1
|
Qiu W, Guo R, Yu H, Chen X, Chen Z, Ding D, Zhong J, Yang Y, Fang F. Single-cell atlas of human gingiva unveils a NETs-related neutrophil subpopulation regulating periodontal immunity. J Adv Res 2025; 72:287-301. [PMID: 39084404 DOI: 10.1016/j.jare.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Exaggerated neutrophil recruitment and activation are the major features of pathological alterations in periodontitis, in which neutrophil extracellular traps (NETs) are considered to be responsible for inflammatory periodontal lesions. Despite the critical role of NETs in the development and progression of periodontitis, their specific functions and mechanisms remain unclear. OBJECTIVES To demonstrate the important functions and specific mechanisms of NETs involved in periodontal immunopathology. METHODS We performed single-cell RNA sequencing on gingival tissues from both healthy individuals and patients diagnosed with periodontitis. High-dimensional weighted gene co-expression network analysis and pseudotime analysis were then applied to characterize the heterogeneity of neutrophils. Animal models of periodontitis were treated with NETs inhibitors to investigate the effects of NETs in severe periodontitis. Additionally, we established a periodontitis prediction model based on NETs-related genes using six types of machine learning methods. Cell-cell communication analysis was used to identify ligand-receptor pairs among the major cell groups within the immune microenvironment. RESULTS We constructed a single-cell atlas of the periodontal microenvironment and obtained nine major cell populations. We further identified a NETs-related subgroup (NrNeu) in neutrophils. An in vivo inhibition experiment confirmed the involvement of NETs in gingival inflammatory infiltration and alveolar bone absorption in severe periodontitis. We further screened three key NETs-related genes (PTGS2, MME and SLC2A3) and verified that they have the potential to predict periodontitis. Moreover, our findings revealed that gingival fibroblasts had the most interactions with NrNeu and that they might facilitate the production of NETs through the MIF-CD74/CXCR4 axis in periodontitis. CONCLUSION This study highlights the pathogenic role of NETs in periodontal immunity and elucidates the specific regulatory relationship by which gingival fibroblasts activate NETs, which provides new insights into the clinical diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruiming Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxin Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dian Ding
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jindou Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yumeng Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2025; 72:485-500. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
3
|
Sun GJ, Xu F, Jiao XY, Yin Y. Advances in research of neutrophil extracellular trap formation in osteoarticular diseases. World J Orthop 2025; 16:106377. [DOI: 10.5312/wjo.v16.i5.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Neutrophil extracellular traps (NETs) have been the subject of research in the field of innate immunity since they were first described two decades ago. NETs are fibrous network structures released by neutrophils under specific stimuli, including DNA, histones, and a variety of granular proteins. NETs have been widely studied in the fields of infectious and immune diseases, and new breakthroughs have been made in the understanding of disease pathogenesis and treatment. In recent years, studies have found that NETs play an important role in the occurrence and development of osteoarticular diseases. This article reviews the progress in the research of NETs in common osteoarticular diseases such as rheumatoid arthritis, ankylosing spondylitis, gouty arthritis, osteonecrosis of the femoral head, osteoarthritis, and joint fibrosis, including the formation mechanism of NETs and its role in inflammation, joint destruction, pain and other pathological processes. The problems existing in current research are discussed, along with future research directions, to provide a reference for the in-depth study of osteoarticular diseases and the development of new treatment strategies.
Collapse
Affiliation(s)
- Guan-Jun Sun
- Department of Joint and Sports Medicine, Suining Central Hospital, Suining 629000, Sichuan Province, China
| | - Feng Xu
- Department of Joint and Sports Medicine, Suining Central Hospital, Suining 629000, Sichuan Province, China
| | - Xiao-Yi Jiao
- Department of Joint and Sports Medicine, Suining Central Hospital, Suining 629000, Sichuan Province, China
| | - Yi Yin
- Department of Joint and Sports Medicine, Suining Central Hospital, Suining 629000, Sichuan Province, China
| |
Collapse
|
4
|
Varughese A, Balnadupete A, Ramesh P, Prasad TSK, Nidha AB, Bhandary Y. Guardians Turned Culprits: NETosis and Its Influence on Pulmonary Fibrosis Development. Mol Biotechnol 2025; 67:1752-1764. [PMID: 38717537 DOI: 10.1007/s12033-024-01171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating, life-threatening irreversible lung disease characterized by the excessive accumulation of fibrotic tissue in the lungs, impairing their function. The exact mechanisms underlying Pulmonary fibrosis (PF) are multifaceted and not yet fully understood. Reports show that during COVID-19 pandemic, PF was dramatically increased due to the hyperactivation of the immune system. Neutrophils and macrophages are the patrolling immune cells that keep the microenvironment balanced. Neutrophil extracellular traps (NETs) are a normal protective mechanism of neutrophils. The chief components of the NETs include DNA, citrullinated histones, and anti-microbial peptides which are released by the activated neutrophils. However, it is becoming increasingly evident that hyperactivation of immune cells can also turn into criminals when it comes to pathological state. Dysregulated NETosis may contribute to sustained inflammation, overactivation of fibroblasts, and ultimately promoting collagen deposition which is the characteristic feature of PF. The role of NETs along with inflammation is attaining greater attention. However, seldom researches are related to the relationship between NETs causing PF. This review highlights the cellular mechanism of NETs-induced pulmonary fibrosis, which could give a better understanding of molecular targets which may be helpful for treating NETs-induced PF.
Collapse
Affiliation(s)
- Aleena Varughese
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | - Akarsha Balnadupete
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | - Poornima Ramesh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | | | | | - Yashodhar Bhandary
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India.
| |
Collapse
|
5
|
Lika J, Votava JA, Datta R, Mellado Fritz CA, Kralovec AM, Smith FM, Huttenlocher A, Skala MC, Fan J. Mitochondrial metabolism is rapidly re-activated in mature neutrophils to support stimulation-induced response. Front Immunol 2025; 16:1572927. [PMID: 40356902 PMCID: PMC12066771 DOI: 10.3389/fimmu.2025.1572927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Neutrophils are highly abundant innate immune cells that are constantly produced from myeloid progenitors in the bone marrow. Differentiated neutrophils can perform an arsenal of effector functions critical for host defense. This study aims to quantitatively understand neutrophil mitochondrial metabolism throughout differentiation and activation, and to elucidate the impact of mitochondrial metabolism on neutrophil functions. Methods To study metabolic remodeling throughout neutrophil differentiation, murine ER-Hoxb8 myeloid progenitor-derived neutrophils and human induced pluripotent stem cell-derived neutrophils were assessed as models. To study the metabolic remodeling upon neutrophil activation, differentiated ER-Hoxb8 neutrophils and primary human neutrophils were activated with various stimuli, including ionomycin, monosodium urate crystals, and phorbol 12-myristate 13-acetate. Characterization of cellular metabolism by isotopic tracing, extracellular flux analysis, metabolomics, and fluorescence-lifetime imaging microscopy revealed dynamic changes in mitochondrial metabolism. Results As neutrophils mature, mitochondrial metabolism decreases drastically, energy production is offloaded from oxidative phosphorylation, and glucose oxidation through the TCA cycle is substantially reduced. Nonetheless, mature neutrophils retain the capacity for mitochondrial metabolism. Upon stimulation with certain stimuli, TCA cycle is rapidly activated. Mitochondrial pyruvate carrier inhibitors reduce this re-activation of the TCA cycle and inhibit the release of neutrophil extracellular traps. Treatment with these inhibitors also impacts neutrophil redox status, migration, and apoptosis without significantly changing overall bioenergetics. Conclusions Together, these results demonstrate that mitochondrial metabolism is dynamically remodeled and plays a significant role in neutrophils. Furthermore, these findings point to the therapeutic potential of mitochondrial pyruvate carrier inhibitors in a range of conditions where dysregulated neutrophil response drives inflammation and contributes to pathology.
Collapse
Affiliation(s)
- Jorgo Lika
- Morgridge Institute for Research, Madison, WI, United States
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
| | - James A. Votava
- Morgridge Institute for Research, Madison, WI, United States
| | - Rupsa Datta
- Morgridge Institute for Research, Madison, WI, United States
| | - Carlos A. Mellado Fritz
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Aleksandr M. Kralovec
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Frances M. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, United States
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
6
|
Zeng M, Niu Y, Huang J, Deng L. Advances in neutrophil extracellular traps and ferroptosis in sepsis-induced cardiomyopathy. Front Immunol 2025; 16:1590313. [PMID: 40356926 PMCID: PMC12066755 DOI: 10.3389/fimmu.2025.1590313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Sepsis-induced cardiomyopathy is a reversible non-ischemic acute cardiac dysfunction associated with sepsis. It is strongly associated with an abnormal immune response. It emerges as a vital threat to public health owing to its high mortality rate. However, the exact pathogenesis requires further investigation. In recent years, NETosis and ferroptosis, which are novel modes of programmed cell death, have been identified and found to play important roles in sepsis-related organ damage. This article outlines the mechanisms of these two modes of cell death, discusses the role of neutrophil extracellular traps in myocardial injury and the importance of ferroptosis in sepsis-induced cardiomyopathy, and reviews the potential interconnection between these two types of programmed cell death in sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical
University, Zhanjiang, China
| |
Collapse
|
7
|
Jesus Gonzalez-Contreras FD, Gutierrez-Vidal RG, Zarate X. A recombinant human SLPI variant suppresses the formation of neutrophil extracellular traps at low concentrations in vitro. Protein Expr Purif 2025; 232:106721. [PMID: 40280458 DOI: 10.1016/j.pep.2025.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Neutrophil extracellular traps (NETs) are web-like structures released by neutrophils to trap and kill microbes. While NETs are crucial in host defense, excessive formation can lead to autoimmune diseases. Currently, no specific drugs target NETs directly; however, some medications can indirectly modulate their formation. The secretory leukocyte protease inhibitor (SLPI) is a small protein that inhibits the activity of neutrophil elastase (NE), an enzyme essential for NETs formation. By inhibiting NE activity, SLPI prevents the chromatin from decondensing, which is necessary for NETs to form; this suggests that SLPI may protect by preventing excessive NETs development. However, evidence indicates that NE can inactivate SLPI by cleaving its N-terminus. This action can create a protease/antiprotease imbalance, potentially leading to detrimental consequences for the host. In this study, we produced a recombinant variant of SLPI (SLPI-S15G-A16G: rSLPIv) using recombinant DNA technology, expressed in Escherichia coli SHuffle T7. The protein was tagged with the small metal-binding protein (SmbP) to facilitate its expression and purification through immobilized metal-affinity chromatography. Our results demonstrated that rSLPIv exhibited immunomodulatory activity at a concentration of 10 nM in neutrophils that had been prestimulated with PMA. It reduced NETs formation by 30 % and maintained this effect for up to 6 h. Confocal microscopy confirmed these findings, revealing a rSLPIv-dependent reduction in neutrophil nuclear expansion. Thus, rSLPIv shows significant suppressive activity on NETs formation at low concentrations, making it a potential candidate as an immunotherapeutic agent.
