1
|
Artanti AN, Jenie RI, Rumiyati R, Meiyanto E. Hesperidin and Diosmin Increased Cytotoxic Activity Cisplatin on Hepatocellular Carcinoma and Protect Kidney Cells Senescence. Asian Pac J Cancer Prev 2024; 25:4247-4255. [PMID: 39733416 PMCID: PMC12008348 DOI: 10.31557/apjcp.2024.25.12.4247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024] Open
Abstract
OBJECTIVE Cisplatin (Cisp) is a chemotherapy drug for treating liver cancer. Hesperidin (HSD), a flavanone, is known for its anticancer, and anti-inflammatory properties. Diosmin (DSM), a flavone glycoside, is known for its anti-oxidant effect. This research investigated the synergism cytotoxic effect and senescence selectivity effect of HSD or DSM co-treatment with Cisp on HepG2 cells and Vero cells. METHODS The cytotoxicity and cell viability of HSD or DSM combined with Cisp on HepG2 and Vero cells were assessed using the MTT assay with IC50 parameters, selectivity index (SI), and Combination Index (CI), while the antiproliferative profile was determined by colony-forming assay. Cellular senescence on HepG2 and Vero cell lines was determined using senescence-associated β-galactosidase (SA-β-gal) staining. Furthermore, the impact of apoptosis was evaluated using flowcitometry. RESULT In the MTT assay, HSD, DSM, and cisplatin exhibited cytotoxic effects on HepG2 cells, with IC50 values of 321 µM, 148 µM, and 5 µM, respectively. Co-treatment with HSD and DSM with cisplatin enhanced cell sensitivity, resulting in a combination index of < 1. HSD and DSM exhibited minimal cytotoxicity against Vero cells, with IC50 values exceeding 500 µM. Both HSD and DSM reduced cellular senescence in Vero cells caused by cisplatin exposure. These findings suggest that co-treatment with HSD and DSM alongside cisplatin can synergistically lessen the viability of HepG2 cells. The Annexin V-FITC/PI apoptosis assay also showed more cells undergoing apoptosis in the co-treatment group. Both co-treatment HSD and DSM with Cisp independently induced the senescence of HepG2 cells and reduced the cellular senescence of normal kidney cells. CONCLUSION Consequently, both HSD and DSM show potential for development as co-treatment agents in combination with Cisp for hepatocellular carcinoma, and they may also be useful for reducing senescence in normal kidney cells.
Collapse
Affiliation(s)
- Anif Nur Artanti
- Doctoral Programme in Pharmaceutical Science, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
- Department of Pharmacy, Vocational College, Universitas Sebelas Maret (UNS), Surakarta 57126, Indonesia.
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
- Laboratory of Macromolecule Engineering, Department of Pharmaceutical Chemistry Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Rumiyati Rumiyati
- Laboratory of Macromolecule Engineering, Department of Pharmaceutical Chemistry Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
- Laboratory of Macromolecule Engineering, Department of Pharmaceutical Chemistry Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
| |
Collapse
|
2
|
Bartolini D, Stabile AM, Migni A, Gurrado F, Lioci G, De Franco F, Mandarano M, Svegliati-Baroni G, Di Cristina M, Bellezza G, Rende M, Galli F. Subcellular distribution and Nrf2/Keap1-interacting properties of Glutathione S-transferase P in hepatocellular carcinoma. Arch Biochem Biophys 2024; 757:110043. [PMID: 38789086 DOI: 10.1016/j.abb.2024.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The oncogene and drug metabolism enzyme glutathione S-transferase P (GSTP) is also a GSH-dependent chaperone of signal transduction and transcriptional proteins with key role in liver carcinogenesis. In this study, we explored this role of GSTP in hepatocellular carcinoma (HCC) investigating the possible interaction of this protein with one of its transcription factor and metronome of the cancer cell redox, namely the nuclear factor erythroid 2-related factor 2 (Nrf2). Expression, cellular distribution, and function as glutathionylation factor of GSTP1-1 isoform were investigated in the mouse model of N-nitrosodiethylamine (DEN)-induced HCC and in vitro in human HCC cell lines. The physical and functional interaction of GSTP protein with Nrf2 and Keap1 were investigated by immunoprecipitation and gene manipulation experiments. GSTP protein increased its liver expression, enzymatic activity and nuclear levels during DEN-induced tumor development in mice; protein glutathionylation (PSSG) was increased in the tumor masses. Higher levels and a preferential nuclear localization of GSTP protein were also observed in HepG2 and Huh-7 hepatocarcinoma cells compared to HepaRG non-cancerous cells, along with increased basal and Ebselen-stimulated levels of free GSH and PSSG. GSTP activity inhibition with the GSH analogue EZT induced apoptotic cell death in HCC cells. Hepatic Nrf2 and c-Jun, two transcription factors involved in GSTP expression and GSH biosynthesis, were induced in DEN-HCC compared to control animals; the Nrf2 inhibitory proteins Keap1 and β-TrCP also increased and oligomeric forms of GSTP co-immunoprecipitated with both Nrf2 and Keap1. Nrf2 nuclear translocation and β-TrCP expression also increased in HCC cells, and GSTP transfection in HepaRG cells induced Nrf2 activation. In conclusion, GSTP expression and subcellular distribution are modified in HCC cells and apparently contribute to the GSH-dependent reprogramming of the cellular redox in this type of cancer directly influencing the transcriptional system Nrf2/Keap1.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
| | - Anna Maria Stabile
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
| | - Fabio Gurrado
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy.
| | - Gessica Lioci
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy.
| | | | - Martina Mandarano
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Gianluca Svegliati-Baroni
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy; Obesity Center, Marche Polytechnic University, Ancona, Italy and Liver Injury and Transplant Unit, Ancona, Italy.
