1
|
Xu Z, Song R, Chen Z, Sun Y, Xia Y, Miao H, Wang W, Zhang Y, Jiang X, Chen G. Hydrogen generators-protected mesenchymal stem cells reverse articular redox imbalance-induced immune dysfunction for osteoarthritis treatment. Biomaterials 2025; 320:123239. [PMID: 40054376 DOI: 10.1016/j.biomaterials.2025.123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 04/06/2025]
Abstract
Stem cell therapy has revolutionized the management of osteoarthritis (OA), but the articular dysregulated redox status diminishes cell engraftment efficiency and disrupts immune homeostasis, therefore compromising the overall therapeutic efficacy. Here, we present hydrogen (H2) generators-backpacked mesenchymal stem cells (MSCs) which preserve the biological functions and survival of transplanted cells and reverse articular immune dysfunction, mitigating OA. Specifically, post systemic transplantation, H2 generators-laden MSCs home to OA joints, and upon stimulation in acidic OA environment, H2 produced from the generators remodels articular redox balance, thereby relieving the loss of mitochondrial membrane potential, decreasing cell apoptosis rate, and maintaining pluripotent and paracrine functions of MSCs. Furthermore, the reactive oxygen species scavenging by H2 in combination with paracrine effects of the MSCs promote macrophage polarization towards the anti-inflammatory M2 phenotype, which contributes to reversing synovial immune disorder. In severe OA model, the backpacked MSCs reduce osteoarthritic degeneration, osteophyte formation and joint inflammation, and promote cartilage regeneration. In sum, our work demonstrates that arming with H2 generators effectively boosts the therapeutic efficacy of MSCs, which hold great potential for alleviating redox imbalance-related tissue lesions, including but not limited to OA.
Collapse
Affiliation(s)
- Zhou Xu
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China; Shandong Provincial Key Medical and Health Laboratory of Neuro-oncology of Innovative Integrated Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Qingdao, 266024, China; Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiling Chen
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Yu Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yinhe Xia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Haixiang Miao
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Weijie Wang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Yuankai Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xinyi Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Gang Chen
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China; Shandong Provincial Key Medical and Health Laboratory of Neuro-oncology of Innovative Integrated Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Qingdao, 266024, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Zhang Y, Ge Y, Wu S, Shao Y, Lu Y, Zhao X, Gu J, Wang Y. Superoxide anion-responsive persulfide and all-trans retinoic acid co-donating peptide assemblies attenuate myocardial ischemia-reperfusion injury. Biomaterials 2025; 320:123276. [PMID: 40120175 DOI: 10.1016/j.biomaterials.2025.123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) has become a severe threat to human health due to its high mortality rate and poor prognosis. Mutually entangled issues including ROS over-production, excessive inflammatory responses, and myocardial apoptosis are involved during MIRI. Effective inhibition of ROS burst at the beginning of reperfusion has been proved as the key for MIRI treatment. In this work, we report a superoxide anion-responsive peptide co-assembly (S/A-P) capable of delivering the H2S donor (i.e., superoxide-responsive persulfide donor) and all-trans retinoic acid (ATRA) simultaneously for the treatment. Our results suggest that compared with its single peptidic counterparts, the as-prepared system can significantly lower ROS production and repair myocardial mitochondrial dysfunction due to the synergy effect from the persulfides/H2S and ATRA. Moreover, S/A-P can reduce excessive inflammatory response through regulating macrophage polarization, which is further mapped by RNA sequencing. In vivo assessment of the co-assembly also displays an excellent therapeutic effect of MIRI on rats. In terms of good biocompatibility and outstanding efficacy, we believe that S/A-P will have a bright future for the treatment of cardiovascular diseases or other related diseases.
Collapse
Affiliation(s)
- Yanwen Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuxuan Ge
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiqi Wu
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200125, China
| | - Yiyang Shao
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujia Lu
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Yin Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
de Brito Monteiro L, Archambault AS, Starchuk LF, Alcazar A, Oh JH, Dubland JA, Rakić B, Patterson AE, Verchere CB, Klein Geltink RI. Inhibition of xanthine oxidoreductase with febuxostat, but not allopurinol, prevents inflammasome assembly and IL-1β release. Life Sci Alliance 2025; 8:e202403191. [PMID: 40399065 PMCID: PMC12095928 DOI: 10.26508/lsa.202403191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/30/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025] Open
Abstract
Xanthine oxidoreductase (XOR) inhibitors are used to treat gout, inhibiting uric acid production, which causes clinical symptoms. Commonly used XOR inhibitors are the small molecule febuxostat (Fbx) and the purine analogue allopurinol (Allo). Recent studies show that XOR inhibitors can reduce mature interleukin (IL)-1β production by activated macrophages. This effect is not due to reduced uric acid crystal formation, which can induce NLRP3 inflammasome activation, but an independent effect. Fbx and Allo have been used interchangeably in in vitro studies to highlight the role of XOR in pro-inflammatory macrophage function. Here, we analysed the effects of Fbx and Allo on pro-inflammatory macrophage signatures. Both XOR inhibitors maintain pro-inflammatory macrophage metabolic and phenotypic hallmarks. However, only Fbx reduces the activity of caspase-1 and the release of IL-1β by preventing inflammasome assembly in macrophages isolated from both mice and humans. Our study identified an Fbx-specific reduction in IL-1β production, which could be used clinically to reduce the deleterious effects of macrophage-derived IL-1β.
Collapse
Affiliation(s)
- Lauar de Brito Monteiro
- BC Children's Hospital Research Institute, Vancouver, Canada
- University of British Columbia, Department of Surgery, Vancouver, Canada
| | - Anne-Sophie Archambault
- BC Children's Hospital Research Institute, Vancouver, Canada
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Lucas F Starchuk
- BC Children's Hospital Research Institute, Vancouver, Canada
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Armando Alcazar
- University of British Columbia, Department of Biochemistry and Molecular Biology, Vancouver, Canada
| | - Ju Hee Oh
- BC Children's Hospital Research Institute, Vancouver, Canada
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Joshua A Dubland
- BC Children's Hospital Research Institute, Vancouver, Canada
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
- University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Bojana Rakić
- BC Children's Hospital Research Institute, Vancouver, Canada
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Annette E Patterson
- BC Children's Hospital Research Institute, Vancouver, Canada
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - C Bruce Verchere
- BC Children's Hospital Research Institute, Vancouver, Canada
- University of British Columbia, Department of Surgery, Vancouver, Canada
- University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Ramon I Klein Geltink
- BC Children's Hospital Research Institute, Vancouver, Canada
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
- University of British Columbia, Edwin S.H. Leong Centre for Healthy Aging, Vancouver, Canada
- BC Cancer Research Centre, Department of Basic and Translational Research, Vancouver, Canada
| |
Collapse
|
4
|
Liu G, Xue J, Zhou X, Gui M, Xia R, Zhang Y, Cai Y, Li S, Shi S, Mao X, Chen Z. The paradigm shifts of periodontal regeneration strategy: From reparative manipulation to developmental engineering. Bioact Mater 2025; 49:418-436. [PMID: 40165829 PMCID: PMC11957753 DOI: 10.1016/j.bioactmat.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/07/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Ideal periodontal regeneration requires the integration of alveolar bone, periodontal ligament, and cementum, along with Sharpey's fibers for occlusal force resistance. However, physiological regeneration remains rare due to its intricate structure, making clinical regeneration a challenge. Periodontal ligament stem cells (PDLSCs), first isolated in 2004, hold the key to multi-directional differentiation into cementoblasts, fibroblasts, and osteoblasts. While traditional therapies like guided tissue regeneration (GTR) aim to activate PDLSCs, clinical outcomes are inconsistent, suggesting the need for additional strategies to enhance PDLSCs' functions. Advancements in molecular biotechnology have introduced the use of recombinant growth factors for tissue regeneration. However, maintaining their efficacy requires high doses, posing cost and safety issues. Multi-layered scaffolds combined with cell sheet technology offer new insights, but face production, ethical, and survival challenges. Immune regulation plays a crucial role in PDLSC-mediated regeneration. The concept of "coagulo-immunomodulation" has emerged, emphasizing the coupling of blood coagulation and immune responses for periodontal regeneration. Despite its potential, the clinical translation of immune-based strategies remains elusive. The "developmental engineering" approach, which mimics developmental events using embryonic-stage cells and microenvironments, shows promise. Our research group has made initial strides, indicating its potential as a viable solution for periodontal complex regeneration. However, further clinical trials and considerations are needed for successful clinical application. This review aims to summarize the strategic transitions in the development of periodontal regenerative materials and to propose prospective avenues for future development.
Collapse
Affiliation(s)
- Guanqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Junlong Xue
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xuan Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Mixiao Gui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Ruidi Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yanshu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yihua Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Shuhua Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- South China Center of Craniofacial Stem Cell Research, Guangzhou, 510055, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- South China Center of Craniofacial Stem Cell Research, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
5
|
Sousa AB, Martins C, Sarmento B, Barbosa MA, Barbosa JN. Zein nanocarriers for controlled maresin-1 delivery: A novel approach in biomaterial-based immunomodulation. BIOMATERIALS ADVANCES 2025; 172:214238. [PMID: 40015102 DOI: 10.1016/j.bioadv.2025.214238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
In this research work, we report the development of a new immunoengineering approach of sustained drug delivery for regenerative medicine applications. We have produced an innovative nanobiomaterial that integrates the unique advantages of zein, as a protein-based delivery system, with maresin-1, a specialised pro-resolving mediator that plays a critical role in controlling inflammation and promoting its resolution. A microfluidic chip was used as a manufacturing platform to load maresin-1 into zein nanoparticles, by flow-focusing the organic central stream with the aqueous outer fluid. We were able to develop homogeneous nanoparticles presenting a mean diameter between 100 and 117 nm. Different drug loadings were tested: 10, 50, and 100 nM of maresin-1. The nanoparticles loaded with the highest concentration of maresin-1 presented a more controlled release profile throughout 72 h. The biocompatibility and immunomodulatory potential were assessed in primary human macrophages. Maresin-1-loaded zein nanoparticles were non-cytotoxic and, the nanoparticles loaded with 100 nM maresin-1 significantly enhanced macrophage polarisation towards an anti-inflammatory M2-like phenotype, as evidenced by a pronounced increase in the M2/M1 ratio. This polarisation effect was higher than that obtained with free maresin-1 or empty zein nanoparticles, highlighting the synergistic potential of this nanocarrier system. This work emphasizes maresin-1-loaded zein nanoparticles as a safe and effective immunomodulatory platform, paving the way for novel therapeutic approaches in inflammation management and tissue repair and regeneration.
Collapse
Affiliation(s)
- Ana Beatriz Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Mário Adolfo Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Judite Novais Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Sun F, Gao X, Li T, Zhao X, Zhu Y. Tumor immune microenvironment remodeling after neoadjuvant therapy in gastric cancer: Update and new challenges. Biochim Biophys Acta Rev Cancer 2025; 1880:189350. [PMID: 40355011 DOI: 10.1016/j.bbcan.2025.189350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Gastric cancer (GC) is a malignant tumor with one of the highest morbidity and death rates in the world. Neoadjuvant therapy, including neoadjuvant chemotherapy (NAC) and NAC combined with immunotherapy, can improve the resection and long-term survival rates. However, not all patients respond well to neoadjuvant therapy. It has been confirmed that immune cells in the tumor immune microenvironment, including T cells, B cells, and natural killer cells, can affect the efficacy of neoadjuvant therapy. This paper summarizes current preclinical and clinical evidence to more fully describe the effects of neoadjuvant therapy on the immune microenvironment of GC, to provide the impetus to identify biomarkers to predict the potency of neoadjuvant therapy, and to identify the mechanisms of drug resistance, which should promote the development of individualized and accurate treatments for GC patients.
