1
|
Cai M, Zhong H, Wang X, Li L, Zhou X, Wang Y, Hua X, Guo S, Yuan X. Pathology-inspired collagen-binding thermosensitive micelle drops enable prolonged and efficient treatment of fungal keratitis. Bioact Mater 2025; 50:396-413. [PMID: 40331212 PMCID: PMC12051119 DOI: 10.1016/j.bioactmat.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/29/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Fungal keratitis (FK) is a challenging-to-manage blinding corneal infectious disease that often leads to severe sequelae, such as corneal leukoplakia regardless of curative care. Moreover, the unique anatomical structure and tear turnover of the eye significantly limit the bioavailability and therapeutic efficacy of traditional eye drops. Inspired by the unique pathological features of corneal ulcers, we report a thermosensitive multifunctional eye drop, designated PX-TA, based on a poloxamer (PX) and a collagen-adhesive tannic acid (TA), for prolonged and efficient treatment of FK. PX-TA transforms into a gel at body temperature and adheres to exposed collagen at the ulcer site; this significantly improves the corneal retention time and bioavailability. PX-TA maintains corneal retention for at least 90 min, substantially exceeding both the 15-min limit of commercial mucoadhesive eye drops and the 30-min threshold of conventional in situ gels. When loaded with amphotericin B (AmB), once-daily PX-TA-AmB administration effectively suppresses inflammation and corneal scarring, demonstrating superior efficacy over six-times-daily free AmB drops and a good safety profile. Mechanistic investigations reveal that PX-TA-AmB mediates its therapeutic effects through the MAPK6/PI3K/AKT signaling pathway. Moreover, the metal-chelating properties of TA inhibit the copper-dependent enzyme lysyl oxidase (LOX), resulting in reduced matrix fibrosis. Overall, the use of PX-TA-AmB drops represents a simplified yet effective strategy for the potential clinical management of FK, inspiring the design of eye drop formulations.
Collapse
Affiliation(s)
- Maoyu Cai
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xindi Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Liangpin Li
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Xueyan Zhou
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Wang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Xia Hua
- Aier Eye Institute, Changsha, 410015, China
- Aier Eye Hospital, Tianjin University, Tianjin, 300110, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoyong Yuan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| |
Collapse
|
2
|
Tian M, Zhou Y, Guo Y, Xia Q, Wang Z, Zheng X, Shen J, Guo J, Duan S, Wang L. MicroRNAs in adipose tissue fibrosis: Mechanisms and therapeutic potential. Genes Dis 2025; 12:101287. [PMID: 40242037 PMCID: PMC12002615 DOI: 10.1016/j.gendis.2024.101287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2025] Open
Abstract
Adipose tissue fibrosis, characterized by abnormal extracellular matrix deposition within adipose tissue, signifies a crucial indicator of adipose tissue malfunction, potentially leading to organ tissue dysfunction. Various factors, including a high-fat diet, non-alcoholic fatty liver disease, and insulin resistance, coincide with adipose tissue fibrosis. MicroRNAs (miRNAs) represent a class of small non-coding RNAs with significant influence on tissue fibrosis through diverse signaling pathways. For instance, in response to a high-fat diet, miRNAs can modulate signaling pathways such as TGF-β/Smad, PI3K/AKT, and PPAR-γ to impact adipose tissue fibrosis. Furthermore, miRNAs play roles in inhibiting fibrosis in different contexts: suppressing corneal fibrosis via the TGF-β/Smad pathway, mitigating cardiac fibrosis through the VEGF signaling pathway, reducing wound fibrosis via regulation of the MAPK signaling pathway, and diminishing fibrosis post-fat transplantation via involvement in the PDGFR-β signaling pathway. Notably, the secretome released by miRNA-transfected adipose-derived stem cells facilitates targeted delivery of miRNAs to evade host immune rejection, enhancing their anti-fibrotic efficacy. Hence, this study endeavors to elucidate the role and mechanism of miRNAs in adipose tissue fibrosis and explore the mechanisms and advantages of the secretome released by miRNA-transfected adipose-derived stem cells in combating fibrotic diseases.
Collapse
Affiliation(s)
- Mei Tian
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yang Zhou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yitong Guo
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qing Xia
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Xinying Zheng
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Junping Guo
- Rainbowfish Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang 310018, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Lijun Wang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
3
|
Qiu J, Zhao R, Ma C, Wang Q, Li B, Qi Y, Pan Z, Zhao S, Wang S, Gao Z, Guo X, Qiu W, Tang W, Guo X, Deng L, Xue H, Li G. O-GlcNAcylation stabilized WTAP promotes GBM malignant progression in an N6-methyladenosine-dependent manner. Neuro Oncol 2025; 27:900-915. [PMID: 39671515 PMCID: PMC12083224 DOI: 10.1093/neuonc/noae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Interactions between mesenchymal glioblastoma stem cells (MES GSCs) and myeloid-derived macrophages (MDMs) shape the tumor-immunosuppressive microenvironment (TIME), promoting the progression of glioblastoma (GBM). N6-methyladenosine (m6A) plays important roles in the tumor progression. However, the mechanism of m6A in shaping the TIME of GBM remains elusive. METHODS Single-cell RNA sequencing and bulk RNA-seq datasets were employed to identify the critical role of WTAP in interactions between MES GBM and MDMs. The biological function of WTAP was confirmed both in vitro and in vivo. Mechanistically, mass spectrum, RNA immunoprecipitation (RIP), and co-immunoprecipitation assays were conducted. RESULTS Here, we identified that m6A methyltransferase Wilms' tumor 1-associated protein (WTAP), whose protein stability could be synergistically enhanced via OGT-mediated O-GlcNAcylation and USP7-mediated de-ubiquitination, promoted LOXL2 m6A modification to enhance its mRNA stabilization in an IGF2BP2-dependent manner, upregulating secretion of LOXL2 protein (sLOXL2). sLOXL2 then interacted with integrin α5β1 on GSCs to activate FAK-ERK signaling, inducing mesenchymal transition of GSCs in an autocrine manner. Meanwhile, sLOXL2 also activated the integrin α5β1-FAK-ERK axis in MDMs, which promoted M2-like MDM phenotypes in a paracrine pathway, thereby contributing to T-cell exhaustion to induce GBM immune escape. In translational medicine, combinations of the OGT inhibitor by targeting WTAP expression and the LOXL2 antagonist by disrupting MES GSC and MDM interactions showed favorable outcomes to the anti-PD1 immunotherapy. CONCLUSIONS WTAP plays critical roles in mesenchymal transition of GSCs and formation of TIME, highlighting the therapeutic potential of targeting WTAP and its downstream effectors to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jiawei Qiu
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Rongrong Zhao
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Caizhi Ma
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Qingtong Wang
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Boyan Li
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Yanhua Qi
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Ziwen Pan
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Shulin Zhao
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Shaobo Wang
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Zijie Gao
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, California, USA (Xiaofan Guo)
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Wei Qiu
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Weijie Tang
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Xing Guo
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Lin Deng
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Hao Xue
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Gang Li
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Qiu F, Miao HR, Hui HL, Qiu LJ, Chen Y, Luo M, Zhang JC, Lin YG, Li D, Ong SB, Hu XF, Jiang B, Zhang YQ. MHCII hiLYVE1 loCCR2 hi Interstitial Macrophages Promote Medial Fibrosis in Pulmonary Arterioles and Contribute to Pulmonary Hypertension. Circ Res 2025. [PMID: 40357547 DOI: 10.1161/circresaha.125.326173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/13/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a lethal disease characterized in part by progressive pulmonary arteriole (PA) remodeling. Excessive PA fibrosis and macrophage infiltration are often present in PH, but the potential associations are obscure. We investigated the link between interstitial macrophage (iMΦ) infiltration and PA fibrosis in PH and idiopathic pulmonary arterial hypertension. METHODS Lung tissue samples from patients with idiopathic pulmonary arterial hypertension and experimental PH animals were obtained to analyze the extent of fibrosis and iMΦ infiltration in the different layers of PAs and their correlation with disease severity. Single-cell RNA sequencing, lineage tracing, histological analyses, iMΦ and PA smooth muscle cell coculture, and transgenic animal experiments were used to investigate the cell heterogeneity and origins and molecular mechanisms by which iMΦs promote PA fibrosis. RESULTS We found that increased collagen deposition and fibrosis in the PA media were most strongly related to the severity of PH, and medial iMΦ infiltration may be involved in these pathological processes. Single-cell transcriptomics revealed that MHCIIhiLYVE1loCCR2hi iMΦs were the major type of iMΦ that expanded upon Sugen-5416 and hypoxia plus normoxia stimulation and were responsible for PA medial fibrosis. Lineage tracing experiments suggested that these medial iMΦs were largely from recruited monocytes. Mechanistically, MHCIIhiLYVE1loCCR2hi iMΦs promoted the transition of PA smooth muscle cells to a fibroblast-like phenotype through the WNT11 (wingless member 11)/planar cell polarity (PCP) pathway. Wnt11 deletion in iMΦs from PH rats normalized the fibrotic PA smooth muscle cell phenotype and decreased PA medial fibrosis, thereby improving vascular compliance and protecting against PH. Moreover, myeloid-specific Ccr2 deficiency in PH-PAs inhibited the medial infiltration of MHCIIhiLYVE1loCCR2hi iMΦs, which also relieved PH. CONCLUSIONS This study demonstrates that the recruitment of MHCIIhiLYVE1loCCR2hi iMΦs leads to medial fibrosis in PH-PAs associated with PH severity and that inhibition of their pathogenicity or recruitment reverses PA medial fibrosis and PH.
Collapse
Affiliation(s)
- Fan Qiu
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Hao-Ran Miao
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Hong-Liang Hui
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Lin-Jie Qiu
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Yi Chen
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Min Luo
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
| | - Jian-Chao Zhang
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Yan-Gui Lin
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
| | - Dan Li
- Community Health Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (D.L.)
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong (CUHK) (S.-B.O.)
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong (CUHK) (S.-B.O.)
- Neural, Vascular, and Metabolic Biology Thematic Research Program, School of Biomedical Sciences, Chinese University of Hong Kong (CUHK) (S.-B.O.)
- Hong Kong Hub of Paediatric Excellence, Hong Kong Children's Hospital, Kowloon Bay, China (S.-B.O.)
- Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences (S.-B.O.)
- CUHK Shenzhen Research Institute, China (S.-B.O.)
| | | | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Yi-Qian Zhang
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| |
Collapse
|
5
|
Zhao W, Zhang J, Guo Q, Wang Q, Zhao H, Xiao F, Han M, Cao Y, Ding R, Yang A, Xie W. Fibulin-1 deficiency alleviates liver fibrosis by inhibiting hepatic stellate cell activation via the p38 MAPK pathway. Cell Mol Life Sci 2025; 82:192. [PMID: 40323446 PMCID: PMC12052672 DOI: 10.1007/s00018-025-05647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 05/08/2025]
Abstract
Elastin stabilization has been correlated with the reversibility of fibrosis. Fibulin-1 can participate in elastin assembly, which promotes its stabilization. However, the role of Fibulin-1 in liver fibrosis remains unknown. Here, we performed a proteomics analysis to identify notable changes in Fibulin-1 expression during continuous fibrosis progression and regression. Fibulin-1 expression was dramatically increased in the plasma of patients with cirrhosis as well as in liver fibrosis models and hepatic stellate cells (HSCs) treated with TGF-β1, and significant accumulation of Fibulin-1 was observed in chronic hepatitis B (CHB)- and metabolic dysfunction-associated steatohepatitis (MASH)-related cirrhosis. Functional studies demonstrated that Fibulin-1 silencing inhibited HSC activation, while the opposite effects were observed for Fibulin-1 overexpression in vitro. Furthermore, transcriptomic analysis revealed that Fibulin-1 mediated p38 MAPK pathway activation, which was confirmed by the addition of a p38 MAPK inhibitor. More importantly, Fibulin-1 depletion in a CCl4-induced liver fibrosis model substantially ameliorated fibrosis progression, which was accompanied by decreased profibrogenic gene expression and decreased levels of insoluble elastin. Moreover, activation of the p38 MAPK pathway was inhibited in vivo. The expression of Fibulin-1D, rather than Fibulin-1C, was elevated during liver fibrogenesis, which suggested a major role for Fibulin-1D in liver fibrosis. Next, we established Fibulin-1D/elastin-coated culture models with LX-2 cells. LX-2 cells with extracellular elastin and Fibulin-1D deposition showed more significant profibrotic phenotypic alterations than those with elastin alone. Fibulin-1 deficiency alleviated liver fibrosis by reducing insoluble elastin and HSC activation, and finally, the p38 MAPK pathway might be involved in the effect of Fibulin-1 on HSCs.
