1
|
Xu Z, Song R, Chen Z, Sun Y, Xia Y, Miao H, Wang W, Zhang Y, Jiang X, Chen G. Hydrogen generators-protected mesenchymal stem cells reverse articular redox imbalance-induced immune dysfunction for osteoarthritis treatment. Biomaterials 2025; 320:123239. [PMID: 40054376 DOI: 10.1016/j.biomaterials.2025.123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 04/06/2025]
Abstract
Stem cell therapy has revolutionized the management of osteoarthritis (OA), but the articular dysregulated redox status diminishes cell engraftment efficiency and disrupts immune homeostasis, therefore compromising the overall therapeutic efficacy. Here, we present hydrogen (H2) generators-backpacked mesenchymal stem cells (MSCs) which preserve the biological functions and survival of transplanted cells and reverse articular immune dysfunction, mitigating OA. Specifically, post systemic transplantation, H2 generators-laden MSCs home to OA joints, and upon stimulation in acidic OA environment, H2 produced from the generators remodels articular redox balance, thereby relieving the loss of mitochondrial membrane potential, decreasing cell apoptosis rate, and maintaining pluripotent and paracrine functions of MSCs. Furthermore, the reactive oxygen species scavenging by H2 in combination with paracrine effects of the MSCs promote macrophage polarization towards the anti-inflammatory M2 phenotype, which contributes to reversing synovial immune disorder. In severe OA model, the backpacked MSCs reduce osteoarthritic degeneration, osteophyte formation and joint inflammation, and promote cartilage regeneration. In sum, our work demonstrates that arming with H2 generators effectively boosts the therapeutic efficacy of MSCs, which hold great potential for alleviating redox imbalance-related tissue lesions, including but not limited to OA.
Collapse
Affiliation(s)
- Zhou Xu
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China; Shandong Provincial Key Medical and Health Laboratory of Neuro-oncology of Innovative Integrated Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Qingdao, 266024, China; Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiling Chen
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Yu Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yinhe Xia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Haixiang Miao
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Weijie Wang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Yuankai Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xinyi Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Gang Chen
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China; Shandong Provincial Key Medical and Health Laboratory of Neuro-oncology of Innovative Integrated Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Qingdao, 266024, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Zhang Y, Ge Y, Wu S, Shao Y, Lu Y, Zhao X, Gu J, Wang Y. Superoxide anion-responsive persulfide and all-trans retinoic acid co-donating peptide assemblies attenuate myocardial ischemia-reperfusion injury. Biomaterials 2025; 320:123276. [PMID: 40120175 DOI: 10.1016/j.biomaterials.2025.123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) has become a severe threat to human health due to its high mortality rate and poor prognosis. Mutually entangled issues including ROS over-production, excessive inflammatory responses, and myocardial apoptosis are involved during MIRI. Effective inhibition of ROS burst at the beginning of reperfusion has been proved as the key for MIRI treatment. In this work, we report a superoxide anion-responsive peptide co-assembly (S/A-P) capable of delivering the H2S donor (i.e., superoxide-responsive persulfide donor) and all-trans retinoic acid (ATRA) simultaneously for the treatment. Our results suggest that compared with its single peptidic counterparts, the as-prepared system can significantly lower ROS production and repair myocardial mitochondrial dysfunction due to the synergy effect from the persulfides/H2S and ATRA. Moreover, S/A-P can reduce excessive inflammatory response through regulating macrophage polarization, which is further mapped by RNA sequencing. In vivo assessment of the co-assembly also displays an excellent therapeutic effect of MIRI on rats. In terms of good biocompatibility and outstanding efficacy, we believe that S/A-P will have a bright future for the treatment of cardiovascular diseases or other related diseases.
Collapse
Affiliation(s)
- Yanwen Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuxuan Ge
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiqi Wu
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200125, China
| | - Yiyang Shao
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujia Lu
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Yin Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Liu G, Xue J, Zhou X, Gui M, Xia R, Zhang Y, Cai Y, Li S, Shi S, Mao X, Chen Z. The paradigm shifts of periodontal regeneration strategy: From reparative manipulation to developmental engineering. Bioact Mater 2025; 49:418-436. [PMID: 40165829 PMCID: PMC11957753 DOI: 10.1016/j.bioactmat.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/07/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Ideal periodontal regeneration requires the integration of alveolar bone, periodontal ligament, and cementum, along with Sharpey's fibers for occlusal force resistance. However, physiological regeneration remains rare due to its intricate structure, making clinical regeneration a challenge. Periodontal ligament stem cells (PDLSCs), first isolated in 2004, hold the key to multi-directional differentiation into cementoblasts, fibroblasts, and osteoblasts. While traditional therapies like guided tissue regeneration (GTR) aim to activate PDLSCs, clinical outcomes are inconsistent, suggesting the need for additional strategies to enhance PDLSCs' functions. Advancements in molecular biotechnology have introduced the use of recombinant growth factors for tissue regeneration. However, maintaining their efficacy requires high doses, posing cost and safety issues. Multi-layered scaffolds combined with cell sheet technology offer new insights, but face production, ethical, and survival challenges. Immune regulation plays a crucial role in PDLSC-mediated regeneration. The concept of "coagulo-immunomodulation" has emerged, emphasizing the coupling of blood coagulation and immune responses for periodontal regeneration. Despite its potential, the clinical translation of immune-based strategies remains elusive. The "developmental engineering" approach, which mimics developmental events using embryonic-stage cells and microenvironments, shows promise. Our research group has made initial strides, indicating its potential as a viable solution for periodontal complex regeneration. However, further clinical trials and considerations are needed for successful clinical application. This review aims to summarize the strategic transitions in the development of periodontal regenerative materials and to propose prospective avenues for future development.
Collapse
Affiliation(s)
- Guanqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Junlong Xue
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xuan Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Mixiao Gui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Ruidi Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yanshu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yihua Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Shuhua Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- South China Center of Craniofacial Stem Cell Research, Guangzhou, 510055, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- South China Center of Craniofacial Stem Cell Research, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
4
|
Sousa AB, Martins C, Sarmento B, Barbosa MA, Barbosa JN. Zein nanocarriers for controlled maresin-1 delivery: A novel approach in biomaterial-based immunomodulation. BIOMATERIALS ADVANCES 2025; 172:214238. [PMID: 40015102 DOI: 10.1016/j.bioadv.2025.214238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
In this research work, we report the development of a new immunoengineering approach of sustained drug delivery for regenerative medicine applications. We have produced an innovative nanobiomaterial that integrates the unique advantages of zein, as a protein-based delivery system, with maresin-1, a specialised pro-resolving mediator that plays a critical role in controlling inflammation and promoting its resolution. A microfluidic chip was used as a manufacturing platform to load maresin-1 into zein nanoparticles, by flow-focusing the organic central stream with the aqueous outer fluid. We were able to develop homogeneous nanoparticles presenting a mean diameter between 100 and 117 nm. Different drug loadings were tested: 10, 50, and 100 nM of maresin-1. The nanoparticles loaded with the highest concentration of maresin-1 presented a more controlled release profile throughout 72 h. The biocompatibility and immunomodulatory potential were assessed in primary human macrophages. Maresin-1-loaded zein nanoparticles were non-cytotoxic and, the nanoparticles loaded with 100 nM maresin-1 significantly enhanced macrophage polarisation towards an anti-inflammatory M2-like phenotype, as evidenced by a pronounced increase in the M2/M1 ratio. This polarisation effect was higher than that obtained with free maresin-1 or empty zein nanoparticles, highlighting the synergistic potential of this nanocarrier system. This work emphasizes maresin-1-loaded zein nanoparticles as a safe and effective immunomodulatory platform, paving the way for novel therapeutic approaches in inflammation management and tissue repair and regeneration.
Collapse
Affiliation(s)
- Ana Beatriz Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Mário Adolfo Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Judite Novais Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Ghamangiz S, Jafari A, Maleki-Kakelar H, Azimi H, Mazloomi E. Reprogram to heal: Macrophage phenotypes as living therapeutics. Life Sci 2025; 371:123601. [PMID: 40189197 DOI: 10.1016/j.lfs.2025.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Macrophages represent a crucial cell type within the immune system, exhibiting significant adaptability that allows for the transformation into various phenotypes in response to their surrounding environment. This review investigates the characteristics of various macrophage phenotypes and their functional roles in disease pathogenesis and resolution. The M1 phenotype, recognized for its inflammatory attributes, plays a pivotal role in combating infections and tumors; however, it may also contribute to tissue injury, persistent inflammation, and the pathogenesis of autoimmune and inflammatory diseases. Conversely, the M2 phenotype is associated with anti-inflammatory activities and tissue repair processes. But this is not the end of the story and researches illustrated novel phenotypes that may provide new approaches and therapeutic opportunities. Recent progress in characterizing distinct macrophage phenotypes has enabled the development of innovative therapeutic strategies for chronic inflammatory conditions, autoimmune disorders, and cancers. This review underscores the critical role of macrophage polarization, illustrating how various stimuli can influence macrophage fate and modify their responses. Additionally, it explores the implications of macrophage plasticity on disease progression and treatment efficacy. A comprehensive understanding of these dynamics is essential for the advancement of targeted immunotherapies, which possess the potential to transform treatment strategies for a variety of medical conditions.
Collapse
Affiliation(s)
- Sheyda Ghamangiz
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Azimi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ebrahim Mazloomi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Zou J, Cui W, Deng N, Li C, Yang W, Ye X, Yao F, Zhang T, Xiao J, Ma C, Wu L, Dong D, Chen J, Guo C, Liu A, Wu H. Fate reversal: Exosome-driven macrophage rejuvenation and bacterial-responsive drug release for infection immunotherapy in diabetes. J Control Release 2025; 382:113730. [PMID: 40250625 DOI: 10.1016/j.jconrel.2025.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Superficial surgical site infection (SSI) is a significant risk factor for the development of periprosthetic joint infection (PJI), particularly in diabetic patients. A high-glucose microenvironment is observed to compromise phagocytosis by inducing cellular senescence, which leads to impaired antibacterial immune function. Exosomes derived from umbilical cord stem cells (H-Exos) can reverse the immunosuppressive microenvironment by rejuvenating senescent cells, thereby terminating excessive, persistent, and ineffective inflammatory responses. Thus, a novel exosome-based immunotherapeutic antibacterial strategy to reverse fate is proposed. Vancomycin & lysostaphin-loaded exosomes are incorporated in a customizable microneedle patch (ExoV-ExoL@MN) for controlled release, enabling tailored treatments for diverse clinical scenarios. While rejuvenating macrophage senescent phenotype, the antibiotics encapsulated within exosomes can be responsively released by the hemolysin secreted by bacteria, triggering rapid bacterial killing. Post-infection clearance, they induce a shift from M1 to M2 macrophage polarization, thereby enhancing anti-inflammatory and reparative responses. Furthermore, the components can be mixed on demand and at any time, allowing for real-time customization and fabrication directly at the clinic (fabrication@clinic). This strategy reverses the immunosuppressive microenvironment by rejuvenating senescent macrophages and effectively combats bacterial invasion into deep tissues through bacteria-responsive antibiotic release, providing a promising approach for preventing and treating SSI-induced PJI.
Collapse
Affiliation(s)
- Jiaxuan Zou
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Wushi Cui
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou 310024, PR China
| | - Congsun Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Weinan Yang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Xiaojun Ye
- Department of Ultrasound, Hangzhou Women's Hospital, Hangzhou 310008, PR China
| | - Feng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Tao Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Jian Xiao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, The First People's Hospital of Jiashan, Jiaxing 314100, PR China
| | - Chiyuan Ma
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Lingfeng Wu
- Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Dahai Dong
- Department of Orthopedics, Suichang County People's Hospital in Zhejiang Province, Lishui 323300, PR China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, PR China.
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310024, PR China.
| | - An Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| | - Haobo Wu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| |
Collapse
|
7
|
Liu T, Huang Y, Wang Y, Shen H. Disrupting the immune homeostasis: the emerging role of macrophage ferroptosis in autoimmune diseases. Int Immunopharmacol 2025; 157:114745. [PMID: 40319750 DOI: 10.1016/j.intimp.2025.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/18/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Autoimmune diseases are a class of chronic disorders characterized by the aberrant activation of the immune system, where macrophages play a central role in regulating immune responses during disease onset and progression. Ferroptosis, a form of iron-dependent programmed cell death, has recently attracted significant interest due to its involvement in various pathological conditions. In macrophages, ferroptosis not only compromises cell viability but also disrupts immune homeostasis by promoting pro-inflammatory responses and suppressing anti-inflammatory pathways, thereby intensifying inflammation and exacerbating disease severity. While substantial progress has been made in elucidating macrophage ferroptosis in atherosclerosis and oncology, its precise mechanistic role in autoimmune diseases remains largely unexplored. This review systematically summarizes the molecular mechanisms of macrophage ferroptosis and its regulatory effects on immune homeostasis, with particular emphasis on its role in autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), multiple sclerosis (MS), and systemic sclerosis (SSc). Furthermore, we discuss potential therapeutic targets related to macrophage ferroptosis in these conditions. By integrating current knowledge, this review aims to provide a theoretical framework and novel perspectives for developing innovative therapeutic strategies targeting autoimmune diseases.