Collapse
Affiliation(s)
- Fujing Sun
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Xiaozhuo Gao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Xiaoyan Zhao
- Graduate School, Dalian Medical University, Dalian, China
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China.
| |
Collapse
|
7
|
Zhang J, Xie Z, Zhu X, Xu C, Lin J, Zhao M, Cheng Y. New insights into therapeutic strategies for targeting hepatic macrophages to alleviate liver fibrosis. Int Immunopharmacol 2025; 158:114864. [PMID: 40378438 DOI: 10.1016/j.intimp.2025.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/18/2025]
Abstract
Liver fibrosis is a wound-healing response induced by persistent liver damage, resulting from complex multicellular interactions and multifactorial networks. Without intervention, it can progress to cirrhosis and even liver cancer. Current understanding suggests that liver fibrosis is reversible, making it crucial to explore effective therapeutic strategies for its alleviation. Chronic inflammation serves as the primary driver of liver fibrosis, with hepatic macrophages playing a dual role depending on their polarization state. This review summarizes various prevention and therapeutic strategies targeting hepatic macrophages in the context of liver fibrosis. These strategies include inhibition of macrophage recruitment, modulation of macrophage activation and polarization, regulation of macrophage metabolism, and induction of phagocytosis and autophagy in hepatic macrophages. Additionally, we discuss the communication between hepatic macrophages, hepatocytes, and hepatic stellate cells (HSCs), as well as the current clinical application of anti-fibrotic drugs targeting macrophages. The goal is to identify effective therapeutic targets at each stage of macrophage participation in liver fibrosis development, with the aim of using hepatic macrophages as a target for liver fibrosis treatment.
Collapse
Affiliation(s)
- Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhaojing Xie
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Xueyu Zhu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Chenxi Xu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jiguo Lin
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Chen J, Xie C, Li Y, Sun Q, Yu F, Li K, Gao H, Liang Z, Tang B, Lin L. A multifunctional metformin loaded carboxymethyl chitosan/tannic acid/manganese composite hydrogel with promising capabilities for age-related bone defect repair. Carbohydr Polym 2025; 358:123526. [PMID: 40383585 DOI: 10.1016/j.carbpol.2025.123526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 05/20/2025]
Abstract
As the global population ages, age-related bone defects have become a major public health challenge. The decline in bone tissue repair capacity among the elderly is primarily attributed to the senescence of bone marrow mesenchymal stem cells (BMSCs), which leads to reduced proliferation and differentiation capabilities, thereby impeding the bone healing process. Additionally, the deterioration of the bone microenvironment, characterized by chronic inflammation and oxidative stress, further complicates bone repair. To address these issues, a multifunctional hydrogel drug delivery system, the metformin-loaded carboxymethyl chitosan/tannic acid/manganese (MCTM) hydrogel was developed. This system integrates the synergistic effects of CMCS, TA, Mn2+, and metformin to effectively alleviate BMSCs senescence, optimize the local chronic inflammatory microenvironment, eliminate oxidative stress, and reduce post-implantation infection risks. Detailed material characterization revealed that the introduction of Mn2+ significantly enhances the mechanical properties and optimizes the degradation characteristics of the CMCS/TA hydrogel, ensuring continuous and stable drug release at tissue repair sites. In vitro and in vivo experiments demonstrated MCTM's excellent biocompatibility and its ability to combine stem cell senescence alleviation with bone repair microenvironment improvement, thereby effectively overcoming various adverse factors affecting bone defect repair in the elderly. This study presents a promising strategy for enhancing bone regeneration under senescent conditions.
Collapse
Affiliation(s)
- Jingle Chen
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Chao Xie
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yucong Li
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qili Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fengnian Yu
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Haotian Gao
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Zhaoquan Liang
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Bin Tang
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, PR China.
| | - Lijun Lin
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
9
|
Ghamangiz S, Jafari A, Maleki-Kakelar H, Azimi H, Mazloomi E. Reprogram to heal: Macrophage phenotypes as living therapeutics. Life Sci 2025; 371:123601. [PMID: 40189197 DOI: 10.1016/j.lfs.2025.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Macrophages represent a crucial cell type within the immune system, exhibiting significant adaptability that allows for the transformation into various phenotypes in response to their surrounding environment. This review investigates the characteristics of various macrophage phenotypes and their functional roles in disease pathogenesis and resolution. The M1 phenotype, recognized for its inflammatory attributes, plays a pivotal role in combating infections and tumors; however, it may also contribute to tissue injury, persistent inflammation, and the pathogenesis of autoimmune and inflammatory diseases. Conversely, the M2 phenotype is associated with anti-inflammatory activities and tissue repair processes. But this is not the end of the story and researches illustrated novel phenotypes that may provide new approaches and therapeutic opportunities. Recent progress in characterizing distinct macrophage phenotypes has enabled the development of innovative therapeutic strategies for chronic inflammatory conditions, autoimmune disorders, and cancers. This review underscores the critical role of macrophage polarization, illustrating how various stimuli can influence macrophage fate and modify their responses. Additionally, it explores the implications of macrophage plasticity on disease progression and treatment efficacy. A comprehensive understanding of these dynamics is essential for the advancement of targeted immunotherapies, which possess the potential to transform treatment strategies for a variety of medical conditions.
Collapse
Affiliation(s)
- Sheyda Ghamangiz
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Azimi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ebrahim Mazloomi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Zou J, Cui W, Deng N, Li C, Yang W, Ye X, Yao F, Zhang T, Xiao J, Ma C, Wu L, Dong D, Chen J, Guo C, Liu A, Wu H. Fate reversal: Exosome-driven macrophage rejuvenation and bacterial-responsive drug release for infection immunotherapy in diabetes. J Control Release 2025; 382:113730. [PMID: 40250625 DOI: 10.1016/j.jconrel.2025.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Superficial surgical site infection (SSI) is a significant risk factor for the development of periprosthetic joint infection (PJI), particularly in diabetic patients. A high-glucose microenvironment is observed to compromise phagocytosis by inducing cellular senescence, which leads to impaired antibacterial immune function. Exosomes derived from umbilical cord stem cells (H-Exos) can reverse the immunosuppressive microenvironment by rejuvenating senescent cells, thereby terminating excessive, persistent, and ineffective inflammatory responses. Thus, a novel exosome-based immunotherapeutic antibacterial strategy to reverse fate is proposed. Vancomycin & lysostaphin-loaded exosomes are incorporated in a customizable microneedle patch (ExoV-ExoL@MN) for controlled release, enabling tailored treatments for diverse clinical scenarios. While rejuvenating macrophage senescent phenotype, the antibiotics encapsulated within exosomes can be responsively released by the hemolysin secreted by bacteria, triggering rapid bacterial killing. Post-infection clearance, they induce a shift from M1 to M2 macrophage polarization, thereby enhancing anti-inflammatory and reparative responses. Furthermore, the components can be mixed on demand and at any time, allowing for real-time customization and fabrication directly at the clinic (fabrication@clinic). This strategy reverses the immunosuppressive microenvironment by rejuvenating senescent macrophages and effectively combats bacterial invasion into deep tissues through bacteria-responsive antibiotic release, providing a promising approach for preventing and treating SSI-induced PJI.
Collapse
Affiliation(s)
- Jiaxuan Zou
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Wushi Cui
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou 310024, PR China
| | - Congsun Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Weinan Yang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Xiaojun Ye
- Department of Ultrasound, Hangzhou Women's Hospital, Hangzhou 310008, PR China
| | - Feng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Tao Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Jian Xiao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, The First People's Hospital of Jiashan, Jiaxing 314100, PR China
| | - Chiyuan Ma
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Lingfeng Wu
- Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Dahai Dong
- Department of Orthopedics, Suichang County People's Hospital in Zhejiang Province, Lishui 323300, PR China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, PR China.
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310024, PR China.
| | - An Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| | - Haobo Wu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| |
Collapse
|
11
|
Liu T, Huang Y, Wang Y, Shen H. Disrupting the immune homeostasis: the emerging role of macrophage ferroptosis in autoimmune diseases. Int Immunopharmacol 2025; 157:114745. [PMID: 40319750 DOI: 10.1016/j.intimp.2025.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/18/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Autoimmune diseases are a class of chronic disorders characterized by the aberrant activation of the immune system, where macrophages play a central role in regulating immune responses during disease onset and progression. Ferroptosis, a form of iron-dependent programmed cell death, has recently attracted significant interest due to its involvement in various pathological conditions. In macrophages, ferroptosis not only compromises cell viability but also disrupts immune homeostasis by promoting pro-inflammatory responses and suppressing anti-inflammatory pathways, thereby intensifying inflammation and exacerbating disease severity. While substantial progress has been made in elucidating macrophage ferroptosis in atherosclerosis and oncology, its precise mechanistic role in autoimmune diseases remains largely unexplored. This review systematically summarizes the molecular mechanisms of macrophage ferroptosis and its regulatory effects on immune homeostasis, with particular emphasis on its role in autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), multiple sclerosis (MS), and systemic sclerosis (SSc). Furthermore, we discuss potential therapeutic targets related to macrophage ferroptosis in these conditions. By integrating current knowledge, this review aims to provide a theoretical framework and novel perspectives for developing innovative therapeutic strategies targeting autoimmune diseases.
Collapse
Affiliation(s)
- Tianfu Liu
- Department of Hepatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Yichen Huang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Yizhe Wang
- Department of Respiratory and Critical Care Medicine, The First People Hospital of Lanzhou, Lanzhou 730050, Gansu, China
| | - Haili Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China.
| |
Collapse
|
12
|
Zhou S, Zhu Y, Wu Y, Zhang X, Kong X, Zhao X, Xiang H, Shang D. New insights on metabolic reprogramming in macrophage plasticity. Int Immunopharmacol 2025; 157:114797. [PMID: 40339492 DOI: 10.1016/j.intimp.2025.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Macrophages are the first line of defense in the innate immune system. Macrophages have two subtypes: classically activated macrophages (M1) and alternatively activated macrophages (M2), with different phenotypes and functions. They play a critical role in defending against pathogens and maintaining internal homeostasis. Macrophages have great plasticity in their biological characteristics. Although the regulation of macrophage plasticity has not been fully elucidated, accumulated evidence supports that microenvironmental differences are the root cause for macrophage differentiation into different subtypes. These differences alter macrophage plasticity by modulating key metabolites, activating downstream gene transcription, and influencing phagocytosis, cytokine secretion, and immune regulation. Herein, we systematically summarize metabolic reprogramming, including glucose, lipid, amino acid, ion, vitamin, nucleotide, and butyrate metabolism, as key regulators affecting macrophage polarization, providing new insights for developing targeted drugs that modulate macrophage plasticity.