Collapse
Affiliation(s)
- Wenshan Zhao
- Center of Liver Diseases, National Medical Centre for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Jingyu Zhang
- Center of Liver Diseases, National Medical Centre for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Qi Wang
- Center of Liver Diseases, National Medical Centre for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Hong Zhao
- Center of Liver Diseases, National Medical Centre for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Fan Xiao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Ming Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Ying Cao
- Center of Liver Diseases, National Medical Centre for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Rui Ding
- Center of Liver Diseases, National Medical Centre for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Wen Xie
- Center of Liver Diseases, National Medical Centre for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China.
| |
Collapse
|
6
|
Li T, Zhang W, Wang Y, Xu G, Miao F, Chen P, Tang G, Ze X, Xiang J, Yan J, Wang M, Liu M, Wang X, Tang W, Yi F, Zhang ZM, Wang R, Yao SQ, Xie Y. Lysine-Targeting, Covalent Inhibitors of Bromodomain BD1 of BET Proteins in Live Cells and Animals. Angew Chem Int Ed Engl 2025:e202424832. [PMID: 40313007 DOI: 10.1002/anie.202424832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/10/2025] [Accepted: 05/01/2025] [Indexed: 05/03/2025]
Abstract
The bromodomain extra-terminal (BET) family of proteins are valuable therapeutic targets for cancer and other diseases. The adverse events of current pan-BET inhibitors (BETi) make the development of BET BD1- or BD2-selective inhibitors as a fresh avenue to overcome safety challenges. On the basis of various lysine-reactive covalent warheads herein we report a set of activity-based probes (ABPs; P3-P7) capable of global profiling of ligandable lysines within bromodomains (BRDs) in live cells and animals. Chemoproteomic experiments with P7, which utilizes 2-ethynylbenzaldehyde (EBA), identified 16 endogenous BRDs, thus giving a global landscape of ligandable lysines in BRDs. By further introducing EBA and salicylaldehyde into PLX51107 (a noncovalent BETi), we generated lysine-reactive, irreversible (BDS1-4) and reversible (BDS5-6) BD1 covalent inhibitors. Mass spectrometry and X-ray crystallography confirmed the successful covalent engagement between EBA and K91 near the acetylated lysine (Kac)-binding site of BD1 in BRD4. BDS4 showed 104-fold selectivity for BD1 over BD2 with prolonged anticancer effects. Importantly, BDS4 retained robust activity against fibrosis in cells and animals when compared to RVX-208 (a reported BD2-selective noncovalent inhibitor), which showed only marginal effects. Our work serves as a useful tool to delineate distinct functions of BD1 and BD2 in future studies.
Collapse
Affiliation(s)
- Tao Li
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wenjie Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yiqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Guangyu Xu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Fengfei Miao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Peng Chen
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Xiaotong Ze
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jing Xiang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiaqian Yan
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Miaomiao Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wei Tang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhi-Min Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| |
Collapse
|
7
|
Ding X, Liang Y, Zhou S, Wu Y, Sałata P, Mikolajczk-Martinez A, Khosrawipour V, Zhang Z. Targeting tumor extracellular matrix with nanoparticles to circumvent therapeutic resistance. J Control Release 2025; 383:113786. [PMID: 40306575 DOI: 10.1016/j.jconrel.2025.113786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Each stage of tumor development is intrinsically linked to the tumor microenvironment (TME), wherein the extracellular matrix (ECM) serves as a vital and abundant component in tumor tissues. The ECM is a non-cellular, three-dimensional macromolecular network scaffold that provides structural support to cells, stores bioactive molecules, and mediates signaling pathways through specific binding to cell surface receptors. Moreover, the ECM in tumor tissues plays a crucial role in impeding drug diffusion and resisting apoptosis induced by conventional anti-cancer therapies that primarily target cancer cells. Therefore, directing attentions towards the tumor ECM can facilitate the identification of novel targets and the development of new therapies. This review aims to summarize the composition, structure, remodeling, and function of tumor ECM, its association with drug resistance, and current targeting strategies, with a specific emphasis on nanoparticles (NPs).
Collapse
Affiliation(s)
- Xinyue Ding
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Yiyu Liang
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Siyuan Zhou
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Yao Wu
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Patricia Sałata
- Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | - Zhiwen Zhang
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China.
| |
Collapse
|
8
|
Liang Z, Li S, Wang Z, Zhou J, Huang Z, Li J, Bao H, Yam JWP, Xu Y. Unraveling the Role of the Wnt Pathway in Hepatocellular Carcinoma: From Molecular Mechanisms to Therapeutic Implications. J Clin Transl Hepatol 2025; 13:315-326. [PMID: 40206274 PMCID: PMC11976435 DOI: 10.14218/jcth.2024.00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 04/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignant tumors in the world, and its incidence and mortality have increased year by year. HCC research has increasingly focused on understanding its pathogenesis and developing treatments.The Wnt signaling pathway, a complex and evolutionarily conserved signal transduction system, has been extensively studied in the genesis and treatment of several malignant tumors. Recent investigations suggest that the pathogenesis of HCC may be significantly influenced by dysregulated Wnt/β-catenin signaling. This article aimed to examine the pathway that controls Wnt signaling in HCC and its mechanisms. In addition, we highlighted the role of this pathway in HCC etiology and targeted treatment.
Collapse
Affiliation(s)
- Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shanshan Li
- School of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyu Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junting Zhou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jiehan Li
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- School of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
9
|
Wang JH, Li M, Xie PF, Si JY, Feng ZJ, Tang CF, Li JM. Procyanidin C1 ameliorates aging-related skin fibrosis through targeting EGFR to inhibit TGFβ/SMAD pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156787. [PMID: 40315640 DOI: 10.1016/j.phymed.2025.156787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/03/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Aging-related skin fibrosis (SF) is a complex condition with limited treatment options. Procyanidin C1 (PCC1), a natural polyphenolic compound with demonstrated senolytic activity, has emerged as a potential therapeutic agent for fibrotic disorders through its selective elimination of senescent cells. However, its therapeutic efficacy and mechanisms in aging-related SF remain unclear. PURPOSE This study aimed to investigate the mechanisms of PCC1 in aging-related SF. RESULTS In D-galactose-induced L929 cells, PCC1 treatment significantly attenuated the expression of both senescence-associated markers (IL-1β, P16, P21 and LMNB1) and fibrosis-related markers (α-SMA, LOXL2 and COL1). Network pharmacology and experimental validation (molecular docking, DARTS, CETSA, MST) identified EGFR as a primary target, with PCC1 directly binding to and inhibiting EGFR phosphorylation. Furthermore, PCC1 treatment effectively down-regulated TGFβ1 expression and suppressed SMAD2/3 phosphorylation in D-galactose-induced L929 cells. Notably, PCC1 blocked NSC228155-induced EGFR phosphorylation and inhibited ERK/MAPK, AKT/mTOR and TGFβ/SMAD pathway activation. In bleomycin-induced SF mice, PCC1 significantly attenuated epidermal hyperplasia, improved collagen structure, restored the collagen I/III ratio, and reduced EGFR phosphorylation along with TGFβ1 expression and SMAD2/3 phosphorylation. CONCLUSION This study elucidates that PCC1 exerts its anti-fibrotic effects through dual mechanisms: resistance to cellular senescence and modulation of fibroblast heterogeneity. By directly binding to EGFR and inhibiting its phosphorylation, PCC1 subsequently suppresses multiple downstream signaling cascades, ultimately ameliorating TGFβ/SMAD-mediated SF. These findings establish PCC1 as a promising therapeutic candidate for aging-related skin fibrosis, offering a novel approach through targeted EGFR inhibition and comprehensive pathway modulation.
Collapse
Affiliation(s)
- Jun-Han Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Min Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Peng-Fei Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jia-Yao Si
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhen-Jie Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chuan-Feng Tang
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian-Mei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
10
|
Lu M, Tao S, Zhao C, Wang N, Hu Q, Li Q, Qi X, Li X, Zhang Y, Tu C, Huang Y, Chen L. HIF-1α/LTBP2 axis activate HSCs to promote liver fibrosis by interacting with LOXL1 via the ERK pathway. Cell Mol Life Sci 2025; 82:161. [PMID: 40244455 PMCID: PMC12006638 DOI: 10.1007/s00018-025-05682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/04/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Latent Transforming Growth Factor Beta Binding Protein 2 (LTBP2) is a multi-domain exocrine protein located in the extracellular matrix (ECM) and has been implicated in fibrosis across various organs. However, its role in liver fibrosis remains inadequately understood. This study aims to elucidate the function and mechanism of LTBP2 in hepatic stellate cells (HSCs) activation and liver fibrosis. Our findings indicate that LTBP2 expression is positively correlated with liver fibrosis and is significantly elevated in fibrotic liver tissues from both human and murine models. Importantly, AAV6-mediated knockdown of LTBP2 in HSCs markedly alleviates CCl4-induced liver fibrosis by inhibiting the HSCs activation and reducing collagen deposition in mice. Gain-of-function and loss-of-function experiments confirmed that overexpression or knockdown of LTBP2 can enhance or inhibit the activation of HSCs, proliferation, migration and epithelial-mesenchymal transition (EMT) in LX-2 cells. Mechanistically, chromatin immunoprecipitation (ChIP) assays and dual-luciferase reporter gene assays revealed that Hypoxia-inducible Factor 1α (HIF-1α) promotes LTBP2 expression by directly binding to the LTBP2 promoter region. Furthermore, molecular docking and co-immunoprecipitation (Co-IP) experiments demonstrated an interaction between Lysyl Oxidase Like Protein 1 (LOXL1) and LTBP2. Rescue experiments verified that LTBP2 interacts with LOXL1 via the ERK signaling pathway to promote the activation of HSCs and EMT. Our results provide compelling evidence that the HIF-1α/LTBP2 axis facilitates the activation of HSCs and EMT by interacting with LOXL1 through ERK signaling pathway, suggesting that LTBP2 may serve as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Mengxin Lu
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Jinshan District, Shanghai, China
| | - Shuai Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Conglin Zhao
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Jinshan District, Shanghai, China
| | - Neng Wang
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Jinshan District, Shanghai, China
| | - Qiankun Hu
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Jinshan District, Shanghai, China
| | - Qiang Li
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Jinshan District, Shanghai, China
| | - Xun Qi
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Jinshan District, Shanghai, China
| | - Xinyan Li
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Jinshan District, Shanghai, China
| | - Yi Zhang
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Jinshan District, Shanghai, China
| | - Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Jinshan District, Shanghai, China.
| | - Liang Chen
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Jinshan District, Shanghai, China.
| |
Collapse
|
11
|
Zhang R, Tan Y, Xu K, Huang N, Wang J, Liu M, Wang L. Cuproplasia and cuproptosis in hepatocellular carcinoma: mechanisms, relationship and potential role in tumor microenvironment and treatment. Cancer Cell Int 2025; 25:137. [PMID: 40205387 PMCID: PMC11983883 DOI: 10.1186/s12935-025-03683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 02/08/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the main phenotype of liver cancer with a poor prognosis. Copper is vital in liver function, and HCC cells rely on it for growth and metastasis, leading to cuproplasia. Excessive copper can induce cell death, termed cuproptosis. Tumor microenvironment (TME) is pivotal in HCC, especially in immunotherapy, and copper is closely related to the TME pathogenesis. However, how these two mechanisms contribute to the TME is intriguing. MAIN BODY We conducted the latest progress literature on cuproplasia and cuproptosis in HCC, and summarized their specific roles in TME and treatment strategies. The mechanisms of cuproplasia and cuproptosis and their relationship and role in TME have been deeply summarized. Cuproplasia fosters TME formation, angiogenesis, and metastasis, whereas cuproptosis may alleviate mitochondrial dysfunction and hypoxic conditions in the TME. Inhibiting cuproplasia and enhancing cuproptosis in HCC are essential for achieving therapeutic efficacy in HCC. CONCLUSION An in-depth analysis of cuproplasia and cuproptosis mechanisms within the TME of HCC unveils their opposing nature and their impact on copper regulation. Grasping the equilibrium between these two factors is crucial for a deeper understanding of HCC mechanisms to shed light on novel directions in treating HCC.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Yunfei Tan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ke Xu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, P.O. Box 2258, 100021, Beijing, People's Republic of China.
