For: | Mao YQ, Fan XM. Autophagy: A new therapeutic target for liver fibrosis. World J Hepatol 2015; 7(16): 1982-1986 [PMID: 26261688 DOI: 10.4254/wjh.v7.i16.1982] |
---|---|
URL: | https://www.wjgnet.com/1948-5182/full/v7/i16/1982.htm |
Number | Citing Articles |
1 |
Yancen Dai, Nagarajan Prithiviraj, Jianhong Gan, Xin A. Zhang, Jizhou Yan. Tissue Extract Fractions from Starfish Undergoing Regeneration Promote Wound Healing and Lower Jaw Blastema Regeneration of Zebrafish. Scientific Reports 2016; 6(1) doi: 10.1038/srep38693
|
2 |
Tian Liu, Yahui Liu, Marina Miller, Liuzhao Cao, Jiping Zhao, Jinxiang Wu, Junfei Wang, Lin Liu, Shuo Li, Minfang Zou, Jiawei Xu, David H. Broide, Liang Dong. Autophagy plays a role in FSTL1-induced epithelial mesenchymal transition and airway remodeling in asthma. American Journal of Physiology-Lung Cellular and Molecular Physiology 2017; 313(1): L27 doi: 10.1152/ajplung.00510.2016
|
3 |
Kenneth K Wu. Control of Tissue Fibrosis by 5-Methoxytryptophan, an Innate Anti-Inflammatory Metabolite. Frontiers in Pharmacology 2021; 12 doi: 10.3389/fphar.2021.759199
|
4 |
Doaa I. Mohamed, Eman Khairy, Sherin Shafik Tawfek, Eman K. Habib, Marwa A. Fetouh. Coenzyme Q10 attenuates lung and liver fibrosis via modulation of autophagy in methotrexate treated rat. Biomedicine & Pharmacotherapy 2019; 109: 892 doi: 10.1016/j.biopha.2018.10.133
|
5 |
Elias Kouroumalis, Argryro Voumvouraki, Aikaterini Augoustaki, Dimitrios N Samonakis. Autophagy in liver diseases. World Journal of Hepatology 2021; 13(1): 6-65 doi: 10.4254/wjh.v13.i1.6
|
6 |
Yong-Joo Park, Dong-Min Kim, Hye-Been Choi, Mi-Ho Jeong, Seung-Hwan Kwon, Ha-Ryong Kim, Jong-Hwan Kwak, Kyu-Hyuck Chung. Dendropanoxide, a Triterpenoid from Dendropanax morbifera, Ameliorates Hepatic Fibrosis by Inhibiting Activation of Hepatic Stellate Cells through Autophagy Inhibition. Nutrients 2021; 14(1): 98 doi: 10.3390/nu14010098
|
7 |
Mengli Yu, Wei Zhu, Jinhai Wang, Xueyang Chen, Xinjue He, Bingru Lin, Li Cen, Tianyu Zhou, Chao Lu, Chaohui Yu, Jing Sun. Caveolin-1 Alleviates Crohn’s Disease–induced Intestinal Fibrosis by Inhibiting Fibroblasts Autophagy Through Modulating Sequestosome 1. Inflammatory Bowel Diseases 2022; 28(6): 923 doi: 10.1093/ibd/izab342
|
8 |
Nataša Pavlović, Carlemi Calitz, Kess Thanapirom, Guiseppe Mazza, Krista Rombouts, Pär Gerwins, Femke Heindryckx. Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma. eLife 2020; 9 doi: 10.7554/eLife.55865
|
9 |
Yuan-dong Sun, Hao Zhang, Yuan-min Li, Jian-jun Han. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2024; 1879(2): 189086 doi: 10.1016/j.bbcan.2024.189086
|
10 |
Qiang Yu, Ping Cheng, Jianye Wu, Chuanyong Guo. PPARγ/NF‐κB and TGF‐β1/Smad pathway are involved in the anti‐fibrotic effects of levo‐tetrahydropalmatine on liver fibrosis. Journal of Cellular and Molecular Medicine 2021; 25(3): 1645 doi: 10.1111/jcmm.16267
|
11 |
Zi-bo Li, Lin Jiang, Jia-dong Ni, Yuan-hang Xu, Fang Liu, Wen-ming Liu, Shao-gui Wang, Zhong-qiu Liu, Cai-yan Wang. Salvianolic acid B suppresses hepatic fibrosis by inhibiting ceramide glucosyltransferase in hepatic stellate cells. Acta Pharmacologica Sinica 2023; 44(6): 1191 doi: 10.1038/s41401-022-01044-9
|
12 |
Yaolong Liang, Qunwen Pan, Rongfeng Wang, Zhirong Ye, Zitao Li, Lingdiao Zeng, Yanfang Chen, Xiaotang Ma, Mingyi Li, Huilai Miao. Microvesicles Derived from TGF-β1 Stimulated Hepatic Stellate Cells Aggravate Hepatocellular Injury. Stem Cells and Development 2019; 28(16): 1128 doi: 10.1089/scd.2019.0032
|
13 |