Collapse
Affiliation(s)
- Tianfu Liu
- Department of Hepatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Yichen Huang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Yizhe Wang
- Department of Respiratory and Critical Care Medicine, The First People Hospital of Lanzhou, Lanzhou 730050, Gansu, China
| | - Haili Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China.
| |
Collapse
|
8
|
Zhou S, Zhu Y, Wu Y, Zhang X, Kong X, Zhao X, Xiang H, Shang D. New insights on metabolic reprogramming in macrophage plasticity. Int Immunopharmacol 2025; 157:114797. [PMID: 40339492 DOI: 10.1016/j.intimp.2025.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Macrophages are the first line of defense in the innate immune system. Macrophages have two subtypes: classically activated macrophages (M1) and alternatively activated macrophages (M2), with different phenotypes and functions. They play a critical role in defending against pathogens and maintaining internal homeostasis. Macrophages have great plasticity in their biological characteristics. Although the regulation of macrophage plasticity has not been fully elucidated, accumulated evidence supports that microenvironmental differences are the root cause for macrophage differentiation into different subtypes. These differences alter macrophage plasticity by modulating key metabolites, activating downstream gene transcription, and influencing phagocytosis, cytokine secretion, and immune regulation. Herein, we systematically summarize metabolic reprogramming, including glucose, lipid, amino acid, ion, vitamin, nucleotide, and butyrate metabolism, as key regulators affecting macrophage polarization, providing new insights for developing targeted drugs that modulate macrophage plasticity.
Collapse
Affiliation(s)
- Siyu Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yutong Zhu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yu Wu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiaonan Zhang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xin Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; College of Pharmacy, Dalian Medical University, Dalian 116011, China
| | - Xinya Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; College of Pharmacy, Dalian Medical University, Dalian 116011, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China; Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
9
|
Liu Z, Yang J, Tan G, Shi Y, Tao D, Wang W, Li B, Jin F, He X. Methotrexate loaded extracellular vesicles attenuate periodontitis by suppressing ACSL1 and promoting anti-inflammatory macrophage. Mol Immunol 2025; 182:83-95. [PMID: 40245705 DOI: 10.1016/j.molimm.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Macrophages are crucial immune cells in periodontal tissues, which play key roles in both the destruction and repair of associated with periodontitis. Targeted modulation of macrophage function has emerged as a potentially effective approach to influence periodontitis progression. This study investigates the effects of methotrexate-loaded extracellular vesicles (MTX-EVs) on inflammatory macrophage polarization both in vivo and in vitro. In a murine periodontitis model, MTX-EVs inhibited alveolar bone resorption, suppressed pro-inflammatory macrophage activation, and promoted anti-inflammatory macrophages. Mechanistically, MTX-EVs reduced acyl-CoA synthetase-1 (ACSL1) expression, which was elevated during inflammation. Inhibition of ACSL1 with triacsin-C in macrophages suppressed the inflammatory phenotype through the promotion of the oxidative phosphorylation (OXPHOS). In contrast, MTX-EVs counteracted the effects of ACSL1 overexpression on macrophage polarization and metabolism. Our findings suggest that targeting ACSL1 via MTX-EVs represents a therapeutic strategy for modulating macrophage polarization and improving periodontitis treatment outcomes.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Jianhua Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Guodong Tan
- Air Force Medical Center, The Fourth Military Medical University, Beijing 100142, China
| | - Yuanyuan Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Dihao Tao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Wenzhe Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Bei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fang Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Xiaoning He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
10
|
Feng X, Lu J, Cheng W, Zhao P, Chang X, Wu J. LTK deficiency induces macrophage M2 polarization and ameliorates Sjogren's syndrome by reducing chemokine CXCL13. Cytokine 2025; 190:156905. [PMID: 40154092 DOI: 10.1016/j.cyto.2025.156905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/15/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Sjogren's syndrome (SS) is an autoimmune disease involving macrophage infiltration of the exocrine glands. LTK, a receptor tyrosine kinase, is involved in many autoimmune diseases, such as lupus erythematosus. The objectives of this study was to explore the impact of LTK on autophagy in SS. METHODS The NCBI Gene Expression Omnibus (GEO) database was used to screen for differentially expressed genes (DEGs) in SS patients and validated by quantitative reverse transcription PCR (RT-qPCR) in A253 cells with EGF and IFN-γ. Meanwhile, lentiviral vectors were used to transfect A253 cells for stable LTK silencing. CCK-8, flow cytometry, and transmission electron microscopy (TEM), Western blotting (WB) was employed to assess proliferation, apoptosis, autophagy, and autoimmune antigens (Ro52/SSA and La/SSB) in A253 cells. Then, macrophages were treated with 100 ng/ml of LPS to induce the polarization of macrophages towards the M1 phenotype, while macrophages were treated with IL-4 to activate the macrophage M2 phenotype. LTK-silenced A253 cells were co-cultured with macrophages. WB as well as flow cytometry were used to assess macrophage polarization markers. Furthermore, protein-antibody microarrays were utilized to analyze downstream proteins regulated by LTK. Finally, the functionality of LTK was confirmed in NOD/ShiLtJ mice. RESULTS LTK expression in the GEO database was increased in SS patients. And LTK was also significantly increased by EGF and IFN-γ. Knockdown of LTK increased proliferation and autophagy in A253 cells. While LTK deficiency inhibited the expression of Ro52/SSA and La/SSB, and apoptosis in A253 cells. Furthermore, LTK-silenced A253 cells promoted polarization of macrophages towards the M2 phenotype, which is associated with the pathogenesis of SS. Knockdown of LTK resulted in reduced expression of CXCL13, which in turn triggered macrophage M2 polarization. Additionally, LTK deficiency ameliorated submandibular gland tissue damage and inhibited autoimmune antigens secretion in NOD/ShiLtJ mice. In addition, the expression of autophagy markers and M2 polarization markers in the submandibular gland tissue was increased by shLTK. CONCLUSION LTK could promote progressive SS pathogenesis via CXCL13. This discovery indicates that targeting LTK/CXCL13 could be a potential therapeutic strategy for the clinical management of SS.
Collapse
Affiliation(s)
- Xiuyuan Feng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Rheumatology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Junhui Lu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Rheumatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Wei Cheng
- Department of Dermatology, The Affiliated Changshu Hospital of Nantong University, Suzhou, China
| | - Ping Zhao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Schmidt AA, David LM, Qayyum NT, Tran K, Van C, Hetta AHSHA, Shrestha RL, Varatip AO, Butenko S, Enriquez-Ochoa D, Nguyen C, Seldin MM, Liu WF, Grosberg A. Polarized macrophages modulate cardiac structure and contractility under hypoxia in novel immuno-heart on a chip. APL Bioeng 2025; 9:026114. [PMID: 40322069 PMCID: PMC12048176 DOI: 10.1063/5.0253888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Cardiac adaptation to hypoxic injury is regulated by dynamic interactions between cardiomyocytes and macrophages, yet the impacts of immune phenotypes on cardiac structure and contractility remain poorly understood. To address this, we developed the immuno-heart on a chip, a novel in vitro platform to investigate cardiomyocyte-macrophage interactions under normoxic and hypoxic conditions. By integrating neonatal rat ventricular myocytes (NRVMs) and bone marrow-derived macrophages-polarized to pro-inflammatory (M1) or pro-healing (M2/M2*) phenotypes-we elucidated the dual protective and detrimental roles macrophages play in modulating cardiomyocyte cytoskeletal architecture and contractility. Pro-inflammatory stimulation reduced cardiomyocyte structural metrics (z-line length, fraction, and integrity) in normoxic co-cultures. Under hypoxia, M1-stimulated NRVM monocultures exhibited declines in cytoskeletal organization-quantified by actin and z-line orientational order parameters. Relative to monocultures, M1-stimulated co-cultures attenuated hypoxia-induced active stress declines but produced weaker normoxic stresses. In contrast, pro-healing stimulation improved normoxic z-line metrics and preserved post-hypoxia cytoskeletal organization but reduced normoxic contractility. Notably, M2-stimulated macrophages restored normoxic contractility and preserved post-hypoxia systolic stress, albeit with increased diastolic stress. RNAseq analysis of M2-stimulated co-cultures identified upregulated structural and immune pathways driving these hypoxia-induced changes. Cytokine profiles revealed stimulation-specific and density-dependent tumor necrosis factor-alpha and interleukin-10 secretion patterns. Together, these findings quantitatively link clinically relevant macrophage phenotypes and cytokines to distinct changes in cardiac structure and contractility, offering mechanistic insights into immune modulation of hypoxia-induced dysfunction. Moreover, the immuno-heart on a chip represents an innovative framework to guide the development of future therapies that integrate immune and cardiac targets to enhance patient outcomes.
Collapse
|
12
|
Zeng C, Niu F, Li H, Huang Z, Ke Y, Yu L, Chen M. Progress of IL-10 and liver metastasis. Cytokine 2025; 190:156932. [PMID: 40168924 DOI: 10.1016/j.cyto.2025.156932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Liver metastasis can occur in a wide range of cancers and have a significant impact on patient survival and prognosis. Once liver metastasis occurs, patients often lose the opportunity for surgery, and although a small percentage of patients can undergo hepatic resection to prolong survival, the benefit is not great. There were also many factors affecting liver metastasis, including reprogramming of the primary tumor metabolism, disturbances in the immune microenvironment and immune cells, alterations in the gut microbiota, and epigenetic changes. Interleukin-10 (IL-10) has a dual role as a cytokine that has been found in recent years to be pro-inflammatory as well as pro-liver metastasis. IL-10 exerts pro-metastatic effects mainly by regulating the polarization of tumor macrophages in the tumor microenvironment, especially by promoting the polarization of M2 macrophages. However, the role of IL-10 in tumorigenesis and progression remains controversial and the molecular mechanism involved in promoting liver metastasis is currently unclear. In view of the increasing role of IL-10 in promoting liver metastasis, this review summarizes the role of IL-10 in liver metastasis of colorectal cancer, breast cancer and other tumors in recent years, and provides ideas for subsequent clinical practice and basic research.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Fengyuan Niu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Ziyin Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Yujia Ke
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Linxin Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
13
|
Feng L, Peng Q, Miao L, Cai C, Tay FR, Zhou S, Zhang Y, Liu Z, Wang X, Jiao Y, Guo R. "Monitor-and-treat" that integrates bacterio-therapeutics and bio-optics for infected wound management. Bioact Mater 2025; 48:118-134. [PMID: 40034807 PMCID: PMC11872670 DOI: 10.1016/j.bioactmat.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/18/2025] [Accepted: 02/02/2025] [Indexed: 03/05/2025] Open
Abstract
Wound infections are one of the major threats to human health, accounting for millions of deaths annually. Real-time monitoring, accurate diagnosis, and on-demand therapy are crucial to minimizing complications and saving lives. Herein, we propose a "monitor-and-treat" strategy for infected wound management by integrating the emerging development of bacterio-therapeutics and bio-optics. The upper layer consists of gelatin methacryloyl (GelMA)-collagen III methacryloyl (Col3MA) (GC), Reuterin (Reu) isolated from the probiotic Lactobacillus reuteri (L. reuteri) and microfluidic safflower polysaccharide (SPS)@GelMA microspheres using 3D printing technology. The lower layer is made of acryloylated glycine (ACG) hydrogel with tissue adhesion capability, which enables the hydrogel to adapt to the movement and stretching of the skin. By integrating temperature-sensitive polydimethylsiloxane (PDMS) optical fibers, the ACG-GC/Reu/SPS-PDMS hydrogel could accurately and steadily sense and send wound temperature information to intelligent devices for real-time monitoring of the healing status ("monitor"). The double-layered hydrogel not only inhibited bacterial survival and colonization (97.4 % against E. coli and 99 % against S. aureus), but also exhibited remarkable hemostatic properties. Furthermore, it was conducive to L929 cell proliferation and pro-angiogenesis, and promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype, therefore creating a favorable immune microenvironment at the wound site. Animal experiments using SD rats and Bama minipigs demonstrated that this hydrogel promoted wound closure, directed polarization to M2 macrophages, alleviated inflammation, enhanced neovascularization, therefore accelerating infected wound healing ("treat"). In addition, RNA-Seq analysis revealed the mechanism of action of ACG-GC/Reu/SPS-PDMS hydrogel in modulating key signaling pathways, including down-regulation of AMPK, IL-17, and NF-κB signaling pathways, activation of NLRP3 inflammatory vesicles, and enrichment of MAPK, TGF-β, PI3K-Akt, TNF, and VEGF signaling pathways. The modulation of these signaling pathways suggests that hydrogels play an important role in the molecular mechanisms that promote wound healing and tissue regeneration. Therefore, the design of this study provides an innovative and multifunctional bandage strategy that can significantly improve pathologic diagnosis and wound treatment.
