: 0.5 mg/kg). Liver cell apoptosis was assessed by serum concentrations of the apoptosis-associated CK18Asp396 ('M30') neo-epitope, TUNEL assay and caspase 3/7 immunohistochemistry. Liver injury was assessed by serum AST/ALT determinations. Serum markers of liver cell apoptosis were reduced in all groups receiving drug as compared to placebo. However, TUNEL, caspase 3/7 positive cells and serum AST/ALT levels were only consistently reduced in Group 2 (drug exposed to organ only). This reduction in serum transaminases was significant and observed across the study. In conclusion, IDN-6556 when administered in cold storage and flush solutions during liver transplantation offers local therapeutic protection against CI/WR-mediated apoptosis and injury. However, larger studies are required to confirm these observations.
Collapse
Affiliation(s)
- E S Baskin-Bey
- William J. von Liebig Transplant Center, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stadler M, Nuyens V, Boogaerts JG. Intralipid minimizes hepatocytes injury after anoxia-reoxygenation in an ex vivo rat liver model. Nutrition 2007; 23:53-61. [PMID: 17084595 DOI: 10.1016/j.nut.2006.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 08/17/2006] [Accepted: 08/21/2006] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Ischemia-reperfusion injury is a determinant in liver injury occurring during surgical procedures, ischemic states, and multiple organ failure. The pre-existing nutritional status of the liver, i.e., fasting, might contribute to the extent of tissue injury. This study investigated whether Intralipid, a solution containing soybean oil, egg phospholipids, and glycerol, could protect ex vivo perfused livers of fasting rats from anoxia-reoxygenation injury. METHODS The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Isolated livers were perfused with glucose 5.5 and 15 mM, and two different concentrations of Intralipid, i.e., 0.5:100 and 1:100 (v/v) Intralipid 10%:medium (n = 5 in each group). The experiment consisted of perfusion for 15 min, warm anoxia for 60 min, and reoxygenation during 60 min. Hepatic enzymes, potassium, glucose, lactate, bilirubin, dienes, trienes, and cytochrome-c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in biopsies. RESULTS Intralipid attenuated transaminases, lactate dehydrogenase, potassium, diene, and triene release in the perfusate (dose-dependant) during the reoxygenation phase when compared with glucose-treated groups. The concentration of cytochrome-c in the medium was the highest in the 5.5-mM glucose group. The glycogen content was low in all livers at the start of the experiment. CONCLUSION Intralipid presents, under the present experimental conditions, a better protective effect than glucose in anoxia-reoxygenation injury of the rat liver.
Collapse
Affiliation(s)
- Michaela Stadler
- Department of Anesthesiology, University Hospital Center, Charleroi, Belgium.
| | | | | |
Collapse
|
33
|
Polat E, Topaloglu S, Sokmensuer C, Topaloglu E, Avsar FM, Ozel H, Saygun O, Yildiz I, Ucar G, Hengirmen S. Heterogeneity of Damage Between Segments of Rat Liver After Inflow-Outflow Obstruction. Transplant Proc 2006; 38:3075-81. [PMID: 17112903 DOI: 10.1016/j.transproceed.2006.08.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Indexed: 01/11/2023]
Abstract
BACKGROUND Total vascular exclusion (TVE) causes warm liver ischemia. The complete explanation of the events during inflow and outflow obstruction of the liver during selective TVE has not yet been studied. The aim of this study was to investigate the liver injury caused by inflow-outflow obstruction in the rat liver. MATERIALS AND METHODS Forty Wistar-Albino rats were divided into four groups. Liver inflow occlusion (groups A and C) or inflow-outflow occlusion (groups B and D) was applied for 30 minutes. Samples were collected at the end of the ischemia period. We examined oxidative injury in the liver tissue and liver histopathology. RESULTS Oxidative stress and histopathologic alterations were more prominent with TVE application. Significant alterations were shown in hepatic superoxide dismutase, glutathione, and glutathione S-transferase levels. Central segments of the rat liver were affected significantly from inflow occlusion, whereas dome segments were significantly damaged from inflow-outflow occlusion. CONCLUSIONS Inflow-outflow occlusion of the liver caused more tissue damage compared with inflow occlusion. The pattern of distribution of the damage due to TVE seemed different from other well-known ischemia-reperfusion injuries.