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
12
|
Li J, Yang L, Xiao M, Li N, Huang X, Ye L, Zhang H, Liu Z, Li J, Liu Y, Liang X, Li T, Li J, Cao Y, Pan Y, Lin X, Dai H, Dai E, Li M. Spatial and Single-Cell Transcriptomics Reveals the Regional Division of the Spatial Structure of MASH Fibrosis. Liver Int 2025; 45:e16125. [PMID: 39400982 PMCID: PMC11891380 DOI: 10.1111/liv.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To elucidate the regional distribution of metabolic dysfunction-associated steatohepatitis (MASH) fibrosis within the liver and to identify potential therapeutic targets for MASH fibrosis. METHODS Liver sections from healthy controls, patients with simple steatosis and MASH patients were analysed using spatial transcriptomics integrated with single-cell RNA-seq. RESULTS Spatial transcriptomics analysis of liver tissues revealed that the fibrotic region (Cluster 9) was primarily distributed in lobules, with some fibrosis also found in the surrounding area. Integration of the single-cell-sequencing data set (GSE189175) showed a greater proportion of inflammatory cells (Kupffer cells and T cells) and myofibroblasts in MASH. Six genes, showing high- or low-specific expression in Cluster 9, namely, ADAMTSL2, PTGDS, S100A6, PPP1R1A, ASS1 and G6PC, were identified in combination with pathology. The average expression levels of ADAMTSL2, PTGDS and S100A6 on the pathological HE staining map were positively correlated with the increase in the degree of fibrosis and aligned strongly with the distribution of fibrosis. ADAMTSL2+ myofibroblasts play a role in TNF signalling pathways and in the production of ECM structural components. Pseudotime analysis indicated that in the early stages of MASH, infiltration by T cells and Kupffer cells triggers a significant inflammatory response. Subsequently, this inflammation leads to the activation of hepatic stellate cells (HSCs), transforming them into myofibroblasts and promoting the development of liver fibrosis. CONCLUSION This study is the first to characterise lineage-specific changes in gene expression, subpopulation composition, and pseudotime analysis in MASH fibrosis and reveals potential therapeutic targets for this condition.
Collapse
Affiliation(s)
- Jin‐zhong Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Liu Yang
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Min‐xi Xiao
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Ni Li
- Division of General Internal MedicineBeijing Tsinghua Changgung Hospital, Tsinghua UniversityBeijingChina
| | - Xin Huang
- Division of Hepatobiliary SurgeryBeijing Tsinghua Changgung Hospital, Tsinghua UniversityBeijingChina
| | - Li‐hong Ye
- Division of PathologyThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Hai‐cong Zhang
- Division of PathologyThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Zhi‐quan Liu
- Division of PathologyThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Jun‐qing Li
- Division of Liver DiseaseThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Yun‐yan Liu
- Division of Liver DiseaseThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Xu‐jing Liang
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Tao‐yuan Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Jie‐ying Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yang Cao
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yun Pan
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Xun‐ge Lin
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Hai‐mei Dai
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Er‐hei Dai
- Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and TreatmentThe Fifth Hospital of ShijiazhuangShijiazhuangChina
| | - Min‐ran Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
13
|
Zhou YQ, Chang XY, Yang L, Pan D, Huang HY. Loss of lysyl oxidase in adipose tissue ameliorates metabolic inflexibility induced by high-fat diet. Obesity (Silver Spring) 2025; 33:720-731. [PMID: 40025831 DOI: 10.1002/oby.24253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/23/2024] [Accepted: 12/31/2024] [Indexed: 03/04/2025]
Abstract
OBJECTIVE Systemic administration of β-aminopropionitrile to inhibit lysyl oxidase (Lox) activity improves metabolism, but it exhibits a broad spectrum of effects. Clarification of the role of Lox in adipose tissue metabolism under high-fat diet (HFD) conditions is needed. METHODS Mice with adipose tissue knockout of Lox (LoxAKO) and wild-type mice were subjected to a 16-week HFD regimen. A detailed evaluation encompassing adipose tissue, hepatic function, and systemic metabolism was conducted. RNA sequencing analysis was used to unravel the intricate mechanisms behind the metabolic enhancements in LoxAKO mice. RESULTS Compared with the control, although there was no difference in body weight, LoxAKO mice exhibited an improved metabolic phenotype, including enhanced insulin sensitivity, improved glucose tolerance, and reduced liver steatosis, along with reduced adipose tissue inflammation and fibrosis. LoxAKO mice showed increased thermogenic activity in brown adipose tissue with increased uncoupling protein 1 (UCP1) expression and oxygen consumption rate. Additionally, RNA sequencing analysis revealed that adipose deletion of Lox might facilitate the metabolic processing of glucose, branched-chain amino acids, and fatty acids in brown adipose tissue. CONCLUSIONS These findings indicate that adipocyte Lox deletion improves metabolic adaptability under an HFD, highlighting Lox as a promising therapeutic target for obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Yun-Qian Zhou
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xin-Yue Chang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Lei Yang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Hai-Yan Huang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Xiong H, Guo J. Targeting Hepatic Stellate Cells for the Prevention and Treatment of Liver Cirrhosis and Hepatocellular Carcinoma: Strategies and Clinical Translation. Pharmaceuticals (Basel) 2025; 18:507. [PMID: 40283943 PMCID: PMC12030350 DOI: 10.3390/ph18040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatic stellate cells (HSC) are the major source of myofibroblasts (MFB) in fibrosis and cancer- associated fibroblasts (CAF) in both primary and metastatic liver cancer. Over the past few decades, there has been significant progress in understanding the cellular and molecular mechanisms by which liver fibrosis and HCC occur, as well as the key roles of HSC in their pathogenesis. HSC-targeted approaches using specific surface markers and receptors may enable the selective delivery of drugs, oligonucleotides, and therapeutic peptides that exert optimized anti-fibrotic and anti-HCC effects. Recent advances in omics, particularly single-cell sequencing and spatial transcriptomics, hold promise for identifying new HSC targets for diagnosing and treating liver fibrosis/cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| | - Jinsheng Guo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| |
Collapse
|
15
|
Bi T, Liang P, Zhao Q, Wu J, Zhou Y, Xu Y, Fan X, Yang G, Sun Q, Ren W, Yang Y, Liu Z. Targeted Degradation of Bromodomain-Containing Protein 4 Enabled by Reactive Oxygen Species-Activatable NanoPROTACs as an Efficient Strategy to Reverse Liver Fibrosis in Chronic Liver Injury. J Med Chem 2025; 68:6328-6338. [PMID: 40045597 DOI: 10.1021/acs.jmedchem.4c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Liver fibrosis is an inadequate response to tissue stress, with reactive oxygen species (ROS) overproduction in activated hepatic stellate cells (aHSCs). Bromodomain-containing protein 4 (BRD4) was found to be upregulated in aHSCs and has been identified as an effective target for the treatment of liver fibrosis. However, inhibition of BRD4 with traditional kinase inhibitors achieved only limited success because of its low therapeutic efficiency. Furthermore, the exact mechanism by which BRD4 regulates liver fibrosis remains unclear and needs to be elucidated. In this work, we proposed an efficiency strategy, i.e., targeted degradation of BRD4 by ROS-activatable NanoPROTACs, for the treatment of liver fibrosis, both in vitro and in vivo. More importantly, we clarified the mechanism by which BRD4 regulates liver fibrosis. Thus, this strategy may represent an alternative to previously reported strategies and may be extensively applied to the design of ROS-activatable proteolysis-targeting chimeras for the treatment of other organ fibrosis.
Collapse
Affiliation(s)
- Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qixin Zhao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiao Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yunke Xu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69117, Germany
| | - Guoqiang Yang
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69117, Germany
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yingcheng Yang
- Experimental Medicine Center, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zengjin Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
16
|
Cheng CW, Pedicini L, Alcala CM, Deligianni F, Smith J, Murray RD, Todd HJ, Forde N, McKeown L. RNA-seq analysis reveals transcriptome changes in livers from Efcab4b knockout mice. Biochem Biophys Rep 2025; 41:101944. [PMID: 40034259 PMCID: PMC11872658 DOI: 10.1016/j.bbrep.2025.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
EFCAB4B is an evolutionarily conserved protein that encodes for the Rab GTPase Rab46, and the CRAC channel modulator, CRACR2A. Previous genome wide association studies have demonstrated the association of EFCAB4B variants in the progression of non-alcoholic fatty liver disease (NAFLD). In this study we show that mice with global depletion of Efcab4b -/- have significantly larger livers than their wild-type (WT) counterparts. We performed RNA-sequencing (RNA-seq) analysis of liver tissues to investigate differential global gene expression among Efcab4b -/- and WT mice. Of the 69 differentially expressed genes (DEGs), analyses of biological processes found significant enrichment in liver and bile development, with 6 genes (Pck1, Aacs, Onecut1, E2f8, Xbp1, and Hes1) involved in both processes. Specific consideration of possible roles of DEGs or their products in NAFLD progression to (NASH) and hepatocarcinoma (HCC), demonstrated DEGs in the livers of Efcab4b -/- mice had roles in molecular pathways including lipid metabolism, inflammation, ER stress and fibrosis. The results in this study provide additional insights into molecular mechanisms responsible for increasing susceptibility of liver injuries associated with EFCAB4B.