Collapse
Affiliation(s)
- Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrie Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Qing Peng
- Central Laboratory of the Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China
| | - Li Miao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, PR China
| | - Chenghao Cai
- Department of Burns & Wound Care Center, The 2nd Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, PR China
| | - Franklin R. Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA
| | - Shuqin Zhou
- Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China
| | - Ying Zhang
- Central Laboratory of the Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrie Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Xingang Wang
- Department of Burns & Wound Care Center, The 2nd Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, PR China
| | - Yang Jiao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, PR China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrie Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
14
|
Fan G, Liu Y, Tao L, Wang D, Huang Y, Yang X. Sodium butyrate alleviates colitis by inhibiting mitochondrial ROS mediated macrophage pyroptosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167756. [PMID: 40044062 DOI: 10.1016/j.bbadis.2025.167756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory bowel disease with unclear causes and limited treatment options. Sodium butyrate (NaB), a byproduct of dietary fiber in the intestine, has demonstrated efficacy in treating inflammation. However, the precise anti-inflammatory mechanisms of NaB in colon inflammation remain largely unexplored. This study aims to investigate the effects of NaB on dextran sulfate sodium (DSS)-induced colitis in rats. The findings indicate that oral administration of NaB effectively prevent colitis and reduce levels of serum or colon inflammatory factors. Additionally, NaB demonstrated in vitro inhibition of RAW264.7 inflammation cytokines induced by LPS, along with suppression of the ERK and NF-κB signaling pathway activation. Moreover, NaB mitigated LPS and Nigericin-induced RAW264.7 pyroptosis by reducing indicators of mitochondrial damage, including increased mitochondrial membrane potential (JC-1) levels and decreased Mito-ROS production. NaB increases ZO-1 and Occludin expression in CaCo2 cells by inhibiting RAW264.7 pyroptosis. These results suggest that NaB could be utilized as a therapeutic agent or dietary supplement to alleviate colitis.
Collapse
Affiliation(s)
- Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaxin Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Limei Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danping Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yizhu Huang
- Singao Xiamen Company, Xiamen 361006, PR China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
15
|
Li H, Chen J, Guo H, Yang H, Liu J, Yuan H, Zhang J, Wang J, Liu S. Integrated transcriptomic and proteomic profiling reveals the anti-inflammatory mechanism of dihydroartemisinin in the treatment of acute liver injury by targeting CYBA and CYBB. Biochem Biophys Res Commun 2025; 764:151821. [PMID: 40250321 DOI: 10.1016/j.bbrc.2025.151821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Acute liver injury (ALI) is a prevalent inflammatory disease with no currently available effective targeted therapies that characterized by high mortality and morbidity. Dihydroartemisinin (DHA), a derivative of the renowned antimalarial compound artemisinin, has garnered attention for its anti-inflammatory property. However, the precise anti-inflammatory mechanisms underlying its efficacy in treating ALI remain unclear. Notably, the excessive inflammatory cytokines secreted by macrophages represents a critical factor of liver damage. In our comprehensive study, transcriptome and proteomic analysis of M1 macrophages after DHA treatment was performed to unearth the potential anti-inflammatory targets for ALI treatment. Transcriptomics analysis indicated that DHA significantly mitigated inflammation, primarily by downregulating the expressions of CCL1, CCL2, CCL7, CCL13, and CXCL13. Concurrently, proteomics analysis identified six proteins, such as CYBA and CYBB, that were consistently downregulated in the DHA intervention groups compared to the M1 group. Intriguingly, a protein-protein interaction network analysis highlighted the close association of CYBA and CYBB with the aforementioned chemokine genes. Through meticulous screening, DHA curtailed the production of reactive oxygen species (ROS) by targeting CYBA and CYBB, subsequently suppressing the secretion of several chemokines and dampening the inflammatory response in M1 macrophages. More importantly, DHA not only reduced ROS and chemokine levels but also restored liver function by downregulating CYBA and CYBB to inhibit NF-κB pathway in ALI mice, demonstrating strong anti-inflammatory effects. In conclusion, our findings throw novel light into the underlying anti-inflammatory mechanism of DHA in ALI management, offering valuable insights for future clinical research and therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Honglian Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiayun Chen
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huiyi Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Liu
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haoxing Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China; MOE Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Wang Y, Mu H, Yang B, Yang C, Dong W, Wang J. USP7 - A novel target for controlling periodontal inflammation through modulation of macrophage polarization. Immunol Lett 2025; 273:106981. [PMID: 39946796 DOI: 10.1016/j.imlet.2025.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/09/2025] [Indexed: 03/12/2025]
Abstract
Disruption of local microbial irritation and host immune response can result in inflammation and tissue destruction in periodontitis. Studies on the modulation of macrophage polarization could help attenuate immune responses in periodontal tissues. To investigate the effect of ubiquitin-specific protease-7 (USP7) and its inhibitor P5091 on the polarization of macrophages in periodontitis, gene expression in periodontitis tissues and normal control were analyzed via single-cell RNA sequencing data and mice model experimental periodontitis. RAW264.7 cells were induced to M1 polarization with LPS + IFN-γ and M2 polarization with IL-4. USP7 was knocked down using lentivirus, and the effect of USP7 inhibitor P5091 on macrophage polarization was comparatively analyzed. The expression of Usp7 and polarization markers were detected by qRT-PCR. Western blot was used to examine the polarization markers and pathway-associated proteins. Results indicated that USP7 expression was elevated in tissues affected by periodontitis. Periodontitis macrophages and M1 polarized macrophages had higher USP7 expression. Knockdown of USP7 revealed an inhibition of both M1 and M2 macrophage polarization. Inhibition of USP7 with P5091 resulted in the decreased expression of M1 polarization markers and phosphorylation of P65, but the increased expression of M2 polarization markers and phosphorylation of STAT6. In conclusion, USP7 is involved in regulating macrophage polarization in periodontitis and its inhibitor P5091 may contribute to the prevention of periodontitis.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Baochen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
17
|
Iaia N, Noviello C, Muscaritoli M, Costelli P. Inflammation in cancer cachexia: still the central tenet or just another player? Am J Physiol Cell Physiol 2025; 328:C1837-C1852. [PMID: 40250836 DOI: 10.1152/ajpcell.00808.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/23/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Cancer cachexia, a multifactorial syndrome characterized by body weight loss, muscle, and adipose tissue wasting, affects patients with cancer. Over time, the definition of cachexia has been modified, including inflammation as one of the main causal factors. Evidence has suggested that a range of proinflammatory mediators may be involved in the regulation of intracellular signaling, resulting in enhanced resting energy expenditure, metabolic changes, and muscle atrophy, all of which are typical features of cachexia. Physiologically speaking, however, inflammation is a response aimed at facing potentially damaging events. Along this line, its induction in the cancer hosts could be an attempt to restore the physiological homeostasis. Interesting observations have shown that cytokines such as interleukins 4 and 6 could improve muscle wasting, supporting the view that the same mediator may exert pro- or anti-inflammatory activity depending on the immune cells involved as well as on the tissue metabolic demand. In conclusion, whether inflammation is crucial to the occurrence of cachexia or just one contributor among others, is still unclear. Indeed, while inflammation is a trigger of cachexia, the alterations of energy and protein metabolism and of the hormonal homeostasis occurring in cachexia likely act as inflammatory stimuli on their own. Whether the causative role prevails over the compensatory one likely depends on the tumor type and stage, patient lifestyle, the presence of comorbidities, and the response to anticancer treatments paving the way to a holistic, personalized approach to cancer cachexia.
Collapse
Affiliation(s)
- Noemi Iaia
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Chiara Noviello
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
18
|
Yu SY, Wu T, Xu KH, Liu RY, Yu TH, Wang ZH, Zhang ZT. 3D bioprinted biomimetic MOF-functionalized hydrogel scaffolds for bone regeneration: Synergistic osteogenesis and osteoimmunomodulation. Mater Today Bio 2025; 32:101740. [PMID: 40270888 PMCID: PMC12018039 DOI: 10.1016/j.mtbio.2025.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
Critical-size bone defects remain a significant clinical challenge. The lack of endogenous stem cells with osteogenic differentiation potential in the defect area, combined with the inflammatory responses induced by scaffold implantation, highlights the need for biomaterials that can deliver stem cells and possess inflammatory regulation properties. In this study, we developed a 3D bioprinted gelatin methacrylate (GelMA) hydrogel scaffold modified with luteolin-loaded ZIF-8 (LUT@ZIF-8) nanoparticles, designed to deliver bone marrow mesenchymal stem cells (BMSCs) to the defect site and release bioactive components that promote osteogenesis and modulate the immune microenvironment. The LUT@ZIF-8/GelMA hydrogel scaffolds demonstrated excellent physical properties and biocompatibility. The sustained release of luteolin and zinc ions from the LUT@ZIF-8 nanoparticles conferred antibacterial, osteoinductive, and inflammatory regulation effects. The immune microenvironment modulated by LUT@ZIF-8/GelMA hydrogel scaffolds facilitated osteogenic differentiation of BMSCs. Furthermore, in vivo experiments confirmed the osteogenic and inflammatory regulation capabilities of the LUT@ZIF-8/GelMA hydrogel scaffolds. In conclusion, the 3D bioprinted LUT@ZIF-8/GelMA hydrogel scaffolds exhibit osteoimmunomodulatory properties, presenting a promising strategy for the treatment of bone defects.
Collapse
Affiliation(s)
- San-yang Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Ting Wu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Kai-hao Xu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Ru-yue Liu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Tian-hao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110002, PR China
| | - Zhen-hua Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China
| | - Zhong-ti Zhang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| |
Collapse
|
19
|
Gu M, Pang Z. Luteolin inhibits inflammation and M1 macrophage polarization in the treatment of Pseudomonas aeruginosa-induced acute pneumonia through suppressing EGFR/PI3K/AKT/NF-κB and EGFR/ERK/AP-1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156663. [PMID: 40133026 DOI: 10.1016/j.phymed.2025.156663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND The opportunistic pathogen Pseudomonas aeruginosa primarily causes infections in immunocompromised individuals. Luteolin, a natural flavonoid, is widely present in plants, which exerts various pharmacological activities, including anti-inflammatory and antimicrobial activities. PURPOSE This study aimed to explore the therapeutic efficacy of luteolin and the underlying molecular mechanisms in treating the P. aeruginosa-induced acute pneumonia. METHODS Network pharmacology was utilized to identify the core targets of luteolin for treating acute P. aeruginosa pneumonia. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to dissect the potential effects of luteolin and the involved signaling pathways. Surface plasmon resonance (SPR) assay and molecular docking were employed for studying the binding affinities of luteolin with the key targets. Furthermore, we applied a mouse model of bacterial pneumonia for assessing the therapeutic effects of luteolin in vivo, and an in vitro infection model for specifically investigating the effects of luteolin on macrophages as well as the underlying mechanisms upon P. aeruginosa infection. RESULTS Network pharmacology identified TNF, IL-6, EGFR and AKT1 as the key targets of luteolin for treating acute P. aeruginosa pneumonia. Moreover, as revealed by GO and KEGG enrichment analysis, EGFR, MAPK and PI3K/AKT pathways were the potential pathways regulated the P. aeruginosa-induced inflammatory response. According to the in vivo results, luteolin effectively mitigated the P. aeruginosa-induced acute lung injury through reducing the pulmonary permeability, neutrophil infiltration, proinflammatory cytokine production (IL-1β, IL-6, TNF and MIP-2) and bacterial burden in lung tissues, which led to increased survival rate of mice. Furthermore, the luteolin-treated mice had diminished EGFR, PI3K, AKT, IκBα, NF-κB p65, ERK, c-Jun and c-Fos phosphorylation, down-regulated M1 macrophage marker levels (iNOS, CD86 and IL-1β) but up-regulated M2 macrophage marker levels (Ym1, CD206 and Arg1) in lung tissues. Consistently, the luteolin-pretreated macrophages exhibited reduced phosphorylation of these regulatory proteins, diminished proinflammatory cytokine production, and down-regulated expression of M1 macrophage markers, but up-regulated expression of IL-10 and M2 macrophage markers. CONCLUSION luteolin effectively suppressed the inflammatory responses and M1 macrophage polarization through inhibiting EGFR/PI3K/AKT/NF-κB and EGFR/ERK/AP-1 signaling pathways in the treatment of acute P. aeruginosa pneumonia. This study suggests that luteolin could be a promising candidate for development as a therapeutic agent for acute bacterial pneumonia.
Collapse
Affiliation(s)
- Mengdi Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
20
|
Zhao Y, Duan M, Qi Y, Xia J, Hao C, Yao W. Innate immune checkpoint SIRPα/CD47 blockade ameliorates silica-induced pulmonary fibrosis by modulating macrophage immunity. Int Immunopharmacol 2025; 156:114723. [PMID: 40279943 DOI: 10.1016/j.intimp.2025.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/12/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Silicosis is a fibrotic disease caused by prolonged inhalation of silica particles. Signal regulatory protein alpha (SIRPα) and its ligand CD47, key innate immune checkpoints mediating inhibition of phagocytosis, have been reported to regulate organ fibrosis. However, the role of SIRPα/CD47 in silicosis remains unexplored. In this study, a silicosis mouse model was constructed and revealed a significant upregulation of SIRPα and CD47 expression in lung tissue with disease progression. In addition, the expression patterns of SIRPα and CD47 in various silicosis effector cells exhibit distinct cell specificity. Using RRx-001 to block SIRPα/CD47 signaling in mice, we observed a marked reduction in lung injury, decreased collagen deposition, and improved pulmonary function. Mechanistically, blocking SIRPα/CD47 affected T cell activation, macrophage polarization and the expression of pro-inflammatory and pro-fibrotic factors. In vitro, we found that inhibiting SIRPα/CD47 countered the silica-induced suppression of macrophage phagocytosis and induced macrophage polarization towards the M1 phenotype. Additionally, levels of soluble SIRPα and CD47 in the peripheral blood of silicosis patients were significantly higher than those in healthy controls. In summary, this study demonstrates that SIRPα/CD47-mediated immunomodulatory signaling is the driving factor for the progression of silicosis, and this pathway might serve as a therapeutic target for silicosis treatment.