Collapse
Affiliation(s)
- E Polat
- Department of Surgery, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Apoptosis mediated via extrinsic or intrinsic pathways is essential for maintaining cellular homeostasis in the liver. The extrinsic pathway is triggered from the cell surface by engagement of death receptors as CD95, TRAIL (TNF-related apoptosis inducing ligand) and TNF (tumour necrosis factor) or TGF-beta (transforming growth factor beta) receptors. The intrinsic pathway is initiated from the mitochondria and can be influenced by Bcl-2 family members. Both pathways are intertwined and play a physiological role in the liver. Dysregulation of apoptosis pathways contributes to diseases as hepatocellular carcinoma, viral hepatitis, autoimmune hepatitis, ischaemia-reperfusion injury, iron or copper deposition disorders, toxic liver damage and acute liver failure. The apoptosis defects are often central pathogenetic events; hence molecular mechanisms of apoptosis give not only insight into disease mechanisms but also provide potential corresponding therapeutic candidates in liver disease. The focus of this review is the identification of apoptotic signalling components in the liver as therapeutic targets.
Collapse
Affiliation(s)
- Sören T Eichhorst
- Ludwig-Maximilians-University, University Hospital Grosshadern, Department of Internal Medicine II, Research Lab B 5 E01 308, Marchioninistrasse 15, D-81377 Munich, Germany.
| |
Collapse
|
35
|
Abstract
Apoptosis or programmed cell death occurs in the liver as in other organs. In the normal state it is not a frequent mode of hepatic cell destruction. Morphological and biochemical characteristics of liver cell apoptosis do not differ from what is observed in other cells. The Fas receptor pathway, a frequent hepatic apoptotic pathway among various others, involves intra-cellular signals amplified by mitochondria. Although hepatic apoptosis may occur by following several others pathways, Fas, which is abundantly expressed in the plasma membrane of hepatocytes, is very often involved in hepatocyte demise during B or C viral hepatitis irrespective of their clinical form, alcoholic hepatitis, cholestasis due to accumulation of hepatic biliary salts, or certain types of drug-induced hepatitis. Fas is also probably responsible for the death of biliary cells in primary biliary cirrhosis. In contrast one of the causes of resistance to apoptosis of hepatic cancerous cells could be related to an alteration of the Fas receptor. This is why much experimental work is presently performed to achieve inhibition of the Fas receptor either at the mRNA level or at the level of Fas-inductible proteolytic enzymes called caspases. One perspective is a specific treatment of apoptosis as an adjuvant treatment of liver diseases.
Collapse
Affiliation(s)
- Gérard Feldmann
- INSERM U 773, Faculté de Médecine Xavier Bichat, Université Paris 7- Denis Diderot, Paris.
| |
Collapse
|
36
|
Borozan I, Chen L, Sun J, Tannis LL, Guindi M, Rotstein OD, Heathcote J, Edwards AM, Grant D, McGilvray ID. Gene expression profiling of acute liver stress during living donor liver transplantation. Am J Transplant 2006; 6:806-24. [PMID: 16539639 DOI: 10.1111/j.1600-6143.2006.01254.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During liver transplantation, the donor graft is subjected to a number of acute stresses whose molecular basis is not well-understood. The effects of surgical stress, preservation and reperfusion injury were studied in 24 consecutive living donor liver transplant (LDLT) operations. Liver biopsies were taken early in the donor operation (OPENING), after transection of the donor liver (PRECLAMP) and following implantation of the graft (post hepatic artery, [PHA]); these were evaluated for histology, tissue glutathione content and gene expression using a 19K-human cDNA microarray. LDLT was associated with an ischemia/reperfusion injury, with accumulation of small numbers of neutrophils and decreased glutathione in the PHA biopsies. Following reperfusion, the expression of 129 genes increased and 106 genes decreased when compared to OPENING levels (> or <2-fold, p < 0.01). By real-time PCR a subset of 25 genes was verified (15 increased, 10 decreased). These genes were similarly altered in another condition of acute liver stress (the response to brain-death), but not in three chronic liver disease states (HCV, HBV and PBC). This study has identified a set of genes whose expression is altered in acute, but not chronic, liver stress, likely to play a central role in the pathogenesis of acute liver injury of liver transplantation.