Collapse
Affiliation(s)
- Felipe de Jesus Gonzalez-Contreras
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, Ciudad Universitaria, San Nicolas de los Garza, NL, 66455, Mexico
| | - Roxana Guadalupe Gutierrez-Vidal
- Programa de Investigadoras e Investigadores por México CONAHCYT, Mexico; Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Monterrey, Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica, Apodaca, NL, 66600, Mexico
| | - Xristo Zarate
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, Ciudad Universitaria, San Nicolas de los Garza, NL, 66455, Mexico.
| |
Collapse
|
8
|
Zhao B, Li R. Methylome and transcriptome analyses reveal HLA-DMB's contribution to periodontitis development. PLoS One 2025; 20:e0319055. [PMID: 40267082 PMCID: PMC12017480 DOI: 10.1371/journal.pone.0319055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/27/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Periodontitis is a typical oral disease. Polymorphonuclear neutrophils (PMNs) are crucial immune cells in periodontal tissues, relating to infection, inflammation, and innate immunity. We herein aimed to explore important periodontitis PMN related genes. METHODS Periodontitis and control samples were downloaded from Gene Expression Omnibus database, including GSE173082 (methylation data, n=72), GSE10334 (n=127), GSE43525 (n=23), GSE16134 (n=134). Differential expression analysis and differential methylation analysis was employed to find candidate genes. Receiver operating characteristic analysis was performed to evaluate the diagnostic value of the hub gene. The functional pathways were determined by gene set enrichment analysis. Using CIBERSORT software, the immune cell infiltration landscape of periodontitis tissue was explored. The mRNA and protein levels of target gene in clinical tissue samples were determined employing RT-qPCR and western blotting. All statistical analyses were conducted in R software. RESULTS After integrating DNA methylation with transcriptome profiles, GRASP, HLA-DMB, HLA-DMA, CAB39, NCOA2 and TLE4 were identified as candidate genes in periodontitis PMNs. HLA-DMB showed the highest correlation with core DNA methyltransferase DNMT3B (p < 0.05). Between high and low HLA-DMB expression samples, multiple immune related pathways were enriched, and differential immune cell infiltration was observed (p < 0.05). HLA-DMB exhibited significantly higher expressions in both public database and clinical tissue samples (p < 0.05). HLA-DMB was a diagnostic marker for periodontitis (GSE43525 AUC=0.777 and GSE16134 AUC=0.783). CONCLUSIONS Significantly higher HLA-DMB expression was noticed in PMNs of periodontitis, which probably contributed to the development of periodontitis. HLA-DMB is a promising diagnostic marker for periodontitis.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Ronghua Li
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, P.R. China
| |
Collapse
|
9
|
More KR, Devaraj A, Robledo-Avila FH, Partida-Sanchez S, Bakaletz LO, Goodman SD. High-mobility group protein B1 derived mutant peptide mB Box-97 inhibits the formation of neutrophil extracellular traps. Front Immunol 2025; 16:1565252. [PMID: 40342425 PMCID: PMC12059481 DOI: 10.3389/fimmu.2025.1565252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Neutrophil Extracellular Traps (NETs) are vital for innate immunity, playing a key role in controlling pathogen and biofilm proliferation. However, excessive NETosis is implicated in autoimmunity, inflammatory and neoplastic diseases, as well as thrombosis, stroke, and post-COVID-19 complications. Managing NETosis, therefore is a significant area of ongoing research. Herein, we have identified a peptide derived from HMGB1 that we have modified via a point mutation that is referred to as mB Box-97. In our recent study in a murine lung infection model, mB Box-97 was shown to be safe and effective at disrupting biofilms without eliciting an inflammatory response typically associated with HMGB1. Here we show that the lack of an inflammatory response of mB Box-97 is in part due to the inhibition of NETosis of which we investigated the mechanism of action. Methods mB Box-97's anti-NETosis activity was assessed using human neutrophils with known NET inducers PMA, LPS, or Ionomycin. Additionally, mB Box-97's binding to Protein Kinase C (PKC), in addition to downstream effects on NADPH oxidase (NOX) activation, Reactive Oxygen Species (ROS) generation and thereby NETosis were assessed. Results mB Box-97 significantly inhibited NETosis regardless of the type of induction pathway. Mechanistically, mB Box-97 inhibits PKC activity likely through direct binding and thereby reduced downstream activities including NOX activation, ROS production and NETosis. Conclusions mB Box-97 is a promising dual acting therapeutic candidate for managing NET-mediated pathologies and resolving biofilm infections. Our results reveal that PKC is a viable target for NETosis inhibition independent of NET inducer and worthy of further study. These findings pave the way for a novel class of therapeutics aimed at controlling excessive NETosis, potentially offering new treatments for a range of inflammatory and immune-related diseases.
Collapse
Affiliation(s)
- Kunal R. More
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Aishwarya Devaraj
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Frank H. Robledo-Avila
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Santiago Partida-Sanchez
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Lauren O. Bakaletz
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Steven D. Goodman
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Nguyen KH, Wasielewski ML, Yalavarthi S, Qu X, Knight JS, Takayama S. A Mimetic Assay of Neutrophil Extracellular Trap Degradation Using YOYO-1-Stained DNA-Histone Surface Webs. Cells 2025; 14:615. [PMID: 40277940 PMCID: PMC12025948 DOI: 10.3390/cells14080615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are not only promising biomarkers of disease, but also potential therapeutic targets. Overproduction or the improper clearance of NETs has been linked to disease severity. In vitro NET degradation assays can reveal mechanisms and degradation efficiency differences in diseased serum samples. There is a need for more convenient assays to increase the speed of NET degradation studies. This paper describes a simplified, lower variability mimetic assay with DNA-histone structures, referred to as surface webs, that performs functionally similarly to traditional NET degradation assays with increased scalability, ease of use, shorter preparation time, and lowered costs. The surface webs are created and dehydrated in a 96-well microplate that is shelf-stable, transportable, and viable for 30 days of storage at room temperature. The surface webs, compared to NETs, have similar shapes and distribution but lower intraplate variability while degrading with healthy serum and DNase I within the same timeframe. The assay can identify patient serum with reduced degradation capabilities. This assay opens new opportunities for NET-targeted drug discovery and studies on the role of NETs as modulators of disease.
Collapse
Affiliation(s)
- Katherine H. Nguyen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (K.H.N.); (M.L.W.)
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Midori L. Wasielewski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (K.H.N.); (M.L.W.)
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Xianggui Qu
- Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA;
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (K.H.N.); (M.L.W.)
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
11
|
Direksunthorn T, T Ahmed A, Pluetrattanabha N, Uthirapathy S, Ballal S, Singh A, Al-Hetty HRAK, Devi A, Sharma GC, Yumashev A. Ferroptosis in immune chaos: Unraveling its impact on disease and therapeutic potential. J Physiol Biochem 2025:10.1007/s13105-025-01078-7. [PMID: 40237936 DOI: 10.1007/s13105-025-01078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Since its introduction in 2012, ferroptosis has garnered significant attention from researchers over the past decade. Unlike autophagy and apoptosis, ferroptosis is an atypical iron-dependent programmed cell death that falls under necrosis. It is regulated by various cellular metabolic and signaling processes, which encompass amino acid, lipid, iron, and mitochondrial metabolism. The initiation of ferroptosis occurs through iron-dependent phospholipid peroxidation. Notably, ferroptosis exhibits a dual effect and is associated with various diseases. A significant challenge lies in managing autoimmune disorders with unknown origins that stem from the reactivation of the immune system. Two contributing factors to autoimmunity are the aberrant stimulation of cell death and the inadequate clearance of dead cells, which can expose or release intracellular components that activate the immune response. Ferroptosis is distinct from other forms of cell death, such as apoptosis, necroptosis, autophagy, and pyroptosis, due to its unique morphological, biochemical, and genetic characteristics and specific relationship with cellular iron levels. Recent studies indicate that immune cells can both induce and undergo ferroptosis. To better understand how ferroptosis influences immune responses and its imbalance in disease, a molecular understanding of the relationship between ferroptosis and immunity is essential. Consequently, further research is needed to develop immunotherapeutics that target ferroptosis. This review primarily focuses on the role of ferroptosis in immune-related disorders.