| | - Manlio Di Cristina
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Guido Bellezza
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Mario Rende
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
| |
Collapse
|
3
|
El-Derby AM, Khedr MA, Ghoneim NI, Gabr MM, Khater SM, El-Badri N. Plasma-derived extracellular matrix for xenofree and cost-effective organoid modeling for hepatocellular carcinoma. J Transl Med 2024; 22:487. [PMID: 38773585 PMCID: PMC11110239 DOI: 10.1186/s12967-024-05230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) causes significant cancer mortality worldwide. Cancer organoids can serve as useful disease models by high costs, complexity, and contamination risks from animal-derived products and extracellular matrix (ECM) that limit its applications. On the other hand, synthetic ECM alternatives also have limitations in mimicking native biocomplexity. This study explores the development of a physiologically relevant HCC organoid model using plasma-derived extracellular matrix as a scaffold and nutritive biomatrix with different cellularity components to better mimic the heterogenous HCC microenvironment. Plasma-rich platelet is recognized for its elevated levels of growth factors, which can promote cell proliferation. By employing it as a biomatrix for organoid culture there is a potential to enhance the quality and functionality of organoid models for diverse applications in biomedical research and regenerative medicine and to better replicate the heterogeneous microenvironment of HCC. METHOD To generate the liver cancer organoids, HUH-7 hepatoma cells were cultured alone (homogenous model) or with human bone marrow-derived mesenchymal stromal cells and human umbilical vein endothelial cells (heterogeneous model) in plasma-rich platelet extracellular matrix (ECM). The organoids were grown for 14 days and analyzed for cancer properties including cell viability, invasion, stemness, and drug resistance. RESULTS HCC organoids were developed comprising HUH-7 hepatoma cells with or without human mesenchymal stromal and endothelial cells in plasma ECM scaffolds. Both homogeneous (HUH-7 only) and heterogeneous (mixed cellularity) organoids displayed viability, cancer hallmarks, and chemoresistance. The heterogeneous organoids showed enhanced invasion potential, cancer stem cell populations, and late-stage HCC genetic signatures versus homogeneous counterparts. CONCLUSION The engineered HCC organoids system offers a clinically relevant and cost-effective model to study liver cancer pathogenesis, stromal interactions, and drug resistance. The plasma ECM-based culture technique could enable standardized and reproducible HCC modeling. It could also provide a promising option for organoid culture and scaling up.
Collapse
Affiliation(s)
- Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Mennatallah A Khedr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Sherry M Khater
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
4
|
Jeon J, Lee S, Park JM, Lee TH, Kang TH. Circadian control of cisplatin-DNA adduct repair and apoptosis in culture cells. Int J Biochem Cell Biol 2023; 162:106454. [PMID: 37574041 DOI: 10.1016/j.biocel.2023.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/02/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Cisplatin, a widely prescribed chemotherapeutic agent for treating solid tumors, induces DNA adducts and activates cellular defense mechanisms, including DNA repair, cell cycle checkpoint control, and apoptosis. Considering the circadian rhythmicity displayed by most chemotherapeutic agents and their varying therapeutic efficacy based on treatment timing, our study aimed to investigate whether the circadian clock system influences the DNA damage responses triggered by cisplatin in synchronized cells. We examined the DNA damage responses in circadian-synchronized wild-type mouse embryonic fibroblasts (WT-MEF; clock-proficient cells), cryptochrome1 and 2 double knock-out MEF (CRYDKO; clock-deficient cells), and mouse hepatocarcinoma Hepa1c1c7 cells. Varying the treatment time resulted in a significant difference in the rate of platinum-DNA adduct removal specifically in circadian-synchronized WT-MEF, while CRYDKO did not exhibit such variation. Moreover, diurnal variation in other DNA damage responses, such as cell cycle checkpoint activity indicated by p53 phosphorylation status and apoptosis measured by DNA break frequency, was observed only in circadian-synchronized WT-MEF, not in CRYDKO or mouse hepatocarcinoma Hepa1c1c7 cells. These findings highlight that the DNA damage responses triggered by cisplatin are indeed governed by circadian control exclusively in clock-proficient cells. This outcome bears potential implications for enhancing or devising chronotherapy approaches for cancer patients.
Collapse
Affiliation(s)
- Jeseok Jeon
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Sanggon Lee
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Jeong-Min Park
- Department of Stem Cell Transplantation Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tae-Hee Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tae-Hong Kang
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
5
|
Yang YQ, Wen ZY, Liu XY, Ma ZH, Liu YE, Cao XY, Hou L, Xie H. Current status and prospect of treatments for recurrent hepatocellular carcinoma. World J Hepatol 2023; 15:129-150. [PMID: 36926237 PMCID: PMC10011906 DOI: 10.4254/wjh.v15.i2.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/13/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
Owing to its heterogeneous and highly aggressive nature, hepatocellular carcinoma (HCC) has a high recurrence rate, which is a non-negligible problem despite the increasing number of available treatment options. Recent clinical trials have attempted to reduce the recurrence and develop innovative treatment options for patients with recurrent HCC. In the event of liver remnant recurrence, the currently available treatment options include repeat hepatectomy, salvage liver transplantation, tumor ablation, transcatheter arterial chemoembolization, stereotactic body radiotherapy, systemic therapies, and combination therapy. In this review, we summarize the strategies to reduce the recurrence of high-risk tumors and aggressive therapies for recurrent HCC. Additionally, we discuss methods to prevent HCC recurrence and prognostic models constructed based on predictors of recurrence to develop an appropriate surveillance program.
Collapse
Affiliation(s)
- Yu-Qing Yang
- Department of Epidemiology and Biostatistics, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhen-Yu Wen
- Department of Occupational and Environmental Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Xiao-Yan Liu
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Zhen-Hu Ma
- Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yan-E Liu
- Department of Epidemiology and Biostatistics, Jilin University, Changchun 130021, Jilin Province, China
| | - Xue-Ying Cao
- Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Li Hou
- Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Hui Xie
- Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
6
|
Sun S, Xu K, Yan M, Cui J, Zhu K, Yang Y, Zhang X, Tang W, Huang X, Dou L, Chen B, Lin Y, Zhang X, Man Y, Li J, Shen T. Delphinidin induces autophagic flux blockage and apoptosis by inhibiting both multidrug resistance gene 1 and DEAD-box helicase 17 expressions in liver cancer cells. J Pharm Pharmacol 2023; 75:253-263. [PMID: 36179123 DOI: 10.1093/jpp/rgac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/10/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES To investigate the function and regulatory mechanisms of delphinidin in the treatment of hepatocellular carcinoma. METHODS HepG2 and HuH-7 cells were treated with different concentrations of delphinidin. Cell viability was analysed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell autophagy and autophagic flux were analysed by LC3b-green fluorescent protein (GFP)-Adv and LC3b-GFP-monomeric red fluorescent protein-Adv transfected HepG2 and HuH-7 cells, respectively. Cell apoptosis was analysed by Hoechst33342 staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and DNA laddering. Cell autophagy, apoptosis and survival related protein expressions were detected by Western blotting. KEY FINDINGS After treatment with different concentrations of delphinidin, the cell survival rate was significantly decreased. Delphinidin could block the autophagic flux, resulting in a significant increase in autophagosomes, and led to an increase in cell apoptosis. The combined application of delphinidin and cisplatin could promote the antitumour effect and reduce the dose of cisplatin in tumour cells. Further mechanism studies reveal that delphinidin could inhibit the multidrug resistance gene 1 (MDR1) and the tumour-promoting transcription cofactor DEAD-box helicase 17 (DDX17) expression in tumour cells. Overexpression of DDX17 could reverse delphinidin's antitumor function in tumour cells. CONCLUSIONS Delphinidin has a strong anti-tumour effect by inducing tumour cell autophagic flux blockage and apoptosis by inhibiting of both MDR1 and DDX17 expression.