Collapse
Affiliation(s)
- Chew W. Cheng
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Lucia Pedicini
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Cintli Morales Alcala
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Fenia Deligianni
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Jessica Smith
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Ryan D. Murray
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Harriet J. Todd
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Niamh Forde
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Lynn McKeown
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| |
Collapse
|
17
|
Do A, Zahrawi F, Mehal WZ. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH). Nat Rev Drug Discov 2025; 24:171-189. [PMID: 39609545 DOI: 10.1038/s41573-024-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe subgroup metabolic dysfunction-associated steatohepatitis (MASH) have become a global epidemic and are driven by chronic overnutrition and multiple genetic susceptibility factors. The physiological outcomes include hepatocyte death, liver inflammation and cirrhosis. The first therapeutic for MASLD and MASH, resmetirom, has recently been approved for clinical use and has energized this therapeutic space. However, there is still much to learn in clinical studies of MASH, such as the scale of placebo responses, optimal trial end points, the time required for fibrosis reversal and side effect profiles. This Review introduces aspects of disease pathogenesis related to drug development and discusses two main therapeutic approaches. Thyroid hormone receptor-β agonists, such as resmetirom, as well as fatty acid synthase inhibitors, target the liver and enable it to function within a toxic metabolic environment. In parallel, incretin analogues such as semaglutide improve metabolism, allowing the liver to self-regulate and reversing many aspects of MASH. We also discuss how combinations of therapeutics could potentially be used to treat patients.
Collapse
Affiliation(s)
- Albert Do
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Gastroenterology, University of California, Davis, Davis, USA
| | - Frhaan Zahrawi
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- West Haven Veterans Hospital, West Haven, CT, USA.
| |
Collapse
|
18
|
Qiao Y, Tan C, Lai J, Wu J, Sun X, Chen J. Single-cell transcriptomic profiling of rat iridocorneal angle at perinatal stages: Revisiting the development of periocular mesenchyme. Exp Eye Res 2025; 252:110249. [PMID: 39855453 DOI: 10.1016/j.exer.2025.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The periocular mesenchyme (POM) gives rise to key structures in the ocular anterior segment, and its malformation leads to anterior segment dysgenesis (ASD) with iridocorneal angle (ICA) abnormalities. However, the transcriptional profile of the POM and the regulatory mechanisms governing cell-fate decision during anterior eye and ICA development remain poorly understood. In this study, we performed a comprehensive time-series analysis by sequencing rat anterior ocular samples collected at five consecutive perinatal stages: embryonic days 16.5 and 18.5, the day of birth, and postnatal days 4 and 8, at the single-cell level and validated a portion of in silico findings with immunostaining. High-quality transcriptomes were obtained from 59,416 cells with diverse embryonic origins. A prominent transcriptional shift was observed in POM cells, coinciding with anatomical alterations around the ICA shortly after birth. We illustrated the molecular signatures of five POM subclusters while tracing their developmental trajectories. Additionally, we identified key driver genes, as well as cell type-specific and stage-wise gene modules underlying lineage specification. Furthermore, the switch of regulon network and cellular crosstalk associated with POM maturation were unveiled. Lastly, we mapped ASD-relevant genes to this single-cell atlas, revealing distinct expression patterns. Collectively, this study provides a transcriptomic blueprint for understanding normal POM and ICA development, as well as a valuable reference for future research into ASD pathogenesis.
Collapse
Affiliation(s)
- Yunsheng Qiao
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Chen Tan
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Junyi Lai
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Jihong Wu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Junyi Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
19
|
Bu X, Wang L. Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review). Int J Mol Med 2025; 55:39. [PMID: 39749705 PMCID: PMC11722052 DOI: 10.3892/ijmm.2024.5480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/29/2024] [Indexed: 01/04/2025] Open
Abstract
Iron metabolism plays a crucial role in the tumor microenvironment, influencing various aspects of cancer cell biology and tumor progression. This review discusses the regulatory mechanisms of iron metabolism within the tumor microenvironment and highlights how tumor cells and associated stromal cells manage iron uptake, accumulation and regulation. The sources of iron within tumors and the biological importance of ferroptosis in cancer were explored, focusing on its mechanisms, biological effects and, in particular, its tumor‑suppressive properties. Furthermore, the protective strategies employed by cancer cells to evade ferroptosis were examined. This review also delves into the intricate relationship between iron metabolism and immune modulation within the tumor microenvironment, detailing the impact on tumor‑associated immune cells and immune evasion. The interplay between ferroptosis and immunotherapy is discussed and potential strategies to enhance cancer immunotherapy by modulating iron metabolism are presented. Finally, the current ferroptosis‑based cancer therapeutic approaches were summarized and future directions for therapies that target iron metabolism were proposed.
Collapse
Affiliation(s)
- Xiaorui Bu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
20
|
Sun S, Han B, Ren G, Fan L, Sun J, Li H, Huang J. MTHFD2 stabilizes LOX expression through RNA methylation modification to promote sepsis-induced acute kidney injury progression. Hum Cell 2025; 38:62. [PMID: 40009304 DOI: 10.1007/s13577-025-01189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Myofibroblasts combine features of fibroblasts and smooth muscle cells, and they are reactive cells present under injury conditions. This study was performed to explore the mechanism that methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) mediated m6A modification in sepsis-induced AKI (SAKI) through regulating the collagen accumulation in myofibroblasts. Gene expression microarrays related to SAKI were obtained from the GEO database, and the hub protein involved was screened using PPI. The SAKI mice were induced by cecal ligation and puncture (CLP). MTHFD2 expression was significantly elevated in the kidneys of CLP-induced mice, and SAKI was ameliorated by knocking down MTHFD2 in kidney tissues. MTHFD2 promoted N6-methyladenosine (m6A) modification in kidney tissues of CLP-induced mice by increasing the content of methylated donor s-adenosylmethionine (SAM). MTHFD2 enhanced LOX mRNA stability in an m6A modification-dependent manner, thereby promoting its expression. Knockdown of MTHFD2 inhibited collagen accumulation in myofibroblasts, whereas overexpression of LOX accelerated fibrosis and SAKI in mice in the presence of sh-MTHFD2. In conclusion, our results show that MTHFD2 promotes LOX expression in an m6A-dependent manner, thereby mediating SAKI progression.
Collapse
Affiliation(s)
- Shudong Sun
- The School of Clinical Medicine, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, People's Republic of China
- Department of Burns and Wound Repair, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
| | - Baoyi Han
- Department of Anesthesiology, Guangdong Woman and Child Health Hospital, Guangzhou, 511450, Guangdong, People's Republic of China
| | - Guohui Ren
- Medical Department of Weifang People's Hospital, Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
| | - Lei Fan
- Department of Burns and Wound Repair, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
| | - Junchao Sun
- The School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Huiling Li
- Department of Burns and Wound Repair, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
| | - Jiyi Huang
- The School of Clinical Medicine, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, People's Republic of China.
- Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, 361101, Fujian, People's Republic of China.
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
21
|
Geng W, Liao W, Cao X, Yang Y. Therapeutic Targets and Approaches to Manage Inflammation of NAFLD. Biomedicines 2025; 13:393. [PMID: 40002806 PMCID: PMC11853636 DOI: 10.3390/biomedicines13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are the leading causes of chronic liver disease globally. They are driven by complex mechanisms where inflammation plays a pivotal role in disease progression. Current therapies, including lifestyle changes and pharmacological agents, are limited in efficacy, particularly in addressing the advanced stages of the disease. Emerging approaches targeting inflammation, metabolic dysfunction, and fibrosis offer promising new directions, though challenges such as treatment complexity and heterogeneity persist. This review concludes the main therapeutic targets and approaches to manage inflammation currently and emphasizes the critical need for future drug development and combination therapy for NAFLD/NASH management.
Collapse
Affiliation(s)
- Wanying Geng
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Wanying Liao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Xinyuan Cao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Yingyun Yang
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| |
Collapse
|
22
|
Wang J, Wang Z, Yu Y, Cheng S, Wu J. Advances in research on metabolic dysfunction-associated steatotic liver disease. Life Sci 2025; 362:123362. [PMID: 39761743 DOI: 10.1016/j.lfs.2024.123362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The global increase in obesity-related metabolic disorders has led to metabolic dysfunction-associated steatotic liver disease (MASLD) emerging as one of the most prevalent chronic liver disease worldwide. Despite growing concerns, the exact pathogenesis of MASLD remains unclear and no definitive treatments have been made available. Consequently, the need for comprehensive research on MASLD is more critical than ever. Gaining insight into the mechanisms of the disease can lay the groundwork for identifying new therapeutic targets and can facilitate the development of diagnostic tools that enable the early detection and intervention of MASLD. Research has discovered a multifactorial etiology for MASLD, suggesting that potential therapeutic strategies should be considered from a variety of perspectives. This review delves into the pathogenesis of MASLD, current diagnostic approaches, potential therapeutic targets, the status of clinical trials for emerging drugs, and the most promising treatment methods available today. With a focus on therapeutic targets, the aim is to offer fresh insights and guide for future research in the treatment of MASLD.
Collapse
Affiliation(s)
- Jiawang Wang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Zhongyu Wang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Yao Yu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Si Cheng
- Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10070, China.
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Department of Pharmacology, Hubei University of Medicine, Shiyan 440070, China; Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10070, China.
| |
Collapse
|
23
|
Liu M, Wang J, Liu M. Lysyl oxidase inhibitors in colorectal cancer progression. Transl Oncol 2025; 52:102233. [PMID: 39675250 PMCID: PMC11713484 DOI: 10.1016/j.tranon.2024.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
The lysine oxidase (LOX) family, consisting of LOX and LOX-like-1-4 (LOXL1-LOXL4), catalyses the cross-linking reaction of collagen and elastin in the extracellular matrix (ECM). Numerous studies have demonstrated that LOX family members are dysregulated in a variety of cancers, including colorectal cancer (CRC), and play a key role in cancer cell migration, proliferation, invasion and metastasis. Targeting LOX family proteins with specific inhibitors has therefore been developed as a new therapeutic strategy for cancer. In this paper, we review the role of LOX enzymes in the development and progression of CRC. In addition, we address recent advances in the development of LOX/LOXL inhibitors, highlighting the potential use of this inhibitor as an effective and complementary treatment for CRC.
Collapse
Affiliation(s)
- Muxian Liu
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China
| | - Jie Wang
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China
| | - Meihong Liu
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China.
| |
Collapse
|
24
|
Wang K, Ning S, Zhang S, Jiang M, Huang Y, Pei H, Li M, Tan F. Extracellular matrix stiffness regulates colorectal cancer progression via HSF4. J Exp Clin Cancer Res 2025; 44:30. [PMID: 39881364 PMCID: PMC11780783 DOI: 10.1186/s13046-025-03297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood. METHODS This study included 107 CRC patients. Tumour stiffness was assessed using magnetic resonance elastography (MRE), and collagen ratio was analysed with Masson staining. CRC cell lines were cultured on matrices of varying stiffness, followed by transcriptome sequencing to identify stiffness-related genes. An HSF4 knockout CRC cell model was cultured in different ECM stiffness to evaluate the effects of HSF4 on cell proliferation, migration, and invasion in vitro and in vivo. RESULTS CRC tumour stiffness was significantly higher than normal tissue and positively correlated with collagen content and TNM staging. High-stiffness matrices significantly regulated cell functions and signalling pathways. High HSF4 (heat shock transcriptional factor 4) expression was strongly associated with tumour stiffness and poor prognosis. HSF4 expression increased with higher TNM stages, and its knockout significantly inhibited cell proliferation, migration, and invasion, especially on high-stiffness matrices. In vivo experiments confirmed that HSF4 promoted tumour growth and metastasis, independent of collagen protein increase. CONCLUSIONS This study reveals that tumour stiffness promotes the proliferation and metastasis of CRC by regulating EMT-related signalling pathways through HSF4. Tumour stiffness and HSF4 could be valuable targets for prognostic assessment and therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Kangtao Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, Heidelberg, Baden-Württemberg, 69117, Germany
| | - Siyi Ning
- Clinical Laboratory, Changsha Stomatology Hospital, Changsha, Hunan, 410005, China
| | - Shuai Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mingming Jiang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
- Hunan Provincial Key Laboratory of Neurorestoration, Changsha, Hunan, 410081, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Li
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China.