Collapse
Affiliation(s)
| | | | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | | | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
12
|
Mak KM, Shekhar AC, Ding SY. Neutrophil extracellular traps mediate pathophysiology of hepatic cells during liver injury. Anat Rec (Hoboken) 2025. [PMID: 40219700 DOI: 10.1002/ar.25673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Neutrophil extracellular traps (NETs) are web-like, bactericidal structures produced by neutrophils and are composed principally of extracellular DNA, histones, elastase, and myeloperoxidase, among other components. NET formation is an innate immune response that is beneficial for pathogen killing and clearance. However, excessive NET formation and clearance defects can lead to inflammation and induce damage to host organs. NETs are also implicated in the development of noninfectious inflammatory disorders, such as liver injury in chronic liver diseases. The liver parenchyma contains hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells. Each of these cells possesses unique structures and functions, and their interactions with NETs result in pathophysiological changes contributing to liver injury. This review updates the findings related to the modes of action and molecular mechanisms by which NETs modulate the pathophysiology of various hepatic cells and potentiate liver injury. The article also reviews the roles of NETs in hepatic ischemia reperfusion injury, hepatocellular carcinoma pathogenesis, and cancer metastasis. Last, we examine data to determine whether NETs induce crosstalk among various hepatic cells during liver injury and to identify future research directions.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Selena Y Ding
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Reis LR, Nascimento RO, Massafera MP, Di Mascio P, Ronsein GE. Investigating neutrophil responses to stimuli: Comparative analysis of reactive species-dependent and independent mechanisms. Redox Biol 2025; 81:103540. [PMID: 40037225 PMCID: PMC11923813 DOI: 10.1016/j.redox.2025.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
Neutrophils play a critical role in immune response, using mechanisms as degranulation, phagocytosis, and the release of extracellular DNA together with microbicidal proteins, the so-called neutrophil extracellular traps (NETs), to combat pathogens. Multiple mechanisms might be involved in neutrophil's response to stimuli, but the biochemical characterization of each different pathway is still lacking. In this study, we used superoxide measurements, live-imaging microscopy and high-resolution proteomics to provide a thorough biochemical characterization of the neutrophil's response following activation by two well-known stimuli, namely phorbol-12-myristate-13-acetate (PMA), and ionomycin, a calcium ionophore. Our results demonstrated that although both stimuli induce extracellular DNA release, signals and mediators released by activated cells before this final event were distinct. Thus, PMA-treated neutrophils induce superoxide production, and degranulation of proteins from all granules, especially those derived from secretory vesicles and tertiary granules. On the other hand, ionomycin-treated neutrophils do not stimulate superoxide generation, but induce extensive protein citrullination (also known as arginine deimination), particularly modifying proteins related to actin cytoskeleton organization, nucleus stability, and the NADPH oxidase complex. Interestingly, many of the citrullinated proteins detected in this work were also found to act as autoantigens in autoimmune diseases such as rheumatoid arthritis. These striking differences show neutrophils' response to PMA and ionomycin are two distinct biochemical processes that point towards neutrophils diversification and plasticity responding to the environment. It also provides implications for understanding neutrophil-driven microbial response and potential roles in autoimmune diseases.
Collapse
Affiliation(s)
- Lorenna Rocha Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Mariana Pereira Massafera
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
14
|
Mishra N, Mohs M, Wittmann N, Gross S, Thompson PR, Bossaller L. PLC and PAD2 Regulate Extracellular Calcium-Triggered Release of Macrophage Extracellular DNA Traps. Eur J Immunol 2025; 55:e202350942. [PMID: 40170382 PMCID: PMC11962252 DOI: 10.1002/eji.202350942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 04/03/2025]
Abstract
Macrophages can respond to infection or cellular stress by forming inflammasomes or by releasing extracellular traps (ETs) of DNA through METosis. While ETs have been extensively studied in neutrophils, there are fewer studies on METosis. We show that extracellular calcium and LPS enable human monocyte-derived macrophages (hMDM) to release extracellular DNA decorated with myeloperoxidase (MPO) and citrullinated histone, alongside ASC aggregation and IL-1ß maturation, indicating NLRP3 inflammasome activation. Compared with m-CSF differentiated macrophages only gm-CSF differentiated macrophages expressed macrophage elastase (MMP12) and METs released by the latter had significantly more bactericidal activity toward E. coli. Mechanistically, phospholipase C and peptidyl arginine deiminase-2 inhibition attenuate MET release. Interestingly, NLRP3 inflammasome blockade by MCC950 had a significant effect on MET release. Finally, MET release was completely blocked by plasma membrane stabilization by punicalagin. Altogether, we demonstrate that extracellular calcium-activated hMDM extrude DNA, containing citrullinated histones, MPO, MMP12, and ASC specks and released METs kill bacteria independent of hMDM phagocytotic activity. We believe that calcium-activated hMDM adds a physiologically relevant condition to calcium ionophore induced cell death that may be important in autoimmunity.
Collapse
Affiliation(s)
- Neha Mishra
- Section of Rheumatology, Department of Medicine AUniversity Medicine GreifswaldGreifswaldGermany
| | - Magdalena Mohs
- Section of Rheumatology, Department of Medicine AUniversity Medicine GreifswaldGreifswaldGermany
| | - Nico Wittmann
- Section of Pediatric Rheumatology, Department of Pediatric and Adolescent MedicineUniversity Medicine GreifswaldGreifswaldGermany
| | - Stefan Gross
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldGermany
| | - Paul R. Thompson
- Department of Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Medical SchoolWorcesterUSA
| | - Lukas Bossaller
- Section of Rheumatology, Department of Medicine AUniversity Medicine GreifswaldGreifswaldGermany
| |
Collapse
|
15
|
Fang J, Ding H, Huang J, Liu W, Hong T, Yang J, Wu Z, Li Z, Zhang S, Liu P, Fang Y, Wu J, Li X, Lin J. Mac-1 blockade impedes adhesion-dependent neutrophil extracellular trap formation and ameliorates lung injury in LPS-induced sepsis. Front Immunol 2025; 16:1548913. [PMID: 40226627 PMCID: PMC11985419 DOI: 10.3389/fimmu.2025.1548913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Background Sepsis is a common critical condition that can lead to multiple organ injury. Sepsis-induced acute respiratory distress syndrome (ARDS) is frequently an important cause of poor prognosis and is associated with high mortality rates, despite existing therapeutic interventions. Neutrophil infiltration and extracellular traps (NET) are implicated in acute lung injury (ALI) and ARDS following sepsis. As circulating neutrophils infiltrate infected tissues, they come into direct contact with vascular endothelial cells (ECs). Although the ability of NETs to induce endothelial damage is well established, the specific role of direct EC-neutrophil interactions in NET formation and lung injury during sepsis is not fully understood. Methods In this study, NET formation was assessed when neutrophils were co-culture with ECs or separated from them and stimulated with phorbol 12-myristate 13-acetate (PMA), lipopolysaccharide (LPS), lipoteichoic acid (LTA), or septic plasma. Results We found that adhesion of neutrophils on ECs is critical in NET formation in response to LPS, LTA, or septic plasma in vitro. Blocking the macrophage-1 antigen (Mac-1) impeded NET formation, while inhibiting P-selectin glycoprotein ligand-1 (PSGL-1) or leukocyte function-associated antigen-1 (LFA-1) did not. This adhesion-dependent NET formation was reliant on the influx of extracellular calcium and peptidylarginine deiminase 4 (PAD4)-mediated citrullination of histone H3. However, Mac-1 blockade did not alter calcium influx. In a murine model of LPS-induced sepsis, Mac-1 blockade reduced NET release, lowered inflammatory cytokine levels, mitigated endothelial damage, and attenuated lung injury. Conclusion Our findings offer insights into the critical role of EC-neutrophil direct contact in NET formation during sepsis and propose Mac-1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jinhua Fang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongguang Ding
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiaqi Huang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Wang Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tiantian Hong
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Junxian Yang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhiwei Wu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhuo Li
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shiying Zhang
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Peimin Liu
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ying Fang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jianhua Wu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
16
|
Conejeros I, Velásquez ZD, Espinosa G, Rojas-Baron L, Grabbe M, Hermosilla C, Taubert A. AMPK and CAMKK activation participate in early events of Toxoplasma gondii-triggered NET formation in bovine polymorphonuclear neutrophils. Front Vet Sci 2025; 12:1557509. [PMID: 40171409 PMCID: PMC11960748 DOI: 10.3389/fvets.2025.1557509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects humans, eventually causing severe diseases like prenatal or ocular toxoplasmosis. T. gondii also infects cattle but rarely induces clinical signs in this intermediate host type. So far, the innate immune mechanisms behind the potential resistance of bovines to clinical T. gondii infections remain unclear. Here, we present evidence on sustained activation of bovine polymorphonuclear neutrophils PMN by T. gondii tachyzoites, which is linked to a rise in cytoplasmic calcium concentrations, an enhancement of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK) and AMP-activated protein kinase (AMPK). NETosis is a specific form of programmed cell death, characterized by the release chromatin from the nucleus to the extracellular space resulting in formation of neutrophil extracellular traps (NETs). NETs can kill and entrap pathogens. In our experiments, NETosis was triggered by T. gondii, and this effector mechanism was enhanced by pre-treatments with the AMPK activator AICAR. Moreover, tachyzoite-mediated bovine neutrophil DNA release depended on MAPK- and store operated calcium entry- (SOCE) pathways since it was diminished by the inhibitors UO126 and 2-APB, respectively. Overall, we here provide new insights into early polymorphonuclear neutrophils responses against T. gondii for the bovine system.