Weiwei Chen, Zili Zhang, Zhen Yao, Ling Wang, Feng Zhang, Jiangjuan Shao, Anping Chen, Shizhong Zheng. Activation of autophagy is required for Oroxylin A to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. International Immunopharmacology 2018; 56: 148 doi: 10.1016/j.intimp.2018.01.029
|
14 |
Paula Constanza Arriola Benitez, Ayelén Ivana Pesce Viglietti, Claudia Karina Herrmann, Vida A. Dennis, Diego José Comerci, Guillermo Hernán Giambartolomei, María Victoria Delpino, Shelley M. Payne. Brucella abortus Promotes a Fibrotic Phenotype in Hepatic Stellate Cells, with Concomitant Activation of the Autophagy Pathway. Infection and Immunity 2018; 86(1) doi: 10.1128/IAI.00522-17
|
15 |
Jacopo Di Gregorio, Iole Robuffo, Sonia Spalletta, Giulia Giambuzzi, Vincenzo De Iuliis, Elena Toniato, Stefano Martinotti, Pio Conti, Vincenzo Flati. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Frontiers in Cell and Developmental Biology 2020; 8 doi: 10.3389/fcell.2020.607483
|
16 |
Jae-Ho Lee, Seung-Soon Im. Function of gaseous hydrogen sulfide in liver fibrosis. BMB Reports 2022; 55(10): 481 doi: 10.5483/BMBRep.2022.55.10.124
|
17 |
Hongbo Shi, Honglin Shi, Feng Ren, Dexi Chen, Yu Chen, Zhongping Duan. Naringin in Ganshuang Granule suppresses activation of hepatic stellate cells for anti‐fibrosis effect by inhibition of mammalian target of rapamycin. Journal of Cellular and Molecular Medicine 2017; 21(3): 500 doi: 10.1111/jcmm.12994
|
18 |
Hye-Young Seo, So-Hee Lee, Ji-Ha Lee, Yu Na Kang, Jae Seok Hwang, Keun-Gyu Park, Mi Kyung Kim, Byoung Kuk Jang. Src Inhibition Attenuates Liver Fibrosis by Preventing Hepatic Stellate Cell Activation and Decreasing Connective Tissue Growth Factor. Cells 2020; 9(3): 558 doi: 10.3390/cells9030558
|
19 |
Liliana Schaefer. Decoding fibrosis: Mechanisms and translational aspects. Matrix Biology 2018; : 1 doi: 10.1016/j.matbio.2018.04.009
|
20 |
Kai Sun, Lingyun Xu, Yingying Jing, Zhipeng Han, Xiaojing Chen, Chenlei Cai, Peipei Zhao, Xue Zhao, Liqun Yang, Lixin Wei. Autophagy-deficient Kupffer cells promote tumorigenesis by enhancing mtROS-NF-κB-IL1α/β-dependent inflammation and fibrosis during the preneoplastic stage of hepatocarcinogenesis. Cancer Letters 2017; 388: 198 doi: 10.1016/j.canlet.2016.12.004
|
21 |
Maaly Abd Elmaaboud, Haidy Khattab, Shahinaz Shalaby. Hepatoprotective effect of linagliptin against liver fibrosis induced by carbon tetrachloride in mice. Canadian Journal of Physiology and Pharmacology 2021; 99(3): 294 doi: 10.1139/cjpp-2020-0049
|
22 |
Federico Lucantoni, Andreu Martínez‐Cerezuela, Aleksandra Gruevska, Ángela B Moragrega, Víctor M Víctor, Juan V Esplugues, Ana Blas‐García, Nadezda Apostolova. Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: are we there yet?. The Journal of Pathology 2021; 254(3): 216 doi: 10.1002/path.5678
|
23 |
Constance Nebendahl, Solvig Görs, Elke Albrecht, Ricarda Krüger, Karen Martens, Katrin Giller, Harald M. Hammon, Gerald Rimbach, Cornelia C. Metges. Early postnatal feed restriction reduces liver connective tissue levels and affects H3K9 acetylation state of regulated genes associated with protein metabolism in low birth weight pigs. The Journal of Nutritional Biochemistry 2016; 29: 41 doi: 10.1016/j.jnutbio.2015.10.017
|
24 |
Mei-Ling Tsai, Siao-Ping Tsai, Chi-Tang Ho. Tetrahydrocurcumin attenuates carbon tetrachloride-induced hepatic fibrogenesis by inhibiting the activation and autophagy of hepatic stellate cells. Journal of Functional Foods 2017; 36: 418 doi: 10.1016/j.jff.2017.07.031
|
25 |
Xinrui Xing, Si Chen, Ling Li, Yan Cao, Langdong Chen, Xiaobo Wang, Zhenyu Zhu. The Active Components of Fuzheng Huayu Formula and Their Potential Mechanism of Action in Inhibiting the Hepatic Stellate Cells Viability – A Network Pharmacology and Transcriptomics Approach. Frontiers in Pharmacology 2018; 9 doi: 10.3389/fphar.2018.00525