Collapse
Affiliation(s)
- I Borozan
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Barrier A, Olaya N, Chiappini F, Roser F, Scatton O, Artus C, Franc B, Dudoit S, Flahault A, Debuire B, Azoulay D, Lemoine A. Ischemic preconditioning modulates the expression of several genes, leading to the overproduction of IL-1Ra, iNOS, and Bcl-2 in a human model of liver ischemia-reperfusion. FASEB J 2006; 19:1617-26. [PMID: 16195370 DOI: 10.1096/fj.04-3445com] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ischemia triggers an inflammatory response that precipitates cell death during reperfusion. Several studies have shown that tissues are protected by ischemic preconditioning (IP) consisting of 10 min of ischemia followed by 10 min of reperfusion just before ischemia. The molecular basis of this protective effect is poorly understood. We used cDNA arrays (20K) to compare global gene expression in liver biopsies from living human liver donors who underwent IP (n=7) or not (n=7) just before liver devascularization. Microarray data were analyzed using pairedt test with a type I error rate fixed at alpha = 2.5 10(6) (Bonferroni correction). We found that 60 genes were differentially expressed (36 over- and 24 underexpressed in preconditioning group). After IP, the most significantly overexpressed gene was IL-1Ra. This was confirmed by immunoblotting. Differentially expressed were genes involved in apoptosis (NOD2, ephrin-A1, and calpain) and in the carbohydrate metabolism. A significant increase in the amount of the anti-apoptotic protein Bcl-2 in preconditioned livers but no change in the cleavage of procaspase-3, -8, and -9 was observed. We also observed an increase in the amount in the inducible nitric oxide synthase. Therefore, the benefits of IP may be associated with the overproduction of IL-1Ra, Bcl-2, and NO countering the proinflammatory and proapoptotic effects generated during ischemia-reperfusion.
Collapse
Affiliation(s)
- Alain Barrier
- Inserm 602; Service de Biochimie et Biologie Moléculaire; Hôpital Universitaire Paul Brousse; Université Paris-Sud/XI, Villejuif Cedex; Assistance Publique-Hôpitaux de Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Death of hepatocytes and other hepatic cell types is a characteristic feature of liver diseases as diverse as cholestasis, viral hepatitis, ischemia/reperfusion, liver preservation for transplantation and drug/toxicant-induced injury. Cell death typically follows one of two patterns: oncotic necrosis and apoptosis. Necrosis is typically the consequence of acute metabolic perturbation with ATP depletion as occurs in ischemia/reperfusion and acute drug-induced hepatotoxicity. Apoptosis, in contrast, represents the execution of an ATP-dependent death program often initiated by death ligand/death receptor interactions, such as Fas ligand with Fas, which leads to a caspase activation cascade. A common event leading to both apoptosis and necrosis is mitochondrial permeabilization and dysfunction, although the mechanistic basis of mitochondrial injury may vary in different settings. Prevention of these modes of cell death is an important target of therapy, but controversies still exist regarding which mode of cell death predominates in various forms of liver disease and injury. Resolution of these controversies may come with the recognition that apoptosis and necrosis frequently represent alternate outcomes of the same cellular pathways to cell death, especially for cell death mediated by mitochondrial permeabilization. An understanding of processes leading to liver cell death will be important for development of effective interventions to prevent hepatocellular death leading to liver failure and to promote cancer and stellate cell death in malignancy and fibrotic disease.
Collapse
Affiliation(s)
- Harmeet Malhi
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | |
Collapse
|
39
|
Vilatoba M, Eckstein C, Bilbao G, Smyth CA, Jenkins S, Thompson JA, Eckhoff DE, Contreras JL. Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis. Surgery 2005; 138:342-51. [PMID: 16153446 DOI: 10.1016/j.surg.2005.04.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 04/15/2005] [Indexed: 01/03/2023]
Abstract
BACKGROUND Evidence is emerging that the endoplasmic reticulum (ER) participates in initiation of apoptosis induced by the unfolded protein response and by aberrant Ca(++) signaling during cellular stress such as ischemia/reperfusion injury (I/R injury). ER-induced apoptosis involves the activation of caspase-12 and C/EBP homologous protein (CHOP), and the shutdown of translation initiated by phosphorylation of eIF2alpha. Sodium 4-phenylbutyrate (PBA) is a low molecular weight fatty acid that acts as a chemical chaperone reducing the load of mutant or unfolded proteins retained in the ER during cellular stress and also exerting anti-inflammatory activity. It has been used successfully for treatment of urea cycle disorders and sickle cell disease. Thus, we hypothesized that PBA may reduce ER-induced apoptosis triggered by I/R injury to the liver. METHODS Groups of male C57BL/6 mice were subjected to warm ischemia (70% of the liver mass, 45 minutes). Serum aspartate aminotransferase was assessed 6 hours after reperfusion; apoptosis was evaluated by enzyme-linked immunosorbent assays of caspase-12 and plasma tumor necrosis factor alpha, Western blot analyses of eIF2alpha, and reverse transcriptase-polymerase chain reaction of CHOP expression. RESULTS A dose-dependent decrease in aspartate aminotransferase was demonstrated in mice given intraperitoneal PBA (1 hour before and 12 hours after reperfusion), compared with vehicle-treated controls; this effect was associated with reduced pyknosis, parenchymal hemorrhages, and neutrophil infiltrates in PBA-treated mice, compared with controls. In a lethal model of total liver I/R injury, all vehicle-treated controls died within 3 days after reperfusion. In contrast, 50% survival (>30 days) was observed in animals given PBA. The beneficial effects of PBA were associated with a greater than 45% reduction in apoptosis, decreased ER-mediated apoptosis characterized by significant reduction in caspase-12 activation, and reduced levels of both phosphorylated eIF2alpha and CHOP. Significant reductions in plasma levels of tumor necrosis factor alpha and liver myeloperoxidase content were demonstrated after PBA treatment. CONCLUSIONS Reduction in ER stress-induced hepatocellular injury was achieved by the administration of PBA. Targeting the ER-associated cell death pathway might offer a novel approach to reduce I/R injury to the liver.