Collapse
Affiliation(s)
- Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Skjølberg C, Degani L, Sileikaite-Morvaközi I, Hawkins CL. Oxidative modification of extracellular histones by hypochlorous acid modulates their ability to induce β-cell dysfunction. Free Radic Biol Med 2025; 230:209-221. [PMID: 39956473 DOI: 10.1016/j.freeradbiomed.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
Histones are nuclear proteins that play a key role in chromatin assembly and regulation of gene expression by their ability to bind to DNA. Histones can also be released from cells owing to necrosis or extracellular trap release from neutrophils (NETs) and other immune cells. The presence of histones in the extracellular environment has implications for many pathologies, including diabetes mellitus, owing to the cytotoxic nature of these proteins, and their ability to promote inflammation. NETs also contain myeloperoxidase, a defensive enzyme that produces hypochlorous acid (HOCl), to kill pathogens, but also readily damages host proteins. In this study, we examined the reactivity of histones with and without HOCl modification, with a pancreatic β-cell model. Exposure of β-cells to histones resulted in a loss of metabolic activity and cell death by a combination of apoptosis and necrosis. This toxicity was increased on pretreatment of the β-cells with tumour necrosis factor α and interleukin 1β. Histones upregulated endoplasmic reticulum (ER) stress genes, including the pro-apoptotic transcription factor CHOP. There was also evidence for alterations to the cellular redox environment and upregulation of antioxidant gene expression. However, downregulation of insulin-associated genes and insulin was observed. Interestingly, modification of the histones with HOCl reduced their toxicity and altered the patterns of gene expression observed, and a further decrease in the expression of insulin-associated genes was observed. These findings could be relevant to the development of Type 2 diabetes, where low-grade inflammation favours NET release, resulting in elevated histones in the circulation.
Collapse
Affiliation(s)
- Clara Skjølberg
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Laura Degani
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Inga Sileikaite-Morvaközi
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
18
|
Supjaroen P, Niamsi W, Thummarati P, Laiwattanapaisal W. An In Vitro Cell Model of Intestinal Barrier Function Using a Low-Cost 3D-Printed Transwell Device and Paper-Based Cell Membrane. Int J Mol Sci 2025; 26:2524. [PMID: 40141167 PMCID: PMC11941856 DOI: 10.3390/ijms26062524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Current in vitro methods for intestinal barrier assessment predominantly utilize two-dimensional (2D) membrane inserts in standard culture plates, which are widely recognized for their inability to replicate the microenvironment critical to intestinal barrier functionality. Our study focuses on creating an alternative method for intestinal barrier function by integrating a 3D-printed transwell device with a paper-based membrane. Caco-2 cells were grown on a Matrigel-modified paper membrane, in which the tight junction formation was evaluated using TEER measurements. Neutrophil-like dHL-60 cells were employed for neutrophil extracellular trap (NET) formation experiments. Furthermore, intestinal barrier dysfunction was demonstrated using NET-isolated and Staurosporine interventions. Intestinal barrier characteristics were investigated through immunofluorescence staining of specific proteins and scanning electron microscopy (SEM). Our paper-based intestinal barrier exhibited an increased resistance in a time-dependent manner, consistent with immunofluorescence images of Zonulin Occludens-1 (ZO-1) expression. Interestingly, immunofluorescence analysis revealed changes in the morphology of the intestinal barrier and the formation of surface villi. These disruptions were found to alter the localization of tight junctions, impacting epithelial polarization and surface functionality. Moreover, we successfully demonstrated the permeability of a paper-based intestinal barrier using FITC-dextran assay. Hence, the 3D-printed transwell device integrated with a paper membrane insert presents a straightforward, cost-effective, and sustainable platform for an in vitro cell model to evaluate intestinal barrier function.
Collapse
Affiliation(s)
- Pitaksit Supjaroen
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.)
| | - Wisanu Niamsi
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.)
| | - Parichut Thummarati
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanida Laiwattanapaisal
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
19
|
Zakrzewski P, Rice CM, Fleming K, Cela D, Groves SJ, Ponce-Garcia FM, Gibbs W, Roberts K, Pike T, Strathdee D, Anderson E, Nobbs AH, Toye AM, Steward C, Amulic B. Tafazzin regulates neutrophil maturation and inflammatory response. EMBO Rep 2025; 26:1590-1619. [PMID: 39962231 PMCID: PMC11933368 DOI: 10.1038/s44319-025-00393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Barth syndrome (BTHS) is a rare genetic disease caused by mutations in the TAFAZZIN gene. It is characterized by neutropenia, cardiomyopathy and skeletal myopathy. Neutropenia in BTHS is associated with life-threatening infections, yet there is little understanding of the molecular and physiological causes of this phenomenon. We combined bone marrow analysis, CRISPR/Cas9 genome editing in hematopoietic stem cells and functional characterization of circulating BTHS patient neutrophils to investigate the role of TAFAZZIN in neutrophils and their progenitors. We demonstrate a partial cell intrinsic differentiation defect, along with a dysregulated neutrophil inflammatory response in BTHS, including elevated degranulation and formation of neutrophil extracellular traps (NETs) in response to calcium flux. Developmental and functional alterations in BTHS neutrophils are underpinned by perturbations in the unfolded protein response (UPR) signaling pathway, suggesting potential therapeutic avenues for targeting BTHS neutropenia.
Collapse
Affiliation(s)
- Przemysław Zakrzewski
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Christopher M Rice
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kathryn Fleming
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Drinalda Cela
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Sarah J Groves
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Fernando M Ponce-Garcia
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Willem Gibbs
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kiran Roberts
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Tobias Pike
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Eve Anderson
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Angela H Nobbs
- Bristol Dental School Research Laboratories, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Colin Steward
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Borko Amulic
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
20
|
Pesenti L, de Oliveira Formiga R, Tamassia N, Gardiman E, Chable de la Héronnière F, Gasperini S, Chicher J, Kuhn L, Hammann P, Le Gall M, Saraceni-Tasso G, Martin C, Hosmalin A, Breckler M, Hervé R, Decker P, Ladjemi MZ, Pène F, Burgel PR, Cassatella MA, Witko-Sarsat V. Neutrophils Display Novel Partners of Cytosolic Proliferating Cell Nuclear Antigen Involved in Interferon Response in COVID-19 Patients. J Innate Immun 2025; 17:154-175. [PMID: 40015257 PMCID: PMC11867639 DOI: 10.1159/000543633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions. INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions.
Collapse
Affiliation(s)
- Lucie Pesenti
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Morgane Le Gall
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Clémence Martin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Magali Breckler
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Roxane Hervé
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Patrice Decker
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Maha Zohra Ladjemi
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Frédéric Pène
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Intensive Medicine and Reanimation, AP-HP, Cochin Hospital, Paris, France
| | - Pierre-Régis Burgel
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Marco A. Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | |
Collapse
|
21
|
Sennett C, Pula G. Trapped in the NETs: Multiple Roles of Platelets in the Vascular Complications Associated with Neutrophil Extracellular Traps. Cells 2025; 14:335. [PMID: 40072064 PMCID: PMC11898727 DOI: 10.3390/cells14050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Neutrophil extracellular traps (NETs) have received significant attention in recent years for their role in both the immune response and the vascular damage associated with inflammation. Platelets have been described as critical components of NETs since the initial description of this physio-pathological response of neutrophils. Platelets have been shown to play a dual role as responders and also as stimulators of NETs. The direct interaction with DNA leads to the entrapment of platelets into NETs, a phenomenon that significantly contributes to the thrombotic complications of inflammation and neutrophil activation, while the direct and paracrine stimulation of neutrophils by platelets has been shown to initiate the process of NET formation. In this review, we provide a comprehensive description of our current understanding of the molecular mechanisms underlying the entrapping of platelets into NETs and, in parallel, the platelet-driven cellular responses promoting NET formation. We then illustrate established examples of the contribution of NETs to vascular pathologies, describe the important questions that remain to be answered regarding the contribution of platelets to NET formation and NET-dependent cardiovascular complication, and highlight the fundamental steps taken towards the application of our understanding of platelets' contribution to NETs for the development of novel cardiovascular therapies.
Collapse
Affiliation(s)
| | - Giordano Pula
- Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
22
|
Zhang Y, Ye J, Sun S, Li R, Tang S, Wang M, Sun G. Role of platelets and NETs in arterial thrombosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03921-6. [PMID: 39992420 DOI: 10.1007/s00210-025-03921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Arterial thrombosis is one of the main causes of mortality and mortality worldwide. Platelets are effectively targeted by antithrombotic strategies. However, current antiplatelet agents are often associated with a bleeding risk and single antiplatelet agent may not completely prevent thrombosis. Platelets, neutrophils, and neutrophil extracellular traps (NETs) have been found to play crucial synergistic roles in the pathological process of arterial thrombosis in recent years. Platelets play a key regulatory role in the formation of NETs, and NETs can enhance platelet aggregation and activation, further aggravating the process of arterial thrombosis. Targeting the interaction mechanisms of platelets and NETs may provide a promising approach to better prevent arterial thrombosis. This review highlights the current insight in the interaction of platelets and neutrophil-forming NETs and their mechanisms involved in the process of arterial thrombosis. Finally, we discuss the potential of interventions targeting platelets and NETs to treat arterial thrombosis.