Collapse
Affiliation(s)
- Youliang Zhao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Meixiu Duan
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuanmeng Qi
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiarui Xia
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Changfu Hao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Wu Yao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
21
|
Wu Y, Wang X, Song L, Zhao Z, Xia Y, Tang K, Wang H, Liu J, Wang Z. Tuning macrophage phenotype for enhancing patency rate and tissue regeneration of vascular grafts. Acta Biomater 2025; 198:245-256. [PMID: 40158766 DOI: 10.1016/j.actbio.2025.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Macrophages are primary immune cells that play a crucial role in tissue regeneration during the early stages of biomaterial implantation. They create a microenvironment that facilitates cell infiltration, angiogenesis, and tissue remodeling. In the field of vascular tissue engineering, numerous studies have been conducted to modulate the macrophage phenotype by designing various biomaterials, which in turn enhances the regenerative capacity and long-term patency of vascular grafts. However, the mechanism underlying the different phenotypes of macrophages involved in the tissue regeneration of vascular grafts remains unclear. In this study, vascular grafts loaded with various macrophage phenotypes were developed, and their effects were evaluated both in vivo and in vitro. The RAW 264.7 macrophages (M0) were initially treated with LPS or IL-4/IL-10 and polarized into M1 and M2 phenotypes. Subsequently, M0, M1, and M2 macrophages were seeded onto electrospun PCL scaffolds to obtain macrophage-loaded vascular grafts (PCL-M0, PCL-M1, and PCL-M2). As prepared vascular grafts were implanted into the mouse carotid artery for up to one month. The results indicate that the loading of M2 macrophages effectively enhances the patency rate and neotissue formation of vascular grafts. This is achieved through the development of a well-defined endothelium and smooth muscle layer. RNA sequencing was used to investigate the mechanisms of action of different macrophages on tissue regeneration. The study found that M1 macrophages inhibited tissue regeneration by mediating angiogenesis and chronic inflammation through upregulation of VEGFa, IL-1β, and IL-6 expression. In contrast, M2 macrophages regulate the immune microenvironment by upregulating the expression of IL-4 and TGF-β, thereby promoting tissue regeneration. In conclusion, our study demonstrates how different macrophage phenotypes contribute to the initial inflammatory microenvironment surrounding vascular grafts, thereby modulating the biological process of vascular remodeling. STATEMENT OF SIGNIFICANCE: Regulating the biophysical and biochemical characteristics of biomaterials can induce macrophage polarization and enhance vascular remodeling. In previous work, we fabricated a vascular graft with a macroporous structure that promoted macrophage infiltration and polarization into a pro-regenerative phenotype. To illustrate the mechanism, we established a new mouse model and evaluated the effects of different macrophages on vascular regeneration. The study revealed that tuning macrophage phenotype can impact the initial inflammatory microenvironment by secreting cytokines, which can increase the patency rate and regenerative capacity of vascular grafts. These findings provide essential theoretical support for the development of immunoregulatory scaffolds for vascular and other tissue regeneration.
Collapse
Affiliation(s)
- Yifan Wu
- College of Life Sciences, Tiangong University, Tianjin 300387, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xixi Wang
- College of Life Sciences, Tiangong University, Tianjin 300387, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Lili Song
- College of Life Sciences, Tiangong University, Tianjin 300387, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhe Zhao
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Ying Xia
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Kai Tang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing 100037, China
| | - Huiquan Wang
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
22
|
Li Z, Zhu Z, Wang P, Hou C, Ren L, Xu D, Wang X, Guo F, Meng Q, Liang W, Xue J, Zhi X. Diagnostic, prognostic, and immunological roles of FUT8 in lung adenocarcinoma and lung squamous cell carcinoma. PLoS One 2025; 20:e0321756. [PMID: 40373023 DOI: 10.1371/journal.pone.0321756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/11/2025] [Indexed: 05/17/2025] Open
Abstract
Lung cancer remains the leading cause of malignant tumors worldwide in terms of the incidence and mortality, posing a significant threat to human health. Given that distant metastases typically occur at the time of initial diagnosis, leading to a poor 5-year survival rate among patients, it is crucial to identify markers for diagnosis, prognosis, and therapeutic efficacy monitoring. Abnormal glycosylation is a hallmark of cancer cells, characterized by the disruption of core fucosylation, which is predominantly driven by the enzyme fucosyltransferase 8 (FUT8). Evidence indicates that FUT8 is a pivotal enzyme in cancer onset and progression, influencing cellular glycosylation pathways. Utilizing bioinformatics approaches, we have investigated FUT8 in lung cancer, resulting in a more systematic and comprehensive understanding of its role in the disease's pathogenesis. In this study, we employed bioinformatics to analyze the differential expression of FUT8 between LUAD and LUSC. We observed upregulation of FUT8 in both LUAD and LUSC, associated with unfavorable prognosis, and higher diagnostic utility in LUAD. GO/KEGG analysis revealed a primary association between LUAD and the spliceosome. Immunologically, FUT8 expression was significantly associated with immune cell infiltration and immune checkpoint activity, with a notable positive correlation with M2 macrophage infiltration. Our analysis of FUT8 indicates that it may serve as a potential biomarker for lung cancer diagnosis and prognosis, and could represent a therapeutic target for LUAD and LUSC immunotherapy.
Collapse
Affiliation(s)
- Zhijun Li
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Zhenpeng Zhu
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Peng Wang
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Chenyang Hou
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Lijuan Ren
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Dandan Xu
- Hebei Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Xiran Wang
- Department of Bioinformatics, School of Health Care, Changchun Vocational College of Health, Changchun City, Jilin Province, China
| | - Fei Guo
- Department of Surgery, Hebei Key Laboratory of Systems Biology and Gene Regulation, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Weizheng Liang
- Hebei Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Jun Xue
- Department of Surgery, Hebei Key Laboratory of Systems Biology and Gene Regulation, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| |
Collapse
|
23
|
Zhang C, Fu Z, Liu Q, Guo X, Li Z, Song W, Kong Y, Du J, Su Y, Yu B, Kong Y, Tian F, Fu X, Du X, Huang S. Bioprinted M2 macrophage-derived extracellular vesicle mimics attenuate foreign body reaction and enhance vascularized tissue regeneration. Biofabrication 2025; 17:035007. [PMID: 40328275 DOI: 10.1088/1758-5090/add49f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
Foreign body reaction (FBR) and insufficient vascularization greatly hinder the integration of 3D-bioprinted tissue substitutes with host tissues. Previous studies have shown that these problems are exacerbated by the stiffness of the 3D-bioprinted constructions, which is highly associated with the abnormal polarization of macrophages. Therefore, we developed an engineering strategy using membrane extrusion to prepare macrophage-derived extracellular vesicle mimics (EVMs). The EVMs derived from M1 and M2 macrophages (M1-EVMs and M2-EVMs) were rich in functional proteins. In the 2D environment, M1-EVMs promoted the fibrotic phenotype of fibroblasts, vascularization, and the M1 polarization of macrophages. In contrast, M2-EVMs effectively avoided the fibrotic trend, showed stronger angiogenic capabilities, and prevented excessive M1 polarization, demonstrating their potential to inhibit FBR and promote neovascularization. After bioprinting the EVMs loaded by gelatin-alginate bioink, the basic physical properties of the bioink were not significantly affected, and the biological functions of EVMs remain stable, indicating their potential as bioink additives. In the subcutaneous implantation model, unlike the FBR-aggravating effects of M1-EVMs, 3D-bioprinted M2-EVMs successfully reduced the immune response, prevented fibrous capsule formation, and increased vascular density. When applied to skin wound treatment, 3D-bioprinted M2-EVMs not only inhibited inflammatory levels but also exhibited pleiotropic pro-regenerative effects, effectively promoting vascularization, re-epithelialization, and appendage regeneration. As an innovative additive for bioinks, M2-EVMs present a promising approach to enhance the survival of bioengineered tissues and can further serve as a targeted drug loading system, promoting the development of regenerative medicine and improving clinical outcomes.
Collapse
Affiliation(s)
- Chao Zhang
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Ze Fu
- Chinese PLA Medical School, Beijing 100853, People's Republic of China
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Qinghua Liu
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Xu Guo
- College of Graduate, Tianjin Medical University, Tianjin 300203, People's Republic of China
| | - Zhao Li
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Wei Song
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Yi Kong
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Jinpeng Du
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Yanlin Su
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Bingyang Yu
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Yue Kong
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Feng Tian
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Xiaobing Fu
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
- Chinese PLA Medical School, Beijing 100853, People's Republic of China
- College of Graduate, Tianjin Medical University, Tianjin 300203, People's Republic of China
| | - Xiaohui Du
- Chinese PLA Medical School, Beijing 100853, People's Republic of China
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Sha Huang
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
- Chinese PLA Medical School, Beijing 100853, People's Republic of China
| |
Collapse
|
24
|
Chen P, Chen Y, Wang Y, Sharma A, Veronika LK, Weiher H, Maria AGC, Schmidt-Wolf IGH. Macrophage-derived pro-inflammatory cytokines augment the cytotoxicity of cytokine-induced killer cells by strengthening the NKG2D pathway in multiple myeloma. Sci Rep 2025; 15:16739. [PMID: 40369131 DOI: 10.1038/s41598-025-99289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Multiple myeloma (MM) is a clonal hematologic malignancy characterized by low rate of complete remissions. Cytokine-induced killer (CIK) cell therapy has shown promising benefits in MM treatment. In this study, we investigated whether the pro-inflammatory cytokines secreted by macrophages could upregulate MICA/B expression and thus the cytotoxicity of CIK cells. Flow cytometry was used for phenotypic measurement and the cytotoxicity assay of CIK cells. Soluble MICA/B and macrophage-derived cytokines were measured using ELISA assay. CCK-8 assay was applied to evaluate cell viabilities. Gene expression levels were investigated using RT-qPCR. The expression of MICA/B and PD-L1 in MM cells was upregulated by pro-inflammatory cytokines. Pro-inflammatory cytokines enhanced the cytotoxicity of CIK cells against MM cells, with TNF-α exhibiting a more potent effect than IL-1β and IL-6 as it strengthened both components of the NKG2D-MICA/B axis. PD-L1 blockade promoted the cytotoxic ability of CIK cells. Mechanistically, IL-1β, IL-6, and TNF-α enhanced the transcription of MICA/B and PD-L1 genes via the PI3K/AKT, JAK/STAT3, and MKK/p38 MAPK pathways. Pro-inflammatory cytokines upregulated the expression of MICA/B and PD-L1, thereby promoting the cytotoxicity of CIK cells against MM by strengthening the NKG2D pathway, while PD-L1 blockade enhanced the cytotoxicity of CIK cells.