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, China.
- The "Double-First Class" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
25
|
Peng L, Sun W, Cheng D, Jia X, Lian W, Li Z, Xiong H, Wang T, Liu Y, Ni C. NUDT21 regulates lysyl oxidase-like 2(LOXL2) to influence ECM protein cross-linking in silica-induced pulmonary fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117572. [PMID: 39700768 DOI: 10.1016/j.ecoenv.2024.117572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Silicosis is a disease caused by prolonged exposure to silica dust. It is the most typical, rapidly progressive, and fatal form of pneumoconiosis. Currently, there is no specific medication available for the treatment of silicosis. LOXL2 is a copper-dependent lysine oxidase whose main function is to catalyze the cross-linking of extracellular matrix components, particularly collagen and elastin. However, few researchers have investigated the role of LOXL2 in the pathogenesis of silicosis. In this study, we demonstrated that LOXL2 is upregulated in silica-inhaled mouse lung tissue and in a TGF-β-induced fibroblast model. In vitro, we confirmed that LOXL2 functions to promote ECM deposition by binding directly to collagen and elastin. We then used scavenger receptor cysteine-rich (SRCR) domains to show that LOXL2 can induce fibrosis independently of its enzymatic activity. Furthermore, we discovered that NUDT21, the LOXL2 upstream regulatory mechanism of LOXL2, alters LOXL2's 3'UTR usage by substituting alternative polyadenylation (APA), thereby modulating LOXL2 expression. By injecting LOXL2 siRNA-loaded liposomes into the tail vein of mice in the silica dust-treated mouse pulmonary fibrosis model, the severity of lung fibrosis was significantly reduced. In this context, LOXL2 is regulated by NUDT21 and may affect pulmonary fibrosis by influencing the cross-linking of ECM proteins. Our research provides a scientific basis for the development of new anti-fibrosis treatment strategies.
Collapse
Affiliation(s)
- Lan Peng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing medical university, Wuxi, China
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinying Jia
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenxiu Lian
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziwei Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haojie Xiong
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210003, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 320700, China.
| |
Collapse
|
26
|
Zhang H, Wang X, Dong M, Wang J, Ren W. Unveiling novel regulatory mechanisms of miR-5195-3p in pelvic organ prolapse pathogenesis†. Biol Reprod 2025; 112:86-101. [PMID: 39530351 DOI: 10.1093/biolre/ioae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Pelvic organ prolapse is a condition that significantly affects women's quality of life. The pathological mechanism of pelvic organ prolapse is not yet fully understood, and its pathogenesis is often caused by multiple factors, including the metabolic imbalance of the extracellular matrix. This study aims to investigate the role of miR-5195-3p, a microRNA, in the pathology of pelvic organ prolapse and its regulatory mechanism. Using various molecular biology techniques such as real-time reverse transcription Polymerase Chain Reaction (PCR), fluorescence in situ hybridization, immunohistochemistry, and Western blot, miR-5195-3p expression was examined in vaginal wall tissues obtained from pelvic organ prolapse patients. Results revealed an up-regulation of miR-5195-3p expression in these tissues, showing a negative correlation with the expression of extracellular matrix-related proteins. Further analysis using bioinformatics tools identified Lipoxygenase (LOX) as a potential target in pelvic organ prolapse. Dual luciferase reporter gene experiments confirmed LOX as a direct target of miR-5195-3p. Interestingly, regulating the expression of LOX also influenced the transforming growth factor β1 signaling pathway and had an impact on extracellular matrix metabolism. This finding suggests that miR-5195-3p controls extracellular matrix metabolism by targeting LOX and modulating the TGF-β1 signaling pathway. In conclusion, this study unveils the involvement of miR-5195-3p in the pathological mechanism of pelvic organ prolapse by regulating extracellular matrix metabolism through the LOX/TGF-β1 axis. These findings reveal new mechanisms in the pathogenesis of pelvic organ prolapse, providing a theoretical foundation and therapeutic targets for further research on pelvic organ prolapse treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xinlu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Meng Dong
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jie Wang
- Department of Health Management, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China
| | - Weidong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
27
|
Lu Y, Li H, Chen M, Lin Y, Zhang X. LOX-induced tubulointerstitial fibrosis via the TGF-β/LOX/Snail axis in diabetic mice. J Transl Med 2025; 23:35. [PMID: 39789539 PMCID: PMC11716213 DOI: 10.1186/s12967-024-06056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally. METHODS The bulk RNA sequencing and single-nuclei RNA sequencing (snRNA-seq) analysis were explored to find the role of LOX in diabetic nephropathy. We then investigated the partial EMT and the possible signaling pathway of LOX, both in vivo and in vitro by LOX inhibition experiments in diabetic mice and HK-2 cells. Besides, we further assessed kidney fibrosis and renal function. RESULTS LOX expression was elevated in kidneys of diabetic mice. Additionally, snRNA-seq results indicated that LOX expression was higher in partial epithelial-mesenchymal transition proximal tubular (PemtPT) epithelial cells. Moreover, we found that increased LOX prompted partial EMT of renal tubular epithelial cells (RTECs) by modulating the transcription factor Snail both in vivo and in vitro. Remarkably, inhibition of LOX effectively mitigated the partial EMT of RTECs in diabetic mice, thereby attenuating kidney fibrosis and enhancing renal function. Additionally, we identified the TGF-β signaling pathway as an upstream regulator of LOX, and inhibiting LOX partially reversed the partial EMT program in HK-2 cells induced by the TGF-β signaling pathway. CONCLUSIONS Hyperglycemia induces partial EMT of RTECs via the TGF-β/LOX/Snail axis, thereby contributing to diabetic kidney fibrosis. Inhibiting LOX can effectively reverse the partial EMT of RTECs, diminish diabetic kidney fibrosis, and improve renal function.
Collapse
Affiliation(s)
- Yicheng Lu
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Heyangzi Li
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mohan Chen
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yicheng Lin
- Xiangya School of Medicine, Central South University, Changsha, 410083, China
| | - Xiaoming Zhang
- Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Feng Q, Sun Y, Yang Z, Wang Z, Chen Z, Liu F, Liu L. Copper in the colorectal cancer microenvironment: pioneering a new era of cuproptosis-based therapy. Front Oncol 2025; 14:1522919. [PMID: 39850821 PMCID: PMC11754209 DOI: 10.3389/fonc.2024.1522919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Copper, an essential trace element and biochemical cofactor in humans plays a critical role in maintaining health. Recent studies have identified a significant association between copper levels and the progression and metastasis of cancer. Copper is primarily absorbed in the intestinal tract, often leading to an imbalance of copper ions in the body. Colorectal cancer (CRC), the most common cancer originating in the intestines, thrives in an environment with elevated copper concentrations. Current research is focused on uncovering the relationship between copper and CRC which has introduced new concepts such as cuproplasia and cuproptosis, significantly deepening our understanding of copper's influence on cell proliferation and death. Cuproplasia is a kind of cell proliferation mediated by the co-regulatory activities of enzymes and non-enzymatic factors, while cuproptosis refers to cell death induced by excessive copper, which results in abnormal oligomerization of lipacylated proteins and the reduction of iron-sulfur cluster proteins. Exploring cuproplasia and cuproptosis opens new avenues for treating CRC. This review aims to summarize the critical role of copper in promoting colorectal cancer, the dual effects of copper in the tumor microenvironment (TME), and strategies for leveraging this unique microenvironment to induce cuproptosis in colorectal cancer. Understanding the relationship between copper and CRC holds promise for establishing a theoretical foundation for innovative therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Qixuan Feng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhe Yang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyu Wang
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhangyi Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fang Liu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Gibert-Ramos A, Andrés-Rozas M, Pastó R, Alfaro-Retamero P, Guixé-Muntet S, Gracia-Sancho J. Sinusoidal communication in chronic liver disease. Clin Mol Hepatol 2025; 31:32-55. [PMID: 39355871 PMCID: PMC11791556 DOI: 10.3350/cmh.2024.0734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024] Open
Abstract
The liver sinusoid, mainly composed of liver sinusoidal endothelial cells, hepatic macrophages and hepatic stellate cells, shapes the hepatic vasculature and is key to maintaining liver homeostasis and function. During chronic liver disease (CLD), the function of sinusoidal cells is impaired, being directly involved in the progression of liver fibrosis, cirrhosis, and main clinical complications including portal hypertension and hepatocellular carcinoma. In addition to their roles in liver diseases pathobiology, sinusoidal cells' paracrine communication or cross-talk is being studied as a mechanism of disease but also as a remarkable target for treatment. The aim of this review is to gather current knowledge of intercellular signalling in the hepatic sinusoid during the progression of liver disease. We summarise studies developed in pre-clinical models of CLD, especially emphasizing those pathways characterized in human-based clinically relevant models. Finally, we describe pharmacological treatments targeting sinusoidal communication as promising options to treat CLD and its clinical complications.
Collapse
Affiliation(s)
- Albert Gibert-Ramos
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Andrés-Rozas
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raül Pastó
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pablo Alfaro-Retamero
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Tu S, Zou Y, Yang M, Zhou X, Zheng X, Jiang Y, Wang H, Chen B, Qian Q, Dou X, Bao J, Tian L. Ferroptosis in hepatocellular carcinoma: Mechanisms and therapeutic implications. Biomed Pharmacother 2025; 182:117769. [PMID: 39689515 DOI: 10.1016/j.biopha.2024.117769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
Ferroptosis is a novel form of oxidative cell death, in which highly expressed unsaturated fatty acids on the cell membrane are catalyzed by divalent iron or ester oxygenase to promote liposome peroxidation. This process reduces cellular antioxidant capacity, increases lipid reactive oxygen species, and leads to the accumulation of intracellular ferrous ions, which disrupts intracellular redox homeostasis and ultimately causes oxidative cell death. Studies have shown that ferroptosis induces an immune response that has a dual role in liver disease, ferroptosis also offers a promising strategy for precise cancer therapy. Ferroptosis regulators are beneficial in maintaining cellular homeostasis and tissue health, have shown efficacy in treating diseases of the hepatic system. However, the mechanisms of action and molecular regulatory pathways of ferroptosis in hepatocellular carcinoma (HCC) have not been fully elucidated. Therefore, deciphering the role of ferroptosis and its mechanisms in HCC progression is crucial for treating the disease. In this review, we introduce the morphological features and biochemical functions of ferroptosis, outline the molecular regulatory pathways of ferroptosis, and highlights the therapeutic potential of ferroptosis inhibitors and modulators to target it in HCC.
Collapse
Affiliation(s)
- Shanjie Tu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yuchao Zou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Meiqi Yang
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning, PR China
| | - Xinlei Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xu Zheng
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, Henan, PR China
| | - Yuwei Jiang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Haoran Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Buyang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Jianfeng Bao
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Lulu Tian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
31
|
Chipeta C, Aragon-Martin J, Chandra A. Zonulopathies as Genetic Disorders of the Extracellular Matrix. Genes (Basel) 2024; 15:1632. [PMID: 39766898 PMCID: PMC11675282 DOI: 10.3390/genes15121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The zonular fibres are formed primarily of fibrillin-1, a large extracellular matrix (ECM) glycoprotein, and also contain other constituents such as LTBP-2, ADAMTSL6, MFAP-2 and EMILIN-1, amongst others. They are critical for sight, holding the crystalline lens in place and being necessary for accommodation. Zonulopathies refer to conditions in which there is a lack or disruption of zonular support to the lens and may clinically be manifested as ectopia lens (EL)-defined as subluxation of the lens outside of the pupillary plane or frank displacement (dislocation) into the vitreous or anterior segment. Genes implicated in EL include those intimately involved in the formation and function of these glycoproteins as well as other genes involved in the extracellular matrix (ECM). As such, genetic pathogenic variants causing EL are primarily disorders of the ECM, causing zonular weakness by (1) directly affecting the protein components of the zonule, (2) affecting proteins involved in the regulation of zonular formation and (3) causing the dysregulation of ECM components leading to progressive zonular weakness. Herein, we discuss the clinical manifestations of zonulopathy and the underlying pathogenetic mechanisms.
