For: | Uehara D, Hayashi Y, Seki Y, Kakizaki S, Horiguchi N, Tojima H, Yamazaki Y, Sato K, Yasuda K, Yamada M, Uraoka T, Kasama K. Non-invasive prediction of non-alcoholic steatohepatitis in Japanese patients with morbid obesity by artificial intelligence using rule extraction technology. World J Hepatol 2018; 10(12): 934-943 [PMID: 30631398 DOI: 10.4254/wjh.v10.i12.934] |
---|---|
URL: | https://www.wjgnet.com/1948-5182/full/v10/i12/934.htm |
Number | Citing Articles |
1 |
Yoichi Hayashi. The Right Direction Needed to Develop White-Box Deep Learning in Radiology, Pathology, and Ophthalmology: A Short Review. Frontiers in Robotics and AI 2019; 6 doi: 10.3389/frobt.2019.00024
|
2 |
Yoichi Hayashi. New unified insights on deep learning in radiological and pathological images: Beyond quantitative performances to qualitative interpretation. Informatics in Medicine Unlocked 2020; 19: 100329 doi: 10.1016/j.imu.2020.100329
|
3 |
Feifei Lu, Yao Meng, Xiaoting Song, Xiaotong Li, Zhuang Liu, Chunru Gu, Xiaojie Zheng, Yi Jing, Wei Cai, Kanokwan Pinyopornpanish, Andrea Mancuso, Fernando Gomes Romeiro, Nahum Méndez-Sánchez, Xingshun Qi. Artificial Intelligence in Liver Diseases: Recent Advances. Advances in Therapy 2024; 41(3): 967 doi: 10.1007/s12325-024-02781-5
|
4 |
Athanasios G. Pantelis, Georgios K. Stravodimos, Dimitris P. Lapatsanis. A Scoping Review of Artificial Intelligence and Machine Learning in Bariatric and Metabolic Surgery: Current Status and Future Perspectives. Obesity Surgery 2021; 31(10): 4555 doi: 10.1007/s11695-021-05548-x
|
5 |
|
6 |
Yoko Nagayasu, Daisuke Fujita, Masahide Ohmichi, Yoichi Hayashi. Use of an artificial intelligence‐based rule extraction approach to predict an emergency cesarean section. International Journal of Gynecology & Obstetrics 2022; 157(3): 654 doi: 10.1002/ijgo.13888
|
7 |
Yoichi Hayashi. Artificial Intelligence and Machine Learning for Digital Pathology. Lecture Notes in Computer Science 2020; 12090: 95 doi: 10.1007/978-3-030-50402-1_6
|
8 |
Zhangfan Ye, Song Chen. Study on a New Sparse Rule Algorithm in Liver Disease. 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI) 2020; : 33 doi: 10.1109/IICSPI51290.2020.9332314
|
9 |
Daisuke Uehara. Analysis of Diagnosis and Treatment Aimed at Improving the Prognosis of Non-viral Liver Disease. The Kitakanto Medical Journal 2023; 73(1): 113 doi: 10.2974/kmj.73.113
|
10 |
Pakanat Decharatanachart, Roongruedee Chaiteerakij, Thodsawit Tiyarattanachai, Sombat Treeprasertsuk. Application of artificial intelligence in non-alcoholic fatty liver disease and liver fibrosis: a systematic review and meta-analysis. Therapeutic Advances in Gastroenterology 2021; 14 doi: 10.1177/17562848211062807
|
11 |
Yogesh Kumar, Apeksha Koul, Ruchi Singla, Muhammad Fazal Ijaz. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Journal of Ambient Intelligence and Humanized Computing 2023; 14(7): 8459 doi: 10.1007/s12652-021-03612-z
|