Collapse
Affiliation(s)
- Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127, Bonn, Germany
| | - Yinhao Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127, Bonn, Germany
| | - Yulu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, 53127, Bonn, Germany
| | - Lukacs-Kornek Veronika
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn, 53127, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, 53359, Rheinbach, Germany
| | | | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
25
|
Zhang L, Liu J. Spironolactone protects against hypertension-induced renal fibrosis by promoting autophagy and inhibiting the NLRP3 inflammasome. J Hypertens 2025:00004872-990000000-00683. [PMID: 40366120 DOI: 10.1097/hjh.0000000000004020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/16/2025] [Indexed: 05/15/2025]
Abstract
INTRODUCTION We aimed to investigate the mechanism by which spironolactone protects against hypertensive renal fibrosis. METHODS For in-vivo experiments, we established Control, SHR, and SHR+spironolactone (20 mg/kg/day) groups. For in-vitro experiments, we established Control, TGF-β1-induced (10 ng/ml), and spironolactone (1 μmol/l) intervention groups. Renal function and serum potassium, estradiol, testosterone, and plasma aldosterone levels were assessed, along with autophagy indicators LC3 and p62, and NLRP3 inflammasome-related proteins (NLRP3, caspase-1, IL-1β and IL-18). Additionally, changes in macrophage polarization and T cell and dendritic cell populations were determined. RESULTS 20 mg/kg/day of spironolactone effectively maintained systolic pressure and renal function by lowering aldosterone levels and significantly reducing testosterone levels. Hypertensive renal fibrosis was predominant in the glomeruli, tubules, and interstitium, and was associated with autophagy inhibition in renal tubules, NLRP3 inflammasome activation, both M1 and M2 macrophage polarization, with a predominant effect on M1 polarization, decreased CD4+ T cell population and CD4/CD8 ratio, and increased CD8+ T cell and dendritic cell population. Autophagy negatively regulated the NLRP3 inflammasome. Spironolactone inhibited both M1 and M2 macrophages polarization, mainly M1 macrophage polarization, reduced CD8+ T and dendritic cell population, increased CD4+ T cell population, negatively regulated the release of NLRP3 inflammasome-related proteins in macrophages, and restored autophagy in the glomeruli and renal tubules. CONCLUSION Spironolactone acts on sites where the mineralocorticoid receptor is present. A dose of 20 mg/kg/day spironolactone is well tolerated and protects against hypertension-induced renal fibrosis by restoring autophagy and suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital
| | - Jianchang Liu
- Tangshan People's Hospital, Tangshan, Hebei Province, China
| |
Collapse
|
26
|
Li Y, Gao W, Qiu Y, Pan J, Guo Q, Liu X, Geng L, Shen Y, Deng Y, Hu Z, Li S, Liu S, Idris A, Huang J, Yang H, Ge B, Fan X, Chen X, Li J. RING1 dictates GSDMD-mediated inflammatory response and host susceptibility to pathogen infection. Cell Death Differ 2025:10.1038/s41418-025-01527-2. [PMID: 40369166 DOI: 10.1038/s41418-025-01527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/27/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
RING1 is an E3 ligase component of the polycomb repressive complex 1 (PRC1) with known roles in chromatin regulation and cellular processes such as apoptosis and autophagy. However, its involvement in inflammation and pyroptosis remains elusive. Here, we demonstrate that human RING1, not RING2, promotes K48-linked ubiquitination of Gasdermin D (GSDMD) and acts as a negative regulator of pyroptosis and bacterial infection. Indeed, we showed that loss of Ring1 increased S. typhimurium infectious load and mortality in vivo. Though RING1 deletion initially reduced M. tuberculosis (Mtb) infectious load in vivo, increased lung inflammation and impaired immune defense responses were later observed. Moreover, Ring1 knockout exacerbated acute sepsis induced by lipopolysaccharide (LPS) in vivo. Mechanistically, RING1 directly interacts with GSDMD and ubiquitinates the K51 and K168 sites of GSDMD for K48-linked proteasomal degradation, thereby inhibiting pyroptosis. Inhibition of RING1 E3 ligase activity by direct mutation or with the use of small molecule inhibitors increased GSDMD level and cell death during pyroptosis. Our findings reveal that RING1 dictates GSDMD-mediated inflammatory response and host susceptibility to pathogen infection, highlighting RING1 as a potential therapeutic target for combating infectious diseases.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Neurology, Huashan Hospital and School of Life Sciences, Fudan University, Shanghai, China
| | - Wenqing Gao
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Neurology, Huashan Hospital and School of Life Sciences, Fudan University, Shanghai, China
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yuxin Qiu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Neurology, Huashan Hospital and School of Life Sciences, Fudan University, Shanghai, China
| | - Jiasong Pan
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Neurology, Huashan Hospital and School of Life Sciences, Fudan University, Shanghai, China
| | - Qingqing Guo
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Neurology, Huashan Hospital and School of Life Sciences, Fudan University, Shanghai, China
| | - Xuehe Liu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Neurology, Huashan Hospital and School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Geng
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Neurology, Huashan Hospital and School of Life Sciences, Fudan University, Shanghai, China
| | - Yajie Shen
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Neurology, Huashan Hospital and School of Life Sciences, Fudan University, Shanghai, China
| | - Yifan Deng
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Neurology, Huashan Hospital and School of Life Sciences, Fudan University, Shanghai, China
| | - Zhidong Hu
- Shanghai Institute of Infectious Diseases and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Suhua Li
- Division of Natural Science, Duke Kunshan University, Suzhou, China
| | - Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Department of Microbiology and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Department of Microbiology and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Department of Microbiology and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyong Fan
- Shanghai Institute of Infectious Diseases and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
| | - Jixi Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Neurology, Huashan Hospital and School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Feng R, Tian F, Zhou J, Ping Y, Han W, Shi X, Bai X, Sun Y, Zhao J, Wu X, Li B. A preliminary study on the promotion of wound healing by paeoniflorin carbon dots loaded in chitosan hydrogel. Biomed Mater 2025; 20:035032. [PMID: 40306299 DOI: 10.1088/1748-605x/add2ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/30/2025] [Indexed: 05/02/2025]
Abstract
Due to poor angiogenesis under the wound bed, wound treatment remains a clinical challenge. Therefore, there is an urgent need for new dressings to combat bacterial infections, accelerate angiogenesis, and accelerate wound healing. In this study, we prepared carbon dots nanomaterial (PF-CDs) derived from traditional Chinese medicine paeoniflorin using a simple green one pot hydrothermal method. The average particle size of the CSs we prepared was 4 nm, and a concentration of 200 μg ml-1was ultimately selected for experiments. Subsequently, PF-CDs were loaded into the chitosan hydrogel to form a new type of wound dressing CSMA@PF-CDs hydrogel. CSMA@PF-CDs demonstrated positive biocompatibility by promoting a 20% increase in cell proliferation and strong antibacterial activity. In comparison to the control group, CSMA@PF-CDs enhanced the expression level of anti-inflammatory factors by at least 2.5 times and reduces the expression level of pro-inflammatory factors by at least 3 times. Furthermore, CSMA@PF-CDs promoted the migration of Human umbilical vein endothelial cells and increased vascular endothelial growth factor expression by 5 times. The results ofin vivoexperiments indicate that CSMA@PF-CDs significantly promoted the healing of back wounds in rats. These characteristics make it a promising material for repairing infected wounds and a potential candidate for clinical skin regeneration applications.
Collapse
Affiliation(s)
- Ruiming Feng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Feng Tian
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing Tian tan Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yilin Ping
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Wenze Han
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Xuexue Shi
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Xue Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yufeng Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Jiali Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| |
Collapse
|
28
|
Yang Y, Sun X, Liu B, Zhang Y, Xie T, Li J, Liu J, Zhang Q. Identifying Lactylation-related biomarkers and therapeutic drugs in ulcerative colitis: insights from machine learning and molecular docking. BMC Pharmacol Toxicol 2025; 26:103. [PMID: 40361222 PMCID: PMC12076822 DOI: 10.1186/s40360-025-00939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Ulcerative colitis (UC), a chronic relapsing-remitting inflammatory bowel disease. Recent studies have shown that lactylation modifications may be involved in metabolic-immune interactions in intestinal inflammation through epigenetic regulation, but their specific mechanisms in UC still require in-depth validation. METHODS We conducted comparative analyses of transcriptomic profiles, immune landscapes, and functional pathways between UC and normal cohorts. Lactylation-related differentially expressed genes were subjected to enrichment analysis to delineate their mechanistic roles in UC. Through machine learning algorithms, the diagnostic model was established. Further elucidating the mechanisms and regulatory network of the model gene in UC were GSVA, immunological correlation analysis, transcription factor prediction, immunofluorescence, and single-cell analysis. Lastly, the CMap database and molecular docking technology were used to investigate possible treatment drugs for UC. RESULTS Twenty-two lactylation-related differentially expressed genes were identified, predominantly enriched in actin cytoskeleton organization and JAK-STAT signaling. By utilizing machine learning methods, 3 model genes (S100A11, IFI16, and HSDL2) were identified. ROC curves from the train and test cohorts illustrate the superior diagnostic value of our model. Further comprehensive bioinformatics analyses revealed that these three core genes may be involved in the development of UC by regulating the metabolic and immune microenvironment. Finally, regorafenib and R-428 were considered as possible agents for the treatment of UC. CONCLUSION This study offers a novel strategy to early UC diagnosis and treatment by thoroughly characterizing lactylation modifications in UC.
Collapse
Affiliation(s)
- Yao Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Xu Sun
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Bin Liu
- Health Team, The 92914th Military Hospital of PLA, Lingao, Hainan, China
| | - Yunshu Zhang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Tong Xie
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Junchen Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.
| | - Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Qingkai Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
29
|
Saito Y, Fujiwara Y, Yamaguchi YL, Tanaka SS, Miura K, Hizukuri Y, Yamashiro K, Hayashi Y, Nakashima Y, Komohara Y. Rodent monocyte-derived macrophages do not express CD163: Comparative analysis using macrophages from living boreoeutherians. Dev Dyn 2025. [PMID: 40355384 DOI: 10.1002/dvdy.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/27/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND CD163 is a scavenger receptor predominantly expressed on the surfaces of macrophages in various mammalian species and is a marker of anti-inflammatory (M2-like) macrophages. High density of CD163-positive tumor-associated macrophages (TAMs) is associated with worse prognosis in various patient tumors. Interestingly, studies on mice have shown that CD163-positive TAMs only infiltrate the margins of tumor tissues, not the center. Based on these observations, we hypothesized that circulating monocyte-derived macrophages (MDMs), which are the origin of most TAMs, do not express CD163 in mice. RESULTS We examined CD163 expression in MDMs, differentiated from healthy animals in vitro, and in normal, pathogenic, and tumorigenic macrophages infiltrating various tumors and organs across multiple species including primates, rodents, cetartiodactylans, and carnivores. We found that MDMs, including TAMs, do not express CD163 in mice. Our findings also suggest that murine CD163-positive macrophages likely originate from a specific subset of resident macrophages, namely fetal liver monocytes/macrophages, as indicated by fetal analysis. Furthermore, we revealed that the CD163-negative expression pattern in MDMs is a trait shared by the rodent clade. CONCLUSIONS Rodent MDMs do not express CD163, a phenotype not shared with MDMs of other mammals. Our findings caution against the extrapolation of rodent experimental results to other animal models.
Collapse
Affiliation(s)
- Yoichi Saito
- Laboratory of Bioengineering, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuka L Yamaguchi
- Laboratory of Molecular Embryology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Satomi S Tanaka
- Laboratory of Molecular Embryology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | - Yuta Nakashima
- Laboratory of Bioengineering, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- Fusion Oriented Research for Disruptive Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
30
|
Hu X, Li Y, Wang X, Xue X. Role of M2 macrophage-derived exosomes in cancer drug resistance via noncoding RNAs. Discov Oncol 2025; 16:741. [PMID: 40355722 PMCID: PMC12069209 DOI: 10.1007/s12672-025-02195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/20/2025] [Indexed: 05/14/2025] Open
Abstract
This review summarizes recent findings on the role of M2 tumor-associated macrophages (TAMs) and their exosome-derived non-coding RNAs (ncRNAs) in cancer cell resistance to therapeutics. M2 TAMs promote angiogenesis, suppress immune responses, and facilitate metastasis, thereby creating a tumor-supporting microenvironment. A range of antitumor drugs, including 5-FU, cisplatin, and gemcitabine, are mediated by M2 exosomes, each with distinct mechanisms of action. M2 exosomes transfer drug resistance capabilities via extracellular vesicles, especially exosomes containing miRNAs, lncRNAs, and circRNAs. These exosome mediate the development of tumor drug resistance by regulating signaling pathways such as PI3K/AKT, MAPK/ERK, Wnt/β-catenin M2 exosomes can regulate cellular responses by delivering bioactive molecules, including proteins, lipids, and ncRNA, which can also modulate cellular reactions to ionizing radiation, ultraviolet light, and chemotherapeutic agents. Targeting M2 TAMs and their exosome-mediated ncRNAs may offer new strategies to overcome drug resistance in cancer.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Medical Research Center, People's Hospital of Longhua, Shenzhen, 518000, China
| | - Yanhua Li
- Department of Pathology, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Xisheng Wang
- Medical Research Center, People's Hospital of Longhua, Shenzhen, 518000, China
| | - Xingkui Xue
- Medical Research Center, People's Hospital of Longhua, Shenzhen, 518000, China.
| |
Collapse
|
31
|
Dong SY, Zhou Y, Wang XC, Du ZH, Ye TS. Electroacupuncture attenuates bone erosion and promotes macrophage polarization in a mouse model of collagen-induced arthritis. Acupunct Med 2025:9645284251331991. [PMID: 40350764 DOI: 10.1177/09645284251331991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of electroacupuncture (EA) on macrophage polarization and bone erosion in a mouse model of collagen-induced arthritis (CIA). METHODS C57BL/B6 mice were used to establish a CIA model and were treated with electroacupuncture (EA) at ST36 and SP6. At the end of the experiment, knee joints were harvested for hematoxylin-eosin (H&E) staining to detect knee synovitis. Immunohistochemistry (IHC) was performed to assess the expression of macrophage markers. The degree of bone destruction was evaluated using micro-computed tomography (CT), tartrate-resistant acid phosphatase (TRAP) staining and safranin-O fast green staining. Peripheral blood transcriptome sequencing was performed using Illumina high-throughput sequencing. Synovial membrane proteins were quantitatively analyzed by mass spectrometry. Differentially expressed genes and proteins were identified and the R software package was used to analyze the data. RESULTS Compared with the model group, the arthritis index (P < 0.05) and inflammatory infiltration decreased (P < 0.05), cartilage destruction was inhibited (P < 0.01), the number of osteoclasts decreased (P < 0.05), knee bone erosion was alleviated and the M1/M2 macrophage ratio decreased (P < 0.01) in the EA group. The results of bioinformatics analysis showed that the differential genes between the EA and model groups were mainly enriched in rheumatoid arthritis (RA) and the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Differentially expressed proteins were mostly enriched in the toll-like receptor (TLR) signaling and autophagy pathways. CONCLUSIONS EA prevents bone erosion, reduces the M1/M2 macrophage ratio in synovial tissue, inhibits the TLR and autophagy pathways and reduces synovial invasion in a mouse model of CIA.