Collapse
Affiliation(s)
- Chimwemwe Chipeta
- Department of Ophthalmology, Southend University Hospital, Southend-on-Sea SS0 0RY, UK;
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge CB1 2LZ, UK
| | - Jose Aragon-Martin
- Barts & The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Aman Chandra
- Department of Ophthalmology, Southend University Hospital, Southend-on-Sea SS0 0RY, UK;
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge CB1 2LZ, UK
| |
Collapse
|
32
|
Zhao L, Tang H, Cheng Z. Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances. Pharmaceuticals (Basel) 2024; 17:1724. [PMID: 39770566 PMCID: PMC11677259 DOI: 10.3390/ph17121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a progressive scarring process primarily caused by chronic inflammation and injury, often closely associated with viral hepatitis, alcoholic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), drug-induced liver injury, and autoimmune liver disease (AILD). Currently, there are very few clinical antifibrotic drugs available, and effective targeted therapy is lacking. Recently, emerging antifibrotic drugs and immunomodulators have shown promising results in animal studies, and some have entered clinical research phases. This review aims to systematically review the molecular mechanisms underlying liver fibrosis, focusing on advancements in drug treatments for hepatic fibrosis. Furthermore, since liver fibrosis is a progression or endpoint of many diseases, it is crucial to address the etiological treatment and secondary prevention for liver fibrosis. We will also review the pharmacological treatments available for common hepatitis leading to liver fibrosis.
Collapse
Affiliation(s)
- Liangtao Zhao
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haolan Tang
- School of Medicine, Southeast University, Nanjing 210009, China;
| | - Zhangjun Cheng
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| |
Collapse
|
33
|
Bi X, Ma B, Liu W, Gao WQ, Ye J, Rao H. Transcriptome-aligned metabolic profiling by SERSome reflects biological changes following mesenchymal stem cells expansion. Stem Cell Res Ther 2024; 15:467. [PMID: 39696645 DOI: 10.1186/s13287-024-04109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are widely applied in the treatment of various clinical diseases and in the field of medical aesthetics. However, MSCs exhibit greater heterogeneity limited stability, and more complex molecular and mechanistic characteristics compared to conventional drugs, making rapid and precise monitoring more challenging. METHODS Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive, tractable and low-cost fingerprinting technique capable of identifying a wide range of molecules related to biological processes. Here, we employed SERS for reproducible quantification of ultralow concentrations of molecules and utilized spectral sets, termed SERSomes, for robust and comprehensive intracellular multi-metabolite profiling. RESULTS We revealed that with increasing passage number, there is a gradual decline in cell expansion efficiency, accompanied by significant changes in intracellular amino acids, purines, and pyrimidines. By integrating these metabolic features detected by SERS with transcriptomic data, we established a correlation between SERS signals and biological changes, as well as differentially expressed genes. CONCLUSION In this study, we explore the application of SERS technique to provide robust metabolic characteristics of MSCs across different passages and donors. These results demonstrate the effectiveness of SERSome in reflecting biological characteristics. Due to its sensitivity, adaptability, low cost, and feasibility for miniaturized instrumentation throughout pretreatment, measurement, and analysis, the label-free SERSome technique is suitable for monitoring MSC expansion and offers significant advantages for large-scale MSC manufacturing.
Collapse
Affiliation(s)
- Xinyuan Bi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, People's Republic of China
| | - Bin Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei-Qiang Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, People's Republic of China.
| | - Hanyu Rao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
34
|
Dong Y, Lu M, Yin Y, Wang C, Dai N. Tumor Biomechanics-Inspired Future Medicine. Cancers (Basel) 2024; 16:4107. [PMID: 39682291 DOI: 10.3390/cancers16234107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Malignant tumors pose a significant global health challenge, severely threatening human health. Statistics from the World Health Organization indicate that, in 2022, there were nearly 20 million new cancer cases and 9.7 million cancer-related deaths. Therefore, it is urgently necessary to study the pathogenesis of cancer and explore effective diagnostic and treatment strategies. In recent years, research has highlighted the importance of mechanical cues in tumors, which have become a new hallmark of cancer and a key factor in regulating tumor behavior. This suggests that studying the mechanical properties of tumors may open potential new avenues for understanding the pathogenesis, diagnosis, and therapeutic intervention of cancer. This review summarizes the mechanical characteristics of tumors and the development of tumor diagnostics and treatments targeting specific mechanical factors. Finally, we propose new ideas and insights for the application of mechanomedicine in cancer diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengnan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuting Yin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Cong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Ningman Dai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
35
|
Kennedy KV, Wang JX, McMillan E, Zhou Y, Teranishi R, Semeao A, Mirchandani L, Umeweni CN, Dhakal D, Baccarella A, Ishikawa S, Sasaki M, Itami T, Harman AC, Joannas L, Karakasheva TA, Nakagawa H, Muir AB. Lysyl Oxidase Mediates Proliferation and Differentiation in the Esophageal Epithelium. Biomolecules 2024; 14:1560. [PMID: 39766266 PMCID: PMC11674119 DOI: 10.3390/biom14121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
In homeostatic conditions, the basal progenitor cells of the esophagus differentiate into a stratified squamous epithelium. However, in the setting of acid exposure or inflammation, there is a marked failure of basal cell differentiation, leading to basal cell hyperplasia. We have previously shown that lysyl oxidase (LOX), a collagen crosslinking enzyme, is upregulated in the setting of allergic inflammation of the esophagus; however, its role beyond collagen crosslinking is unknown. Herein, we propose a non-canonical epithelial-specific role of LOX in the maintenance of epithelial homeostasis using 3D organoid and murine models. We performed quantitative reverse transcriptase PCR, Western blot, histologic analysis, and RNA sequencing on immortalized non-transformed human esophageal epithelial cells (EPC2-hTERT) with short-hairpin RNA (shRNA) targeting LOX mRNA in both monolayer and 3D organoid culture. A novel murine model with a tamoxifen-induced Lox knockout specific to the stratified epithelium (K5CreER; Loxfl/fl) was utilized to further define the role of epithelial LOX in vivo. We found that LOX knockdown decreased the proliferative capacity of the esophageal epithelial cells in monolayer culture, and dramatically reduced the organoid formation rate (OFR) in the shLOX organoids. LOX knockdown was associated with decreased expression of the differentiation markers filaggrin, loricrin, and involucrin, with RNA sequencing analysis revealing 1224 differentially expressed genes demonstrating downregulation of pathways involved in cell differentiation and epithelial development. Mice with Lox knockout in their stratified epithelium demonstrated increased basaloid content of their esophageal epithelium and decreased Ki-67 staining compared to the vehicle-treated mice, suggesting reduced differentiation and proliferation in the Lox-deficient epithelium in vivo. Our results demonstrate, both in vivo and in vitro, that LOX may regulate epithelial homeostasis in the esophagus through the modulation of epithelial proliferation and differentiation. Understanding the mechanisms of perturbation in epithelial proliferation and differentiation in an inflamed esophagus could lead to the development of novel treatments that could promote epithelial healing and restore homeostasis.
Collapse
Affiliation(s)
- Kanak V. Kennedy
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Joshua X. Wang
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Emily McMillan
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Yusen Zhou
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Ryugo Teranishi
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Ann Semeao
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Leena Mirchandani
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Chizoba N. Umeweni
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Diya Dhakal
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Alyssa Baccarella
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Satoshi Ishikawa
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Masaru Sasaki
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Takefumi Itami
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Adele C. Harman
- Transgenic Core, CHOP Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Tatiana A. Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Zou R, Lu J, Bai X, Yang Y, Zhang S, Wu S, Tang Z, Li K, Hua X. The epigenetic-modified downregulation of LOXL1 protein mediates EMT in bladder epithelial cells exposed to benzo[a]pyrene and its metabolite BPDE. Int Immunopharmacol 2024; 142:113232. [PMID: 39340995 DOI: 10.1016/j.intimp.2024.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Benzo[a]pyrene (B[a]P) is a well-known polycyclic aromatic hydrocarbon (PAH) pollutant with high carcinogenicity, widespread environmental presence, and significant threat to public health. Epidemiological studies have linked exposure to B[a]P and its metabolite 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE) to the development and progression of various cancers, including bladder cancer. However, its underlying mechanism remains unclear. Our study revealed that B[a]P and BPDE induced epithelial-mesenchymal transition (EMT), a critical early event in cell malignant transformation, involving a decrease in E-Cadherin and upregulation of N-Cadherin protein levels, leading to increased cell motility and migration in bladder epithelial cells. Further studies have indicated that LOXL1 DNA undergoes methylation and modification influenced by methyltransferase 3a (DNMT3a) and DNMT3b, resulting in decreased LOXL1 protein levels. The decreased LOXL1 promotes the zinc finger transcription factor SLUG, which then inhibits E-Cadherin protein levels and initiates the EMT process. Moreover, DNMT3a/3b expression appears to be influenced by intracellular oxidative stress levels. These findings suggest that exposure to B[a]P/BPDE promotes the EMT process through the pivotal factor LOXL1, thereby contributing to bladder carcinogenesis. Our study provides a theoretical basis for considering LOXL1 as a potential biomarker for early diagnosis and a novel target for the precise diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shouyue Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuai Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhixin Tang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Kang Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
37
|
Sun Z, Chen G. Impact of heterogeneity in liver matrix and intrahepatic cells on the progression of hepatic fibrosis. Tissue Cell 2024; 91:102559. [PMID: 39293139 DOI: 10.1016/j.tice.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Zhongtao Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
38
|
Liu D, Zhang Y, Guo L, Fang R, Guo J, Li P, Qian T, Li W, Zhao L, Luo X, Zhang S, Shao J, Sun S. Single-cell atlas of healthy vocal folds and cellular function in the endothelial-to-mesenchymal transition. Cell Prolif 2024; 57:e13723. [PMID: 39245637 PMCID: PMC11628749 DOI: 10.1111/cpr.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024] Open
Abstract
The vocal fold is an architecturally complex organ comprising a heterogeneous mixture of various layers of individual epithelial and mesenchymal cell lineages. Here we performed single-cell RNA sequencing profiling of 5836 cells from the vocal folds of adult Sprague-Dawley rats. Combined with immunostaining, we generated a spatial and transcriptional map of the vocal fold cells and characterized the subpopulations of epithelial cells, mesenchymal cells, endothelial cells, and immune cells. We also identified a novel epithelial-to-mesenchymal transition-associated epithelial cell subset that was mainly found in the basal epithelial layers. We further confirmed that this subset acts as intermediate cells with similar genetic features to epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. Finally, we present the complex intracellular communication network involved homeostasis using CellChat analysis. These studies define the cellular and molecular framework of the biology and pathology of the VF mucosa and reveal the functional importance of developmental pathways in pathological states in cancer.