|
26 |
Desong Kong, Zili Zhang, Liping Chen, Weifang Huang, Feng Zhang, Ling Wang, Yu Wang, Peng Cao, Shizhong Zheng. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy. Redox Biology 2020; 36: 101600 doi: 10.1016/j.redox.2020.101600
|
27 |
Yuepeng Jin, Yongyu Bai, Haizhen Ni, Li Qiang, Lechi Ye, Yunfeng Shan, Mengtao Zhou. Activation of autophagy through calcium‐dependent AMPK/mTOR and PKCθ pathway causes activation of rat hepatic stellate cells under hypoxic stress. FEBS Letters 2016; 590(5): 672 doi: 10.1002/1873-3468.12090
|
28 |
Devaraj Ezhilarasan, Etienne Sokal, Mustapha Najimi. Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary & Pancreatic Diseases International 2018; 17(3): 192 doi: 10.1016/j.hbpd.2018.04.003
|
29 |
Jing Li, Chuxiong Zeng, Beishi Zheng, Chun Liu, Min Tang, Yan Jiang, Yizhong Chang, Weiping Song, Yingxin Wang, Changqing Yang. HMGB1-induced autophagy facilitates hepatic stellate cells activation: a new pathway in liver fibrosis. Clinical Science 2018; 132(15): 1645 doi: 10.1042/CS20180177
|
30 |
Kaveh Baghaei, Sogol Mazhari, Samaneh Tokhanbigli, Gilda Parsamanesh, Helia Alavifard, Dedmer Schaafsma, Saeid Ghavami. Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis. Drug Discovery Today 2022; 27(4): 1044 doi: 10.1016/j.drudis.2021.12.012
|
31 |
Guillermo Hernán Giambartolomei, María Victoria Delpino. Immunopathogenesis of Hepatic Brucellosis. Frontiers in Cellular and Infection Microbiology 2019; 9 doi: 10.3389/fcimb.2019.00423
|
32 |
Xia Wang, Xinhong Song, Youjiao Si, Jikai Xia, Bin Wang, Peiyuan Wang. Effect of autophagy‑associated proteins on the arecoline‑induced liver injury in mice. Experimental and Therapeutic Medicine 2018; doi: 10.3892/etm.2018.6564
|
33 |
Xiaofei Xin, Jingjing Li, Wantao Wu, Pengbo Zhao, Yang Yang, Ying Zhu, Lianjie Ren, Chao Qin, Lifang Yin. ROS-scavenging nanomedicine for “multiple crosstalk” modulation in non-alcoholic fatty liver disease. Biomaterials Science 2023; 11(10): 3709 doi: 10.1039/D2BM02161G
|
34 |
Trinh Van Le, Ngoc Bao Thi Dinh, Minh Thanh Dang, Nhan Chinh Lu Phan, Loan Tung Thi Dang, Gabriele Grassi, Ai Xuan Le Holterman, Huy Minh Le, Nhung Hai Truong. Effects of autophagy inhibition by chloroquine on hepatic stellate cell activation in CCl4‐induced acute liver injury mouse model. Journal of Gastroenterology and Hepatology 2022; 37(1): 216 doi: 10.1111/jgh.15726
|
35 |
Aidan Brougham-Cook, Ishita Jain, David A. Kukla, Faisal Masood, Hannah Kimmel, Hyeon Ryoo, Salman R. Khetani, Gregory H. Underhill. High throughput interrogation of human liver stellate cells reveals microenvironmental regulation of phenotype. Acta Biomaterialia 2022; 138: 240 doi: 10.1016/j.actbio.2021.11.015
|
36 |
Jing Li, Yong Li. Autophagy is involved in allergic rhinitis by inducing airway remodeling. International Forum of Allergy & Rhinology 2019; 9(11): 1346 doi: 10.1002/alr.22424
|
37 |
Olivia Chowdhury, Sayan Ghosh, Ankur Das, Haitao Liu, Peng Shang, Nadezda A. Stepicheva, Stacey Hose, Debasish Sinha, Sreya Chattopadhyay. Sustained systemic inflammation increases autophagy and induces EMT/fibrotic changes in mouse liver cells: Protection by melatonin. Cellular Signalling 2023; 101: 110521 doi: 10.1016/j.cellsig.2022.110521
|
38 |
Yu Wang, Zhenlei Ping, Hongxin Gao, Zhihui Liu, Qingyang Xv, Xiaowen Jiang, Wenhui Yu. LYC inhibits the AKT signaling pathway to activate autophagy and ameliorate TGFB-induced renal fibrosis. Autophagy 2024; 20(5): 1114 doi: 10.1080/15548627.2023.2287930
|