Collapse
Affiliation(s)
- Siyu Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yutong Zhu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yu Wu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiaonan Zhang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xin Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; College of Pharmacy, Dalian Medical University, Dalian 116011, China
| | - Xinya Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; College of Pharmacy, Dalian Medical University, Dalian 116011, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China; Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
13
|
Liu Z, Yang J, Tan G, Shi Y, Tao D, Wang W, Li B, Jin F, He X. Methotrexate loaded extracellular vesicles attenuate periodontitis by suppressing ACSL1 and promoting anti-inflammatory macrophage. Mol Immunol 2025; 182:83-95. [PMID: 40245705 DOI: 10.1016/j.molimm.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Macrophages are crucial immune cells in periodontal tissues, which play key roles in both the destruction and repair of associated with periodontitis. Targeted modulation of macrophage function has emerged as a potentially effective approach to influence periodontitis progression. This study investigates the effects of methotrexate-loaded extracellular vesicles (MTX-EVs) on inflammatory macrophage polarization both in vivo and in vitro. In a murine periodontitis model, MTX-EVs inhibited alveolar bone resorption, suppressed pro-inflammatory macrophage activation, and promoted anti-inflammatory macrophages. Mechanistically, MTX-EVs reduced acyl-CoA synthetase-1 (ACSL1) expression, which was elevated during inflammation. Inhibition of ACSL1 with triacsin-C in macrophages suppressed the inflammatory phenotype through the promotion of the oxidative phosphorylation (OXPHOS). In contrast, MTX-EVs counteracted the effects of ACSL1 overexpression on macrophage polarization and metabolism. Our findings suggest that targeting ACSL1 via MTX-EVs represents a therapeutic strategy for modulating macrophage polarization and improving periodontitis treatment outcomes.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Jianhua Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Guodong Tan
- Air Force Medical Center, The Fourth Military Medical University, Beijing 100142, China
| | - Yuanyuan Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Dihao Tao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Wenzhe Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Bei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fang Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Xiaoning He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
14
|
Feng X, Lu J, Cheng W, Zhao P, Chang X, Wu J. LTK deficiency induces macrophage M2 polarization and ameliorates Sjogren's syndrome by reducing chemokine CXCL13. Cytokine 2025; 190:156905. [PMID: 40154092 DOI: 10.1016/j.cyto.2025.156905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/15/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Sjogren's syndrome (SS) is an autoimmune disease involving macrophage infiltration of the exocrine glands. LTK, a receptor tyrosine kinase, is involved in many autoimmune diseases, such as lupus erythematosus. The objectives of this study was to explore the impact of LTK on autophagy in SS. METHODS The NCBI Gene Expression Omnibus (GEO) database was used to screen for differentially expressed genes (DEGs) in SS patients and validated by quantitative reverse transcription PCR (RT-qPCR) in A253 cells with EGF and IFN-γ. Meanwhile, lentiviral vectors were used to transfect A253 cells for stable LTK silencing. CCK-8, flow cytometry, and transmission electron microscopy (TEM), Western blotting (WB) was employed to assess proliferation, apoptosis, autophagy, and autoimmune antigens (Ro52/SSA and La/SSB) in A253 cells. Then, macrophages were treated with 100 ng/ml of LPS to induce the polarization of macrophages towards the M1 phenotype, while macrophages were treated with IL-4 to activate the macrophage M2 phenotype. LTK-silenced A253 cells were co-cultured with macrophages. WB as well as flow cytometry were used to assess macrophage polarization markers. Furthermore, protein-antibody microarrays were utilized to analyze downstream proteins regulated by LTK. Finally, the functionality of LTK was confirmed in NOD/ShiLtJ mice. RESULTS LTK expression in the GEO database was increased in SS patients. And LTK was also significantly increased by EGF and IFN-γ. Knockdown of LTK increased proliferation and autophagy in A253 cells. While LTK deficiency inhibited the expression of Ro52/SSA and La/SSB, and apoptosis in A253 cells. Furthermore, LTK-silenced A253 cells promoted polarization of macrophages towards the M2 phenotype, which is associated with the pathogenesis of SS. Knockdown of LTK resulted in reduced expression of CXCL13, which in turn triggered macrophage M2 polarization. Additionally, LTK deficiency ameliorated submandibular gland tissue damage and inhibited autoimmune antigens secretion in NOD/ShiLtJ mice. In addition, the expression of autophagy markers and M2 polarization markers in the submandibular gland tissue was increased by shLTK. CONCLUSION LTK could promote progressive SS pathogenesis via CXCL13. This discovery indicates that targeting LTK/CXCL13 could be a potential therapeutic strategy for the clinical management of SS.
Collapse
Affiliation(s)
- Xiuyuan Feng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Rheumatology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Junhui Lu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Rheumatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Wei Cheng
- Department of Dermatology, The Affiliated Changshu Hospital of Nantong University, Suzhou, China
| | - Ping Zhao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Schmidt AA, David LM, Qayyum NT, Tran K, Van C, Hetta AHSHA, Shrestha RL, Varatip AO, Butenko S, Enriquez-Ochoa D, Nguyen C, Seldin MM, Liu WF, Grosberg A. Polarized macrophages modulate cardiac structure and contractility under hypoxia in novel immuno-heart on a chip. APL Bioeng 2025; 9:026114. [PMID: 40322069 PMCID: PMC12048176 DOI: 10.1063/5.0253888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Cardiac adaptation to hypoxic injury is regulated by dynamic interactions between cardiomyocytes and macrophages, yet the impacts of immune phenotypes on cardiac structure and contractility remain poorly understood. To address this, we developed the immuno-heart on a chip, a novel in vitro platform to investigate cardiomyocyte-macrophage interactions under normoxic and hypoxic conditions. By integrating neonatal rat ventricular myocytes (NRVMs) and bone marrow-derived macrophages-polarized to pro-inflammatory (M1) or pro-healing (M2/M2*) phenotypes-we elucidated the dual protective and detrimental roles macrophages play in modulating cardiomyocyte cytoskeletal architecture and contractility. Pro-inflammatory stimulation reduced cardiomyocyte structural metrics (z-line length, fraction, and integrity) in normoxic co-cultures. Under hypoxia, M1-stimulated NRVM monocultures exhibited declines in cytoskeletal organization-quantified by actin and z-line orientational order parameters. Relative to monocultures, M1-stimulated co-cultures attenuated hypoxia-induced active stress declines but produced weaker normoxic stresses. In contrast, pro-healing stimulation improved normoxic z-line metrics and preserved post-hypoxia cytoskeletal organization but reduced normoxic contractility. Notably, M2-stimulated macrophages restored normoxic contractility and preserved post-hypoxia systolic stress, albeit with increased diastolic stress. RNAseq analysis of M2-stimulated co-cultures identified upregulated structural and immune pathways driving these hypoxia-induced changes. Cytokine profiles revealed stimulation-specific and density-dependent tumor necrosis factor-alpha and interleukin-10 secretion patterns. Together, these findings quantitatively link clinically relevant macrophage phenotypes and cytokines to distinct changes in cardiac structure and contractility, offering mechanistic insights into immune modulation of hypoxia-induced dysfunction. Moreover, the immuno-heart on a chip represents an innovative framework to guide the development of future therapies that integrate immune and cardiac targets to enhance patient outcomes.
Collapse
|
16
|
Feng L, Peng Q, Miao L, Cai C, Tay FR, Zhou S, Zhang Y, Liu Z, Wang X, Jiao Y, Guo R. "Monitor-and-treat" that integrates bacterio-therapeutics and bio-optics for infected wound management. Bioact Mater 2025; 48:118-134. [PMID: 40034807 PMCID: PMC11872670 DOI: 10.1016/j.bioactmat.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/18/2025] [Accepted: 02/02/2025] [Indexed: 03/05/2025] Open
Abstract
Wound infections are one of the major threats to human health, accounting for millions of deaths annually. Real-time monitoring, accurate diagnosis, and on-demand therapy are crucial to minimizing complications and saving lives. Herein, we propose a "monitor-and-treat" strategy for infected wound management by integrating the emerging development of bacterio-therapeutics and bio-optics. The upper layer consists of gelatin methacryloyl (GelMA)-collagen III methacryloyl (Col3MA) (GC), Reuterin (Reu) isolated from the probiotic Lactobacillus reuteri (L. reuteri) and microfluidic safflower polysaccharide (SPS)@GelMA microspheres using 3D printing technology. The lower layer is made of acryloylated glycine (ACG) hydrogel with tissue adhesion capability, which enables the hydrogel to adapt to the movement and stretching of the skin. By integrating temperature-sensitive polydimethylsiloxane (PDMS) optical fibers, the ACG-GC/Reu/SPS-PDMS hydrogel could accurately and steadily sense and send wound temperature information to intelligent devices for real-time monitoring of the healing status ("monitor"). The double-layered hydrogel not only inhibited bacterial survival and colonization (97.4 % against E. coli and 99 % against S. aureus), but also exhibited remarkable hemostatic properties. Furthermore, it was conducive to L929 cell proliferation and pro-angiogenesis, and promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype, therefore creating a favorable immune microenvironment at the wound site. Animal experiments using SD rats and Bama minipigs demonstrated that this hydrogel promoted wound closure, directed polarization to M2 macrophages, alleviated inflammation, enhanced neovascularization, therefore accelerating infected wound healing ("treat"). In addition, RNA-Seq analysis revealed the mechanism of action of ACG-GC/Reu/SPS-PDMS hydrogel in modulating key signaling pathways, including down-regulation of AMPK, IL-17, and NF-κB signaling pathways, activation of NLRP3 inflammatory vesicles, and enrichment of MAPK, TGF-β, PI3K-Akt, TNF, and VEGF signaling pathways. The modulation of these signaling pathways suggests that hydrogels play an important role in the molecular mechanisms that promote wound healing and tissue regeneration. Therefore, the design of this study provides an innovative and multifunctional bandage strategy that can significantly improve pathologic diagnosis and wound treatment.
Collapse
Affiliation(s)
- Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrie Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Qing Peng
- Central Laboratory of the Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China
| | - Li Miao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, PR China
| | - Chenghao Cai
- Department of Burns & Wound Care Center, The 2nd Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, PR China
| | - Franklin R. Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA
| | - Shuqin Zhou
- Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China
| | - Ying Zhang
- Central Laboratory of the Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrie Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Xingang Wang
- Department of Burns & Wound Care Center, The 2nd Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, PR China
| | - Yang Jiao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, PR China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrie Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
17
|
Zeng C, Niu F, Li H, Huang Z, Ke Y, Yu L, Chen M. Progress of IL-10 and liver metastasis. Cytokine 2025; 190:156932. [PMID: 40168924 DOI: 10.1016/j.cyto.2025.156932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Liver metastasis can occur in a wide range of cancers and have a significant impact on patient survival and prognosis. Once liver metastasis occurs, patients often lose the opportunity for surgery, and although a small percentage of patients can undergo hepatic resection to prolong survival, the benefit is not great. There were also many factors affecting liver metastasis, including reprogramming of the primary tumor metabolism, disturbances in the immune microenvironment and immune cells, alterations in the gut microbiota, and epigenetic changes. Interleukin-10 (IL-10) has a dual role as a cytokine that has been found in recent years to be pro-inflammatory as well as pro-liver metastasis. IL-10 exerts pro-metastatic effects mainly by regulating the polarization of tumor macrophages in the tumor microenvironment, especially by promoting the polarization of M2 macrophages. However, the role of IL-10 in tumorigenesis and progression remains controversial and the molecular mechanism involved in promoting liver metastasis is currently unclear. In view of the increasing role of IL-10 in promoting liver metastasis, this review summarizes the role of IL-10 in liver metastasis of colorectal cancer, breast cancer and other tumors in recent years, and provides ideas for subsequent clinical practice and basic research.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Fengyuan Niu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Ziyin Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Yujia Ke
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Linxin Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
18
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2025; 28:260-269. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
19
|
Iaia N, Noviello C, Muscaritoli M, Costelli P. Inflammation in cancer cachexia: still the central tenet or just another player? Am J Physiol Cell Physiol 2025; 328:C1837-C1852. [PMID: 40250836 DOI: 10.1152/ajpcell.00808.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/23/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Cancer cachexia, a multifactorial syndrome characterized by body weight loss, muscle, and adipose tissue wasting, affects patients with cancer. Over time, the definition of cachexia has been modified, including inflammation as one of the main causal factors. Evidence has suggested that a range of proinflammatory mediators may be involved in the regulation of intracellular signaling, resulting in enhanced resting energy expenditure, metabolic changes, and muscle atrophy, all of which are typical features of cachexia. Physiologically speaking, however, inflammation is a response aimed at facing potentially damaging events. Along this line, its induction in the cancer hosts could be an attempt to restore the physiological homeostasis. Interesting observations have shown that cytokines such as interleukins 4 and 6 could improve muscle wasting, supporting the view that the same mediator may exert pro- or anti-inflammatory activity depending on the immune cells involved as well as on the tissue metabolic demand. In conclusion, whether inflammation is crucial to the occurrence of cachexia or just one contributor among others, is still unclear. Indeed, while inflammation is a trigger of cachexia, the alterations of energy and protein metabolism and of the hormonal homeostasis occurring in cachexia likely act as inflammatory stimuli on their own. Whether the causative role prevails over the compensatory one likely depends on the tumor type and stage, patient lifestyle, the presence of comorbidities, and the response to anticancer treatments paving the way to a holistic, personalized approach to cancer cachexia.
Collapse
Affiliation(s)
- Noemi Iaia
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Chiara Noviello
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
20
|
Fan G, Liu Y, Tao L, Wang D, Huang Y, Yang X. Sodium butyrate alleviates colitis by inhibiting mitochondrial ROS mediated macrophage pyroptosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167756. [PMID: 40044062 DOI: 10.1016/j.bbadis.2025.167756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory bowel disease with unclear causes and limited treatment options. Sodium butyrate (NaB), a byproduct of dietary fiber in the intestine, has demonstrated efficacy in treating inflammation. However, the precise anti-inflammatory mechanisms of NaB in colon inflammation remain largely unexplored. This study aims to investigate the effects of NaB on dextran sulfate sodium (DSS)-induced colitis in rats. The findings indicate that oral administration of NaB effectively prevent colitis and reduce levels of serum or colon inflammatory factors. Additionally, NaB demonstrated in vitro inhibition of RAW264.7 inflammation cytokines induced by LPS, along with suppression of the ERK and NF-κB signaling pathway activation. Moreover, NaB mitigated LPS and Nigericin-induced RAW264.7 pyroptosis by reducing indicators of mitochondrial damage, including increased mitochondrial membrane potential (JC-1) levels and decreased Mito-ROS production. NaB increases ZO-1 and Occludin expression in CaCo2 cells by inhibiting RAW264.7 pyroptosis. These results suggest that NaB could be utilized as a therapeutic agent or dietary supplement to alleviate colitis.