Collapse
Affiliation(s)
- Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Kaiyi Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yao Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiaoyi Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiyue Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| |
Collapse
|
7
|
A Face-To-Face Comparison of Tumor Chicken Chorioallantoic Membrane (TCAM) In Ovo with Murine Models for Early Evaluation of Cancer Therapy and Early Drug Toxicity. Cancers (Basel) 2022; 14:cancers14143548. [PMID: 35884608 PMCID: PMC9325108 DOI: 10.3390/cancers14143548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/07/2022] Open
Abstract
Ethical considerations, cost, and time constraints have highlighted the need to develop alternatives to rodent in vivo models for evaluating drug candidates for cancer. The tumor chicken chorioallantoic membrane (TCAM) model provides an affordable and fast assay that permits direct visualization of tumor progression. Tumors from multiple species including rodents and human cell lines can be engrafted. In this study, we engrafted several tumor models onto the CAM and demonstrated that the TCAM model is an alternative to mouse models for preliminary cancer drug efficacy testing and toxicity analysis. Tumor cells were deposited onto CAM, and then grown for up to an additional 10 days before chronic treatments were administered. The drug response of anticancer therapies was screened in 12 tumor cell lines including glioblastoma, melanoma, breast, prostate, colorectal, liver, and lung cancer. Tumor-bearing eggs and tumor-bearing mice had a similar chemotherapy response (cisplatin and temozolomide) in four human and mouse tumor models. We also demonstrated that lethality observed in chicken embryos following chemotherapies such as cisplatin and cyclophosphamide were associated with corresponding side-effects in mice with body weight loss. According to our work, TCAM represents a relevant alternative model to mice in early preclinical oncology screening, providing insights for both the efficacy and the toxicity of anticancer drugs.
Collapse
|
8
|
Podkościelna B, Klimek K, Karczmarzyk Z, Wysocki W, Brodacka M, Serafin K, Kozyra P, Kowalczuk D, Ginalska G, Pitucha M. Polymer microspheres modified with pyrazole derivatives as potential agents in anticancer therapy – preliminary studies. Bioorg Chem 2022; 123:105765. [DOI: 10.1016/j.bioorg.2022.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
|
9
|
Xu XF, Yang XK, Song Y, Chen BJ, Yu X, Xu T, Chen ZL. Dysregulation of Non-coding RNAs mediates Cisplatin Resistance in Hepatocellular Carcinoma and therapeutic strategies. Pharmacol Res 2021; 176:105906. [PMID: 34543740 DOI: 10.1016/j.phrs.2021.105906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fourth major contributor to cancer-related deaths worldwide, and patients mostly have poor prognosis. Although several drugs have been approved for the treatment of HCC, cisplatin (CDDP) is still applied in treatment of HCC as a classical chemotherapeutic drug. Unfortunately, the emergence of CDDP resistance has caused HCC patients to exhibit poor drug response. How to mitigate or even reverse CDDP resistance is an urgent clinical issue to be solved. Because of critical roles in biological functional processes and disease developments, non-coding RNAs (ncRNAs) have been extensively studied in HCC in recent years. Importantly, ncRNAs have also been demonstrated to be involved in the development of HCC to CDDP resistance process. Therefore, this review highlighted the regulatory roles of ncRNAs in CDDP resistance of HCC, elucidated the multiple potential mechanisms by which HCC develops CDDP resistance, and attempted to propose multiple drug delivery systems to alleviate CDDP resistance. Recently, ncRNA-based therapy may be a feasible strategy to alleviate CDDP resistance in HCC. Meanwhile, nanoparticles can overcome the deficiencies in ncRNA-based therapy and make it possible to reverse tumor drug resistance. The combined use of these strategies provides clues for reversing CDDP resistance and overcoming the poor prognosis of HCC.
Collapse
Affiliation(s)
- Xu-Feng Xu
- Department of Hemorrhoid and Fistula of Traditional Chinese Medicine, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui, 238000, P.R. China.
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Yang Song
- Department of Pain Treatment, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Bang-Jie Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Xiao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, P. R. China.
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, P. R. China; School of Pharmacy, Anhui Key Lab. of Bioactivity of Natural Products, Anhui Medical University, Hefei, Anhui, 230032, P. R. China.
| | - Zhao-Lin Chen
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China.
| |
Collapse
|
10
|
Papachristou F, Anninou N, Koukoulis G, Paraskakis S, Sertaridou E, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha A. Differential effects of cisplatin combined with the flavonoid apigenin on HepG2, Hep3B, and Huh7 liver cancer cell lines. Mutat Res 2021; 866:503352. [PMID: 33985696 DOI: 10.1016/j.mrgentox.2021.503352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The potential of apigenin (APG) to enhance cisplatin's (CDDP) chemotherapeutic efficacy was investigated in HepG2, Hep3B, and Huh7 liver cancer cell lines. The presence of 20 μM APG sensitized all cell lines to CDDP treatment (degree of sensitization based on the MTT assay: HepG2>Huh7>Hep3B). As reflected by sister chromatid exchange levels, the degree of genetic instability as well as DNA repair by homologous recombination differed among cell lines. CDDP and 20 μM APG cotreatment exhibited a synergistic genotoxic effect on Hep3B cells and a less than additive effect on HepG2 and Huh7 cells. Cell cycle delays were noticed during the first mitotic division in Hep3B and Huh7 cells and the second mitotic division in HepG2 cells. CDDP and CDDP + APG treatments reduced the clonogenic capacity of all cell lines; however, there was a discordance in drug sensitivity compared with the MMT assay. Furthermore, a senescence-like phenotype was induced, especially in Hep3B and Huh7 cells. Unlike CDDP monotherapy, the combined treatment exhibited a significant anti-invasive and anti-migratory action in all cancer cell lines. The fact that the three liver cancer cell lines responded differently, yet positively, to CDDP + APG cotreatment could be attributed to variations they present in gene expression. Complex mechanisms seem to influence cellular responses and cell fate.