Collapse
Affiliation(s)
- Yaqi Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiyi Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruoyun Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuang Tang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
23
|
Zhou X, Jin Y, Zhu Y, Luo X, Li S, Shen W, Wu R. The Role of Crosstalk between Nets and Keratinocytes in Skin Immunity. J Invest Dermatol 2025:S0022-202X(25)00012-0. [PMID: 39985552 DOI: 10.1016/j.jid.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 02/24/2025]
Abstract
The skin is the principal barrier against pathogens. Skin-resident cells, especially keratinocytes, play essential roles in skin immunity. Damage to the integrity of the skin barrier triggers the localized release of proinflammatory factors from keratinocytes, which attract neutrophils. These infiltrating neutrophils in turn release cytokines to modulate keratinocyte function, thereby amplifying skin inflammation. In addition, neutrophils produce neutrophil extracellular traps in a process called NETosis. Notably, crosstalk between neutrophils and keratinocytes is a prominent feature of skin infection eradication and autoimmune disorder development. In this paper, we review research progress on neutrophil extracellular traps in cutaneous immunity, with a particular emphasis on their modulation of keratinocytes. Moreover, we discuss the implications of neutrophil heterogeneity for immune defense and disease development and treatment.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Yi Jin
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Yanshan Zhu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Xin Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Siying Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Weiyun Shen
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Ruifang Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.
| |
Collapse
|
24
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
25
|
Lika J, Votava JA, Datta R, Kralovec AM, Smith FM, Huttenlocher A, Skala MC, Fan J. Mitochondrial metabolism is rapidly re-activated in mature neutrophils to support stimulation-induced response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636312. [PMID: 39975244 PMCID: PMC11838513 DOI: 10.1101/2025.02.03.636312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neutrophils are highly abundant innate immune cells that are constantly produced from myeloid progenitors in the bone marrow. Differentiated neutrophils can perform an arsenal of effector functions critical for host defense. This study aims to quantitatively understand neutrophil mitochondrial metabolism throughout differentiation and activation, and to elucidate the impact of mitochondrial metabolism on neutrophil functions. To study metabolic remodeling throughout neutrophil differentiation, murine ER-Hoxb8 myeloid progenitor-derived neutrophils and human induced pluripotent stem cell-derived neutrophils were assessed as models. To study the metabolic remodeling upon neutrophil activation, differentiated ER-Hoxb8 neutrophils and primary human neutrophils were activated with various stimuli, including ionomycin, MSU crystals, and PMA. Characterization of cellular metabolism by isotopic tracing, extracellular flux analysis, metabolomics, and fluorescence-lifetime imaging microscopy revealed dynamic changes in mitochondrial metabolism. As neutrophils mature, mitochondrial metabolism decreases drastically, energy production is fully offloaded from oxidative phosphorylation, and glucose oxidation through TCA cycle is substantially reduced. Nonetheless, mature neutrophils retain the capacity for mitochondrial metabolism. Upon stimulation with certain stimuli, TCA cycle is rapidly activated. Mitochondrial pyruvate carrier inhibitors reduce this re-activation of the TCA cycle and inhibit the release of neutrophil extracellular traps. Mitochondrial metabolism also impacts neutrophil redox status, migration, and apoptosis without significantly changing overall bioenergetics. Together, these results demonstrate that mitochondrial metabolism is dynamically remodeled and plays a significant role in neutrophil function and fate. Furthermore, these findings point to the therapeutic potential of mitochondrial pyruvate carrier inhibitors in a range of conditions where dysregulated neutrophil response drives inflammation and contributes to pathology.
Collapse
Affiliation(s)
- Jorgo Lika
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Aleksandr M. Kralovec
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Frances M. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
26
|
Wang Y, Mulder IA, Westendorp WF, Coutinho JM, van de Beek D. Immunothrombosis in Acute Ischemic Stroke. Stroke 2025; 56:553-563. [PMID: 39479751 DOI: 10.1161/strokeaha.124.048137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Ischemic stroke is one of the leading causes of disability and mortality worldwide. Thrombosis is the main pathological process of stroke and is therefore an important therapeutic target in stroke prevention. In recent years, with the development of endovascular treatment and therefore retrieving the thrombus for further investigation, evidence is accumulating that immune cells are inextricably linked to stroke pathogenesis. Circulating immune cells have been found to induce immunothrombosis, and they actively participate in the formation of the thrombus by promoting platelet recruitment and thrombin activation. Additionally, the formation of thromboinflammation leads to increased instability of atherosclerotic plaques. We review the concepts of stroke immunothrombosis and thromboinflammation and the effect of immune cells on vessel recanalization and patient outcome. In addition, we elaborate on the possible mechanism of immune cells being activated and participating in thrombosis in ischemic stroke.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology (Y.W., W.F.W., J.M.C., D.v.d.B.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, the Netherlands (Y.W., I.A.M., W.F.W., J.M.C., D.v.d.B.)
| | - Inge A Mulder
- Department of Biomedical Engineering and Physics (I.A.M.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, the Netherlands (I.A.M.)
- Amsterdam Neurosciences, Neurovascular Disorders, the Netherlands (Y.W., I.A.M., W.F.W., J.M.C., D.v.d.B.)
| | - Willeke F Westendorp
- Department of Neurology (Y.W., W.F.W., J.M.C., D.v.d.B.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, the Netherlands (Y.W., I.A.M., W.F.W., J.M.C., D.v.d.B.)
| | - Jonathan M Coutinho
- Department of Neurology (Y.W., W.F.W., J.M.C., D.v.d.B.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, the Netherlands (Y.W., I.A.M., W.F.W., J.M.C., D.v.d.B.)
| | - Diederik van de Beek
- Department of Neurology (Y.W., W.F.W., J.M.C., D.v.d.B.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, the Netherlands (Y.W., I.A.M., W.F.W., J.M.C., D.v.d.B.)
| |
Collapse
|
27
|
Dutt S, Rani P, Gupta R, Dewan P, Kotru M. The functional connotations of iron deficiency-effect on neutrophil oxidative burst activity in preschool children. AMERICAN JOURNAL OF BLOOD RESEARCH 2024; 14:22-31. [PMID: 39850839 PMCID: PMC11751373 DOI: 10.62347/tspm9335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025]
Abstract
Iron deficiency anaemia (IDA) makes an individual prone to bacterial infections. The antimicrobial defence mechanism of neutrophils is orchestrated by Nicotinamide Adenine Dinucleotide Phosphate Hydrogen (NADPH) oxidative burst which is iron-dependent. The few previous studies documenting a decrease in neutrophil oxidative burst in iron-deficient children have been based mainly on the Nitro blue tetrazolium test (NBT). Very few studies have been conducted using the more robust flow cytometry-based dihydro rhodamine (DHR) assay in this regard worldwide and none in India. AIM To estimate the effect of iron deficiency on neutrophil oxidative burst activity in children under 5 years of age by flow cytometry-based dihydro rhodamine (DHR) assay and compare it with the control group. METHODS Thirty-six children between 6 months to 5 years of age diagnosed with moderate (Hb 7-10 gm/dl) to severe (Hb <7 gm/dl) iron deficiency anaemia were selected as cases with equal number of sex/age matched controls. The peripheral blood was analyzed for hematological and biochemical parameters such as complete iron profile, serum vitamin B12, and folate levels. The oxidative burst activity of neutrophils in peripheral blood was assessed using a flow-cytometry-based Dihydrorhodamine (DHR) assay. RESULTS The percentage of neutrophils showing stimulation, Mean Fluorescence Index in stimulated neutrophils, and Neutrophil oxidative index (NOI) were significantly reduced in iron deficiency anaemia patients as compared to controls. In cases, haemoglobin showed significant positive correlation with NOI and percentage of neutrophils showing stimulation. CONCLUSION To conclude, a significant decrease in neutrophil oxidative burst parameters depicts an insufficient innate immune response to pathogens and makes Iron deficiency anaemia patients more susceptible to infections, further aggravated by the severity of anaemia.
Collapse
Affiliation(s)
- Shweta Dutt
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur HospitalDelhi, India
| | - Poonam Rani
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur HospitalDelhi, India
| | - Richa Gupta
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur HospitalDelhi, India
| | - Pooja Dewan
- Department of Paediatrics, University College of Medical Sciences and Guru Teg Bahadur HospitalDelhi, India
| | - Mrinalini Kotru
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur HospitalDelhi, India
| |
Collapse
|
28
|
Irwandi RA, Marruganti C, Collins G, Carvalho JDS, Gilroy D, D’Aiuto F. The translational potential of inflammation-induced skin blister human models in exploring the pathogenesis of periodontitis and its systemic health implications. Front Immunol 2024; 15:1469828. [PMID: 39737182 PMCID: PMC11682961 DOI: 10.3389/fimmu.2024.1469828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Periodontitis is a highly prevalent chronic disease. Despite decades of extensive research on the topic, a complete understanding of its immunopathogenesis, especially when linked to other inflammatory comorbidities, is lacking. Ex vivo human and in vivo animal experiments have shown the host inflammatory response's crucial role in both the disease's onset and its systemic implications. These approaches, however, remain questionable when translating these findings into real-world scenarios linked to periodontitis. A clear need for new in vivo human models is discussed, especially within the context of understanding the host response to key pathogens linked to periodontitis, such as Porphyromonas gingivalis (P. gingivalis). Therefore, a skin blister model was employed to describe the stages of the host immune response in humans after challenges by microbial and/or sterile insults. A novel human challenge model using UV-killed P. gingivalis holds promise in producing new evidence and bridging the gap of the host response to periodontitis and its links with other common chronic diseases.