Collapse
Affiliation(s)
- Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaxin Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Limei Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danping Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yizhu Huang
- Singao Xiamen Company, Xiamen 361006, PR China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Li H, Chen J, Guo H, Yang H, Liu J, Yuan H, Zhang J, Wang J, Liu S. Integrated transcriptomic and proteomic profiling reveals the anti-inflammatory mechanism of dihydroartemisinin in the treatment of acute liver injury by targeting CYBA and CYBB. Biochem Biophys Res Commun 2025; 764:151821. [PMID: 40250321 DOI: 10.1016/j.bbrc.2025.151821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Acute liver injury (ALI) is a prevalent inflammatory disease with no currently available effective targeted therapies that characterized by high mortality and morbidity. Dihydroartemisinin (DHA), a derivative of the renowned antimalarial compound artemisinin, has garnered attention for its anti-inflammatory property. However, the precise anti-inflammatory mechanisms underlying its efficacy in treating ALI remain unclear. Notably, the excessive inflammatory cytokines secreted by macrophages represents a critical factor of liver damage. In our comprehensive study, transcriptome and proteomic analysis of M1 macrophages after DHA treatment was performed to unearth the potential anti-inflammatory targets for ALI treatment. Transcriptomics analysis indicated that DHA significantly mitigated inflammation, primarily by downregulating the expressions of CCL1, CCL2, CCL7, CCL13, and CXCL13. Concurrently, proteomics analysis identified six proteins, such as CYBA and CYBB, that were consistently downregulated in the DHA intervention groups compared to the M1 group. Intriguingly, a protein-protein interaction network analysis highlighted the close association of CYBA and CYBB with the aforementioned chemokine genes. Through meticulous screening, DHA curtailed the production of reactive oxygen species (ROS) by targeting CYBA and CYBB, subsequently suppressing the secretion of several chemokines and dampening the inflammatory response in M1 macrophages. More importantly, DHA not only reduced ROS and chemokine levels but also restored liver function by downregulating CYBA and CYBB to inhibit NF-κB pathway in ALI mice, demonstrating strong anti-inflammatory effects. In conclusion, our findings throw novel light into the underlying anti-inflammatory mechanism of DHA in ALI management, offering valuable insights for future clinical research and therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Honglian Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiayun Chen
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huiyi Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Liu
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haoxing Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China; MOE Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Wang Y, Mu H, Yang B, Yang C, Dong W, Wang J. USP7 - A novel target for controlling periodontal inflammation through modulation of macrophage polarization. Immunol Lett 2025; 273:106981. [PMID: 39946796 DOI: 10.1016/j.imlet.2025.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/09/2025] [Indexed: 03/12/2025]
Abstract
Disruption of local microbial irritation and host immune response can result in inflammation and tissue destruction in periodontitis. Studies on the modulation of macrophage polarization could help attenuate immune responses in periodontal tissues. To investigate the effect of ubiquitin-specific protease-7 (USP7) and its inhibitor P5091 on the polarization of macrophages in periodontitis, gene expression in periodontitis tissues and normal control were analyzed via single-cell RNA sequencing data and mice model experimental periodontitis. RAW264.7 cells were induced to M1 polarization with LPS + IFN-γ and M2 polarization with IL-4. USP7 was knocked down using lentivirus, and the effect of USP7 inhibitor P5091 on macrophage polarization was comparatively analyzed. The expression of Usp7 and polarization markers were detected by qRT-PCR. Western blot was used to examine the polarization markers and pathway-associated proteins. Results indicated that USP7 expression was elevated in tissues affected by periodontitis. Periodontitis macrophages and M1 polarized macrophages had higher USP7 expression. Knockdown of USP7 revealed an inhibition of both M1 and M2 macrophage polarization. Inhibition of USP7 with P5091 resulted in the decreased expression of M1 polarization markers and phosphorylation of P65, but the increased expression of M2 polarization markers and phosphorylation of STAT6. In conclusion, USP7 is involved in regulating macrophage polarization in periodontitis and its inhibitor P5091 may contribute to the prevention of periodontitis.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Baochen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
23
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2025; 72:527-554. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
24
|
Sutthiwanjampa C, Kang SH, Kim MK, Hwa Choi J, Kim HK, Woo SH, Bae TH, Kim WJ, Kang SH, Park H. Tumor necrosis factor-α-treated human adipose-derived stem cells enhance inherent radiation tolerance and alleviate in vivo radiation-induced capsular contracture. J Adv Res 2025; 72:433-449. [PMID: 39019109 DOI: 10.1016/j.jare.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION Post-mastectomy radiotherapy plays a crucial role in breast cancer treatment but can lead to an inflammatory response causing soft tissue damage, particularly radiation-induced capsular contracture (RICC), impacting breast reconstruction outcomes. Adipose-derived stem cells (ADSCs), known for their regenerative potential via paracrine capacity, exhibit inherent radiotolerance. The influence of tumor necrosis factor-alpha (TNF-α) on ADSCs has been reported to enhance the paracrine effect of ADSCs, promoting wound healing by modulating inflammatory responses. OBJECTIVE This study investigates the potential of TNF-α-treated human ADSCs (T-hASCs) on silicone implants to alleviate RICC, hypothesizing to enhance suppressive effects on RICC by modulating inflammatory responses in a radiation-exposed environment. METHODS In vitro, T-hASCs were cultured on various surfaces to assess viability after exposure to radiation up to 20 Gy. In vivo, T-hASC and non-TNF-α-treated hASC (C-hASCs)-coated membranes were implanted in mice before radiation exposure, and an evaluation of the RICC mitigation took place 4 and 8 weeks after implantation. In addition, the growth factors released from T-hASCs were assessed. RESULTS In vitro, hASCs displayed significant radiotolerance, maintaining consistent viability after exposure to 10 Gy. TNF-α treatment further enhanced radiation tolerance, as evidenced by significantly higher viability than C-hASCs at 20 Gy. In vivo, T-hASC-coated implants effectively suppressed RICC, reducing capsule thickness. T-hASCs exhibited remarkable modulation of the inflammatory response, suppressing M1 macrophage polarization while enhancing M2 polarization. The elevated secretion of vascular endothelial growth factor from T-hASCs is believed to induce macrophage polarization, potentially reducing RICC. CONCLUSION This study establishes T-hASCs as a promising strategy for ameliorating the adverse effects experienced by breast reconstruction patients after mastectomy and radiation therapy. The observed radiotolerance, anti-fibrotic effects, and immune modulation suggest the possibility of enhancing patient outcomes and quality of life. Further research and clinical trials are warranted for broader clinical uses.
Collapse
Affiliation(s)
- Chanutchamon Sutthiwanjampa
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seung Hyun Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Mi Kyung Kim
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Departments of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Jin Hwa Choi
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Radiation Oncology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Han Koo Kim
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Soo Hyun Woo
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Tae Hui Bae
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Woo Joo Kim
- Department of Plastic Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea
| | - Shin Hyuk Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
25
|
Liu G, Das SK. D-Xylose Ameliorates Non-Alcoholic Fatty Liver Disease by Targeting Macrophage-expressed LYZ Gene. Cell Biochem Biophys 2025; 83:1617-1629. [PMID: 39379786 DOI: 10.1007/s12013-024-01572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
This study investigates the therapeutic effects of D-Xylose, a natural sugar, on non-alcoholic fatty liver disease (NAFLD), focusing on the expression of the lysozyme gene (LYZ) in macrophages. Using the single-cell dataset GSE136103 for NAFLD, researchers analyzed macrophage populations and other groups utilizing the Seurat package in R, while a differential analysis was performed on the NAFLD dataset GSE61260 using the limma package. Both in vitro and in vivo models, including cell culture, mouse models, RT-qPCR, Western blot, ELISA, and histopathological analyses, were employed to examine the effect of D-Xylose on lipid accumulation, LYZ expression, blood lipid levels, and inflammatory responses. The study found a significant upregulation of LYZ in free fatty acid (FFA)-treated cells and mouse liver tissues, with a subsequent reduction after D-Xylose intervention. Treatment with D-Xylose and Amlodipine led to a notable decrease in lipid accumulation, as evidenced by reduced triglyceride and cholesterol levels. D-Xylose demonstrated a greater improvement in lipid metabolism than Amlodipine. Additionally, D-Xylose significantly mitigated inflammatory responses, reducing levels of inflammatory markers such as IL1R, IL6, MYS8, TNF, NF-κB, and IL-1. Furthermore, D-Xylose administration significantly reduced liver weight and liver index, with a positive impact on serum liver function and blood lipid levels. The findings suggest that D-Xylose could be a therapeutic intervention for NAFLD by targeting LYZ expression in macrophages, thereby modulating lipid metabolism and inflammatory responses.
Collapse
Affiliation(s)
- Guoxiang Liu
- Faculty of Pharmacy, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Sreemoy Kanti Das
- Faculty of Pharmacy, Lincoln University College, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
26
|
Yu SY, Wu T, Xu KH, Liu RY, Yu TH, Wang ZH, Zhang ZT. 3D bioprinted biomimetic MOF-functionalized hydrogel scaffolds for bone regeneration: Synergistic osteogenesis and osteoimmunomodulation. Mater Today Bio 2025; 32:101740. [PMID: 40270888 PMCID: PMC12018039 DOI: 10.1016/j.mtbio.2025.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
Critical-size bone defects remain a significant clinical challenge. The lack of endogenous stem cells with osteogenic differentiation potential in the defect area, combined with the inflammatory responses induced by scaffold implantation, highlights the need for biomaterials that can deliver stem cells and possess inflammatory regulation properties. In this study, we developed a 3D bioprinted gelatin methacrylate (GelMA) hydrogel scaffold modified with luteolin-loaded ZIF-8 (LUT@ZIF-8) nanoparticles, designed to deliver bone marrow mesenchymal stem cells (BMSCs) to the defect site and release bioactive components that promote osteogenesis and modulate the immune microenvironment. The LUT@ZIF-8/GelMA hydrogel scaffolds demonstrated excellent physical properties and biocompatibility. The sustained release of luteolin and zinc ions from the LUT@ZIF-8 nanoparticles conferred antibacterial, osteoinductive, and inflammatory regulation effects. The immune microenvironment modulated by LUT@ZIF-8/GelMA hydrogel scaffolds facilitated osteogenic differentiation of BMSCs. Furthermore, in vivo experiments confirmed the osteogenic and inflammatory regulation capabilities of the LUT@ZIF-8/GelMA hydrogel scaffolds. In conclusion, the 3D bioprinted LUT@ZIF-8/GelMA hydrogel scaffolds exhibit osteoimmunomodulatory properties, presenting a promising strategy for the treatment of bone defects.