Collapse
Affiliation(s)
- Fotini Papachristou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece.
| | - Nikolia Anninou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Georgios Koukoulis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Stefanos Paraskakis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Eleni Sertaridou
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Christos Tsalikidis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Michael Pitiakoudis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Constantinos Simopoulos
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| |
Collapse
|
11
|
Kamimura K, Suda T, Fukuhara Y, Okuda S, Watanabe Y, Yokoo T, Osaki A, Waguri N, Ishikawa T, Sato T, Aoyagi Y, Takamura M, Wakai T, Terai S. Adipose most abundant 2 protein is a predictive marker for cisplatin sensitivity in cancers. Sci Rep 2021; 11:6255. [PMID: 33737617 PMCID: PMC7973578 DOI: 10.1038/s41598-021-85498-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cisplatin (CDDP) is one of the chemotherapeutic drugs being used to treat various cancers. Although effective in many cases, as high doses of CDDP cause cytotoxic effects that may worsen patients' condition, therefore, a marker of sensitivity to CDDP is necessary to enhance the safety and efficiency of CDDP administration. This study focused on adipose most abundant 2 (APM2) to examine its potential as a marker of CDDP sensitivity. The relationship of APM2 expression with the mechanisms of CDDP resistance was examined in vitro and in vivo using hepatocellular carcinoma (HCC) cells, tissues and serum of HCC patients (n = 71) treated initially with intrahepatic arterial infusion of CDDP followed by surgical resection. The predictability of serum APM2 for CDDP sensitivity was assessed in additional 54 HCC patients and 14 gastric cancer (GC) patients. APM2 expression in CDDP-resistant HCC was significantly higher both in serum and the tissue. Bioinformatic analyses and histological analyses demonstrated upregulation of ERCC6L (DNA excision repair protein ERCC6-like) by APM2, which accounts for the degree of APM2 expression. The serum APM2 level and chemosensitivity for CDDP were assessed and cut-off value of serum APM2 for predicting the sensitivity to CDDP was determined to be 18.7 µg/mL. The value was assessed in HCC (n = 54) and GC (n = 14) patients for its predictability of CDDP sensitivity, resulted in predictive value of 77.3% and 100%, respectively. Our study demonstrated that APM2 expression is related to CDDP sensitivity and serum APM2 can be an effective biomarker of HCC and GC for determining the sensitivity to CDDP.Trial registration: This study was registered with the University Hospital Medical Information Network Clinical Trials Registry (UMIN000028487).
Collapse
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan.
- Department of General Medicine, Niigata University School of Medicine, 1-757, Asahimachido-ri, Chuo-ku, Niigata, Niigata, 951-8510, Japan.
| | - Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine Niigata University Hospital, Minamiuonuma, Niigata, 949-7302, Japan
| | - Yasuo Fukuhara
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Yu Watanabe
- Division of Bioinformatics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Akihiko Osaki
- Department of Gastroenterology and Hepatology, Niigata City General Hospital, Niigata, Niigata, 950-1197, Japan
| | - Nobuo Waguri
- Department of Gastroenterology and Hepatology, Niigata City General Hospital, Niigata, Niigata, 950-1197, Japan
| | - Toru Ishikawa
- Department of Gastroenterology and Hepatology, Saiseikai Niigata Hospital, Niigata, Niigata, 950-1104, Japan
| | - Toshihiro Sato
- Department of Gastroenterology, Kashiwazaki General Hospital and Medical Center, Kashiwazaki, Niigata, 945-8535, Japan
| | - Yutaka Aoyagi
- Department of Gastroenterology and Hepatology, Niigata Medical Center, Niigata, Niigata, 950-2022, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| |
Collapse
|
12
|
LINC01234/MicroRNA-31-5p/MAGEA3 Axis Mediates the Proliferation and Chemoresistance of Hepatocellular Carcinoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:168-178. [PMID: 31838274 PMCID: PMC6926330 DOI: 10.1016/j.omtn.2019.10.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy characterized by aggressiveness and poor prognosis; however, the molecular mechanism remains to be fully identified. Based on the analysis of The Cancer Genome Atlas (TCGA) database, melanoma-associated antigen A3 (MAGEA3) and long non-coding RNA (lncRNA) LINC01234 were upregulated in HCC and associated with poor prognosis of HCC. We investigated the mechanism of how MAGEA3 and LINC01234 influenced HCC cellular functions and cisplatin resistance. MAGEA3 depletion inhibited proliferation, invasion, and cisplatin resistance of HepG2 cells and Huh7 cells in vitro, reduced resistance-associated protein 2 (MRP2), MRP3, and multidrug resistance protein 1 (MDR-1) expression, and elevated ALB expression. RNA pull-down and RIP assays identified the binding of LINC01234 and MAGEA3 to microRNA-31-5p (miR-31-5p). LINC01234 could restore MAGEA3 expression by binding to miR-31-5p. Furthermore, we delivered plasmids into HepG2 cells and Huh7 cells to alter the expression of LINC01234 and miR-31-5p. When miR-31-5p was downregulated, the proliferation and invasion of HepG2 cells and Huh7 cells were enhanced and the cisplatin-induced apoptosis was inhibited, while LINC01234 knockdown could diminish the effects caused by miR-31-5p depletion. In summary, these data highlight the vital role of MAGEA3/LINC01234/miR-31-5p axis in the HCC progression and chemoresistance of HCC cells.