Collapse
Affiliation(s)
- Mario Vilatoba
- Division of Transplantation and Transplant Center, Department of Surgery, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rentsch M, Puellmann K, Sirek S, Iesalnieks I, Kienle K, Mueller T, Bolder U, Geissler E, Jauch KW, Beham A. Benefit of Kupffer cell modulation with glycine versus Kupffer cell depletion after liver transplantation in the rat: effects on postischemic reperfusion injury, apoptotic cell death graft regeneration and survival. Transpl Int 2005; 18:1079-89. [PMID: 16101730 DOI: 10.1111/j.1432-2277.2005.00185.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inhibition or destruction of Kupffer cells (KC) may protect against ischemia-reperfusion (IR) induced primary graft nonfunction (PNF) in liver transplantation. Besides KC activation, PNF is characterized by microvascular perfusion failure, intrahepatic leukocyte accumulation, cell death and hepatocellular dysfunction. KCs can be inactivated by different agents including gadolinium chloride (GdCl3), methyl palmitate (MP) and glycine. The effects of three KC inactivators on IR-injury after rat liver transplantation were compared in the present study. Lewis liver donors were treated with GdCl3, MP, glycine or saline (control). Liver grafts were transplanted following 24 h storage (UW solution). KC populations and IR damage were assessed by histologic analysis, quantitative real-time polymerase chain reaction (RT-PCR) and intravital microscopy. The number of hepatic ED-1 positive macrophages was diminished after GdCl3 (114.8+/-4.4/mm2 liver tissue) and MP treatment (176.0+/-5.0), versus the glycine (263.9+/-5.5) and control (272.1+/-5.6) groups. All three treatment modalities downregulated phagocytic activity for latex particles, paralleled by reduced microvascular injury (acinar perfusion index, GdCl3: 0.75+/-0.03; MP: 0.83+/-.03; glycine: 0.84+/-0.03; 0.63+/-0.03). Quantitative RT-PCR revealed elevated myeloperoxidase mRNA after glycine versus GdCl3 and MP pretreatment (3.2- and 3.4-fold, P=0.011, respectively), without difference to controls (2.9-fold of glycine). TNFalpha-mRNA was reduced after glycine- (5.2-fold), GdCl3- (19.7-fold), MP-treatment (39.5-fold) compared with controls. However, profound prevention of intrahepatic cell death and liver graft failure was solely achieved with glycine preconditioning. Different than GdCl3 and MP, glycine modulates rather than destroys KCs. Glycine appears to preserve cell viability and to TNFalpha/leukocyte dependent organ regeneration capacity, which is related to increase graft survival following liver transplantation.
Collapse
Affiliation(s)
- Markus Rentsch
- Department of Surgery, Ludwig-Maximilians University of Munich, Klinikum Grosshadern, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The integrity of the endothelial lining of the vasculature is essential for vascular homeostasis and normal organ function. Endothelial injury or dysfunction has been implicated in the pathogenesis of diverse vascular diseases. Studies in vitro have demonstrated that a wide variety of stimuli can induce programmed cell death (apoptosis) of endothelial cells, and have suggested that apoptosis could be an important mechanism of vascular injury, resulting in vascular leak, inflammation, and coagulation. In this review, we focus on the potential role of endothelial apoptosis in the initiation and progression of inflammatory and immune disorders, reviewing human diseases and in vivo models in which endothelial cell apoptosis has been demonstrated. Although endothelial cell apoptosis is observed in many inflammatory and immune disorders, we find that there is, as yet, only limited experimental evidence demonstrating that it is critical to the pathogenesis of disease.