Collapse
Affiliation(s)
- Shi-Ying Dong
- Wenzhou Medical University, Wenzhou, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Wenzhou Medical University, Wenzhou, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Chi Wang
- Wenzhou Medical University, Wenzhou, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhong-Heng Du
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tian-Shen Ye
- Wenzhou Medical University, Wenzhou, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Sun F, Gao X, Li T, Zhao X, Zhu Y. Tumor immune microenvironment remodeling after neoadjuvant therapy in gastric cancer: Update and new challenges. Biochim Biophys Acta Rev Cancer 2025; 1880:189350. [PMID: 40355011 DOI: 10.1016/j.bbcan.2025.189350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Gastric cancer (GC) is a malignant tumor with one of the highest morbidity and death rates in the world. Neoadjuvant therapy, including neoadjuvant chemotherapy (NAC) and NAC combined with immunotherapy, can improve the resection and long-term survival rates. However, not all patients respond well to neoadjuvant therapy. It has been confirmed that immune cells in the tumor immune microenvironment, including T cells, B cells, and natural killer cells, can affect the efficacy of neoadjuvant therapy. This paper summarizes current preclinical and clinical evidence to more fully describe the effects of neoadjuvant therapy on the immune microenvironment of GC, to provide the impetus to identify biomarkers to predict the potency of neoadjuvant therapy, and to identify the mechanisms of drug resistance, which should promote the development of individualized and accurate treatments for GC patients.
Collapse
Affiliation(s)
- Fujing Sun
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Xiaozhuo Gao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Xiaoyan Zhao
- Graduate School, Dalian Medical University, Dalian, China
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China.
| |
Collapse
|
33
|
Zhang H, Li M, Zhao B, Chang R, Wang J, Yang Y, Huang Q, Aernouts B, Jiang Q, Loor JJ, Xu C. Evidence for Imbalanced Polarization of Caruncle Macrophages in Retained Placenta of Dairy Cows. J Dairy Sci 2025:S0022-0302(25)00317-0. [PMID: 40349759 DOI: 10.3168/jds.2024-26144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
Retained placenta (RP) is a common reproductive disorder with complex etiology and pathogenesis, affecting approximately 8% of dairy cows during the periparturient period. Macrophages constitute 20-25% of all leukocytes at the maternal-fetal interface and coordinate several processes critical for fetal membrane expulsion, including tissue remodeling, induction of apoptosis in damaged cells, and immune activation. This study aimed to investigate the morphological changes at the maternal-fetal interface, as well as the quantity, distribution, and polarization of caruncle macrophages in cows with and without RP. Furthermore, we discuss the potential association between macrophage alterations and histopathological changes in placental tissue of RP cows. A total of 80 Holstein dairy cows (parity, 2-4) were enrolled in this study. Blood samples were collected at -7 d before the expected calving date (-7D), at calving (0h), at 12h postpartum (12h) and at 7 d postpartum (7D). Placental tissue samples were collected within 30 min after parturition. Based on whether the placental membranes were expelled within 12 h postpartum, cows were classified retrospectively into normal expulsion (NE) (n = 6) and RP (n = 6) groups. Picrosirius red staining, along with elevated mRNA and protein levels of Collagen III, indicated enhanced collagen fiber deposition in caruncle tissue. In addition, the mRNA expression of matrix metalloproteinases (MMP-2 and MMP-9) was downregulated in RP tissues, while TIMP-1 was upregulated. Compared with normal expulsion cows, the apoptosis index, as well as the protein and mRNA levels of pro-apoptotic factors (BAX, Caspase-3, Caspase-8) were lower in cows with RP, and the anti-apoptotic factor (BCL2) was higher, indicating reduced apoptosis in the caruncle tissue from RP cows. In both the serum and tissues, we observed lower levels of chemotactic factors (CXCL1 and MCP-1) in RP cows, alongside increased IL-10 (an immunosuppressive factor) and decreased IL-1β (an immune-stimulatory factor). The downregulated protein and mRNA abundance of the macrophage marker CD68, consistent with reduced presence of CD68+ cells observed through immunofluorescence, revealed low numbers of caruncle macrophages in cows with RP. Further, the caruncles tissue of RP cows displayed significant alterations in the distribution of CD68+ macrophages, with reduced infiltration into trophoblast cells. Regarding macrophage phenotypic changes in RP cows, the greater protein and mRNA expression of M2 polarization markers (CD206, IL-10, IL-6, and TGF-β) along with greater numbers of CD206+/CD68+ cells detected through immunofluorescence indicated that macrophage polarization phenotype in the caruncles of RP cows shifted predominantly toward M2 phenotype. In contrast, RP cows exhibited lower protein and mRNA levels of M1 polarization markers (CD86, iNOS, IL-1β, and NF-κB), as well as reduced numbers of CD86+/CD68+ cells. Overall, caruncle tissues from RP cows were characterized by a reduced macrophage population with a predominant M2 phenotype. Alterations in the quantity and polarization state of macrophages at the maternal-fetal interface may lead to reduced immune cell trafficking into the caruncle, thus impairing the apoptotic and proteolytic processes essential for placental expulsion.
Collapse
Affiliation(s)
- Huijing Zhang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Ming Li
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Bichen Zhao
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Renxu Chang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jingyi Wang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yue Yang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Qingnian Huang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Ben Aernouts
- Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Qianming Jiang
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Juan J Loor
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China..
| |
Collapse
|
34
|
Zhao QH, Zhang YT, Wen K, Ding Q, Chen ZY, Tula D, Li JH, Zhou J, Xiao YF, Guan XH, Deng KY, Wang LF, Xin HB. Myeloid but not hepatocytic CD38 is a key driver for hepatic ischemia/reperfusion injury. Signal Transduct Target Ther 2025; 10:150. [PMID: 40341132 PMCID: PMC12062225 DOI: 10.1038/s41392-025-02233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/07/2025] [Accepted: 04/03/2025] [Indexed: 05/10/2025] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a critical condition that often occurs during liver transplantation and surgical liver resection. However, its mechanism has not been fully elucidated. Nicotinamide adenine dinucleotide (NAD+), functioning as a coenzyme or cofactor, is crucial for both redox and non-redox processes. In mammals, CD38 serves as the primary enzyme responsible for NAD+ degradation. In this study, we reported that the absence of CD38 markedly reduces HIRI in CD38 global knockout (CD38KO) and CD38 myeloid-specific knockout (CD38MKO) mice, but not in CD38 hepatocyte-specific knockout (CD38LKO) mice compared with the control (CD38fl/fl) mice by suppressing HIRI-induced hepatic oxidative stress, inflammatory responses, and pyroptosis. The findings were corroborated by a noticeable decrease in levels of alanine aminotransferase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH), along with reduced necrosis. Besides, we found that the expressions of SIRT1 and its downstream targets, p53 and PPARγ, were elevated in the liver tissues of CD38KO and CD38MKO mice compared to CD38fl/fl mice, while the acetylation levels of p53 were reduced. Furthermore, we demonstrated that myeloid CD38 deficiency not only promoted M2-type polarization and inhibited M1-type polarization of macrophages but also suppressed NLRP3-mediated pyroptosis by triggering NAD+/SIRT1 signaling in macrophages, resulting in the reduction of oxidative stress, inflammation, and pyroptosis in the liver, ultimately protecting against HIRI. This study highlights myeloid CD38 as a promising target for the prevention and treatment of HIRI clinically.
Collapse
Affiliation(s)
- Qi-Hang Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Ya-Ting Zhang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ke Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qi Ding
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Zi-Ying Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Dilinuer Tula
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jia-Hui Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Juan Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
- School of Life Science, Nanchang University, Nanchang 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
- School of Life Science, Nanchang University, Nanchang 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
35
|
Zhou M, Liu Y, Li C, Yang X, Ji C, Li W, Song M, Yang Z, Liu G, Liang X, Liang J, Zhang B, Wang L. INSL3 promotes macrophage polarization to an immunosuppressive phenotype via the cAMP downstream signaling pathway and Akt/mTOR pathway. Int Immunopharmacol 2025; 154:114540. [PMID: 40168802 DOI: 10.1016/j.intimp.2025.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
Insulin-like peptide 3 (INSL3) is a small peptide hormone produced almost exclusively by testicular Leydig cells in males and thus serves as an essential biomarker of the maturation and functionality of these cells. Accumulated evidence suggests that INSL3 is a crucial factor affecting testicular descent during fetal development by regulating the growth of the gubernaculum. However, the physiological roles of INSL3 in adults remain unclear. Here, we reported that relaxin family peptide 2 (RXFP2), the receptor of INSL3, is expressed on macrophages, and treatment with INSL3 can promote M2 macrophage polarization via the Akt/mTOR/S6K and PKA/CREB pathways. In addition, INSL3 can inhibit macrophage phagocytosis and promote their migration via the Epac and PKA signaling pathways, respectively. These findings reveal a new role for INSL3 in regulating macrophage function and shed new light on our understanding of the role of INSL3 in adulthood.
Collapse
Affiliation(s)
- Mengting Zhou
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yi Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cuiping Li
- Laboratory medicine department, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xizhong Yang
- Department of Spine Surgery, Qingdao Haici Medical Group, Qingdao, China
| | - Cuijie Ji
- Department of Spine Surgery, Qingdao Haici Medical Group, Qingdao, China
| | - Wei Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Meiying Song
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zijie Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guixian Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xinping Liang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jie Liang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Luoyang Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China; Department of Spine Surgery, Qingdao Haici Medical Group, Qingdao, China.
| |
Collapse
|
36
|
Zhou J, Wu K, Ma Y, Zhu J, Zhou Y, Zhang Z, Li F, Zeng G, Li S, Tan S, Zhang Y, Wan C, Tu T, Lin Q, Liu Q. GTS-21 alleviates sepsis-induced atrial fibrillation susceptibility by modulating macrophage polarization and Neuregulin-1 secretion. Int Immunopharmacol 2025; 154:114561. [PMID: 40186903 DOI: 10.1016/j.intimp.2025.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/02/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE Sepsis-induced atrial fibrillation (AF) is driven by systemic inflammation and macrophage-mediated atrial remodeling, with proinflammatory M1 macrophages playing a key role. This study investigates whether GTS-21, an α7nAChR agonist, can reduce AF susceptibility by promoting macrophage polarization towards the anti-inflammatory M2 phenotype. METHODS A mouse model of lipopolysaccharide (LPS) (10 mg/kg)-induced sepsis was used to explore the relationship between atrial inflammation and AF. GTS-21 (20 mg/kg) was administered to assess its impact on 48-h survival and AF incidence. Cardiac function was evaluated using echocardiography. Markers of myocardial injury, including CK-MB, LDH, and cTnI, were measured. Macrophage polarization and atrial inflammation were assessed using immunofluorescence, flow cytometry, RT-qPCR, and western blotting. Oxidative stress and mitochondrial function were evaluated using reactive oxygen species (ROS) measurements, electron microscopy, and mitochondrial protein expression analysis. Calcium dynamics were studied using western blotting and confocal microscopy. RESULTS In LPS-induced septic mice, GTS-21 improved 48-h survival rates and reduced the induction rate and duration of AF (P < 0.05). Echocardiography showed a preserved left ventricular ejection fraction and enhanced diastolic function. Mechanistically, it promoted M2 macrophage polarization, inhibited the NF-κB P65/NLRP3/C-caspase 1 pathway to reduce IL-1β release, and alleviated oxidative stress. Additionally, mitochondrial structure was restored by reversing fission and promoting fusion, while calcium-handling proteins (NCX-1, RYR2, and SERCA2a) were regulated to prevent intracellular calcium overload, reducing AF susceptibility. CONCLUSION GTS-21 mitigated atrial inflammation and reduced the incidence of AF in mice with sepsis by regulating macrophage polarization, reducing oxidative stress, and preserving mitochondrial and calcium dynamics in cardiomyocytes. These findings highlight the therapeutic potential of GTS-21 in treating sepsis-induced AF.
Collapse
Affiliation(s)
- Jiabao Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Yingxu Ma
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Jiayi Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Yong Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Zixi Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Fanqi Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Gaoming Zeng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Shunyi Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Siyuan Tan
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Yusha Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Cancan Wan
- First Clinical College, Changsha Medical University, Changsha, Hunan 410219, PR China
| | - Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China.