Collapse
Affiliation(s)
- Rizky Aditya Irwandi
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Crystal Marruganti
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- Unit of Periodontology, Endodontology and Restorative Dentistry, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - George Collins
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
- Department of Cardiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jhonatan de Souza Carvalho
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Derek Gilroy
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Francesco D’Aiuto
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
29
|
Grinat J, Shriever NP, Christophorou MA. Fantastic proteins and where to find them - histones, in the nucleus and beyond. J Cell Sci 2024; 137:jcs262071. [PMID: 39704565 PMCID: PMC11827605 DOI: 10.1242/jcs.262071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Animal genomes are packaged into chromatin, a highly dynamic macromolecular structure of DNA and histone proteins organised into nucleosomes. This accommodates packaging of lengthy genomic sequences within the physical confines of the nucleus while also enabling precise regulation of access to genetic information. However, histones existed before chromatin and have lesser-known functions beyond genome regulation. Most notably, histones are potent antimicrobial agents, and the release of chromatin to the extracellular space is a defence mechanism nearly as ancient and widespread as chromatin itself. Histone sequences have changed very little throughout evolution, suggesting the possibility that some of their 'non-canonical' functions are at play in parallel or in concert with their genome regulatory functions. In this Review, we take an evolutionary perspective of histone, nuclear chromatin and extracellular chromatin biology and describe the known extranuclear and extracellular functions of histones. We detail molecular mechanisms of chromatin release and extracellular chromatin sensing, and we discuss their roles in physiology and disease. Finally, we present evidence and give a perspective on the potential of extracellular histones to act as bioactive, cell modulatory factors.
Collapse
|
30
|
Hinz A, Stankiewicz S, Litewka JJ, Ferdek PE, Sochalska M, Bzowska M. Polyethylene Glycols Stimulate Ca 2+ Signaling, Cytokine Production, and the Formation of Neutrophil Extracellular Traps. Int J Nanomedicine 2024; 19:13165-13181. [PMID: 39670198 PMCID: PMC11635164 DOI: 10.2147/ijn.s479710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Purpose Given the increased use of polyethylene glycol (PEG) in refining the therapeutic activity of medicines, our research focuses on explaining the potential mechanism of immune reactions associated with this polymer. We aim to investigate the interaction of different types of PEG with mouse and human immune cells, thereby contributing to understanding PEG interactions with the immune system and verifying the proinflammatory activity of the tested polymers. Patients and Methods Mouse macrophage and neutrophil cell lines, human peripheral blood mononuclear cells, and polymorphonuclear cells isolated from healthy donors were exposed to various PEGs. ROS, NO, and cytokine production were analyzed using fluorescence intensity, absorbance, or cytometric measurements. Toll-like receptor (TLR) signaling was verified using HEK-blue-reporter cell lines. Finally, neutrophil trap formation was studied using immunofluorescence labeling, and calcium imaging was performed using a Ca2+-sensitive indicator and fluorescence microscope. Results Our findings show that specific PEG and mPEG are not toxic to tested mouse and human cells. However, they exert proinflammatory activity against human immune cells, as evidenced by the increased secretion of proinflammatory cytokines, such as IFN-a2, IFN-γ, TNF-α, MCP-1, IL-8, IL-17A, and IL-23. This phenomenon is independent of PEG signaling via TLR. Additionally, mPEG10 induced the formation of neutrophil extracellular traps and intracellular calcium signaling. Conclusion Our finding suggests that some PEG types have proinflammatory activity against human immune cells, manifesting in the upregulated production of cytokines and neutrophils trap releasing.
Collapse
Affiliation(s)
- Alicja Hinz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Sylwia Stankiewicz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences Jagiellonian University, Kraków, Poland
| | - Jacek Jakub Litewka
- Doctoral School of Exact and Natural Sciences Jagiellonian University, Kraków, Poland
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paweł E Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
31
|
Wang N, Shi XL, Li D, Li BB, Liu P, Luo H. Neutrophil extracellular traps - an a-list-actor in a variety of diseases. Ann Hematol 2024; 103:5059-5069. [PMID: 39078437 DOI: 10.1007/s00277-024-05915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Neutrophil extracellular traps (NETs) represent a response mechanism in which activated neutrophils release DNA-based webs, adorned with histones and neutrophil proteases, to capture and eliminate invasive microorganisms. However, when these neutrophils become excessively activated, much more proteases associated with NETs are liberated into surrounding tissues or bloodstreams, thereby altering the cellular milieu and causing tissue damage. Recent research has revealed that NETs may play significant roles in the emergence and progression of various diseases, spanning from infections, inflammation to autoimmune disorders and cancers. In this review, we delve deeply into the intricate and complex mechanisms that underlie the formation of NETs and their profound interplay with various clinical pathologies. We aim to describe the application perspectives of NETs related proteins in specific disease diagnosis and treatment.
Collapse
Affiliation(s)
- Na Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning, 116044, PR China
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Xiao-Lin Shi
- Department of Clinical Laboratory, Weihai Maternal and Child Health Hospital, Weihai, Shandong, 264200, PR China
| | - Dan Li
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Bin-Bin Li
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.
| | - Hong Luo
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning, 116044, PR China.
| |
Collapse
|
32
|
Namin SS, Zhu YP, Croker BA, Tan Z. Turning Neutrophil Cell Death Deadly in the Context of Hypertensive Vascular Disease. Can J Cardiol 2024; 40:2356-2367. [PMID: 39326672 DOI: 10.1016/j.cjca.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertensive vascular disease (HVD) is a major health burden globally and is a comorbidity commonly associated with other metabolic diseases. Many factors are associated with HVD including obesity, diabetes, smoking, chronic kidney disease, and sterile inflammation. Increasing evidence points to neutrophils as an important component of the chronic inflammatory response in HVD. Neutrophils are abundant in the circulation and can respond rapidly upon stimulation to deploy an armament of antimicrobial effector functions. One of the outcomes of neutrophil activation is the generation of neutrophil extracellular traps (NETs), a regulated extrusion of chromatin and proteases. Although neutrophils and NETs are well described as components of the innate immune response to infection, recent evidence implicates them in HVD. Endothelial cell activation can trigger neutrophil adhesion, activation, and production of NETs promoting vascular dysfunction, vessel remodelling, and loss of resistance. The regulated release of NETs can be controlled by the pore-forming activities of distinct cell death pathways. The best characterized pathways in this context are apoptosis, pyroptosis, and necroptosis. In this review, we discuss how inflammatory cell death signalling and NET formation contribute to hypertensive disease. We also examine novel therapeutic approaches to limit NET production and their future potential as therapeutic drugs for cardiovascular disorders.
Collapse
Affiliation(s)
- Sahand Salari Namin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Yanfang Peipei Zhu
- Department of Biochemistry and Molecular Biology, Immunology Center of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Zhehao Tan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
33
|
Wu Y, Shen J. Unraveling the intricacies of neutrophil extracellular traps in inflammatory bowel disease: Pathways, biomarkers, and promising therapies. Cytokine Growth Factor Rev 2024; 80:156-167. [PMID: 39438227 DOI: 10.1016/j.cytogfr.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The development of inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, involves various factors and is characterized by persistent inflammation of the mucosal lining. However, the role of neutrophils in this process remains controversial. Neutrophil extracellular traps (NETs), which consist of chromatin, antimicrobial proteins, and oxidative enzymes, are released by neutrophils to trap pathogens. They are also involved in various immune-mediated and vascular diseases. NETs act as a vital defense mechanisms at the gut-mucosal interface and are frequently exposed to bacterial, viral, and fungal threats. However, they can also contribute to inflammation and worsen imbalances in the gut bacteria. Recent studies have suggested that NETs have a significant impact on IBD development. Previous studies have shown increased levels of NETs in tissue and blood samples from patients with IBD, as well as in experimental colitis mouse models. Therefore, this review discusses how NETs are formed and their role in the pathophysiology of IBD. It discusses how NETs may lead to tissue damage and contribute to IBD-associated complications. Moreover, non-invasive biomarkers are needed to replace invasive procedures such as endoscopy to better evaluate the disease status. Given the crucial role of NETs in IBD progression, this review focuses on potential NET biomarkers that can help predict the evolution of IBD. Furthermore, this review identifies potential therapeutic targets for regulating NET production, which could expand the range of available treatment options for IBD.
Collapse
Affiliation(s)
- Yilin Wu
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China.
| |
Collapse
|
34
|
Zheng Y, Sun J, Luo Z, Li Y, Huang Y. Emerging mechanisms of lipid peroxidation in regulated cell death and its physiological implications. Cell Death Dis 2024; 15:859. [PMID: 39587094 PMCID: PMC11589755 DOI: 10.1038/s41419-024-07244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Regulated cell death (RCD) refers to the form of cell death that can be regulated by various biomacromolecules. Each cell death modalities have their distinct morphological changes and molecular mechanisms. However, intense evidences suggest that lipid peroxidation can be the common feature that initiates and propagates the cell death. Excessive lipid peroxidation alters the property of membrane and further damage the proteins and nucleic acids, which is implicated in various human pathologies. Here, we firstly review the classical chain process of lipid peroxidation, and further clarify the current understanding of the myriad roles and molecular mechanisms of lipid peroxidation in various RCD types. We also discuss how lipid peroxidation involves in diseases and how such intimate association between lipid peroxidation-driven cell death and diseases can be leveraged to develop rational therapeutic strategies.
Collapse
Affiliation(s)
- Yongxin Zheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
| | - Junlu Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Zhiting Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Yimin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Yongbo Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, China.
| |
Collapse
|
35
|
Marsman G, Zheng X, Čerina D, Lacey KA, Liu M, Humme D, Goosmann C, Brinkmann V, Harbort CJ, Torres VJ, Zychlinsky A. Histone H1 kills MRSA. Cell Rep 2024; 43:114969. [PMID: 39546397 DOI: 10.1016/j.celrep.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
The antimicrobial activity of histones was discovered in the 1940s, but their mechanism of action is not fully known. Here we show that methicillin-resistant Staphylococcus aureus (MRSA) is susceptible to histone H1 (H1), even in the presence of divalent cations and serum. Through selective evolution and a genome-wide screen of a transposon library, as well as physiological and pharmacological experiments, we elucidated how H1 kills MRSA. We show that H1 first binds to wall teichoic acids with high affinity. Once bound, H1 requires a potentiated membrane and a metabolically active bacterium to permeabilize the membrane and enter the cell. Upon entry, H1 accumulates intracellularly, in close association with the bacterial DNA. Of note, anti-H1 antibodies inhibit neutrophil extracellular trap killing of MRSA. Moreover, H1 colocalizes with bacterial DNA in abscess samples of MRSA-infected patients, suggesting a role for H1 in combating MRSA in vivo.