Collapse
Affiliation(s)
- R K Winn
- Department of Surgery, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
42
|
Quadri SM, Segall L, de Perrot M, Han B, Edwards V, Jones N, Waddell TK, Liu M, Keshavjee S. Caspase inhibition improves ischemia-reperfusion injury after lung transplantation. Am J Transplant 2005; 5:292-9. [PMID: 15643988 DOI: 10.1111/j.1600-6143.2004.00701.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury is associated with cell death in many organ systems. The role of programmed cell death (PCD) pathways and the ultimate clinical relevance of PCD in the context of lung transplantation (LTx) are unknown. In randomized and blinded studies, rat single LTx was performed in the presence of caspase inhibitors after 'short' (6 h) and 'long' (18 h) periods of cold ischemic storage. Lung function, electron microscopic morphology, caspase 3, 8 and 9 activities and TUNEL assays were evaluated. Endothelial cells and lymphocytes were observed undergoing apoptotic cell death with electron microscopy. Caspase activities were significantly up-regulated immediately after the initial flush and increased further during short periods of cold ischemic storage. A significant amount of apoptotic cell death was observed after LTx and reperfusion. Caspase inhibition virtually eliminated apoptotic cell death and led to improved lung function after LTx and reperfusion. Activation of caspases during cold ischemia contributes significantly to cell death in LTx. Suppression of caspase activity appears to decrease apoptosis and improve lung function. Clearly, this needs to be investigated further with more experiments to validate the potential role of caspase inhibition as a therapeutic modality in ischemia-reperfusion-induced lung injury.
Collapse
Affiliation(s)
- Syed M Quadri
- Thoracic Surgery Research Laboratory, Toronto General Research Institute, University Health Network - Toronto General Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rivo J, Zeira E, Galun E, Matot I. Activation of A3 adenosine receptor provides lung protection against ischemia-reperfusion injury associated with reduction in apoptosis. Am J Transplant 2004; 4:1941-8. [PMID: 15575895 DOI: 10.1111/j.1600-6143.2004.00620.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apoptosis has been described in various models of ischemia-reperfusion (IR) injury, including lung transplantation. A3 adenosine receptor (AR) has been linked to a variety of apoptotic processes. The effect of A3AR activation on lung injury and apoptosis, following IR, has not been reported to date. In a spontaneously breathing cat model, in which the left lower lobe of the lung was isolated and subjected to 2 h of ischemia and 3 h of reperfusion, we tested the effect of IB-MECA, a selective A3AR agonist, on lung apoptosis and injury. Significant increase in the extent of apoptosis was observed following lung reperfusion. IB-MECA, administered before IR, and before or with reperfusion, markedly (p < 0.01) attenuated indices of injury and apoptosis including the percentage of injured alveoli, wet/dry weight ratio, myeloperoxidase activity, in situ terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) positive cells, and caspase 3 activity and expression. The protective effects of IB-MECA were completely blocked by pretreatment with the selective A3AR antagonist MRS-1191. In summary, even when given after the onset of ischemia, the A3AR agonist IB-MECA conferred a powerful protection against reperfusion lung injury, which was associated with decreased apoptosis. This suggests a potentially important role for A3AR in lung IR injury.