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
37
|
Liu Y, Wang J, Lin J, Sun D, Zhu K, Diao T, Fu Q, Ren Q. The brain-body circuit mediates acute stress-induced antiinflammatory reflex in bacterial cystitis by suppressing ILC2 activation. JCI Insight 2025; 10:e189362. [PMID: 40100274 DOI: 10.1172/jci.insight.189362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Urinary tract infections (UTIs) are one of the most commonly encountered infections in clinical practice, in which psychological stress is a critical pathological contributor to modulate immune function. However, mechanistic pathways linking stress networks in the brain to bladder infection remain poorly understood. In this study, we discovered that acute stress treatment suppressed bladder inflammation in mice with UTIs, and a substantial number of neurons showing overlap between inflammation-associated markers and retrograde labeling were observed in the paraventricular nucleus (PVN) brain region of these mice. Activation of the PVN alleviated uropathogenic Escherichia coli-induced bladder inflammatory response. Moreover, a blocked hypothalamic-pituitary-adrenal axis reversed the antiinflammatory reflex mediated by acute stress, suggesting that glucocorticoids may modulate UTIs through the brain-body circuit. Single-cell RNA-Seq of bladder immune cells revealed that type 2 innate lymphoid (ILC2) cells expressed abundant levels of glucocorticoid receptor. The activation of the PVN effectively inhibited the expression of the pro-inflammatory cytokine colony-stimulating factor 2 by ILC2 cells through direct regulation of cell-intrinsic glucocorticoid signaling. Ultimately, our study has implications for the positioning of the brain-body circuit for UTI treatment.
Collapse
Affiliation(s)
- Yaxiao Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinhua Wang
- Department of Radiotherapy, Shandong Second Provincial General Hospital, Jinan, China
| | - Junyang Lin
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dingqi Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kejia Zhu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongxiang Diao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingyu Ren
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
38
|
Chen J, Cai Z, Huang S, Wang Y, Zhan S, Zheng W, Chi P. AQP9 weakens the cytotoxicity of CD8 + T cells in colon adenocarcinoma by boosting M2 polarization of macrophages under hypoxia conditions. Expert Rev Clin Immunol 2025:1-12. [PMID: 40329438 DOI: 10.1080/1744666x.2025.2501718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/02/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a leading cause of cancer mortality, with Aquaporin 9 (AQP9) implicated in its progression. M2 macrophages in the tumor microenvironment (TME) promote cancer metastasis, but the role of AQP9 on M2 macrophages remains unelucidated. RESEARCH DESIGN AND METHODS Using COAD cell lines, AQP9 expression was analyzed via RT-qPCR and Western blot (WB). Hypoxic conditions were simulated to assess HIF-1α and AQP9 interactions through ChIP and dual-luciferase assays. AQP9 knockdown effects on proliferation/migration were tested via colony formation and wound healing. M2 macrophage polarization and CD8+ T cell cytotoxicity were evaluated using flow cytometry, ELISA, and IHC in co-culture systems. RESULTS AQP9 was upregulated in COAD and correlated with poor prognosis. After AQP9 in COAD cells was knocked down, the abilities of tumor cells to migrate and proliferate were dampened. Hypoxia upregulated HIF-1α, which transcriptionally activated AQP9. Knocking down AQP9 repressed the M2 polarization of macrophages, thereby reinforcing the cytotoxicity of CD8+ T cells. No adverse events were reported in vitro. CONCLUSION AQP9 promotes COAD progression by driving HIF-1α-mediated M2 polarization, impairing CD8+ T cell function. Key limitations include the lack of in vivo validation and clinical cohort analysis.
Collapse
Affiliation(s)
- Jinping Chen
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Zongda Cai
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Shurong Huang
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Yangqiang Wang
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Shiyang Zhan
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Wei Zheng
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
39
|
He Y, Feng J, Shi W, Ren Y, Liu Y, Kang H, Tian J, Jie Y. Correlation among ocular surface changes and systemic hematologic indexes and disease activity in primary Sjögren's syndrome: a cross-sectional study. BMC Ophthalmol 2025; 25:270. [PMID: 40329232 PMCID: PMC12054185 DOI: 10.1186/s12886-025-04050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND To explore the relationship among ocular surface changes, systemic hematologic indexes, and disease activity in primary Sjögren's syndrome patients. METHODS Thirty-three primary Sjögren's syndrome patients and 36 healthy controls were recruited in this cross-sectional study. All participants underwent complete ocular surface testing, including dry eye symptoms and signs, tear multi-cytokine analysis, and conjunctival impression cytology (CIC). Multiple systemic hematologic indexes and disease activity were also evaluated, including autoantibodies, immune cells, the EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI), and the EULAR Sjögren's Syndrome Disease Activity Index (ESSDAI). RESULTS Primary Sjögren's syndrome patients exhibited significant dry eye, severe conjunctivochalasis, decreased goblet cell density, and severe squamous epithelial on the ocular surface. Interferon-inducible T cell alpha chemoattractant (I-TAC), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-1β, IL-5, IL-8, IL-10, IL-13, IL-21, C-C motif chemokine ligand (CCL)4, interferon-gamma (IFN-γ), CCL20, and tumor necrosis factor-gamma (TNF-α) in the tear fluid of pSS patients changed significantly. Correlation analysis showed that anti-SSA was relevant to ocular surface disease index (OSDI) score, tear break-up time (TBUT), and meibomian gland secretion (MGS). CD8+ T cell percentages were relevant to TBUT and corneal fluorescein staining score (CFS). IL-8, IL-13, CCL4, and TNF-α were correlated with RF-IgA. IL-1β, CCL4, and TNF-α were correlated with CD8+ T cell counts. IL-5 and CCL20 were correlated with the ratio of helper T cells and suppressor T cells. Tear I-TAC, IL-8, CCL20, and TNF-α were significantly correlated with the ESSDAI of different domains. CONCLUSIONS Our results revealed that the ocular surface changes in pSS patients were significantly correlated with systemic hematologic indexes and disease activity.
Collapse
Affiliation(s)
- Yan He
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China
| | - Jianing Feng
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| | - Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yingyi Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China
| | - Huanmin Kang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Tian
- Department of Rheumatism and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Ying Jie
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China.
| |
Collapse
|
40
|
Liu L, Wuyun T, Sun X, Zhang Y, Cha G, Zhao L. Therapeutic efficacy of TMTP1-modified EVs in overcoming bone metastasis and immune resistance in PIK3CA mutant NSCLC. Cell Death Dis 2025; 16:367. [PMID: 40328748 PMCID: PMC12055990 DOI: 10.1038/s41419-025-07685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
Non-small cell lung cancer (NSCLC) with PIK3CA mutations demonstrates significant challenges in treatment due to enhanced bone metastasis and immune checkpoint resistance. This study investigates the efficacy of tumor-targeting peptide 1-modified cancer stem cell-derived extracellular vesicles (TMTP1-TSRP-EVs) in reshaping the tumor microenvironment and reversing immune checkpoint resistance in NSCLC. By integrating TMTP1-TSRP into EVs, we aim to specifically deliver therapeutic agents to NSCLC cells, focusing on inhibiting the PI3K/Akt/mTOR pathway, a crucial driver of oncogenic activity and immune evasion in PIK3CA-mutated cells. Our comprehensive in vitro and in vivo analyses show that TMTP1-TSRP-EVs significantly inhibit tumor growth, reduce PD-L1 expression, and enhance CD8+ T cell infiltration, effectively reversing the immune-suppressive microenvironment. Moreover, the in vivo models confirm that our approach not only suppresses bone metastases but also overcomes primary resistance to immune checkpoint inhibitors by modulating the expression of key immunological markers. These findings suggest that targeted delivery of TMTP1-TSRP-EVs could provide a novel therapeutic strategy for treating PIK3CA-mutant NSCLC, offering significant improvements over traditional therapies by directly targeting the molecular pathogenesis of tumor resistance and metastasis. Molecular Mechanisms Reshaping the TME to Halt PI3K-Mutant Bone Metastasis of NSCLC and Overcoming Primary ICI Resistance. (Created by BioRender).
Collapse
Affiliation(s)
- Liwen Liu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tanghesi Wuyun
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Sun
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Zhang
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Geqi Cha
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ling Zhao
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
41
|
Liu N, Wu T, Han G, Chen M. Exosome-mediated ferroptosis in the tumor microenvironment: from molecular mechanisms to clinical application. Cell Death Discov 2025; 11:221. [PMID: 40328736 PMCID: PMC12056189 DOI: 10.1038/s41420-025-02484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Ferroptosis in the tumor microenvironment (TME) plays a crucial role in the development, metastasis, immune escape, and drug resistance of various types of cancer. A better understanding of ferroptosis in the TME could illuminate novel aspects of this process and promote the development of targeted therapies. Compelling evidence indicates that exosomes are key mediators in regulating the TME. In this respect, it is now understood that exosomes can deliver biologically functional molecules to recipient cells, influencing cancer progression by reprogramming the metabolism of cancer cells and their surrounding stromal cells through ferroptosis. In this review, we focus on the role of exosomes in the TME and describe how they contribute to tumor reprogramming, immunosuppression, and the formation of pre-metastatic niches through ferroptosis. In addition, we highlight exosome-mediated ferroptosis as a potential target for cancer therapy and discuss strategies employing exosomes in ferroptosis treatment. Finally, we outline the current applications and challenges of targeted exosome-mediated ferroptosis therapy in tumor immunotherapy and chemotherapy. Our aim is to advance research on the link between exosomes and ferroptosis in the TME, and we pose questions to guide future studies in this area.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Tianqing Wu
- XJTLU Wisdom Lake Academy of Pharmacy, Suzhou, Jiangsu Province, China
| | - Guohu Han
- Department of Oncology, Jingjiang People's Hospital Affiliated with Yangzhou University, Jingjiang, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
42
|
Zheng C, Wu Y, Luan F, Wei C, Zhang C, Liu W, Wang W, Chen J. Advances in biomimetic hydrogel for articular cartilage defect repair: Enabling immunomodulation and chondrogenesis. Colloids Surf B Biointerfaces 2025; 253:114760. [PMID: 40359898 DOI: 10.1016/j.colsurfb.2025.114760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Articular cartilage defects, as a core pathologic feature in the progression of osteoarthritis, and their irreversible degenerative changes lead to functional impairment and socioeconomic burden for tens of millions of patients worldwide. Hydrogels have become key biomaterials in cartilage regeneration with the three-dimensional network structure, programmable mechanical properties, and cell-adaptive microenvironment of biomimetic extracellular matrix. In recent years, several hydrogel systems with in vitro/in vivo repair potential have been developed by modulating the material topology, dynamic mechanical response, and delivery of bioactive factors, and some of them have entered the clinical translation stage. This review systematically explains the biomimetic design principles of hydrogels. It analyzes the immunomodulation and chondrogenic mechanisms mediated by hydrogels, providing a theoretical framework for the development of next-generation smart cartilage repair materials.
Collapse
Affiliation(s)
- Chenxiao Zheng
- Department ofOrthopaedics and Traumatology, Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Yurui Wu
- Department ofOrthopaedics and Traumatology, Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Feifan Luan
- Department ofOrthopaedics and Traumatology, Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Chunwei Wei
- Department ofOrthopaedics and Traumatology, Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Chunye Zhang
- Biomedical and HealthTechnology Innovation Platform, National University of Singapore (Suzhou)Research Institute, Suzhou, Jiangsu 215123, China
| | - Wenjun Liu
- Zhejiang ShangyueBiotechnology Research Center, Hangzhou, Zhejiang 310018, China
| | - Wenjun Wang
- Biomedical and HealthTechnology Innovation Platform, National University of Singapore (Suzhou)Research Institute, Suzhou, Jiangsu 215123, China.
| | - Jiayi Chen
- Department ofOrthopaedics and Traumatology, Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China.
| |
Collapse
|
43
|
Wang Y, Gao J, Wu T, Wang Z. M2 Macrophages Mitigate Ocular Surface Inflammation and Promote Recovery in a Mouse Model of Dry Eye. Ocul Immunol Inflamm 2025:1-10. [PMID: 40327794 DOI: 10.1080/09273948.2025.2497484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
PURPOSE Dry eye disease (DED) is a chronic, progressive, multifactorial condition characterized by tear film instability and ocular surface damage. Ocular surface inflammation is one of the main mechanisms of DED. This study aims to investigate the therapeutic effects of anti-inflammatory M2 macrophages on ocular surface inflammation and their potential mechanisms in improving dry eye symptoms in a mouse model. METHODS Mouse macrophages (RAW264.7) were polarized into M2 macrophages by IL-4 under different osmolarities, and M2 macrophage conditioned medium (M2-CM) was collected. Flow cytometry and ELISA were applied to measure the cytokine expression of the M2 macrophages. Primary mouse corneal epithelial cells (CECs) were co-cultured with RAW264.7 and M2 macrophages using a Transwell system. The viability and migration of CECs were assessed using CCK-8 and scratch assays. Mouse DED was established by subcutaneous injection of scopolamine, and the therapeutic effects of M2-CM were evaluated by phenol red thread test, fluorescein staining, and tear film breakup time (BUT). PCR and immunofluorescence staining were applied to observe inflammatory factors and cells on the ocular surface. RESULTS M2 macrophages enhanced CEC viability, proliferation, and migration, but hyperosmolarity inhibited M2 macrophage polarization. In the DED model, M2-CM improved ocular surface conditions, reduced pro-inflammatory cytokine expression, and increased anti-inflammatory factors. Immunofluorescence revealed reduced pro-inflammatory cells (M1 macrophages, Th1, and Th17) and increased M2 macrophages in the ocular tissues after M2-CM treatment. CONCLUSION These results suggest that M2-CM ameliorates ocular surface inflammation and promotes recovery in DED, offering a potential therapeutic strategy for DED.