Collapse
|
13
|
Post-surgical resection prognostic value of combined OPN, MMP7, and PSG9 plasma biomarkers in hepatocellular carcinoma. Front Med 2018; 13:250-258. [PMID: 29770948 DOI: 10.1007/s11684-018-0632-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Biomarkers for hepatocellular carcinoma (HCC) following curative resection are not currently sufficient for prognostic indication of overall survival (OS) and disease-free survival (DFS). The aim of this study was to investigate the prognostic performance of osteopontin (OPN), matrix metalloproteinase 7 (MMP7), and pregnancy specific glycoprotein 9 (PSG9) in patients with HCC. A total of 179 prospective patients with HCC provided plasma before hepatectomy. Plasma OPN, MMP7, and PSG9 levels were determined by enzyme-linked immunosorbent assay. Correlations between plasma levels, clinical parameters, and outcomes (OS and DFS) were overall analyzed. High OPN ( ⩾ 149.97 ng/mL), MMP7 ( ⩾ 2.28 ng/mL), and PSG9 ( ⩾ 45.59 ng/mL) were prognostic indicators of reduced OS (P < 0.001, P < 0.001, and P = 0.007, respectively). Plasma PSG9 protein level was an independent factor in predicting OS (P = 0.008) and DFS (P = 0.038). Plasma OPN + MMP7 + PSG9 elevation in combination was a prognostic factor for OS (P < 0.001). OPN was demonstrated to be a risk factorassociated OS in stage I patients with HCC and patients with low α-fetoprotein levels ( < 20 ng/mL). These findings suggested that OPN, MMP7, PSG9 and their combined panels may be useful for aiding in tumor recurrence and mortality risk prediction of patients with HCC, particularly in the early stage of HCC carcinogenesis.
Collapse
|
14
|
Chen S, Yu W, Zhang K, Liu W, Chen Q. Transarterial chemoembolization for unresectable hepatocellular carcinoma: A comparison of the efficacy and safety of 2 embolic agents. Medicine (Baltimore) 2018; 97:e10832. [PMID: 29794774 PMCID: PMC6392592 DOI: 10.1097/md.0000000000010832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to compare the efficacy and safety of 2 different embolic agents, namely gelatin sponge particle (GSP) and Lipiodol, for transarterial chemoembolization (TACE) of unresectable hepatocellular carcinoma (HCC).We retrospectively reviewed 87 consecutive patients with unresectable HCC who underwent Lipiodol TACE with lobaplatin and 87 consecutive patients with unresectable HCC who underwent GSP TACE with lobaplatin between January 2013 and June 2017 in our institution as the initial treatment. Both groups were compared considering the clinical and laboratory outcomes and imaging findings before and after TACE. Tumor response and adverse events were also evaluated.There was significant difference in the rate of complete and overall response between the groups (P = .029 and .001, respectively), specifically when the tumor size was >5 cm (P = .001). The disease control rate was significantly better in the GSP group than in the Lipiodol group (94.3% vs. 86.4%, P = .011). The response differences in higher stages were significant between the 2 groups (P = .035 and .007, respectively). The grades of adverse events were also significantly different between the groups (P = .000).GSP-as an embolic agent in TACE for HCC-could significantly increase the rate of tumor response 1 month after treatment, especially in large tumors, without any significant increase in severe adverse events, when compared to Lipiodol.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/diagnostic imaging
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Chemoembolization, Therapeutic/adverse effects
- Chemoembolization, Therapeutic/methods
- Ethiodized Oil/administration & dosage
- Ethiodized Oil/adverse effects
- Ethiodized Oil/therapeutic use
- Female
- Gelatin Sponge, Absorbable/administration & dosage
- Gelatin Sponge, Absorbable/adverse effects
- Gelatin Sponge, Absorbable/therapeutic use
- Hemostatics/administration & dosage
- Hemostatics/adverse effects
- Hemostatics/therapeutic use
- Humans
- Liver Neoplasms/blood
- Liver Neoplasms/diagnostic imaging
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Magnetic Resonance Imaging
- Male
- Middle Aged
- Retrospective Studies
- Tomography Scanners, X-Ray Computed
- Treatment Outcome
- alpha-Fetoproteins/analysis
Collapse
|
15
|
He MK, Le Y, Li QJ, Yu ZS, Li SH, Wei W, Guo RP, Shi M. Hepatic artery infusion chemotherapy using mFOLFOX versus transarterial chemoembolization for massive unresectable hepatocellular carcinoma: a prospective non-randomized study. CHINESE JOURNAL OF CANCER 2017; 36:83. [PMID: 29061175 PMCID: PMC5654007 DOI: 10.1186/s40880-017-0251-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transarterial chemoembolization (TACE) is recommended as the standard care for unresectable hepatocellular carcinoma (HCC) at Barcelona Clinic Liver Cancer (BCLC) stage A-B. However, the efficacy of TACE on large (≥ 10 cm) stage A-B HCC is far from satisfactory, and it is proposed that hepatic artery infusion chemotherapy (HAIC) might be a better first-line treatment of this disease. Hence, we compared the safety and efficacy of HAIC with the modified FOLFOX (mFOLFOX) regimen and those of TACE in patients with massive unresectable HCC. METHODS A prospective, non-randomized, phase II study was conducted on patients with massive unresectable HCC. The protocol involved HAIC with the mFOLFOX regimen (oxaliplatin, 85 mg/m2 intra-arterial infusion; leucovorin, 400 mg/m2 intra-arterial infusion; and fluorouracil, 400 mg/m2 bolus infusion and 2400 mg/m2 continuous infusion) every 3 weeks and TACE with 50 mg of epirubicin, 50 mg of lobaplatin, 6 mg of mitomycin, and lipiodol and polyvinyl alcohol particles. The tumor responses, time-to-progression (TTP), and safety were assessed. RESULTS A total of 79 patients were recruited for this study: 38 in the HAIC group and 41 in the TACE group. The HAIC group exhibited higher partial response and disease control rates than did the TACE group (52.6% vs. 9.8%, P < 0.001; 83.8% vs. 52.5%, P = 0.004). The median TTPs for the HAIC and TACE groups were 5.87 and 3.6 months (hazard radio [HR] = 2.35, 95% confidence interval [CI] = 1.16-4.76, P = 0.015). More patients in the HAIC group than in the TACE group underwent resection (10 vs. 3, P = 0.033). The proportions of grade 3-4 adverse events (AE) and serious adverse events (SAE) were lower in the HAIC group than in the TACE group (grade 3-4 AEs: 13 vs. 27, P = 0.007; SAEs: 6 vs. 15, P = 0.044). More patients in the TACE group than in the HAIC group had the study treatment terminated early due to intolerable treatment-related adverse events or the withdrawal of consent (10 vs. 2, P = 0.026). CONCLUSIONS HAIC with mFOLFOX yielded significantly better treatment responses and less serious toxicity than did TACE. HAIC might represent a feasible and promising first-line treatment for patients with massive unresectable HCC.