Collapse
Affiliation(s)
- Julia Rivo
- Department of Anesthesiology & Critical Care Medicine, Hadassah University Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
44
|
Contreras JL, Vilatoba M, Eckstein C, Bilbao G, Anthony Thompson J, Eckhoff DE. Caspase-8 and caspase-3 small interfering RNA decreases ischemia/reperfusion injury to the liver in mice. Surgery 2004; 136:390-400. [PMID: 15300206 DOI: 10.1016/j.surg.2004.05.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ischemia/reperfusion injury (I/R injury) of the liver remains a significant problem during liver surgery and transplantation. I/R injury is associated with liver apoptosis, which is mediated by death receptors such as Fas and tumor necrosis factor alpha (TNF-alpha), and/or mitochondrial dysfunction induced by cellular stress. Caspase-8 is presumed to be the apex of the death-mediated apoptosis pathway, whereas caspase-3 belongs to the "effector" proteases in the apoptosis cascade. Synthetic small interfering RNAs (siRNAs) specifically suppress gene expression by RNA interference. Therefore, we evaluated the therapeutic efficacy of caspase-8 and caspase-3 siRNA in a murine model of liver I/R injury. METHODS In C57BL/6 mice, 45% or 70% of the liver mass was clamped for 90 minutes. For survival analysis, total hepatic ischemia was induced for 45 minutes. In vivo delivery of siRNA was performed via the portal vein by high-volume injection (0.5 nmol of siRNA in 1 mL containing 10% lipiodol) 60 minutes before ischemia. As a control, animals received either vehicle or non-sense siRNA (siRNA-scrambled). RESULTS Liver uptake of siRNA was analyzed in transgenic mice who express beta-galactosidase (beta-gal) (C57BL/6J-TgN(MTn-LacZ)204Bri) after administration of siRNA-LacZ. A 3- to 4-fold decrease in beta-gal activity was accomplished at 0.5 nmol. No significant change in beta-gal activity was demonstrated in mice receiving non-sense siRNA. Immunohistochemical studies found that 60% of the liver cells efficiently took up siRNA. Significant reduction in serum aspartate transaminase was found in animals treated with siRNA caspase-8 or caspase-3 compared with siRNA-scrambed or vehicle-treated controls. More than a 60% reduction in caspase-8 and caspase-3 gene expression and activities was accomplished after siRNA administration. Animals treated with siRNA presented lower infiltration of polymorphonuclear leukocytes and better preservation of the liver architecture compared with controls. All of the control mice subjected to total liver ischemia died within 5 days. In contrast, 30% of the animals given siRNA caspase-8 and 50% of those treated with siRNA caspase-3 survived indefinitely (>30 days). CONCLUSIONS Small interfering RNA targeted to caspase-8 and caspase-3 provided significant protection against I/R injury to the liver. This approach could be therapeutic in liver transplantation and other conditions associated with I/R injury to the liver.
Collapse
Affiliation(s)
- Juan L Contreras
- Division of Transplantation and Transplant Center, Department of Surgery, University of Alabama at Birmingham, USA
| | | | | | | | | | | |
Collapse
|
45
|
Rauen U, de Groot H. New Insights into the Cellular and Molecular Mechanisms of Cold Storage Injury. J Investig Med 2004. [DOI: 10.1177/108155890405200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Solid organ grafts, but also other biologic materials requiring storage for a few hours to a few days, are usually stored under hypothermic conditions. To decrease graft injury during cold storage, organ preservation solutions were developed many years ago. However, since then, modern biochemical and cell biologic methods have allowed further insights into the molecular and cellular mechanisms of cold storage injury, including further insights into alterations of the cellular ion homeostasis, the occurrence of a mitochondrial permeability transition, and the occurrence of free–radical-mediated hypothermic injury and cold-induced apoptosis. These new aspects of cold storage injury, which are not covered by preservation solutions in current clinical use and offer the potential for improvement of organ and tissue preservation, are presented here.
Collapse
Affiliation(s)
- Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum, Essen, Germany
| | - Herbert de Groot
- Institut für Physiologische Chemie, Universitätsklinikum, Essen, Germany
| |
Collapse
|
46
|
Huet PM, Nagaoka MR, Desbiens G, Tarrab E, Brault A, Bralet MP, Bilodeau M. Sinusoidal endothelial cell and hepatocyte death following cold ischemia-warm reperfusion of the rat liver. Hepatology 2004; 39:1110-9. [PMID: 15057915 DOI: 10.1002/hep.20157] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cold ischemia-warm reperfusion (CI-WR) injury of the liver is characterized by marked alterations of sinusoidal endothelial cells (SECs), whereas hepatocytes appear to be relatively unscathed. However, the time course and mechanism of cell death remain controversial: early versus late phenomenon, necrosis versus apoptosis? We describe the occurrence and nature of cell death after different periods of CI with University of Wisconsin (UW) solution and after different periods of WR in the isolated perfused rat liver model. After 24- and 42-hour CI (viable and nonviable livers, respectively), similar patterns of liver cell death were seen: SEC necrosis appeared early after WR (10 minutes) and remained stable for up to 120 minutes. After 30 minutes of WR, apoptosis increased progressively with WR length. Based on morphological criteria, apoptotic cells were mainly hepatocytes within liver plates or extruded in the sinusoidal lumen. In addition, only after 42-hour CI were large clusters of necrotic hepatocytes found in areas of congested sinusoids. In these same livers, the hepatic microcirculation, evaluated by means of the multiple-indicator dilution technique, revealed extracellular matrix disappearance with no-flow areas. In conclusion, different time courses and mechanisms of cell death occur in rat livers after CI-WR, with early SEC necrosis followed by delayed hepatocyte apoptosis. These processes do not appear to be of major importance in the mechanism of graft failure because they are similar under both nonlethal and lethal conditions; this is not the case for the loss of the extracellular matrix found only under lethal conditions and associated with hepatocyte necrosis.