Collapse
Affiliation(s)
- Yingming Wang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing Gao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tianhong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhenyu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
44
|
Li SS, Liang Y, Kong JW, Zhang Q, Qian JR, Yu LX, Liu QF. Therapeutic potential of voltage-dependent potassium channel subtype 1.3 blockade in alleviating macrophage-related renal inflammation and fibrogenesis. Cell Death Discov 2025; 11:218. [PMID: 40324999 PMCID: PMC12053669 DOI: 10.1038/s41420-025-02508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
Macrophage polarization and infiltration are notable characteristics of kidney injury and fibrosis. Although voltage-dependent potassium channel subtype (Kv) 1.3 is involved in macrophage-induced inflammation, its precise mechanism has not been elucidated. Therefore, this study aimed to explore the role of Kv1.3 in renal injury and macrophage polarization. Herein, mouse models of kidney injury were established through unilateral ureteral obstruction (UUO) and ischemia-reperfusion injury (IRI). For intervention, a selective Kv1.3 blocker, margatoxin (MgTx), was administered intraperitoneally. Blood and kidney samples were collected on days 3 and 7 following UUO surgery to evaluate renal Kv1.3 expression, kidney injury, macrophage polarization changes, cytokine levels, phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB). Kidney samples were also collected 24 h after IRI to assess kidney injury and evaluate renal Kv1.3 expression, as well as the phosphorylation levels of ERK and NF-κB. Histological analysis of MgTx-treated UUO and IRI mice revealed that Kv1.3 inhibition markedly alleviated renal damage induced by UUO and IRI, substantially reducing the levels of myofibroblast markers, specifically α-smooth muscle actin and transforming growth factor-β1. In UUO mice, Kv1.3 expression and proportions of monocyte-derived cells in peripheral blood and M1 macrophages notably increased but reversed after MgTx treatment, indicating diminished macrophage infiltration. Additionally, MgTx treatment downregulated various M1-related proinflammatory markers, including tumor necrosis factor-α, inducible nitric oxide synthase, and interleukin (IL)-1β, and upregulated M2-associated markers such as IL-10, arginase-1, and CD206. Moreover, Kv1.3 overexpression in THP-1 cells upregulated M1 macrophage markers and proinflammatory cytokines, enhanced their migratory ability. This indicates an increased polarization towards the M1 phenotype, which correlates with impaired renal tubular epithelial cells. Notably, Kv1.3 upregulation both in vivo and in vitro led to increased phosphorylation of ERK and NF-κB, possibly promoting M1 macrophage polarization. This study establishes Kv1.3 as a pivotal regulator of renal fibrosis and macrophage polarization, showing that its inhibition leads to reduced infiltration and migration of M1 macrophages, mitigation of renal injury via suppression of ERK/NF-κB signaling. Altogether, these findings suggest the potential of Kv1.3 as a promising therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Sha-Sha Li
- Clinical Research & Lab Centre, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yan Liang
- Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Jia-Wei Kong
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qi Zhang
- Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Jing-Rong Qian
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Li-Xia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China.
| | - Qi-Feng Liu
- Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China.
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China.
| |
Collapse
|
45
|
Froom ZSCS, Callaghan NI, Davenport Huyer L. Cellular crosstalk in fibrosis: insights into macrophage and fibroblast dynamics. J Biol Chem 2025:110203. [PMID: 40334985 DOI: 10.1016/j.jbc.2025.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Pathological fibrosis, the excessive deposition of extracellular matrix and tissue stiffening that causes progressive organ dysfunction, underlies diverse chronic diseases. The fibrotic microenvironment is driven by the dynamic microenvironmental interaction between various cell types; macrophages and fibroblasts play central roles in fibrotic disease initiation, maintenance, and progression. Macrophage functional plasticity to microenvironmental stimuli modulates fibroblast functionality by releasing pro-inflammatory cytokines, growth factors, and matrix remodeling enzymes that promote fibroblast proliferation, activation, and differentiation into myofibroblasts. Activated fibroblasts and myofibroblasts serve as the fibrotic effector cells, secreting extracellular matrix components and initiating microenvironmental contracture. Fibroblasts also modulate macrophage function through the release of their own pro-inflammatory cytokines and growth factors, creating bidirectional crosstalk that reinforces the chronic fibrotic cycle. The intricate interplay between macrophages and fibroblasts, including their secretomes and signaling interactions, leads to tissue damage and pathological loss of tissue function. In this review, we examine macrophage-fibroblast reciprocal dynamic interactions in pathological fibrotic conditions. We discuss the specific lineages and functionality of macrophages and fibroblasts implicated in fibrotic progression, with focus on their signal transduction pathways and secretory signalling that enables their pro-fibrotic behaviour. We then finish with a set of recommendations for future experimentation with the goal of developing a set of potential targets for anti-fibrotic therapeutic candidates. Understanding the cellular interactions between macrophages and fibroblasts provides valuable insights into potential therapeutic strategies to mitigate fibrotic disease progression.
Collapse
Affiliation(s)
- Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Neal I Callaghan
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada; Nova Scotia Health, Halifax, NS B3S 0H6, Canada.
| |
Collapse
|
46
|
Li YX, Zhang ZF, Wu YM, Shi L, Shen HX, Seeram NP, Ma H, Lu YM. Structural characterization and immunostimulatory effects of polysaccharide AP-1 from ashwagandha (Withania somnifera) roots. Int J Biol Macromol 2025; 311:143855. [PMID: 40319957 DOI: 10.1016/j.ijbiomac.2025.143855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Ashwagandha (Withania somnifera) is a well-known medicinal plant, with polysaccharides recognized as key bioactive constituents. In this study, we isolated a neutral polysaccharide, AP-1, from ashwagandha roots and elucidated its structure. AP-1 has a molecular weight of 9.21 kDa and is primarily composed of mannose, glucose, and galactose in a molar ratio of 0.1:1.5:1. Spectroscopic analyses revealed that AP-1's backbone consists of 1,4-α-Glcp and 1,3-α-Galp, with branching at the C-6 of 1,4,6-α-Glcp and C-4 of 1,3,4-α-Galp positions. The immunostimulatory activity of AP-1 was evaluated in murine macrophage RAW264.7 cells. AP-1 significantly enhanced macrophage immune responses, promoted M1-type polarization, and activated the NF-κB signaling pathway. It increased the production and mRNAs expression of pro-inflammatory mediators including nitric oxide, oxygen species, tumor necrosis factor, interleukins-1β and -6, and upregulated the M1 surface biomarker CD86. These findings highlight the potential of AP-1 as a promising bioactive ingredient for functional foods targeting immune enhancement.
Collapse
Affiliation(s)
- Yan-Xia Li
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Zhong-Fei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Yu-Meng Wu
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Le Shi
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Hui-Xian Shen
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Yong-Ming Lu
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, PR China; Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
47
|
Xie YH, Wang CH, Wang R, Jia H, Liu F, Peng ZH, Zhang YH, Li J, Yang RY, Zhang LJ, Xu WF. Anti-neuroinflammatory naphthol dimers from the marine-derived fungus Penicillium sp. HQ1-23. PHYTOCHEMISTRY 2025; 237:114534. [PMID: 40320229 DOI: 10.1016/j.phytochem.2025.114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Five undescribed naphthol dimers, penibinaphthols A-E (1-5), and two known analogues (6 and 7), were isolated from the marine-derived fungus Penicillium sp. HQ1-23. Their structures were elucidated based on spectroscopic data analysis, and the absolute configurations were determined by X-ray crystallographic data and ECD spectroscopic analysis. Compound 3, with a ketone carbonyl group at C-1', potently inhibited LPS-induced NO production in BV-2 microglial cells (IC50 = 6.86 ± 0.10 μM), surpassing that of the positive control minocycline (IC50 = 23.57 ± 0.92 μM). Moreover, compound 3 decreased LPS-induced iNOS and COX-2 expression and reduced LPS-stimulated levels of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6.
Collapse
Affiliation(s)
- Yuan-Han Xie
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Chun-Hong Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Rong Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hui Jia
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fei Liu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zi-Hong Peng
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ya-Hui Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Jun Li
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Rui-Yun Yang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Li-Jun Zhang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Wei-Feng Xu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
48
|
Wang Z, Wang M, Liu J, Zhao D, Wang J, Wei F. Macrophage is crucial for tongue development by regulating myogenesis and vascularization. BMC Oral Health 2025; 25:678. [PMID: 40316997 PMCID: PMC12049047 DOI: 10.1186/s12903-025-06059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Abnormal tongue development is a craniofacial deformity that affects dental-maxillofacial esthetics and function. Recent evidence has identified macrophages as multi-functional immune cells crucial for heart and brain development. However, it is still unknown whether macrophages affect tongue development. Therefore, this study aims to assess the distribution, phenotype, and roles of macrophages in the developing tongue. METHODS In this study, immunohistochemical (IHC) and multiplex immunofluorescence (mIF) staining were conducted on C57BL/6 mice at embryonic day (E) 13.5, E14.5, E16.5, and E18.5 to analyze the distribution and phenotype of macrophages. Hematoxylin-Eosin (HE), IHC, IF, and mIF staining were also performed on embryonic CX3 CR1-CreERT2; Rosa-DTA conditional macrophage-depleted mice to investigate the effects on fetal tongue development and elucidate mechanisms from myogenesis, vascularization, and cell apoptosis. Statistical significance between the two groups was determined using unpaired two-tailed Student's t-tests. For comparisons involving three or more groups, one-way analysis of variance (ANOVA) followed by Tukey's multiple comparison tests was utilized. A significance level of P < 0.05 was set for statistical significance. RESULTS Macrophages were present in the developing tongue from E13.5 to E18.5, with a majority being of the M2 phenotype. Depletion of macrophages resulted in abnormal tongue morphology, decreased tongue height, width, and size, as well as reduced and disorganized muscle fibers. Depletion of macrophages also increased apoptosis. Vascular morphogenesis was impacted, with reductions in the luminal and vascular wall cross-sectional areas of the lingual artery. Vascular endothelial cells were reduced and disorganized with decreased expression of VEGFA and TGF-β1. Moreover, macrophages were located near vascular endothelial cells and secreted pro-angiogenic factors, suggesting their involvement in promoting vascularization. CONCLUSIONS Our findings indicate that macrophages play crucial roles in fetal tongue development by affecting myogenesis, cell apoptosis, and vascular growth.
Collapse
Affiliation(s)
- Ziyao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Mengqiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Jiani Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Delu Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China.
| |
Collapse
|
49
|
Kirsche L, He J, Müller A, Leary P. MARMOT: A multifaceted R pipeline for analysing spectral flow cytometry data from subcutaneously growing murine gastric organoids. J Immunol Methods 2025; 540:113854. [PMID: 40122453 DOI: 10.1016/j.jim.2025.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
The analysis of murine immune cell types is a critical component of immunological research, necessitating precise and reproducible methodologies. Here, we present a comprehensive protocol and pipeline designed to streamline the process from murine gastric organoid transplant sample preparation to figure generation. This pipeline includes a detailed staining panel tailored for murine immune cells, ensuring accurate and comprehensive identification of various cell types. Additionally, it integrates an R-based analysis script (MARMOT Pipeline), encompassing data processing and visualisation. A key feature of this pipeline is its ability to produce publication-quality figures with minimal direct R coding, thus making advanced data analysis accessible to researchers with limited programming experience. Additionally, figures can be customised using a provided Shiny application. This approach both enhances the efficiency of data analysis and enables the reproducibility required for high-quality scientific research.
Collapse
Affiliation(s)
- Lydia Kirsche
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Jiazhuo He
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Comprehensive Cancer Center Zürich, Zürich, Switzerland
| | - Peter Leary
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland.
| |
Collapse
|
50
|
Ren C, Li Y, Li M, Wang Y. Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review). Int J Oncol 2025; 66:40. [PMID: 40314093 PMCID: PMC12068847 DOI: 10.3892/ijo.2025.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/03/2025] [Indexed: 05/03/2025] Open
Abstract
Lymphoma is a malignancy of the immune system, which originates from lymphatic tissues and lymph nodes. Diffuse large B‑cell lymphoma (DLBCL) is a common type of non‑Hodgkin lymphoma, occurring in 30‑40% of all cases, which has persistent clinical challenges. The treatment of DLBCL is challenging due to its diverse genetic and biological characteristics and complex clinical physiology. Despite advancements in overall prognosis, 20‑25% of patients continue to experience relapse and 10‑15% of patients experience refractory disease. Vitamin C is a water‑soluble vitamin with antioxidant properties and notable pharmacological activity, with potential applications in cancer therapy. Pharmacological doses of vitamin C (1‑4 g/kg) can induce apoptosis in malignant cells by inhibiting and/or reversing gene mutations that are associated with hematological malignancies. For example, 10‑25% of patients with myeloid malignancies have tet methylcytosine dioxygenase 2 (TET2) gene mutations and vitamin C can regulate blood stem cell frequency and leukemia production by enhancing TET2 function. Consequently, pharmacological doses of vitamin C can inhibit the development and progression of hematological malignancies. Therefore, the present review aimed to investigate the role of vitamin C in the pathophysiology and treatment of DLBCL, whilst highlighting the potential challenges and future perspectives.
Collapse
Affiliation(s)
- Chunxiao Ren
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Yaqiong Li
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Mingrui Li
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|