Collapse
Affiliation(s)
- Min-Ke He
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China
| | - Yong Le
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China
| | - Qi-Jiong Li
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China
| | - Zi-Shan Yu
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China
| | - Shao-Hua Li
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China
| | - Wei Wei
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China
| | - Rong-Ping Guo
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China
| | - Ming Shi
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| |
Collapse
|
16
|
Kamimura K, Suda T, Yokoo T, Kamimura H, Kanefuji T, Tsuchiya A, Takamura M, Kawai H, Waguri N, Yamagiwa S, Terai S. Transhepatic arterial infusion chemotherapy using a combination of miriplatin and CDDP powder versus miriplatin alone in the treatment of hepatocellular carcinoma: a randomized controlled trial. BMC Cancer 2017; 17:322. [PMID: 28490356 PMCID: PMC5425991 DOI: 10.1186/s12885-017-3320-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Based on promising results from a Phase I study of hepatic arterial infusion chemotherapy using a combination of miriplatin and cisplatin powder (DDP-H) for unresectable hepatocellular carcinoma (UMIN-CTR000003541), a multicenter, open-label, randomized phase II study was conducted to evaluate the efficacy and safety of the combination therapy versus miriplatin monotherapy. METHODS Nineteen patients, five and fourteen Barcelona-Clinic Liver Cancer staging classification A and B cases, respectively, were randomly assigned to receive either miriplatin monotherapy (n = 9) or miriplatin/DDP-H combination therapy (n = 10). DDP-H and/or miriplatin were administered through the hepatic arteries supplying the lobes of the liver containing tumors, and progression free survival was analyzed as a primary end point in addition to other secondary endpoints. The corresponding therapy was repeated unless disease progression or severe adverse events were recorded. RESULTS The monotherapy or combination therapy was performed for 15 or 36 sessions in total, respectively. Although there were no significant differences between the two groups for treatment intervals (p = 0.96) or the dose of miriplatin used in each session (p = 0.99), the progression free survival and overall disease control rate were significantly better in the combination therapy group (91 vs 423 days, p = 0.025; 40.0 vs 77.8%, p = 0.0025, respectively). Consistent with these observations, a trend of a significantly slower increase in des-γ-carboxyprothrombin was observed, and the number of treatment sessions was nearly significantly larger in the combination therapy group (p < 0.0001, p = 0.057, respectively). Conversely, the median survival time did not show a significant difference (706 days, monotherapy vs 733 days, combination therapy; p = 0.40). A significant decrease in cholinesterase was observed during the course of treatment only in patients receiving combination therapy (r = -0.86, p < 0.0001). A few cases in both arms showed hematological and/or non-hematological toxicities that were categorized as grade 1 (NCI-CTCAE). CONCLUSIONS The higher disease control effects with the combination of miriplatin and DDP-H indicate that it is a promising alternative treatment for cases with multiple HCCs, especially for those that can tolerate the treatment without experiencing a reduction in hepatic reserve. TRIAL REGISTRATION This study was registered on 1 January 2012 with the University Hospital Medical Information Network Clinical Trials Registry ( http://www.umin.ac.jp/ctr/index.htm , UMIN000004691).
Collapse
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510 Niigata Japan
| | - Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata Medical and Dental Hospital, 4132 Urasa, Minami-Uonuma, 949-7302 Niigata Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510 Niigata Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510 Niigata Japan
| | - Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata Medical and Dental Hospital, 4132 Urasa, Minami-Uonuma, 949-7302 Niigata Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510 Niigata Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510 Niigata Japan
| | - Hirokazu Kawai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510 Niigata Japan
| | - Nobuo Waguri
- Department of Gastroenterology and Hepatology, Niigata City General Hospital, Niigata, 950−1197 Niigata Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510 Niigata Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510 Niigata Japan
| |
Collapse
|
17
|
Kamimura K, Suda T, Yokoo T, Kamimura H, Kanefuji T, Tsuchiya A, Takamura M, Kawai H, Waguri N, Yamagiwa S, Terai S. Transhepatic arterial infusion chemotherapy using a combination of miriplatin and CDDP powder versus miriplatin alone in the treatment of hepatocellular carcinoma: a randomized controlled trial. BMC Cancer 2017. [PMID: 28490356 DOI: 10.1186/s12885-017-3320-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Based on promising results from a Phase I study of hepatic arterial infusion chemotherapy using a combination of miriplatin and cisplatin powder (DDP-H) for unresectable hepatocellular carcinoma (UMIN-CTR000003541), a multicenter, open-label, randomized phase II study was conducted to evaluate the efficacy and safety of the combination therapy versus miriplatin monotherapy. METHODS Nineteen patients, five and fourteen Barcelona-Clinic Liver Cancer staging classification A and B cases, respectively, were randomly assigned to receive either miriplatin monotherapy (n = 9) or miriplatin/DDP-H combination therapy (n = 10). DDP-H and/or miriplatin were administered through the hepatic arteries supplying the lobes of the liver containing tumors, and progression free survival was analyzed as a primary end point in addition to other secondary endpoints. The corresponding therapy was repeated unless disease progression or severe adverse events were recorded. RESULTS The monotherapy or combination therapy was performed for 15 or 36 sessions in total, respectively. Although there were no significant differences between the two groups for treatment intervals (p = 0.96) or the dose of miriplatin used in each session (p = 0.99), the progression free survival and overall disease control rate were significantly better in the combination therapy group (91 vs 423 days, p = 0.025; 40.0 vs 77.8%, p = 0.0025, respectively). Consistent with these observations, a trend of a significantly slower increase in des-γ-carboxyprothrombin was observed, and the number of treatment sessions was nearly significantly larger in the combination therapy group (p < 0.0001, p = 0.057, respectively). Conversely, the median survival time did not show a significant difference (706 days, monotherapy vs 733 days, combination therapy; p = 0.40). A significant decrease in cholinesterase was observed during the course of treatment only in patients receiving combination therapy (r = -0.86, p < 0.0001). A few cases in both arms showed hematological and/or non-hematological toxicities that were categorized as grade 1 (NCI-CTCAE). CONCLUSIONS The higher disease control effects with the combination of miriplatin and DDP-H indicate that it is a promising alternative treatment for cases with multiple HCCs, especially for those that can tolerate the treatment without experiencing a reduction in hepatic reserve. TRIAL REGISTRATION This study was registered on 1 January 2012 with the University Hospital Medical Information Network Clinical Trials Registry ( http://www.umin.ac.jp/ctr/index.htm , UMIN000004691).