Collapse
Affiliation(s)
- Gerben Marsman
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Dora Čerina
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Menghan Liu
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Daniel Humme
- Department of Dermatology, Venerology and Allergology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Christian Goosmann
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Volker Brinkmann
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - C J Harbort
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
36
|
Yao X, Wang S, Li X, Wen J, Huang Y, Lan W, Huang X, Li H, Sun Y, Zhao X, Zhang T. Genetically predict the association between 91 human blood cell perturbation phenotypes and IBD: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40647. [PMID: 39809186 PMCID: PMC11596769 DOI: 10.1097/md.0000000000040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn disease and ulcerative colitis, is a group of persistent and recurrent gastrointestinal disorders. Despite the prevalence of these conditions, no studies have been conducted to examine the connection between altered human blood cell phenotypes and the underlying mechanisms of IBD pathogenesis. By utilizing summary statistics from genome-wide association studies, we executed a systematic two-sample Mendelian randomization (MR) investigation on 91 genetically determined blood cell perturbation traits in relation to 3 separate IBD phenotypes. Our analysis sought to delineate the putative causal links between these blood cell perturbation phenotypes and IBD, thereby contributing to a more nuanced comprehension of the pathophysiological underpinnings and offering a foundation for the development of novel therapeutic approaches. The forward MR analysis identified 7 human blood cell perturbation phenotypes associated with various IBD outcomes, while the reverse MR analysis revealed that 9 human blood cell perturbation phenotypes were influenced by various IBD phenotypes. The study has uncovered human blood cell perturbation phenotypes associated with various IBD diseases, contributing to a deeper understanding of the pathogenesis of IBD. It also provides new insights for early clinical diagnosis, disease activity monitoring, immune surveillance, prognosis assessment, and personalized treatment.
Collapse
Affiliation(s)
- Xin Yao
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Song Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiao Li
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jieying Wen
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yunsi Huang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Weixuan Lan
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuyu Huang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hao Li
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yunlong Sun
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaoqian Zhao
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Tao Zhang
- Department of Gastroenterology, Ruikang Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, China
| |
Collapse
|
37
|
Hunt M, Torres M, Bachar-Wikstrom E, Wikstrom JD. Cellular and molecular roles of reactive oxygen species in wound healing. Commun Biol 2024; 7:1534. [PMID: 39562800 DOI: 10.1038/s42003-024-07219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Wound healing is a highly coordinated spatiotemporal sequence of events involving several cell types and tissues. The process of wound healing requires strict regulation, and its disruption can lead to the formation of chronic wounds, which can have a significant impact on an individual's health as well as on worldwide healthcare expenditure. One essential aspect within the cellular and molecular regulation of wound healing pathogenesis is that of reactive oxygen species (ROS) and oxidative stress. Wounding significantly elevates levels of ROS, and an array of various reactive species are involved in modulating the wound healing process, such as through antimicrobial activities and signal transduction. However, as in many pathologies, ROS play an antagonistic pleiotropic role in wound healing, and can be a pathogenic factor in the formation of chronic wounds. Whilst advances in targeting ROS and oxidative stress have led to the development of novel pre-clinical therapeutic methods, due to the complex nature of ROS in wound healing, gaps in knowledge remain concerning the specific cellular and molecular functions of ROS in wound healing. In this review, we highlight current knowledge of these functions, and discuss the potential future direction of new studies, and how these pathways may be targeted in future pre-clinical studies.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
38
|
Bertran MT, Walmsley R, Cummings T, Aramburu IV, Benton DJ, Mora Molina R, Assalaarachchi J, Chasampalioti M, Swanton T, Joshi D, Federico S, Okkenhaug H, Yu L, Oxley D, Walker S, Papayannopoulos V, Suga H, Christophorou MA, Walport LJ. A cyclic peptide toolkit reveals mechanistic principles of peptidylarginine deiminase IV regulation. Nat Commun 2024; 15:9746. [PMID: 39528459 PMCID: PMC11555231 DOI: 10.1038/s41467-024-53554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Peptidylarginine deiminase IV (PADI4, PAD4) deregulation promotes the development of autoimmunity, cancer, atherosclerosis and age-related tissue fibrosis. PADI4 additionally mediates immune responses and cellular reprogramming, although the full extent of its physiological roles is unexplored. Despite detailed molecular knowledge of PADI4 activation in vitro, we lack understanding of its regulation within cells, largely due to a lack of appropriate systems and tools. Here, we develop and apply a set of potent and selective PADI4 modulators. Using the mRNA-display-based RaPID system, we screen >1012 cyclic peptides for high-affinity, conformation-selective binders. We report PADI4_3, a cell-active inhibitor specific for the active conformation of PADI4; PADI4_7, an inert binder, which we functionalise for the isolation and study of cellular PADI4; and PADI4_11, a cell-active PADI4 activator. Structural studies with PADI4_11 reveal an allosteric binding mode that may reflect the mechanism that promotes cellular PADI4 activation. This work contributes to our understanding of PADI4 regulation and provides a toolkit for the study and modulation of PADI4 across (patho)physiological contexts.
Collapse
Affiliation(s)
- M Teresa Bertran
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Robert Walmsley
- Epigenetics, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Thomas Cummings
- Epigenetics, The Babraham Institute, Cambridge, CB22 3AT, UK
- MRC Human Genetics Unit, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Iker Valle Aramburu
- Antimicrobial Defense Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Donald J Benton
- Structural Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | | | | | | | - Tessa Swanton
- Antimicrobial Defense Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Dhira Joshi
- Chemical Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | | | | | - Lu Yu
- Proteomics, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - David Oxley
- Proteomics, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Simon Walker
- Imaging, The Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Hiroaki Suga
- The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Maria A Christophorou
- Epigenetics, The Babraham Institute, Cambridge, CB22 3AT, UK.
- MRC Human Genetics Unit, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
- The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Imperial College London, Department of Chemistry, London, W12 0BZ, UK.
| |
Collapse
|
39
|
Passari M, Scutera S, Schioppa T, Tiberio L, Piantoni S, Tamassia N, Bugatti M, Vermi W, Angeli F, Caproli A, Salvi V, Sozio F, Gismondi A, Stabile H, Franceschini F, Bosisio D, Acquati F, Vermeren S, Sozzani S, Andreoli L, Del Prete A, Musso T. Regulation of neutrophil associated RNASET2 expression in rheumatoid arthritis. Sci Rep 2024; 14:26820. [PMID: 39500942 PMCID: PMC11538310 DOI: 10.1038/s41598-024-77694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Neutrophils (PMNs) are key players of innate immune responses through the release of cytoplasmic granule content and the formation of neutrophil extracellular traps (NETs). RNASET2 is an acidic ribonuclease, recently proposed as an alarmin signal associated with inflammatory responses. Here we show that, along the neutrophil maturation cascade, RNASET2 is expressed in segmented and mature PMNs. In human PMNs, RNASET2 colocalized with primary and tertiary granules and was found to be associated with NETs following PMA or Nigericin stimulation. Similarly, activation of PMNs by soluble immune complexes, a hallmark of several autoimmune diseases, also induced RNASET2-associated NETs. Genome-wide association studies recently identified RNASET2 among a cluster of genes associated with increased susceptibility to develop autoimmune diseases, including rheumatoid arthritis (RA). RNASET2 was found expressed by PMNs and macrophages infiltrating inflamed joints in a murine model of RA (K/BxN Serum-Transfer-Induced Arthritis, STIA), by immunostaining. Similar results were found in synovial biopsies of RA patients with active disease. In addition, we demonstrate that RNASET2 circulating levels correlated with the onset and the severity of disease in two mouse models of inflammatory arthritis, STIA and CIA (Collagen-Induced Arthritis) and in serum of RA patients. These results show that PMNs are an important source of RNASET2 and that its circulating levels are associated with RA development suggesting a role for RNASET2 in the pathogenesis of immune-mediated diseases.
Collapse
Affiliation(s)
- Mauro Passari
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Sara Scutera
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital-Rozzano, Milan, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Silvia Piantoni
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Fabrizio Angeli
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Alessia Caproli
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Francesca Sozio
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Franco Franceschini
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Francesco Acquati
- Human Genetics Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Laura Andreoli
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy.