Collapse
Affiliation(s)
- San-yang Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Ting Wu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Kai-hao Xu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Ru-yue Liu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Tian-hao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110002, PR China
| | - Zhen-hua Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China
| | - Zhong-ti Zhang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| |
Collapse
|
27
|
Gu M, Pang Z. Luteolin inhibits inflammation and M1 macrophage polarization in the treatment of Pseudomonas aeruginosa-induced acute pneumonia through suppressing EGFR/PI3K/AKT/NF-κB and EGFR/ERK/AP-1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156663. [PMID: 40133026 DOI: 10.1016/j.phymed.2025.156663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND The opportunistic pathogen Pseudomonas aeruginosa primarily causes infections in immunocompromised individuals. Luteolin, a natural flavonoid, is widely present in plants, which exerts various pharmacological activities, including anti-inflammatory and antimicrobial activities. PURPOSE This study aimed to explore the therapeutic efficacy of luteolin and the underlying molecular mechanisms in treating the P. aeruginosa-induced acute pneumonia. METHODS Network pharmacology was utilized to identify the core targets of luteolin for treating acute P. aeruginosa pneumonia. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to dissect the potential effects of luteolin and the involved signaling pathways. Surface plasmon resonance (SPR) assay and molecular docking were employed for studying the binding affinities of luteolin with the key targets. Furthermore, we applied a mouse model of bacterial pneumonia for assessing the therapeutic effects of luteolin in vivo, and an in vitro infection model for specifically investigating the effects of luteolin on macrophages as well as the underlying mechanisms upon P. aeruginosa infection. RESULTS Network pharmacology identified TNF, IL-6, EGFR and AKT1 as the key targets of luteolin for treating acute P. aeruginosa pneumonia. Moreover, as revealed by GO and KEGG enrichment analysis, EGFR, MAPK and PI3K/AKT pathways were the potential pathways regulated the P. aeruginosa-induced inflammatory response. According to the in vivo results, luteolin effectively mitigated the P. aeruginosa-induced acute lung injury through reducing the pulmonary permeability, neutrophil infiltration, proinflammatory cytokine production (IL-1β, IL-6, TNF and MIP-2) and bacterial burden in lung tissues, which led to increased survival rate of mice. Furthermore, the luteolin-treated mice had diminished EGFR, PI3K, AKT, IκBα, NF-κB p65, ERK, c-Jun and c-Fos phosphorylation, down-regulated M1 macrophage marker levels (iNOS, CD86 and IL-1β) but up-regulated M2 macrophage marker levels (Ym1, CD206 and Arg1) in lung tissues. Consistently, the luteolin-pretreated macrophages exhibited reduced phosphorylation of these regulatory proteins, diminished proinflammatory cytokine production, and down-regulated expression of M1 macrophage markers, but up-regulated expression of IL-10 and M2 macrophage markers. CONCLUSION luteolin effectively suppressed the inflammatory responses and M1 macrophage polarization through inhibiting EGFR/PI3K/AKT/NF-κB and EGFR/ERK/AP-1 signaling pathways in the treatment of acute P. aeruginosa pneumonia. This study suggests that luteolin could be a promising candidate for development as a therapeutic agent for acute bacterial pneumonia.
Collapse
Affiliation(s)
- Mengdi Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
28
|
Li Y, Tian L, Yang Z, Liu Y, Li D, Tang Z. miR-155 targets SOCS1 to modulate the phenotype transition of M1 macrophage in distraction osteogenesis promoted by PTH administration. Eur J Med Res 2025; 30:438. [PMID: 40450308 DOI: 10.1186/s40001-025-02683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 05/13/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Distraction osteogenesis (DO) is a highly effective method for bone regeneration. However, its prolonged treatment duration limits its clinical application. Parathyroid hormone (PTH) can promote distraction osteogenesis, but the underlying mechanism remains unclear. During distraction osteogenesis, macrophages modulate inflammation after phenotypic transition, promoting bone regeneration. PTH is known to affect the expression of specific miRNAs, and miR-155 has been shown to regulate macrophage polarization, with subsequent effects on inflammation. We hypothesized that miR-155 may participate in the osteogenic effect of PTH by regulating macrophage polarization. In this study, we aim to explored the mechanism by which PTH promotes distraction osteogenesis using both in vivo and in vitro models. METHODS Established a rabbit model of mandibular distraction osteogenesis in which histomorphological observations confirmed the osteogenic effects of PTH and the reduced expression of miR-155. In addition, a lipopolysaccharide (LPS)-induced macrophage distraction model was established. ELISA was used to measure the expression of the inflammatory cytokines TNF-α and IL-1β in animal serum and cell supernatants. RT‒qPCR was used to detect the expression of miR-155 and SOCS1, and Western blotting and IHC were used to examine SOCS1 expression and explore its mechanisms. The overexpression of miR-155, the proportion of M1 macrophages was reassessed, and the expressions of SOCS1, TNF-α, and IL-1β were concurrently evaluated. RESULTS PTH administration significantly downregulated miR-155 expression in both the rabbit model and in vitro macrophages. This led to an upregulation of SOCS1 expression, which in turn reduced the polarization of M1 macrophages. The levels of TNF-α and IL-1β were also markedly reduced in the PTH-treated groups compared to the control groups. In the distraction zone, histological analysis revealed that the experimental group had better trabecular bone formation, with higher density and maturity of trabeculae compared to the control group. Flow cytometry analysis showed a significant reduction in the proportion of M1 macrophages in PTH-treated cells. The dual-luciferase reporter assay confirmed that miR-155 directly targets SOCS1. CONCLUSIONS PTH downregulates miR-155 in new bone and macrophages during mandibular DO, increasing SOCS1 expression, reducing M1 macrophages, and enhancing bone regeneration by lowering inflammation.
Collapse
Affiliation(s)
- Yongdi Li
- School of Basic Sciences, Guizhou Medical University, Guiyang, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, China
| | - Liyue Tian
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, China
| | - Zhishan Yang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, China
| | - Yiheng Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, China
| | - Duchenhui Li
- School of Basic Sciences, Guizhou Medical University, Guiyang, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, China
| | - Zhenglong Tang
- School of Basic Sciences, Guizhou Medical University, Guiyang, China.
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
29
|
Jiang J, Pan Z, Su Y, Dai L, Xu N, Wu H, Chen X. Carbon dots from purple sweet potato as a promising anti-inflammatory biomaterial for alleviating the LPS-induced inflammation in macrophages. J Nanobiotechnology 2025; 23:397. [PMID: 40448145 DOI: 10.1186/s12951-025-03494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025] Open
Abstract
This study synthesizes carbon dots derived from crude extracts of purple sweet potato (CPP-CDs) and evaluates its anti-inflammatory effects in a lipopolysaccharide (LPS) -induced acute inflammation model. Characterization revealed that CPP-CDs possess a uniform spherical structure and excellent photoluminescent properties. In vitro, CPP-CDs significantly inhibited the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), reduced the accumulation of reactive oxygen species (ROS), suppressed pyroptosis, and facilitated the polarization of macrophages from the M1 phenotype to the M2 phenotype. In vivo, CPP-CDs significantly improved the survival rates of LPS-treated mice, mitigated tissue damage, and suppressed the levels of pro-inflammatory cytokines. Mechanistic studies indicated that CPP-CDs exert anti-inflammatory effects through the inhibition of the TLR4/NF-κB signaling pathway and the modulation of the NLRP3 inflammasome. Additionally, CPP-CDs exhibited excellent biocompatibility, with no significant toxicity observed in mice. This study provides strong evidence supporting the application of CPP-CDs as a novel anti-inflammatory material, highlighting their potential for acute inflammation treatment and expanding the possibilities for the development of carbon-dot-based anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jiebang Jiang
- Department of General Surgery, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Zhiyuan Pan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yiren Su
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Lu Dai
- Department of General Surgery, Nantong Women's Prison Hospital, Nantong, Jiangsu, 226001, China
| | - Nana Xu
- Laboratory of Morphology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Han Wu
- Department of General Surgery, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu, 226001, China.
| | - Xin Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu, 226001, China.
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
30
|
Li Z, Liu L, Sun Y, Liu X, Zhang P, Wang Y, Ding G. Mesenchymal stem/stromal cells-derived exosomes: possible therapeutic mechanism in inflammatory bowel disease. Hum Cell 2025; 38:111. [PMID: 40434563 DOI: 10.1007/s13577-025-01243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract caused by dysfunction of the immune system in genetically susceptible individuals. As current pharmacologic and surgical treatments remain suboptimal, increasing attention has been directed toward exosomes derived from mesenchymal stem/stromal cells (MSCs) as alternative therapeutic approaches. MSCs are multipotent stromal cells that can be isolated from various human tissues such as bone marrow, adipose, umbilical cord and periodontal ligament. Exosomes are cell-derived membrane-bound vesicles enclosing RNAs, proteins, growth factors, and cytokines. Previous studies indicate that the anti-inflammatory, immunomodulatory, and regenerative effects of MSCs are largely mediated by MSC-derived exosomes (MSC-Exos). Therefore, this review outlines current insights into the molecular mechanisms of MSC-Exos in IBD treatment to support the future development of MSC-Exos as a therapeutic strategy, thus providing novel observations into the clinical applications of MSC-Exos in IBD management.
Collapse
Affiliation(s)
- Zekun Li
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, 261053, Shandong Province, China
| | - Luyun Liu
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, 261053, Shandong Province, China
| | - Yuhui Sun
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, 261053, Shandong Province, China
| | - Xinjuan Liu
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, 261053, Shandong Province, China
| | - Ping Zhang
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, 261053, Shandong Province, China
| | - Yue Wang
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, 261053, Shandong Province, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, 261053, Shandong Province, China.
| |
Collapse
|
31
|
Zhao Y, Duan M, Qi Y, Xia J, Hao C, Yao W. Innate immune checkpoint SIRPα/CD47 blockade ameliorates silica-induced pulmonary fibrosis by modulating macrophage immunity. Int Immunopharmacol 2025; 156:114723. [PMID: 40279943 DOI: 10.1016/j.intimp.2025.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/12/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Silicosis is a fibrotic disease caused by prolonged inhalation of silica particles. Signal regulatory protein alpha (SIRPα) and its ligand CD47, key innate immune checkpoints mediating inhibition of phagocytosis, have been reported to regulate organ fibrosis. However, the role of SIRPα/CD47 in silicosis remains unexplored. In this study, a silicosis mouse model was constructed and revealed a significant upregulation of SIRPα and CD47 expression in lung tissue with disease progression. In addition, the expression patterns of SIRPα and CD47 in various silicosis effector cells exhibit distinct cell specificity. Using RRx-001 to block SIRPα/CD47 signaling in mice, we observed a marked reduction in lung injury, decreased collagen deposition, and improved pulmonary function. Mechanistically, blocking SIRPα/CD47 affected T cell activation, macrophage polarization and the expression of pro-inflammatory and pro-fibrotic factors. In vitro, we found that inhibiting SIRPα/CD47 countered the silica-induced suppression of macrophage phagocytosis and induced macrophage polarization towards the M1 phenotype. Additionally, levels of soluble SIRPα and CD47 in the peripheral blood of silicosis patients were significantly higher than those in healthy controls. In summary, this study demonstrates that SIRPα/CD47-mediated immunomodulatory signaling is the driving factor for the progression of silicosis, and this pathway might serve as a therapeutic target for silicosis treatment.
Collapse
Affiliation(s)
- Youliang Zhao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Meixiu Duan
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuanmeng Qi
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiarui Xia
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Changfu Hao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Wu Yao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
32
|
Qi X, Ding Y, Zheng J, Geng X, Zhang J, Xu Y. Hsa-miR-194-5p regulates TRAF6-mediated M1 macrophage apoptosis in recurrent spontaneous abortion. J Mol Histol 2025; 56:166. [PMID: 40418413 DOI: 10.1007/s10735-025-10464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025]
Abstract
Recurrent spontaneous abortion (RSA) is linked to pro-inflammatory responses driven by macrophage M1 polarization. miR-194-5p can affect the migration and infiltration of macrophages, and significantly inhibit the release of pro-inflammatory cytokines. However, whether miR-194-5p can affect RSA through M1 macrophage-related pathway remains to be further explored. To induce human monocytic leukemia THP-1 into M1 macrophages, PMA and LPS were used. Then detect the effects of transfection with miR-194-5p mimics on the migration, invasion, cell cycle and apoptosis of M1 macrophages. Two databases, DIANA-microT and miRDB, were first used to predict the target gene of miR-194-5p, and TRAF6 was selected as the target gene of miR-194-5p, and then the binding sites of the two were predicted and verified by dual luciferase assay. Transfection of inhibitors, with or without TRAF6 siRNA (si-TRAF6), was performed on M1 macrophages to assess changes in viability, migration, aggressiveness, cell cycle, and apoptosis, as well as TRAF6, NF-κB, and Wnt5a mRNA and protein levels. Compared with the miR-NC group, transfection with the miR-194-5p mimic significantly reduced the viability, migration, and invasion abilities of M1 macrophages, arrested them in the S phase, and promoted apoptosis. miR-194-5p bound to TRAF 3'UTR-WT and reduced the viability, migration ability, and aggressiveness of M1 macrophages, increased apoptosis, and blocked the S phase. miR-194-5p negatively regulated TRAF6, resulting in decreased mRNA and protein levels of NF-κB and Wnt5a. miR-194-5p inhibitors and mimics had opposite effects, but miR-194-5p inhibitor effects could be reversed by si-TRAF6. There is a close association between RSA and M1 macrophage polarization. Furthermore, miR-194-5p inhibits the NF-κB and Wnt5a signaling pathways by negatively regulating TRAF6, thereby impeding the function of M1 macrophages and affecting the occurrence of RSA. These findings provide new therapeutic targets for the prevention, diagnosis, and treatment of RSA.