Collapse
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Niigata, Japan
| | - Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata Medical and Dental Hospital, 4132 Urasa, Minami-Uonuma, 949-7302, Niigata, Japan.
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Niigata, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Niigata, Japan
| | - Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata Medical and Dental Hospital, 4132 Urasa, Minami-Uonuma, 949-7302, Niigata, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Niigata, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Niigata, Japan
| | - Hirokazu Kawai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Niigata, Japan
| | - Nobuo Waguri
- Department of Gastroenterology and Hepatology, Niigata City General Hospital, Niigata, 950-1197, Niigata, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Niigata, Japan
| |
Collapse
|
18
|
Itoh A, Sadamori H, Yabushita K, Monden K, Tatsukawa M, Hioki M, Hyodo T, Omonishi K, Ueki T, Ohno S, Sakaguchi K, Takakura N. Advanced hepatocellular carcinoma with hepatic vein tumor thrombosis and renal dysfunction after hepatic arterial infusion chemotherapy effectively treated by liver resection with active veno-venous bypass: report of a case. BMC Cancer 2016; 16:705. [PMID: 27586890 PMCID: PMC5009678 DOI: 10.1186/s12885-016-2749-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/25/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) patients with hepatic vein tumor thrombosis (HVTT) extending to the inferior vena cava (IVC) have an extremely poor prognosis. Here we report a case of HCC with HVTT and renal dysfunction after hepatic arterial infusion chemotherapy (HAIC) successfully treated by liver resection and active veno-venous bypass. CASE PRESENTATION A 77-year-old man was diagnosed to have a large HCC with intrahepatic metastases and HVTT extending to the IVC. Due to the advanced stage, HAIC with cisplatin was performed 13 times in a period of 17 months. As a consequence of this treatment, the size of the main HCC markedly decreased, and the advanced part of the HVTT went down to the root of the right hepatic vein (RHV). However, because of renal dysfunction, HAIC with cisplatin was discontinued and right hepatectomy with patch graft venoplasty of the root of the RHV was performed. Because progression of renal dysfunction had to be avoided, veno-venous bypass was activated during IVC clamping to prevent renal venous congestion and hypotension. Histological examination showed foci of a moderately differentiated HCC with extensive fibrosis and necrosis in the main HCC. Histologically, the HVTT in the RHV showed massive necrosis and tightly adhered to the vascular wall of the RHV. The postoperative function of the remnant liver was good, and no further deterioration of renal function was detected. The patient did not show signs of recurrence 15 month after surgery. CONCLUSION In the present case, HAIC using cisplatin in combination with hepatic resection and patch graft venoplasty of the IVC provided a good long-term outcome with no HCC recurrence. Renal function was preserved by using active veno-venous bypass during IVC clamping to prevent renal venous congestion and hypotension.
Collapse
Affiliation(s)
- Atene Itoh
- Department of Gastroenterological Surgery, Fukuyama City Hospital, 5-23-1 Zao, Fukuyama, 721-8511, Japan
| | - Hiroshi Sadamori
- Department of Gastroenterological Surgery, Fukuyama City Hospital, 5-23-1 Zao, Fukuyama, 721-8511, Japan.
| | - Kazuhisa Yabushita
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Kazuteru Monden
- Department of Gastroenterological Surgery, Fukuyama City Hospital, 5-23-1 Zao, Fukuyama, 721-8511, Japan
| | - Masashi Tatsukawa
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Masayoshi Hioki
- Department of Gastroenterological Surgery, Fukuyama City Hospital, 5-23-1 Zao, Fukuyama, 721-8511, Japan
| | - Tsuyoshi Hyodo
- Department of Radiology, Fukuyama City Hospital, Fukuyama, Japan
| | | | - Toru Ueki
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Satoshi Ohno
- Department of Gastroenterological Surgery, Fukuyama City Hospital, 5-23-1 Zao, Fukuyama, 721-8511, Japan
| | - Kohsaku Sakaguchi
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Norihisa Takakura
- Department of Gastroenterological Surgery, Fukuyama City Hospital, 5-23-1 Zao, Fukuyama, 721-8511, Japan
| |
Collapse
|
19
|
Shi Q, Shi X, Zuo G, Xiong W, Li H, Guo P, Wang F, Chen Y, Li J, Chen DL. Anticancer effect of 20(S)-ginsenoside Rh2 on HepG2 liver carcinoma cells: Activating GSK-3β and degrading β-catenin. Oncol Rep 2016; 36:2059-70. [PMID: 27573179 DOI: 10.3892/or.2016.5033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/04/2016] [Indexed: 11/06/2022] Open
Abstract
20(S)-ginsenoside Rh2 [(S)Rh2] possesses potential to prevent cancer in vitro as well as in vivo, but the underlying mechanism is still unknown. First, we infected HepG2 cells with lentivirus which carries β‑catenin. We detected the pharmacological effects of (S)Rh2 on HepG2 and HepG2‑β‑catenin cells and found that the IC50 of (S)Rh2 exposure on HepG2-β-catenin cells was higher than HepG2 cells. Flow cytometry (FCM) indicated that (S)Rh2 could be arrested in G0/G1 phase and induce early apoptosis in HepG2 and HepG2‑β‑catenin cells. Second, ELISA kit was used to check the activity of glycogen synthase kinase‑3β (GSK‑3β), which was upregulated by (S)Rh2. GSK‑3β inhibitor BIO, was used to verify that (S)Rh2 activated GSK‑3β. PCR and western blotting results indicated that (S)Rh2 could degrade the expression of β‑catenin, which combined with TCF in the nucleus and activate transcription of Wnt target genes, such as Bax, Bcl‑2, cyclin D1, MMP3, which were checked by chromatin immunoprecipitation (ChIP), PCR and western blotting. The results showed that the expression of Bax mRNA and proteins increased, while the cyclin D1, Bcl‑2, MMP3 mRNA and proteins were downregulated in HepG2 and HepG2‑β‑catenin cells which was induced by (S)Rh2. By contrast, with the HepG2-β-catenin + (S)Rh2 group, the expression of other mRNA and proteins in HepG2 + (S)Rh2 group changed significantly. In vivo, experiments were performed using a nude mouse xenograft model to investigate the (S)Rh2 effect. So these results suggested that (S)Rh2 could suppress proliferation, promote apoptosis and inhibit metastasis of HepG2, decrease weight of tumor by downregulating β‑catenin through activating GSK‑3β and the pharmacological effect of (S)Rh2 on HepG2 cells might be weakened by overexpression of β‑catenin.