Collapse
Affiliation(s)
- Danling Liu
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science CenterShenzhen UniversityShenzhenChina
| | - Yunzhong Zhang
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Luo Guo
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Rui Fang
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Jin Guo
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Peifang Li
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Tingting Qian
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Wen Li
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Liping Zhao
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Xiaoning Luo
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
| | - Siyi Zhang
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
| | - Jun Shao
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| |
Collapse
|
39
|
Piano S, Reiberger T, Bosch J. Mechanisms and implications of recompensation in cirrhosis. JHEP Rep 2024; 6:101233. [PMID: 39640222 PMCID: PMC11617229 DOI: 10.1016/j.jhepr.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Decompensated cirrhosis has long been considered the irreversible end stage of liver disease, characterised by further decompensating events until death or liver transplantation. However, the observed clinical improvements after effective antiviral treatments for HBV and HCV and after sustained alcohol abstinence have changed this paradigm, leading to the concept of "recompensation" of cirrhosis. Recompensation of cirrhosis was recently defined by Baveno VII as (i) cure of the primary liver disease aetiology; (ii) disappearance of signs of decompensation (ascites, encephalopathy and portal hypertensive bleeding) off therapy; and (iii) stable improvement of liver function tests (bilirubin, international normalised ratio and albumin). Achieving these recompensation criteria is linked to a significant survival benefit. However, apart from aetiological therapies, no interventions/treatments that facilitate recompensation are available, the molecular mechanisms underlying recompensation remain incompletely understood, and early predictors of recompensation are lacking. Moreover, current recompensation criteria are based on expert opinion and may be refined in the future. Herein, we review the available evidence on cirrhosis recompensation, provide guidance on the clinical management of recompensated patients and discuss future challenges related to cirrhosis recompensation.
Collapse
Affiliation(s)
- Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine – DIMED, University and Hospital of Padova, Italy
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna Austria
| | - Jaime Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
40
|
Lu M, Tao S, Li X, Yang Q, Du C, Lin W, Sun S, Zhao C, Wang N, Hu Q, Huang Y, Li Q, Zhang Y, Chen L. Integrated analyses and a novel nomogram for the prediction of significant fibrosis in patients. Ann Hepatol 2024; 30:101744. [PMID: 39617181 DOI: 10.1016/j.aohep.2024.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/26/2024] [Accepted: 08/23/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION AND OBJECTIVES This study aimed to explore the key genes involved in the pathophysiological process of liver fibrosis and develop a novel predictive model for noninvasive assessment of significant liver fibrosis patients. PATIENTS AND METHODS Differentially expressed genes (DEGs) were identified using the Limma package. The hub genes were explored using the CytoHubba plugin app and validated in GEO datasets and cell models. Furthermore, serum LTBP2 was measured in liver fibrosis (LF) patients with biopsy-proven by ELISA. All patients' clinical characteristics and laboratory results were analyzed. Finally, multivariate logistic regression analysis was used to construct the model for visualization by nomogram. Area under the receiver operating characteristic curve (AUROC) analysis, calibration curves, and decision curve analysis (DCA) certify the accuracy of the nomogram. RESULTS RNA sequencing was performed on the liver tissues of 66 biopsy-proven HBV-LF patients. After multiple analyses and in vitro simulation of HSC activation, LTBP2 was found to be the most associated with HSC activation regardless of the causes. Serum LTBP2 expression was measured in 151 patients with biopsy, and LTBP2 was found to increase in parallel with the fibrosis stage. Multivariate logistic regression analysis showed that LTBP2, PLT and AST levels were demonstrated as the independent prediction factors. A nomogram that included the three factors was tabled to evaluate the probability of significant fibrosis occurrence. The AUROC of the nomogram model was 0.8690 in significant fibrosis diagnosis. CONCLUSIONS LTBP2 may be a new biomarker for liver fibrosis patients. The nomogram showed better diagnostic performance in patients.
Collapse
Affiliation(s)
- Mengxin Lu
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Shuai Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Xinyan Li
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Qunling Yang
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Cong Du
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Weijia Lin
- Department of Hepatobiliary Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Shuangshuang Sun
- Department of liver disease center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Conglin Zhao
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Neng Wang
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Qiankun Hu
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Yuxian Huang
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Qiang Li
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Yi Zhang
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Liang Chen
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Park SH, Choi SH, Park HY, Ko J, Yoon JS. Role of Lysyl Oxidase-Like Protein 3 in the Pathogenesis of Graves' Orbitopathy in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 39546293 DOI: 10.1167/iovs.65.13.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose The lysyl oxidase (LOX) family has been implicated in the pathogenesis of diseases caused by inflammation and fibrosis. Therefore, we aimed to examine the role of lysyl oxidase-like protein 3 (LOXL3) in Graves' orbitopathy (GO) pathogenesis and its potential as a treatment target. Methods Quantitative real-time polymerase chain reaction compared the transcript levels of the five LOX family subtypes in orbital tissue explants obtained from patients with GO (n = 18) and healthy controls (n = 15). The effects of LOXL3 inhibition on interleukin (IL)-1β-induced proinflammatory cytokines, transforming growth factor (TGF)-β-induced profibrotic proteins, intracellular signaling molecules, and adipogenic markers were evaluated using Western blotting. Adipogenic differentiation was identified using Oil Red O staining. Results LOX and LOXL3 transcript levels were high in GO tissues. Stimulation with IL-1β, TGF-β, and insulin-like growth factor-1 significantly increased LOXL3 messenger RNA expression in GO fibroblasts. Furthermore, silencing LOXL3 attenuated the IL-1β-induced production of proinflammatory cytokines (IL-6, IL-8, and intercellular adhesion molecule-1) and TGF-β-induced production of profibrotic proteins (fibronectin, collagen 1α, and alpha-smooth muscle actin). It also reduced the IL-1β or TGF-β-induced expression of phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells, protein kinase B, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Additionally, LOXL3 silencing suppressed adipocyte differentiation and the expression of adipogenic transcription factors (leptin, AP-2, peroxisome proliferator-activated receptor gamma, and CCAAT/enhancer-binding protein). Conclusions LOXL3 is crucial in GO pathogenesis. LOXL3 inhibition reduced inflammatory cytokine production, fibrotic protein expression, and fibroblast differentiation into adipocytes. This study highlights LOXL3 as a potential therapeutic target for GO.
Collapse
Affiliation(s)
| | - Soo Hyun Choi
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Young Park
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Ho HT, Shih YL, Huang TY, Fang WH, Liu CH, Lin JC, Hsiang CW, Chu KM, Hsiong CH, Chen GJ, Wu YE, Hao JY, Liang CW, Hu OYP. Mixed active metabolites of the SNP-6 series of novel compounds mitigate metabolic dysfunction-associated steatohepatitis and fibrosis: promising results from pre-clinical and clinical trials. J Transl Med 2024; 22:936. [PMID: 39402603 PMCID: PMC11476197 DOI: 10.1186/s12967-024-05686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a growing global health concern with no effective pharmacological treatments. SNP-630, a newly developed synthetic molecule with multiple mechanisms of action, and a mixture of two of its active metabolites (SNP-630-MS) inhibit CYP2E1 expression to prevent reactive oxygen species generation, thereby reducing the accumulation of hepatic triglycerides and lowering chemokine levels. This study investigated the SNP-630's potential to alleviate the liver injury in MASH and its efficacy in both a mouse model and patients with MASH to identify a drug candidate that targets multiple pathways implicated in MASH. METHODS SNP-630 and SNP-630-MS were separately administered to the MASH mouse model. The tolerability, safety, and efficacy of SNP-630-MS were also evaluated in 35 patients with MASH. The primary endpoint of the study was assessment of the changes in serum alanine aminotransferase (ALT) levels from baseline to week 12, while the secondary endpoints included the evaluation of liver inflammation, steatosis, and fibrosis parameters and markers. RESULTS SNP-630 treatment in mice improved inflammation, liver steatosis, and fibrosis compared with that in the MASH control group. Both SNP-630 and SNP-630-MS treatments markedly reduced ALT levels, hepatic triglyceride content, and the expression of inflammatory cytokines monocyte chemoattractant protein 1 and fibrotic collagen (i.e., Col1a1, Col3a1, and Timp1) in mice. In the clinical trial, patients treated with SNP-630-MS exhibited significant improvement in ALT levels at week 12 compared with baseline levels, with no reports of severe adverse events. This improvement in ALT levels surpassed that achieved with most other MASH candidates. SNP-630-MS demonstrated potential antifibrotic effects, as evidenced by a significant decrease in the levels of fibrogenesis-related biomarkers such as CCL4, CCL5, and caspase 3. Subgroup analysis using FibroScan measurements further indicated the efficacy of SNP-630-MS in ameliorating liver fibrosis. CONCLUSIONS SNP-630 and SNP-630-MS demonstrated favorable results in mice. SNP-630-MS showed excellent tolerability in mice and patients with MASH. Efficacy analyses indicated that SNP-630-MS improved liver steatosis and injury in patients with MASH, suggesting that SNP-630 and 630-MS are promising therapeutic options for MASH. Larger scale clinical trials remain warranted to assess the efficacy and safety of SNP-630 in MASH. TRIAL REGISTRATION ClinicalTrials.gov NCT03868566. Registered 06 March 2019-Retrospectively registered, https://clinicaltrials.gov/study/NCT03868566.
Collapse
Affiliation(s)
- Hsin-Tien Ho
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Yu-Lueng Shih
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Tien-Yu Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Wen-Hui Fang
- Division of Family and Community Health, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
| | - Chang-Hsien Liu
- Division of Radiological Diagnosis, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
- Department of Medical Imaging, China Medical University Hsinchu Hospital and China Medical University, Hsinchu, 302, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Jung-Chun Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Chih-Weim Hsiang
- Division of Radiological Diagnosis, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
| | - Kai-Min Chu
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Cheng-Huei Hsiong
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Guan-Ju Chen
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Yung-En Wu
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Jia-Yu Hao
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Chih-Wen Liang
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Oliver Yoa-Pu Hu
- School of Pharmacy, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan.
- Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
43
|
Advani D, Farid N, Tariq MH, Kohli N. A systematic review of mesenchymal stem cell secretome: Functional annotations, gene clusters and proteomics analyses for bone formation. Bone 2024; 190:117269. [PMID: 39368726 DOI: 10.1016/j.bone.2024.117269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The regenerative capacity of mesenchymal stem cells (MSCs) is now attributed to their ability to release paracrine factors into the extracellular matrix that boost tissue regeneration, reduce inflammation and encourage healing. Understanding the MSC secretome is crucial for shifting the prototypic conventional cell-based therapies to cell-free regenerative treatments. This systematic review aimed to analyse the functional annotations of the secretome of human adult adipose tissue and bone marrow MSCs and unveil the gene clusters responsible for bone formation. Bioinformatics tools were used to identify the biological processes, molecular functions, hallmarks and KEGG pathways of adipose and bone marrow MSC secretome proteins. We found a substantial overlap in the functional annotations and protein compositions of both adipose and bone marrow MSC secretome indicating that MSC source may be noninfluencial with regards to tissue regeneration. Additionally, a novel network pharmacology-based analysis of the secreted proteins revealed that the commonly secreted proteins within a single source interact with multiple drugable targets of bone diseases and regulate various KEGG pathway. This study unravels the secretome profile of human adult adipose and bone marrow MSCs based on the current literature and provides valuable insights into the therapeutic use of the MSC secretome for cell-free therapies.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| | - Nouran Farid
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| | - Muhammad Hamza Tariq
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| | - Nupur Kohli
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| |
Collapse
|
44
|
Horn P, Norlin J, Almholt K, Viuff BM, Galsgaard ED, Hald A, Zosel F, Demuth H, Poulsen S, Norby PL, Rasch MG, Vyberg M, Fleckner J, Werge MP, Gluud LL, Rink MR, Shepherd E, Northall E, Lalor PF, Weston CJ, Fog-Tonnesen M, Newsome PN. Evaluation of Gremlin-1 as a therapeutic target in metabolic dysfunction-associated steatohepatitis. eLife 2024; 13:RP95185. [PMID: 39361025 PMCID: PMC11449483 DOI: 10.7554/elife.95185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Gremlin-1 has been implicated in liver fibrosis in metabolic dysfunction-associated steatohepatitis (MASH) via inhibition of bone morphogenetic protein (BMP) signalling and has thereby been identified as a potential therapeutic target. Using rat in vivo and human in vitro and ex vivo model systems of MASH fibrosis, we show that neutralisation of Gremlin-1 activity with monoclonal therapeutic antibodies does not reduce liver inflammation or liver fibrosis. Still, Gremlin-1 was upregulated in human and rat MASH fibrosis, but expression was restricted to a small subpopulation of COL3A1/THY1+ myofibroblasts. Lentiviral overexpression of Gremlin-1 in LX-2 cells and primary hepatic stellate cells led to changes in BMP-related gene expression, which did not translate to increased fibrogenesis. Furthermore, we show that Gremlin-1 binds to heparin with high affinity, which prevents Gremlin-1 from entering systemic circulation, prohibiting Gremlin-1-mediated organ crosstalk. Overall, our findings suggest a redundant role for Gremlin-1 in the pathogenesis of liver fibrosis, which is unamenable to therapeutic targeting.