Collapse
Affiliation(s)
- Xin Qi
- Department of Obstetrics, The First People's Hospital of Yinchuan, Yinchuan, 750001, China
| | - Yueping Ding
- Department of Obstetrics, The First People's Hospital of Yinchuan, Yinchuan, 750001, China.
| | - Jundi Zheng
- Department of Obstetrics, The First People's Hospital of Yinchuan, Yinchuan, 750001, China
| | - Xia Geng
- Department of Obstetrics, The First People's Hospital of Yinchuan, Yinchuan, 750001, China
| | - Jie Zhang
- Department of Obstetrics, The First People's Hospital of Yinchuan, Yinchuan, 750001, China
| | - Yan Xu
- Department of Pediatric Rehabilitation, The First People's Hospital of Yinchuan, Yinchuan, 750001, China
| |
Collapse
|
33
|
Yang Z, Li J, Liu F, Xiu X, Zhong W, Sun Z, Zhu X, Chen M, Chen X, Zheng H, Guo D. Causal analysis of 731 immunophenotypes and heart failure: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2025; 104:e42530. [PMID: 40419926 DOI: 10.1097/md.0000000000042530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
The aim of this study was to elucidate the causal relationship between immunophenotypes and heart failure (HF) using bidirectional Mendelian randomization (MR) analysis. Summary-level data for HF and immunophenotypes were obtained from public genome-wide association study data. Five robust MR methods were employed to delineate the causal effects between the 2. Further analyses included horizontal pleiotropic analysis, Cochran Q analysis, MR-Egger intercept test, and leave-one-out analysis. Finally, we used the screened immunophenotypes as outcomes and HF as exposure for reverse MR analyses. Eight immunophenotypes demonstrated an increased risk of HF, including immunoglobin D+ (IgD+) CD38br absolute cell (AC); double positive (CD4+CD8+) %leukocyte; CD28- CD127- CD25++ CD8br %T cell; CD28- CD127- CD25++ CD8br %CD8br; CD28+ CD45RA+ CD8br %T cell; CD19 on IgD+ CD38br; CD27 on IgD- CD38dim; CD45 on lymphocyte. Conversely, 7 immunophenotypes exhibited a reduced risk of HF, including Activated Treg AC; Im myeloid-derived suppressor cell %CD33dim human leukocyte antigen DR- (HLA DR-) CD66b-; CD33dim HLA DR+ CD11b+ %CD33dim HLA DR+; CD20 on IgD- CD38dim; side scatter-A (SSC-A) on CD14+ monocyte; SSC-A on HLA DR+ natural killer cell; CD11b on CD14+ monocyte. Importantly, we did not find any horizontal multidimensional outliers, genetic heterogeneity, directional pleiotropy, or a single nucleotide polymorphism that determines ultimate causality. The results of the reverse MR analysis were not statistically significant. In this study, the genetic correlation between 15 immunophenotypes and HF was revealed by MR analysis, which provides a reference for future clinical treatment.
Collapse
Affiliation(s)
- Zhenyu Yang
- The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jixin Li
- Department of Cardiovascular Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengzhao Liu
- Department of Cardiovascular Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaohan Xiu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weibo Zhong
- The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhigang Sun
- The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyu Zhu
- The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengzhu Chen
- The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xihao Chen
- The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haohong Zheng
- The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dandan Guo
- The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Cardiovascular 1, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
34
|
Xie Y, Wang R, Wu Z, Xie C, Gong S, Zhang J, Yu H, Song Z. Prophylactic application of sodium new houttuyfonate to regulate macrophage activation and antifungal infection in intra-abdominal candidiasis model mice. Int Immunopharmacol 2025; 159:114922. [PMID: 40412128 DOI: 10.1016/j.intimp.2025.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/10/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
The abuse of immunosuppressants causes damage to the immune system, while the pathological proliferation and translocation of symbiotic Candida albicans can result in abdominal infection in immunocompromised people. In this study, we established a mouse peritoneal C. albicans infection model and investigated the effects of preventive application of Sodium New Houttuyfonate (SNH) by analyzing the proportion of immune cells, polarization of peritoneal macrophages, changes in fungal tissue load, and histology, and the data showed prophylactic SNH administration yields a double anti-infection effect in phagocytosis and regulation of immunity according to the immune inflammatory states of the body. In vitro, neutral red, colony counting, cytometric bead array, RT-qPCR, western blot, inhibitor treatment, and detection of reactive oxygen species (ROS) and nitric oxide (NO) production on RAW264.7 macrophages showed SNH can stimulate the production of tumor necrosis factor-alpha (TNF-α) and CC motif ligand 2 (CCL2) and the release of ROS and NO through a TLR2/p38/NF-κB pathway. Taken together, our data provide an innovative insight into the prevention use of exogenous SNH for the treatment of C. albicans infection.
Collapse
Affiliation(s)
- Yuxin Xie
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Rong Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Zhihao Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Cheng Xie
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Shu Gong
- Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China; Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Hong Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China; Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China; Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| |
Collapse
|
35
|
He Y, Liu S, Zheng T, Fu W, Zhang T, Zhao J, Ma T. Berberine chloride alleviated intestinal inflammation and improved postoperative ileus by regulating macrophage polarization via PI3K/AKT signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167920. [PMID: 40412730 DOI: 10.1016/j.bbadis.2025.167920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 04/27/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVE The aim of this study was to explore the therapeutic effect of berberine chloride (BBR) on postoperative ileus (POI) and unravel the mechanism by which BBR alleviates POI. METHODS A POI model was established in mice through intestinal manipulation (IM). The impact of BBR on gastrointestinal motility and inflammation was assessed 24 h post-IM by evaluating gastrointestinal transit (GIT), cytokine expression, leukocyte infiltration and macrophage polarization in POI mice. Network pharmacology analysis was employed to explore the mechanism of BBR's action on POI. Bone marrow derived macrophages (BMDMs) were isolated for in vitro culture, and the influences of BBR on cell viability, cytokine production, macrophage polarization and the PI3K/AKT signaling pathway in BMDMs were evaluated. RESULTS BBR administration significantly attenuated the intestinal motility dysfunction, reduced leukocyte infiltration, inflammatory mediator expression, and M1 macrophage polarization in the intestinal muscularis of POI mice. Network pharmacology analysis indicated that BBR may exert anti-inflammatory effects on POI via the PI3K/AKT signaling pathway. In vitro studies demonstrated that BBR inhibited macrophage activation and M1 macrophage polarization without affecting M2 macrophage polarization. Further analysis showed that BBR inhibited M1 macrophage polarization by downregulating PI3K expression and AKT phosphorylation, while 740 Y-P, a PI3K pathway agonist, reversed this effect. CONCLUSION BBR markedly alleviates manipulation-induced intestinal inflammation in muscular tissue and restores intestinal transit in POI mice. Mechanistically, BBR exerts anti-inflammatory effects on POI by inhibiting M1 macrophage polarization via regulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yuxin He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shuchang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ting Zheng
- Department of General Surgery, the First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Wei Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Zhao
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
36
|
Gao C, Pu H, Zeng Y, Xiao J. The causal relationship between immune cells and knee osteoarthritis: Mendelian randomization study. BMC Musculoskelet Disord 2025; 26:504. [PMID: 40405089 PMCID: PMC12096777 DOI: 10.1186/s12891-025-08735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/09/2025] [Indexed: 05/24/2025] Open
Abstract
Knee osteoarthritis (OA) is a common degenerative joint disease that affects millions of people worldwide. Inflammation is one of the key pathogenic factors of knee OA. However, the causal relationship between immune cells and knee OA development remains unclear. Herein, we used Mendelian randomization (MR) analysis to evaluate causal relationship between 731 immune cells and knee OA. Several methods were applied to ensure the robustness of our results, including inverse-variance weighted (IVW), simple mode, weighted median, weighted mode, and MR-Egger. We found that 23 immune cell phenotypes were causally associated with knee OA (P < 0.05), including various subpopulations of B cells, T cells, TBNK (T cells, B cells, Natural Killer cells) and monocytes, which was confirmed by heterogeneity, sensitivity, and pleiotropy tests. B cells had dominant effects on OA development, and specifically, our findings suggest that BAFF-R in IgD + CD38- unswitched memory B cells may have a protective role, whereas CD25 in IgD + CD24 + B cells appears to be associated with increased risk, pending further validation. Moreover, a higher population of regulatory T (Treg) cells indicated a higher risk of OA and reversely, OA could induce Treg differentiation. Collectively, our study identified several immune cells that were closely related to OA development, which provided novel insights into the pathogenesis of OA and therapeutic targets for OA treatment.
Collapse
Affiliation(s)
- Chenghao Gao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Hongxu Pu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Yifan Zeng
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Jun Xiao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
37
|
Qu Y, Gu Y, Zhang X, Wang Y, Xing X. Acupuncture's Immunomodulatory Effects on Macrophages in Allergic Disorders: A Systematic Review. J Asthma Allergy 2025; 18:801-815. [PMID: 40421260 PMCID: PMC12105631 DOI: 10.2147/jaa.s516732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025] Open
Abstract
The incidence of allergic diseases has been increasing annually, severely affecting the quality of life of patients. With the growing recognition of traditional medicine, acupuncture, an ancient Chinese therapeutic method, has gradually gained attention for its potential in immune modulation. Studies have shown that macrophages play a crucial role in the development of allergic diseases, and acupuncture may influence allergic reactions by modulating the function of macrophages. This article aims to systematically evaluate the regulatory effects of acupuncture on macrophages in allergic diseases and the corresponding mechanisms. It analyzes existing research findings and explores the clinical application prospects of acupuncture in this context. By understanding how acupuncture affects the activation, secretion, and role of macrophages in immune responses, we hope to provide new insights and directions for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Yang Qu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Yunhe Gu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150006, People’s Republic of China
| | - Xiaoying Zhang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Yanlong Wang
- The second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Xueliang Xing
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150001, People’s Republic of China
| |
Collapse
|
38
|
Guo Z, Shen Y, Yu X, Song Y, Zheng J, Zeng Y, Wang Y, Fu Z, Hou Y, Shi D, Han L, Li J, Chen L. Inhibition of IRE1α Alleviates Renal Fibrosis and Downregulates M1 Macrophage Activation via the p38 MAPK Pathway. Immunology 2025. [PMID: 40405453 DOI: 10.1111/imm.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/21/2025] [Accepted: 05/10/2025] [Indexed: 05/24/2025] Open
Abstract
The enhanced M1 macrophage activation and proportion significantly promote the progression of renal fibrosis in the unilateral ureteral obstruction (UUO) model, while the underlying mechanisms need to be further studied. Here, we examined whether or not endoplasmic reticulum (ER) stress contributed to M1 macrophage activation and the mechanisms in this process. In the UUO mouse model, the proportion of M1 macrophages could be significantly increased in the early renal fibrosis, with the ER stress activated. The inhibitor of ER stress (4-PBA) significantly suppressed the activation of M1 macrophages and alleviated the renal fibrosis in the UUO mouse model. Furthermore, the renal fibrosis could be relieved after the administration of IRE1α inhibitor (4μ8C), with the downregulation of ER stress and M1 macrophage activation. Mechanistically, ER stress-enhanced activation of M1 macrophages was regulated through the IRE1α/XBP1s-p38 MAPK pathway. IRE1α-deficient macrophages could alleviate the renal fibrosis in the UUO mouse model. Thus, our findings suggest that the ER stress pathway regulates M1 macrophage activation in the UUO model, which provides a novel therapeutic approach for renal fibrosis.