Collapse
|
47
|
Bresgen N, Rolinek R, Hochleitner E, Lottspeich F, Eckl PM. Induction of apoptosis by a hepatocyte conditioned medium. J Cell Physiol 2004; 198:452-60. [PMID: 14755550 DOI: 10.1002/jcp.10439] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Incubation of primary cultures of parenchymal hepatocytes in a conditioned medium (CM), collected over the first 3 h of serum-free rat hepatocyte culture (CM(0-3)), induces a time dependent increase of the frequency of apoptotic cells which is accompanied by prominent changes of cell morphology. Short-term treatment with CM(0-3) for the first 3 h of culture is sufficient to significantly (P < 0.05) increase the frequency of apoptotic cells, however, the effect is more pronounced upon long-term treatment. Although apoptosis induction by CM(0-3) is independent of the timepoint when cultivation in CM(0-3) starts, our results suggest that the sensitivity for apoptosis induction by CM(0-3) is increased during the phase of attachment. Purification of CM(0-3) resulted in a fraction which significantly (P < 0.05) induced apoptosis at concentrations >/=10 ng/ml. Exposure of cultures to concentrations >/=1 microg/ml of purified CM(0-3) gave rise to a prominent cytotoxic effect as indicated by the massive occurrence of necrotic cells. Biochemical analysis showed that the purified fraction of CM(0-3) contains acidic ferritins with molecular weight of 23 and 43 kDa. Strikingly, both share homologies with placental isoferritins (PLF), for which growth inhibitory and immunosuppressive effects have been demonstrated by several investigations. Therefore, our results provide evidence that rat hepatocytes produce PLF or PLF-related acidic isoferritins which are able to induce apoptosis.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Institute of Genetics and General Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | |
Collapse
|
48
|
Miranda LEC, Viaro F, Ceneviva R, Evora PRB. As bases experimentais da lesão por isquemia e reperfusão do fígado: revisão. Acta Cir Bras 2004. [DOI: 10.1590/s0102-86502004000100001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O transplante hepático tornou-se o procedimento de escolha para o tratamento da doença hepática terminal. Não obstante o sucesso da cirurgia, a disfunção pós-operatória do fígado enxertado ainda representa importante causa de morbidade e mortalidade. O restabelecimento do fluxo sangüíneo ao fígado recém transplantado impõe a ele nova agressão, agravando a lesão causada pelo período de isquemia. Este fenômeno pouco compreendido é conhecido como lesão por isquemia e reperfusão e envolve disfunção endotelial, seqüestro de leucócitos e agregação de plaquetas, lesão por radicais livre de oxigênio, e distúrbios da microcirculação hepática. Essa revisão discute os vários aspectos fisiopatológicos que estão envolvidos na lesão por isquemia e reperfusão do fígado.