Collapse
Affiliation(s)
- Qingqiang Shi
- Emergency Department of First People's Hospital of Chongqing New North Zone, Chongqing 401121, P.R. China
| | - Xueping Shi
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gei Zuo
- Laboratory of Clinical Diagnostics, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Xiong
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haixing Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Pei Guo
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fen Wang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Chen
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Di-Long Chen
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
20
|
Hatanaka T, Kakizaki S, Shimada Y, Takizawa D, Katakai K, Yamazaki Y, Sato K, Kusano M, Yamada M. Early Decreases in α-Fetoprotein and Des-γ-carboxy Prothrombin Predict the Antitumor Effects of Hepatic Transarterial Infusion Chemotherapy with Cisplatin (CDDP) Powder in Patients with Advanced Hepatocellular Carcinoma. Intern Med 2016; 55:2163-2171. [PMID: 27522991 DOI: 10.2169/internalmedicine.55.6688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective We retrospectively investigated the relationship between the tumor response and serial changes in α-fetoprotein (AFP) and des-γ-carboxy prothrombin (DCP) during hepatic arterial infusion of a cisplatin powder formulation (CDDP powder) in patients with advanced hepatocellular carcinoma (HCC). Methods Seventy-six advanced HCC patients were analyzed. All HCC patients received high-concentration cisplatin (1.43 mg/mL) via the haptic artery at a dose of 65 mg/m(2). AFP and DCP were measured at baseline and four to eight weeks after treatment, and the antitumor responses were evaluated according to the response evaluation criteria in solid tumours (RECIST) criteria after one or two courses of treatment. The patients were classified into two groups, a decreased group and a non-decreased group, according to the change in the serum levels of AFP and DCP at four to eight weeks compared to baseline. Results The response to treatment of the decreased group (n=16) and non-decreased group (n=60) was complete response/partial response/stable disease/progressive disease (CR/PR/SD/PD) in 4/4/5/3 and 1/11/8/40 patients, respectively. The response rate and disease control rate of the decreased group were significantly higher than those of the non-decreased group (p=0.016 and p<0.001, respectively). The median survival time (MST) of the decreased/non-decreased groups were 25.9/10.6 months, respectively. The cumulative survival rates for the decreased group were significantly higher than those of the non-decreased group (p=0.042). In the multivariate analysis, vascular invasion and the decreased group were significant factors that affected the therapeutic efficacy. Conclusion A decrease in the levels of AFP and DCP after the first treatment with CDDP powder is a good predictor for the antitumor effect and the prognosis.
Collapse
Affiliation(s)
- Takeshi Hatanaka
- Department of Internal Medicine, Isesaki Municipal Hospital, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Al-Mahalawy H, Marei HF, Abuohashish H, Alhawaj H, Alrefaee M, Al-Jandan B. Effects of cisplatin chemotherapy on the osseointegration of titanium implants. J Craniomaxillofac Surg 2016; 44:337-46. [PMID: 26895777 DOI: 10.1016/j.jcms.2016.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/29/2015] [Accepted: 01/12/2016] [Indexed: 11/28/2022] Open
Abstract
PURPOSE The effect of chemotherapy on the osseointegration of dental implants has received less interest compared with radiotherapy. Thus, the aim of the current study was to investigate the effect of cisplatin chemotherapy on the osseointegration of dental implants in a rabbit model. MATERIALS AND METHODS Sixteen New Zealand White rabbits were randomly assigned to two groups of treatment of either cisplatin at 2.5 mg/kg/week for 4 weeks (n = 8) or placebo (n = 8), in which the first dose was administered 2 days prior to the surgical procedure. Each rabbit received one titanium dental implant inserted in the right distal femoral condyle. Four rabbits from each group were sacrificed 4 and 8 weeks after implant insertion. Osseointegration of the dental implants was analysed using micro-computed tomography and histomorphometric evaluation. RESULTS Analysis of micro-computed tomography data and histomorphometric data showed that the osseointegration parameters, including the ratio of bone volume to total volume (BV/TV) and bone-implant contact (BIC%) for the cisplatin group, were significantly lower compared to the control group at 4 and 8 weeks. (P ≤ 0.05). CONCLUSION Cisplatin chemotherapy had a negative effect on the osseointegration of dental implants when inserted throughout the chemotherapeutic regimens in a rabbit model.
Collapse
Affiliation(s)
- Haytham Al-Mahalawy
- Biomedical Dental Sciences Department, College of Dentistry, University of Dammam, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Hesham F Marei
- Biomedical Dental Sciences Department, College of Dentistry, University of Dammam, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Hatem Abuohashish
- Biomedical Dental Sciences Department, College of Dentistry, University of Dammam, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Hussain Alhawaj
- Center of Research and Medical Consultation, University of Dammam, Dammam, 31441, Saudi Arabia.
| | - Munir Alrefaee
- Department of Internal Medicine, Oncology & Hematology, College of Medicine, University of Dammam, Dammam, Saudi Arabia.
| | - Badr Al-Jandan
- Biomedical Dental Sciences Department, College of Dentistry, University of Dammam, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
22
|
Shi QQ, Zuo GW, Feng ZQ, Zhao LC, Luo L, You ZM, Li DY, Xia J, Li J, Chen DL. Effect of trichostatin A on anti HepG2 liver carcinoma cells: inhibition of HDAC activity and activation of Wnt/β-Catenin signaling. Asian Pac J Cancer Prev 2014; 15:7849-7855. [PMID: 25292076 DOI: 10.7314/apjcp.2014.15.18.7849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
PURPOSE To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms. MATERIALS AND METHODS HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of β-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for β-catenin, HDAC1and HDAC3 was tested by q-PCR. β-Catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit. RESULTS Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/ G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was 6.22±0.25%, which increased to 7.17±0.20% and 18.1±0.42% in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of β-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of β-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of β-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased. CONCLUSIONS TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/β-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.
Collapse
Affiliation(s)
- Qing-Qiang Shi
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China E-mail : ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|