Collapse
Affiliation(s)
- Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yuting Shen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
- Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Xiaxia Yu
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yun Song
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Jiyang Zheng
- Department of Immunology, Fourth Military Medical University, Xi'an, China
- School of Medicine, Northwest University, Xi'an, China
| | - Yuen Zeng
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yazhen Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Zhaoyue Fu
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yongli Hou
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Dingwen Shi
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Liangjian Han
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Juan Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
39
|
Martkamjan C, Lerdsudkanung K, Tipay PS, Rezgui R, Teo JCM, Sapudom J. Machine learning-based label-free macrophage phenotyping in immune-material interactions. J Mater Chem B 2025; 13:5858-5870. [PMID: 40289902 DOI: 10.1039/d5tb00365b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The rapid advancement of implantable biomedical materials necessitates a comprehensive understanding of macrophage interactions to optimize implant immunocompatibility. Macrophages, key immune regulators, exhibit phenotypic plasticity by polarizing into pro-inflammatory (M1) or anti-inflammatory (M2) subtypes. Conventional phenotyping techniques, such as flow cytometry and immunostaining, provide insights but have limitations related to fixation and endpoint analysis. This study presents a high-throughput, label-free macrophage phenotyping approach integrating AI-driven image classification with quantitative phase imaging (QPI). THP-1-derived macrophages were differentiated into M0, M1, M2a, and M2c phenotypes, and their morphological and refractive index properties were analyzed using QPI. Although QPI alone could not fully distinguish phenotypes, deep learning models, including GoogLeNet, ShuffleNet, VGG-16, and ResNet-18, were evaluated, with ResNet-18 achieving over 90% accuracy. Additionally, macrophage responses to collagen coatings (types I, III, and IV) were assessed using machine learning-based phenotyping and cytokine profiling. Collagen I induced an M1 response, collagen III supported a balanced M1/M2 profile, and collagen IV promoted a controlled immune environment. These findings demonstrate the potential of AI-driven QPI as a non-invasive tool for macrophage characterization, offering insights into biomaterial immunocompatibility and informing implant design strategies.
Collapse
Affiliation(s)
- Chawalwat Martkamjan
- International School of Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Kornlavit Lerdsudkanung
- International School of Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Paul Sean Tipay
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Independent Researcher, Abu Dhabi, United Arab Emirates
| | - Rachid Rezgui
- Core Technology Platform - Light Microscopy, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jeremy C M Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
40
|
Liu JY, Luo JF, Wu XY, Liu T, Wang R, Zhang Q, Liu YM, Wu H. SLP65/SLP76 Csk-interacting membrane protein promotes hepatic ischemia-reperfusion injury by activating TLR4/Erk1/2-mediated macrophages M1 polarization. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167916. [PMID: 40403937 DOI: 10.1016/j.bbadis.2025.167916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/03/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND SLP65/SLP76, Csk-interacting membrane protein (SCIMP), is a membrane protein plays a crucial role in the regulation of macrophage polarization. This study aimed to investigate the mechanism of SCIMP-mediated M1 polarization in liver macrophages and ischemia-reperfusion injury (IRI) in liver transplantation. METHODS Mice underwent orthotopic liver transplantation. In in vivo experiments, mice were divided into the Sham group, LT group, LT+Scramble group, LT+SCIMP (-) group, and LT+ERK1/2 (-) group, and SCIMP or ERK1/2 knockdown was performed using AAV-Erk1/2-RNAi-F4/80-EGFP and AAV-SCIMP-RNAi-F4/80-EGFP. In the subsequent in vitro experiments with primary cells, macrophages were divided into the Ctrl group, H/R group, H/R+Scramble group, H/R+SCIMP (-) group, and H/R+ERK1/2 (-) group, with SCIMP knockdown achieved using siRNA. Immunoprecipitation (IP) was used to detect the interaction between TLR4 and Erk1/2. Liver damage was detected by Hematoxylin and eosin (HE) staining. Polarization was detected by western blot (WB), RT-PCR, immunohistochemistry (IHC), immunofluorescence technique (IF), enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FC). RESULTS Knockdown of SCIMP ameliorated hepatic IRI and liver macrophages M1 polarization. Mechanically, SCIMP promoted the interaction between Erk1/2 and TLR4 in hypoxia/reoxygenation (H/R)-induced liver macrophages, while the inhibition of Erk1/2 reduced liver macrophages M1 polarization and liver IRI. CONCLUSION SCIMP promotes hepatic ischemia-reperfusion injury by activating TLR4/Erk1/2-mediated liver macrophages M1 polarization, which might become a potential therapeutic target in clinic.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Jie-Fu Luo
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Xin-Yi Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Tao Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Rui Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Qi Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Yi-Ming Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China.
| | - Hao Wu
- Department of Urology Surgery, The Second Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
41
|
Xu DM, Chen LX, Xue T, Zhuang XY, Wei LC, Han H, Mo M. Decoding the impact of MMP1+ malignant subsets on tumor-immune interactions: insights from single-cell and spatial transcriptomics. Cell Death Discov 2025; 11:244. [PMID: 40394037 DOI: 10.1038/s41420-025-02503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/22/2025] Open
Abstract
Matrix metalloproteinase 1 plays a pivotal role in tumor biology and immune modulation through its enzymatic remodeling of the extracellular matrix, facilitating tumor progression. In this study, we utilized large-scale single-cell RNA sequencing and spatial transcriptomics to investigate MMP1 expression, its cellular localization, and its impact on tumor progression and immune modulation. Our findings reveal that MMP1 expression is elevated in various tumor types and is strongly correlated with metastatic potential. High MMP1 expression was associated with increased activity in epithelial-mesenchymal transition signaling and TNFα/NF-κB pathways, which are known to promote tumor progression. Furthermore, MMP1+ malignant cells exhibited significant interactions with immune cells, particularly macrophages and CD8+ T cells. MMP1 expression correlated with enhanced macrophage infiltration and impaired CD8+ T-cell function, contributing to an immunosuppressive tumor microenvironment. Notably, the CXCL16-CXCR6 and ANXA1-FPR3 signaling axes were identified as key mediators of these interactions. Inhibition of MMP1 in vitro demonstrated reduced cell invasion, stemness, and proliferation, while increasing reactive oxygen species levels and promoting apoptosis. Our findings position MMP1 as a key player in the "tumor-immune" vicious cycle and a promising therapeutic target to enhance anti-tumor responses and improve patient outcomes.
Collapse
Affiliation(s)
- Da-Ming Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ling-Xiao Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Ting Xue
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiao-Yu Zhuang
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, P. R. China
| | - Li-Chao Wei
- Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Hui Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, P.R. China.
| |
Collapse
|
42
|
Belboul A, Ashworth J, Fadel A, Mcloughlin J, Mahmoud A, El Mohtadi M. Estrogen induces the alternative activation of macrophages through binding to estrogen receptor-alpha. Exp Mol Pathol 2025; 143:104971. [PMID: 40398084 DOI: 10.1016/j.yexmp.2025.104971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
Age-related impaired wounds represent a major health burden resulting in considerable morbidity and mortality in the elderly. When injury occurs, monocytes migrate to the damaged site and undergo differentiation into tissue-resident macrophages, which are crucial for wound repair. For proper resolution of the inflammatory response, macrophages differentiate into two distinct phenotypes classified as classically-activatedpro-inflammatory and alternatively-activatedanti-inflammatory macrophages. Pro-inflammatory macrophages are commonly linked with pro-inflammatory events, while anti-inflammatory macrophages are known to be pro-regenerative. The age-related delay in wound repair is often attributed to the age-related decrease in local and systemic estrogen levels in both genders. However, despite its well-documented anti-inflammatory effect in wound healing, the role of estrogen and involvement of Estrogen Receptors (ERs) in macrophage polarization has gained little attention to date. To investigate the impact of estrogen and ERs on the polarization of macrophages, monocyte-derived macrophages were pre-treated with estrogen, ER-alpha agonist/antagonist or ER-beta agonist/antagonist prior to stimulation with LPS/IFN-γ or IL-4/IL-13 to produce pro-inflammatory or anti-inflammatory macrophages. Our findings confirm that estrogen promotes the alternative activation of macrophages via possible ER-α signalling. Selective targeting of ER-α with agents like PPT could potentially lead to the development of novel therapies to treat excessive inflammation in impaired wounds.
Collapse
Affiliation(s)
- Amina Belboul
- Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Jason Ashworth
- Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Abdulmannan Fadel
- Department of Nutrition and Health, United Arab Emirates University, Al Ain, P.O BOX 15551, United Arab Emirates
| | - Jessica Mcloughlin
- Department of Biology, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| | - Ayman Mahmoud
- Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Mohamed El Mohtadi
- Department of Biology, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK.
| |
Collapse
|
43
|
Yingming W, Jing G, Tianhong W, Zhenyu W. M2 Macrophages Mitigate Ocular Surface Inflammation and Promote Recovery in a Mouse Model of Dry Eye. Exp Eye Res 2025:110439. [PMID: 40403951 DOI: 10.1016/j.exer.2025.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/09/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Dry eye disease (DED) is a chronic, progressive, multifactorial condition characterized by tear film instability and ocular surface damage. Ocular surface inflammation, triggered by multiple pathogenic factors, represents one of the key mechanisms in DED pathogenesis. This study aims to investigate the therapeutic effects of anti-inflammatory M2 macrophages conditioned medium (M2-CM) on ocular surface inflammation and their potential mechanisms in improving dry eye symptoms in a mouse model. Mouse macrophages (RAW264.7) were polarized into M2 macrophages by IL-4 under different osmolarities, and M2-CM was collected. Flow cytometry and ELISA were applied to measure the cytokine expression of the M2 macrophages. Primary mouse corneal epithelial cells (CECs) were co-cultured with RAW264.7 and M2 macrophages using a Transwell system. The viability and migration of CECs were assessed using CCK-8 and scratch assays. Mouse DED was established by subcutaneous injection of scopolamine, and the therapeutic effects of M2-CM were evaluated by phenol red thread test, fluorescein staining, and tear film breakup time (TBUT). PCR and immunofluorescence staining were applied to observe inflammatory factors and cells on the ocular surface. M2 macrophages enhanced CEC viability, proliferation, and migration, but hyperosmolarity inhibited M2 macrophage polarization. In the DED model, M2-CM improved ocular surface conditions, reduced pro-inflammatory cytokine expression, and increased anti-inflammatory factors. Immunofluorescence revealed reduced pro-inflammatory cells (M1 macrophages, Th1, and Th17) and increased M2 macrophages in the ocular tissues after M2-CM treatment. These results suggest that M2-CM ameliorates ocular surface inflammation and promotes recovery in DED, offering a potential therapeutic strategy for DED.
Collapse
Affiliation(s)
- Wang Yingming
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University
| | - Gao Jing
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University
| | - Wu Tianhong
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University
| | - Wang Zhenyu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University.
| |
Collapse
|
44
|
Lu T, Shang J, Pu S, Xu Y, Sun X, Gao X. The role of microglia in the development of diabetic retinopathy and its potential clinical application. Hum Cell 2025; 38:101. [PMID: 40392429 DOI: 10.1007/s13577-025-01226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/21/2025] [Indexed: 05/22/2025]
Abstract
Lately, research on the function of microglia in diabetic retinopathy (DR) is becoming increasingly focused. Microglia are immune cells that dwell in the central nervous system and are crucial to the pathophysiology of DR. According to studies, a hyperglycemic environment can activate microglia, bringing them out of a resting state to an active state. This allows them to release a variety of inflammatory factors and chemokines, which can then cause retinal inflammatory reactions. When it comes to angiogenesis in DR, activated microglia release a variety of angiogenic substances, such as vascular endothelial growth factor (VEGF), to create aberrant new blood vessels. Moreover, microglia contribute to the retina's oxidative stress process by generating and releasing reactive oxygen and nitrogen-free radicals, which exacerbates retinal damage. Researchers have proposed a variety of strategies for the activation of microglia and the inflammatory response it triggers. By inhibiting the excessive activation of microglia and reducing the release of inflammatory factors, the inflammatory response and damage to the retina can be alleviated. Drugs that interfere with retinal microglia can also be used to regulate vascular damage and inhibit the formation of new blood vessels. In addition, antioxidants are used to remove reactive oxygen and free radicals, reduce oxidative stress levels, and protect retinal cells. These therapeutic strategies aim to achieve the purpose of treating DR by regulating the function of microglia. Thus, we highlight the possibility that therapy aimed at microglia could offer fresh ideas for treating DR.