Collapse
Affiliation(s)
- Paul Horn
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of BirminghamBirminghamUnited Kingdom
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
- Department of Hepatology & Gastroenterology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité MitteBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist ProgramBerlinGermany
| | - Jenny Norlin
- Global Drug Discovery, Novo Nordisk A/SMaaloevDenmark
| | | | | | | | - Andreas Hald
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Franziska Zosel
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Helle Demuth
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Svend Poulsen
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Peder L Norby
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Morten G Rasch
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Mogens Vyberg
- Department of Pathology, Copenhagen University Hospital Hvidovre, and Centre for RNA Medicine, Aalborg University CopenhagenCopenhagenDenmark
| | - Jan Fleckner
- Global Translation, Novo Nordisk A/SMaaloevDenmark
| | | | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital HvidovreHvidovreDenmark
| | - Marco R Rink
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Emma Shepherd
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Ellie Northall
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Patricia F Lalor
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Chris J Weston
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of BirminghamBirminghamUnited Kingdom
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | | | - Philip N Newsome
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King’s College London and King’s College HospitalLondonUnited Kingdom
| |
Collapse
|
45
|
Shen Y, Guan X, Li S, Hou X, Yu J, Yin H, Shan X, Han X, Wang L, Zhou B, Li X, Sun L, Zhang Y, Xu H, Yue W. Exploiting a tumor softening targeted bomb for mechanical gene therapy of chemoresistant Triple-Negative breast cancer. CHEMICAL ENGINEERING JOURNAL 2024; 498:155217. [DOI: 10.1016/j.cej.2024.155217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
46
|
Yang Y, Wu J, Wang L, Ji G, Dang Y. Copper homeostasis and cuproptosis in health and disease. MedComm (Beijing) 2024; 5:e724. [PMID: 39290254 PMCID: PMC11406047 DOI: 10.1002/mco2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Copper is a vital trace element in human physiology, essential for the synthesis of numerous crucial metabolic enzymes and facilitation of various biological processes. Regulation of copper levels within a narrow range is imperative for maintaining metabolic homeostasis. Numerous studies have demonstrated the significant roles of copper homeostasis and cuproptosis in health and disease pathogenesis. However, a comprehensive and up-to-date systematic review in this domain remains absent. This review aims to consolidate recent advancements in understanding the roles of cuproptosis and copper homeostasis in health and disease, focusing on the underlying mechanisms and potential therapeutic interventions. Dysregulation of copper homeostasis, manifesting as either copper excess or deficiency, is implicated in the etiology of various diseases. Cuproptosis, a recently identified form of cell death, is characterized by intracellular copper overload. This phenomenon mediates a diverse array of evolutionary processes in organisms, spanning from health to disease, and is implicated in genetic disorders, liver diseases, neurodegenerative disorders, and various cancers. This review provides a comprehensive summary of the pathogenic mechanisms underlying cuproptosis and copper homeostasis, along with associated targeted therapeutic agents. Furthermore, it explores future research directions with the potential to yield significant advancements in disease treatment, health management, and disease prevention.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
47
|
Zhong S, Wang Z, Yang J, Jiang D, Wang K. Ferroptosis-related oxaliplatin resistance in multiple cancers: Potential roles and therapeutic Implications. Heliyon 2024; 10:e37613. [PMID: 39309838 PMCID: PMC11414570 DOI: 10.1016/j.heliyon.2024.e37613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Oxaliplatin (OXA)-based therapy is effective in the treatment of multiple cancers. However, primary or acquired OXA resistance remains an emerging challenge for its clinical application. Ferroptosis is an iron-dependent mode of cell death that has been demonstrated to play an essential role in the chemoresistance of many drugs, including OXA. In particular, dysregulation of SLC7A11-GPX4, one of the major antioxidant systems of ferroptosis, was found in the OXA resistance of colorectal cancer (CRC) and hepatocellular carcinoma (HCC). In addition, Nrf2, the upstream regulator of GPX4 and many other antioxidant factors, is also involved in the OXA resistance of CRC and HCC. Inhibition of SLC7A11-GPX4 or Nrf2 by genetic deletion of pharmaceutical inhibition could significantly reverse OXA resistance. Long noncoding RNA (lncRNA) also participates in chemoresistance and ferroptosis of cancer cells. Specifically, LINC01134 promotes the recruitment of Nrf2 to the promoter of GPX4, thereby exerting transcriptional regulation of GPX4, which eventually increases the OXA sensitivity of HCC through upregulation of ferroptosis. On the other hand, a novel lncRNA DACT3-AS1 sensitizes gastric cancer cells to OXA through miR-181a-5p/sirtuin 1(SIRT1)-mediated ferroptosis. Therapies based on ferroptosis or a combination of OXA and ferroptosis enhancers could provide new therapeutic insights to overcome OXA resistance. In the present review, we present the current understanding of ferroptosis-related OXA resistance, highlight ferroptosis pathogenesis in OXA chemoresistance, and summarize available therapies that target OXA resistance by enhancing ferroptosis.
Collapse
Affiliation(s)
- Sijia Zhong
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Zihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110122, China
| | - Jiaxi Yang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Di Jiang
- China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Kewei Wang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
48
|
Lu SL, Pei Y, Liu WW, Han K, Cheng JCH, Li PC. Evaluating ECM stiffness and liver cancer radiation response via shear-wave elasticity in 3D culture models. Radiat Oncol 2024; 19:128. [PMID: 39334323 PMCID: PMC11430210 DOI: 10.1186/s13014-024-02513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The stiffness of the tumor microenvironment (TME) directly influences cellular behaviors. Radiotherapy (RT) is a common treatment for solid tumors, but the TME can impact its efficacy. In the case of liver cancer, clinical observations have shown that tumors within a cirrhotic, stiffer background respond less to RT, suggesting that the extracellular matrix (ECM) stiffness plays a critical role in the development of radioresistance. METHODS This study explored the effects of ECM stiffness and the inhibition of lysyl oxidase (LOX) isoenzymes on the radiation response of liver cancer in a millimeter-sized three-dimensional (3D) culture. We constructed a cube-shaped ECM-based millimeter-sized hydrogel containing Huh7 human liver cancer cells. By modulating the collagen concentration, we produced two groups of samples with different ECM stiffnesses to mimic the clinical scenarios of normal and cirrhotic livers. We used a single-transducer system for shear-wave-based elasticity measurement, to derive Young's modulus of the 3D cell culture to investigate how the ECM stiffness affects radiosensitivity. This is the first demonstration of a workflow for assessing radiation-induced response in a millimeter-sized 3D culture. RESULTS Increased ECM stiffness was associated with a decreased radiation response. Moreover, sonoporation-assisted LOX inhibition with BAPN (β-aminopropionitrile monofumarate) significantly decreased the initial ECM stiffness and increased RT-induced cell death. Inhibition of LOX was particularly effective in reducing ECM stiffness in stiffer matrices. Combining LOX inhibition with RT markedly increased radiation-induced DNA damage in cirrhotic liver cancer cells, enhancing their response to radiation. Furthermore, LOX inhibition can be combined with sonoporation to overcome stiffness-related radioresistance, potentially leading to better treatment outcomes for patients with liver cancer. CONCLUSIONS The findings underscore the significant influence of ECM stiffness on liver cancer's response to radiation. Sonoporation-aided LOX inhibition emerges as a promising strategy to mitigate stiffness-related resistance, offering potential improvements in liver cancer treatment outcomes.
Collapse
Affiliation(s)
- Shao-Lun Lu
- Department of Radiation Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu Pei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Wei-Wen Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Graduate of Institute of Oral Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kun Han
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Jason Chia-Hsien Cheng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Radiation Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
49
|
Zhang W, Zhang N, Wu W, Li H, You H, Chen W. Atlas of mildly and highly insoluble matrisome driving liver fibrosis. Front Pharmacol 2024; 15:1435359. [PMID: 39286627 PMCID: PMC11403298 DOI: 10.3389/fphar.2024.1435359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
The excessive deposition and cross-linking of core matrisome components typically result in abnormal remodeling of the extracellular matrix (ECM), leading to increased liver stiffness and worsening liver fibrosis. Exploring the biochemical properties of the ECM scaffold can deepen our understanding of the pathological mechanisms driving liver fibrosis and potentially facilitate the identification of therapeutic targets. While traditional sodium dodecyl sulfate (SDS)-based liver decellularization followed by proteomics can uncover the matrisome components within the ECM scaffold, it lacks the ability to reveal physicochemical characteristics like solubility. In our present study, using adult mouse liver as an example, we introduced a novel two-step workflow that combines our previously enhanced SDS (ESDS) decellularization with the conventional SDS method, enabling the identification of matrisome members with mild and/or high solubilities. Through this approach, we visualized the atlas of the mildly and highly insoluble matrisome contents in the adult mouse liver, as well as the regulatory network of highly insoluble matrisome that largely governs liver stiffness. Given the strong correlation between increased matrisome insolubility and heightened ECM stiffness, we believe that this methodology holds promise for future research focused on liver stiffness.
Collapse
Affiliation(s)
- Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenyue Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Li
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Chinese Institutes for Medical Research (CIMR), Beijing, China
| |
Collapse
|
50
|
Liu J, Liu J, Mu W, Ma Q, Zhai X, Jin B, Liu Y, Zhang N. Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems. ACS NANO 2024; 18:20861-20885. [PMID: 39082637 DOI: 10.1021/acsnano.4c02380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Liver fibrosis (LF) is a pathological repair reaction caused by a chronic liver injury that affects the health of millions of people worldwide, progressing to life-threatening cirrhosis and liver cancer without timely intervention. Due to the complexity of LF pathology, multiple etiological characteristics, and the deposited extracellular matrix, traditional drugs cannot reach appropriate targets in a time-space matching way, thus decreasing the therapeutic effect. Nanoparticle drug delivery systems (NDDS) enable multidrug co-therapy and develop multifactor delivery strategies targeting pathological processes, showing great potential in LF therapy. Based on the pathogenesis and the current clinical treatment status of LF, we systematically elucidate the targeting mechanism of NDDS used in the treatment of LF. Subsequently, we focus on the progress of drug delivery applications for LF, including combined delivery for the liver fibrotic pathological environment, overcoming biological barriers, precise intracellular regulation, and intelligent responsive delivery for the liver fibrotic microenvironment. We hope that this review will inspire the rational design of NDDS for LF in the future in order to provide ideas and methods for promoting LF regression and cure.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Bin Jin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|