Collapse
|
49
|
Abrahamse SL, van Runnard Heimel P, Hartman RJ, Chamuleau RAFM, van Gulik TM. Induction of necrosis and DNA fragmentation during hypothermic preservation of hepatocytes in UW, HTK, and Celsior solutions. Cell Transplant 2003; 12:59-68. [PMID: 12693665 DOI: 10.3727/000000003783985160] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Donor cells can be preserved in University of Wisconsin (UW), histidine-tryptophan-ketoglutarate (HTK), or Celsior solution. However, differences in efficacy and mode of action in preventing hypothermia-induced cell injury have not been unequivocally clarified. Therefore, we investigated and compared necrotic and apoptotic cell death of freshly isolated primary porcine hepatocytes after hypothermic preservation in UW, HTK, and Celsior solutions and subsequent normothermic culturing. Hepatocytes were isolated from porcine livers, divided in fractions, and hypothermically (4 degrees C) stored in phosphate-buffered saline (PBS), UW, HTK, or Celsior solution. Cell necrosis and apoptosis were assessed after 24- and 48-h hypothermic storage and after 24-h normothermic culturing following the hypothermic preservation periods. Necrosis was assessed by trypan blue exclusion, lactate dehydrogenase (LDH) release, and mitochondrial 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction. Apoptosis was assessed by the induction of histone-associated DNA fragments and cellular caspase-3 activity. Trypan blue exclusion, LDH release, and MTT reduction of hypothermically preserved hepatocytes showed a decrease in cell viability of more than 50% during the first 24 h of hypothermic preservation. Cell viability was further decreased after 48-h preservation. DNA fragmentation was slightly enhanced in hepatocytes after preservation in all solutions, but caspase-3 activity was not significantly increased in these cells. Normothermic culturing of hypothermically preserved cells further decreased cell viability as assessed by LDH release and MTT reduction. Normothermic culturing of hypothermically preserved hepatocytes induced DNA fragmentation, but caspase-3 activity was not hanced in these cells. Trypan blue exclusion, LDH leakage, and MTT reduction demonstrated the highest cell viability after storage in Celsior, and DNA fragmentation was the lowest in cells that had been stored in PBS and UW solutions. None of the preservation solutions tested in this study was capable of adequately preventing cell death of isolated porcine hepatocytes after 24-h hypothermic preservation and subsequent 24-h normothermic culturing. Culturing of isolated and hypothermically preserved hepatocytes induces DNA fragmentation, but does not lead to caspase-3 activation. With respect to necrosis and DNA fragmentation of hypothermically preserved cells, UW and Celsior were superior to PBS and HTK solutions in this model of isolated porcine hepatocyte preservation.
Collapse
Affiliation(s)
- Salomon L Abrahamse
- Departments of Surgery (Surgical Laboratory), Academic Medical Center, The University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Fischer S, De Perrot M, Liu M, MacLean AA, Cardella JA, Imai Y, Suga M, Keshavjee S. Interleukin 10 gene transfection of donor lungs ameliorates posttransplant cell death by a switch from cellular necrosis to apoptosis. J Thorac Cardiovasc Surg 2003; 126:1174-80. [PMID: 14566265 DOI: 10.1016/s0022-5223(03)00114-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND We have previously shown that cell death is a pathophysiologic consequence of ischemia-reperfusion and that interleukin-10 gene therapy improves the function of transplanted lungs. Interleukin-10 downregulates the inflammatory response and can inhibit apoptosis. The objective was to determine whether donor lung transfection with the interleukin-10 gene ameliorates lung dysfunction by decreasing cell death after transplantation. METHODS Single lung transplants were performed in 3 groups of rats (n = 5 each): AdhIL-10, transtracheal administration of Ad5E1RSVhIL-10 (5 x 10(9) pfu); EV, empty vector; and VD, vector diluent (3% sucrose). After in vivo transfection, donor lungs were excised, stored at 4 degrees C for 24 hours, and then transplanted. After 2 hours of reperfusion, lungs were flushed with trypan blue and fixed. TUNEL staining was used for the detection of apoptosis. This combined staining technique allows one to determine the mode of cell death by distinguishing apoptotic dead cells from necrotic dead cells. RESULTS Lung function was superior in the interleukin-10 group (P =.0001) vs the EV and VD group (Pao(2): 240 +/- 31 mm Hg vs 98 +/- 17 mm Hg vs 129 +/- 11 mm Hg, respectively). Although the total number of dead cells (as percent of total cells) was similar in all groups (32.7% +/- 3.2%, 30.2% +/- 2.5%, and 30.3% +/- 3.8%), interestingly, apoptosis was highest in interleukin-10 lungs (9.7 +/- 1.9 vs 2 +/- 1.9 and 1.8 +/- 2, P =.0001), and necrosis was lowest in the interleukin-10 group (20.6 +/- 5.7 vs 28.3 +/- 3.1 and 30.3 +/- 4.2, P =.01). CONCLUSIONS AdhIL-10 gene transfection improves function of transplanted lungs. Although the total number of cells dying as a result of the transplant process did not change, the mode of cell death appears to have been modified. It is possible that AdhIL-10, by decreasing proinflammatory cytokine production, ameliorates the overall injury and preserves the ability of damaged cells to undergo a more quiescent and less tissue-damaging mode of cell death-apoptosis, rather than necrosis.
Collapse
Affiliation(s)
- Stefan Fischer
- Thoracic Surgery Research Laboratory, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|