Collapse
Affiliation(s)
- Tingting Lu
- The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jiameng Shang
- The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Shengdan Pu
- The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yuxin Xu
- The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xiaotong Sun
- The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xinyuan Gao
- The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
45
|
McGill CJ, White OS, Lu RJ, Sampathkumar NK, Benayoun BA. Sex-dimorphic gene regulation in murine macrophages across niches. Immunol Cell Biol 2025. [PMID: 40390161 DOI: 10.1111/imcb.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/21/2025]
Abstract
Macrophages are a key cell type of the innate immune system and are involved at all steps of inflammation: (i) they present antigens to initiate inflammation, (ii) they clear up foreign bodies through phagocytosis and (iii) they resolve inflammation by removing or deactivating mediator cells. Many subtypes of macrophages have been identified, classified by their niche and/or embryonic origin. In order to better develop therapies for conditions with macrophage dysfunction, it is crucial to decipher potential sex differences in key physiological mediators of inflammation so that treatment efficacy can be ensured regardless of biological sex. Here, we conduct a meta-analysis approach of transcriptomics data sets for male vs. female mouse macrophages across 8 niches to characterize conserved sex-dimorphic pathways in macrophages across origins and niches. For this purpose, we leveraged new and publicly available RNA-sequencing data sets from murine macrophages, preprocessed these datasets and filtered them based on objective QC criteria, and performed differential gene expression analysis using sex as the covariate of interest. Differentially expressed (DE) genes were compared across data sets and macrophage subsets, and functional enrichment analysis was performed to identify sex-specific functional differences. Consistent with their presence on the sex chromosomes, three genes were found differentially expressed across datasets (i.e. Xist, Eif2s3y and Ddx3y). More broadly, we found that female-biased pathways across niches are more consistent than male-biased pathways, specifically relating to the extracellular matrix. Our findings increase our understanding of transcriptional similarities across macrophage niches and underscore the importance of including sex as a biological variable in immune-related studies.
Collapse
Affiliation(s)
- Cassandra J McGill
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Olivia S White
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA, USA
| | - Ryan J Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Nirmal K Sampathkumar
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA, USA
- USC Stem Cell Initiative, Los Angeles, CA, USA
| |
Collapse
|
46
|
Shariatzadeh M, Payán-Gómez C, Kzhyshkowska J, Dik WA, Leenen PJM. Polarized Macrophages Show Diverse Pro-Angiogenic Characteristics Under Normo- and Hyperglycemic Conditions. Int J Mol Sci 2025; 26:4846. [PMID: 40429986 PMCID: PMC12111939 DOI: 10.3390/ijms26104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Angiogenesis plays a crucial role in solid tumor growth. Ischemia and inflammation induce various angiogenic mediators, and patient metabolic conditions importantly influence this process. Macrophages closely interact with the vascular system and regulate angiogenesis through pro/anti-angiogenic factors. Traditionally, pro-angiogenic activity has been attributed to M2-like macrophages. We question this, as recent evidence suggests that also M1-like macrophages can be pro-angiogenic. Therefore, the aim is to identify the pro/anti-angiogenic gene expression profiles of human polarized macrophages unbiasedly. We also examine the effect of hyperglycemia on angiogenic gene expression, reflecting its role in diabetes and other metabolic conditions. Bioinformatic analysis was performed on the angiogenesis-related gene expression profiles of CD14+ monocyte-derived M1(IFN-γ)- and M2(IL-4)-polarized macrophages. The top differentially expressed genes were selected for validation. Macrophages were generated in vitro and polarized to M1(IFN-γ) and M2(IL-4/IL-6) cells under standard/hyperglycemic conditions. After immunophenotypic confirmation, selected gene expression was quantified using qPCR. IL-4 and IL-6 induce distinct M2-like phenotypes with mixed pro/anti-angiogenic gene expression. Remarkably, IFN-γ stimulation also increases several pro-angiogenic genes. Hyperglycemia affects the angiogenic expression profile in both M1- and M2-like macrophages, although distinctive identities remain intact. The pro-angiogenic phenotype is not limited to M2-polarized macrophages. Both M1- and M2-like macrophages express complex pro/anti-angiogenic gene profiles, which are only mildly influenced by hyperglycemia.
Collapse
Affiliation(s)
- Mahnaz Shariatzadeh
- Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - César Payán-Gómez
- Academic Direction, Universidad Nacional de Colombia, Sede de La Paz, Cesar 202010, Colombia;
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
- German Red Cross Blood Service Baden-Württemberg—Hessen, 89081 Ulm, Germany
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Pieter J. M. Leenen
- Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
47
|
Sharma S, Kishen A. Dysfunctional crosstalk between macrophages and fibroblasts under LPS-infected and hyperglycemic environment in diabetic wounds. Sci Rep 2025; 15:17233. [PMID: 40383800 PMCID: PMC12086240 DOI: 10.1038/s41598-025-00673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/29/2025] [Indexed: 05/20/2025] Open
Abstract
Diabetic wounds, especially diabetic foot ulcers, present a major clinical challenge due to delayed healing and prolonged inflammation. Macrophage-fibroblast interactions are essential for wound repair, yet this crosstalk is disrupted in diabetic wounds due to hyperglycemia and bacterial infection. This study investigates the dysfunctional communication between macrophages and fibroblasts, focusing on autocrine, paracrine, and juxtacrine signaling in simulated diabetic environments. Using monoculture and co-culture models of THP-1-derived macrophages and primary human dermal fibroblasts, we simulated conditions of normal glucose, LPS-induced infection, high glucose (with AGEs), and combined high glucose (with AGEs) and LPS. Macrophages in hyperglycemic and LPS-infected environments exhibited a pro-inflammatory M1 phenotype with elevated expression of CD80, and STAT1 and increased production of IL-1β, TNF-α, and MMP9. Fibroblast migration was significantly impaired under high glucose conditions, particularly in paracrine model. Secretome profiling showed heightened pro-inflammatory cytokines and proteases, with reduced anti-inflammatory markers (IL-10 and VEGF-A) under hyperglycemic conditions. Paracrine signaling exacerbated the inflammatory response, while juxtacrine signaling showed more moderate effects, conducive to healing. These findings highlight the pathological macrophage-fibroblast crosstalk in diabetic wounds, particularly under hyperglycemic and LPS-infected conditions, offering insights for potential immunomodulatory therapies aimed at restoring effective signaling and improving wound healing outcomes.
Collapse
Affiliation(s)
- Shivam Sharma
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, Canada
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, Canada.
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
- Department of Dentistry, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
48
|
Kirchhoff R, Chromik MA, Schebb NH. Phagocytosis is differentially regulated by LPS in M1- and M2-like macrophages via PGE 2 formation and EP4 signaling. Prostaglandins Other Lipid Mediat 2025; 178:106998. [PMID: 40383415 DOI: 10.1016/j.prostaglandins.2025.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/30/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Phagocytosis is a key process in human innate immune response. Human macrophages are important phagocytes engulfing and neutralizing pathogens and cell debris. In addition, they modulate the inflammatory process by releasing cytokines and lipid mediators. However, the link between oxylipins and phagocytosis in different macrophage phenotypes remains poorly understood. In order to better understand the link between phagocytosis and the arachidonic acid (ARA) cascade, we established a phagocytosis assay in primary human 'inflammatory' M1- and 'anti-inflammatory' M2-like macrophages from peripheral blood mononuclear cells (PBMC), representing extremes of macrophage phenotypes. The branches of the ARA cascade were investigated by quantitative targeted proteomics and metabolomics. M1-like macrophages show a higher abundance of cyclooxygenase (COX)-2 and its products particularly after LPS stimulus compared to M2-like macrophages. LPS increased phagocytosis in M2-like, but not in M1-like macrophages. We demonstrate that the COX product prostaglandin E2 (PGE2) modulates the differential effects of LPS on phagocytosis: Via the EP4 receptor PGE2 signaling suppresses phagocytosis in primary human macrophages. Thus, blockage of COX, e.g. by non-steroidal anti-inflammatory drugs (NSAID), leads to an increase of phagocytosis also in 'inflammatory' M1-like macrophages. This supports the well-described anti-inflammatory effects of these drugs and underscores the importance of the link between the COX branch of the ARA cascade and the regulation of phagocytosis in human macrophages.
Collapse
Affiliation(s)
- Rebecca Kirchhoff
- Chair of Food Chemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, Wuppertal 42119, Germany
| | - Michel André Chromik
- Chair of Food Chemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, Wuppertal 42119, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, Wuppertal 42119, Germany.
| |
Collapse
|
49
|
Gill GS, Kharb S, Goyal G, Das P, Kurdia KC, Dhar R, Karmakar S. Immune Checkpoint Inhibitors and Immunosuppressive Tumor Microenvironment: Current Challenges and Strategies to Overcome Resistance. Immunopharmacol Immunotoxicol 2025:1-45. [PMID: 40376861 DOI: 10.1080/08923973.2025.2504906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
Immune checkpoint inhibitors (ICIs) are shown to improve cancer treatment effectiveness by boosting the immune system of the patient. Nevertheless, the unique and highly suppressive TME poses a significant challenge, causing heterogeneity of response or resistance in a considerable number of patients. This review focuses on the evasive attributes of the TME. Immune evasion mechanism in TME include immunosuppressive cells, cytokine and chemokine signaling, metabolic alterations and overexpression of immune checkpoint molecules such as PD-1, CTLA-4, LAG-3, TIM-3, TIGIT, BTLA and their interactions within the TME. In addition, this review focuses on the overcoming resistance by targeting immunosuppressive cells, normalizing tumor blood vessels, blocking two or three checkpoints simultaneously, combining vaccines, oncolytic viruses and metabolic inhibitors with ICIs or other therapies. This review also focuses on the necessity of finding predictive markers for the stratification of patients and to check response of ICIs treatment. It remains to be made certain by new research and intelligent innovations how these discoveries of the TME and its interplay facilitate ICI treatment and change the face of cancer treatment.
Collapse
Affiliation(s)
- Gurpreet Singh Gill
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Simmi Kharb
- Department of Biochemistry, Pt. B.D. Sharma Postgraduate Institute of Medical Sciences, Rohtak, India
| | - Gitanjali Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kailash Chand Kurdia
- Department of GI Surgery & Liver Transplantation, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
50
|
Park S, Jeong I, Kim OK. Ginsenoside Rh2 Mitigates Endoplasmic Reticulum Stress-Induced Apoptosis and Inflammation and Through Inhibition of Hepatocyte-Macrophage Inflammatory Crosstalk. Nutrients 2025; 17:1682. [PMID: 40431422 PMCID: PMC12114235 DOI: 10.3390/nu17101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Endoplasmic reticulum stress (ERS) contributes to hepatocyte inflammation, triggered by prolonged exposure to lipotoxicity, and promotes non-alcoholic fatty liver disease (NAFLD) progression by recruiting and activating hepatic macrophages, which accelerate fibrosis and exacerbate disease progression. Here, we aimed to evaluate the therapeutic potential of ginsenoside Rh2 (Rh2) in a cell model of NAFLD induced by the ERS inducer thapsigargin (THA). Methods: HepG2 cells were treated with THA to induce ERS and mimic NAFLD conditions. The effects of Rh2 on ERS, lipid accumulation, and apoptosis were assessed in HepG2 cells. Additionally, THP-1 cells were used to investigate macrophage activation upon exposure to conditioned medium (CM) from THA- and Rh2-treated HepG2 cells. Gene and protein expression of inflammatory and lipid synthesis markers were analyzed, as well as M1/M2 macrophage polarization markers. Results: Rh2 inhibited THA-induced apoptosis, ERS, and lipid accumulation in HepG2 cells. It also reduced the expression of lipid synthesis genes (SREBF1, FAS) and inflammatory markers (IL-6, IL-1β, TNF-α, MCP-1). CM from Rh2-treated HepG2 cells suppressed macrophage activation in THP-1 cells, decreased M1 polarization markers (CD80, CD86), and increased M2 markers (CD163, Arg1, MRC-1). Conclusions: These results suggest that Rh2 effectively suppresses inflammation and lipid storage in ERS-induced HepG2 cells while modulating the crosstalk between hepatocytes and macrophages. These findings underscore the potential of Rh2 as a promising therapeutic agent for the prevention and early intervention of NAFLD progression.
Collapse
Affiliation(s)
- Shinjung Park
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea; (S.P.); (I.J.)
| | - Inae Jeong
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea; (S.P.); (I.J.)
| | - Ok-Kyung Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea; (S.P.); (I.J.)
- Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|