- IRCCS Humanitas Research Hospital-Rozzano, Milan, Italy.
| | - Tiziana Musso
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|
40
|
Chen H, Zhou Y, Tang Y, Lan J, Lin C, Chen Q, Kuang H. Neutrophil extracellular traps in tumor progression of gynecologic cancers. Front Immunol 2024; 15:1421889. [PMID: 39555072 PMCID: PMC11563837 DOI: 10.3389/fimmu.2024.1421889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024] Open
Abstract
This article delves into the intricate interplay between tumors, particularly gynecologic malignancies, and neutrophil extracellular traps (NETs). The relationship between tumors, specifically gynecologic malignancies, and NETs is a multifaceted and pivotal area of study. Neutrophils, pivotal components of the immune system, are tasked with combating foreign invaders. NETs, intricate structures released by neutrophils, play a vital role in combating systemic infections but also play a role in non-infectious conditions such as inflammation, autoimmune diseases, and cancer. Cancer cells have the ability to attract neutrophils, creating tumor-associated neutrophils, which then stimulate the release of NETs into the tumor microenvironment. The impact of NETs within the tumor microenvironment is profound and intricate. They play a significant role in influencing cancer development and metastasis, as well as modulating tumor immune responses. Through the release of proteases and pro-inflammatory cytokines, NETs directly alter the behavior of tumor cells, increasing invasiveness and metastatic potential. Additionally, NETs can trigger epithelial-mesenchymal transition in tumor cells, a process associated with increased invasion and metastasis. The interaction between tumors and NETs is particularly critical in gynecologic malignancies such as ovarian, cervical, and endometrial cancer. Understanding the mechanisms through which NETs operate in these tumors can offer valuable insights for the development of targeted therapeutic interventions. Researchers are actively working towards harnessing this interaction to impede tumor progression and metastasis, opening up new avenues for future treatment modalities. As our understanding of the interplay between tumors and NETs deepens, it is anticipated that novel treatment strategies will emerge, potentially leading to improved outcomes for patients with gynecologic malignancies. This article provides a comprehensive overview of the latest research findings on the interaction between NETs and cancer, particularly in gynecologic tumors, serving as a valuable resource for future exploration in this field.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yaling Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianfa Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qionghua Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongying Kuang
- The Second Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
41
|
Liu Y, Qu Y, Liu C, Zhang D, Xu B, Wan Y, Jiang P. Neutrophil extracellular traps: Potential targets for the treatment of rheumatoid arthritis with traditional Chinese medicine and natural products. Phytother Res 2024; 38:5067-5087. [PMID: 39105461 DOI: 10.1002/ptr.8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Abnormal formation of neutrophil extracellular traps (NETs) at the synovial membrane leads to the release of many inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Elastase, histone H3, and myeloperoxidase, which are carried by NETs, damage the soft tissues of the joints and aggravate the progression of RA. The balance of NET formation coordinates the pro-inflammatory and anti-inflammatory effects and plays a key role in the development of RA. Therefore, when NETs are used as effector targets, highly targeted drugs with fewer side effects can be developed to treat RA without damaging the host immune system. Currently, an increasing number of studies have shown that traditional Chinese medicines and natural products can regulate the formation of NETs through multiple pathways to counteract RA, which shows great potential for the treatment of RA and has a promising future for clinical application. In this article, we review the latest biological progress in understanding NET formation, the mechanism of NETs in RA, and the potential targets or pathways related to the modulation of NET formation by Chinese medicines and natural products. This review provides a relevant basis for the use of Chinese medicines and natural products as natural adjuvants in the treatment of RA.
Collapse
Affiliation(s)
- Yuan Liu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Yuan Qu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yakun Wan
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
42
|
Panda B, Momin A, Devabattula G, Shrilekha C, Sharma A, Godugu C. Peptidyl arginine deiminase-4 inhibitor ameliorates pulmonary fibrosis through positive regulation of developmental endothelial locus-1. Int Immunopharmacol 2024; 140:112861. [PMID: 39106716 DOI: 10.1016/j.intimp.2024.112861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Recurring lung injury, chronic inflammation, aberrant tissue repair and impaired tissue remodelling contribute to the pathogenesis of pulmonary fibrosis (PF). Neutrophil extracellular traps (NETs) are released by activated neutrophils to trap, immobilise and kill invading pathogen and is facilitated by peptidyl arginine deiminase-4 (PAD-4). Dysregulated NETs release and abnormal PAD-4 activation plays a crucial role in activating pro-fibrotic events in PF. Developmental endothelial locus-1 (Del-1), expressed by the endothelial cells of lungs and brain acts as an endogenous inhibitor of inflammation and fibrosis. We have hypothesised that PAD-4 inhibitor exerts anti-inflammatory and anti-fibrotic effects in mice model of PF. We have also hypothesised by PAD-4 regulated the transcription of Del-1 through co-repression and its inhibition potentiates anti-fibrotic effects of Del-1. In our study, the PAD-4 inhibitor chloro-amidine (CLA) demonstrated anti-NETotic and anti-inflammatory effects in vitro in differentiated HL-60 cells. In a bleomycin-induced PF mice model, CLA administration in two doses (3 mg/kg, I.P and 10 mg/kg, I.P) improved lung function, normalized bronchoalveolar lavage fluid parameters, and attenuated fibrotic events, including markers of extracellular matrix and epithelial-mesenchymal transition. Histological analyses confirmed the restoration of lung architecture and collagen deposition with CLA treatment. ELISA, IHC, IF, RT-PCR, and immunoblot analysis supported the anti-NETotic effects of CLA. Furthermore, BLM-induced PF reduced Del-1 and p53 expression, which was normalized by CLA treatment. These findings suggest that inhibition of PAD-4 results in amelioration of PF in animal model and may involve modulation of Del-1 and p53 pathways, warranting further investigation.
Collapse
Affiliation(s)
- Biswajit Panda
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Alfiya Momin
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Geetanjali Devabattula
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chilvery Shrilekha
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Anamika Sharma
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
43
|
Shvedov M, Sherstyukova E, Kandrashina S, Inozemtsev V, Sergunova V. Atomic Force Microscopy and Scanning Ion-Conductance Microscopy for Investigation of Biomechanical Characteristics of Neutrophils. Cells 2024; 13:1757. [PMID: 39513864 PMCID: PMC11545488 DOI: 10.3390/cells13211757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Scanning probe microscopy (SPM) is a versatile tool for studying a wide range of materials. It is well suited for investigating living matter, for example, in single-cell neutrophil studies. SPM has been extensively utilized to analyze cell physical properties, providing detailed insights into their structural and functional characteristics at the nanoscale. Its long-standing application in this field highlights its essential role in cell biology and immunology research, significantly contributing to understanding cellular mechanics and interactions. In this review, we discuss the application of SPM techniques, specifically atomic force microscopy (AFM) and scanning ion-conductance microscopy (SICM), to study the fundamental functions of neutrophils. In addition, recent advances in the application of SPM in single-cell immunology are discussed. The application of these techniques allows for obtaining data on the morphology, topography, and mechanical and electrochemical properties of neutrophils with high accuracy.
Collapse
Affiliation(s)
- Mikhail Shvedov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Snezhanna Kandrashina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Vladimir Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
- Koltzov Institute of Development Biology of Russia Academy of Science, 119334 Moscow, Russia
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| |
Collapse
|
44
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
45
|
Shukrun R, Fidel V, Baron S, Unger N, Ben-Shahar Y, Cohen S, Elhasid R, Yerushalmy-Feler A. Neutrophil Extracellular Traps in Pediatric Inflammatory Bowel Disease: A Potential Role in Ulcerative Colitis. Int J Mol Sci 2024; 25:11126. [PMID: 39456908 PMCID: PMC11507660 DOI: 10.3390/ijms252011126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory condition of the gut affecting both adults and children. Neutrophil extracellular traps (NETs) are structures released by activated neutrophils, potentially contributing to tissue damage in various diseases. This study aimed to explore the presence and role of NETs in pediatric IBD. We compared intestinal biopsies and peripheral blood from 20 pediatric IBD patients (UC and CD) to controls. Biopsy staining and techniques for neutrophil activation were used to assess neutrophil infiltration and NET formation. We also measured the enzymatic activity of key NET proteins and evaluated NET formation in UC patients in remission. Both UC and CD biopsies showed significantly higher levels of neutrophils and NETs compared to controls (p < 0.01), with UC exhibiting the strongest association. Peripheral blood neutrophils from UC patients at diagnosis displayed increased NET formation compared to controls and CD patients. Interestingly, NET formation normalized in UC patients following remission-inducing treatment. This pilot study suggests a potential role for NETs in pediatric IBD, particularly UC. These findings warrant further investigation into the mechanisms of NET involvement and the potential for targeting NET formation as a therapeutic strategy.
Collapse
Affiliation(s)
- Rachel Shukrun
- Pediatric Hemato-Oncology Research Laboratory, Tel Aviv Medical Center, Tel Aviv 6423906, Israel; (R.S.); (V.F.); (S.B.)
- Department of Pediatric Hemato-Oncology, “Dana-Dwek” Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (N.U.); (S.C.); (A.Y.-F.)
| | - Victoria Fidel
- Pediatric Hemato-Oncology Research Laboratory, Tel Aviv Medical Center, Tel Aviv 6423906, Israel; (R.S.); (V.F.); (S.B.)
| | - Szilvia Baron
- Pediatric Hemato-Oncology Research Laboratory, Tel Aviv Medical Center, Tel Aviv 6423906, Israel; (R.S.); (V.F.); (S.B.)
| | - Noga Unger
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (N.U.); (S.C.); (A.Y.-F.)
| | - Yoav Ben-Shahar
- Department of Pediatric Surgery, “Dana-Dwek” Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel;
| | - Shlomi Cohen
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (N.U.); (S.C.); (A.Y.-F.)
- Pediatric Gastroenterology Institute, “Dana-Dwek” Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Ronit Elhasid
- Department of Pediatric Hemato-Oncology, “Dana-Dwek” Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Anat Yerushalmy-Feler
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (N.U.); (S.C.); (A.Y.-F.)
- Pediatric Gastroenterology Institute, “Dana-Dwek” Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| |
Collapse
|
46
|
Liu D, Mai D, Jahn AN, Murray TA, Aitchison JD, Gern BH, Urdahl KB, Aderem A, Diercks AH, Gold ES. APOE Protects Against Severe Infection with Mycobacterium tuberculosis by Restraining Production of Neutrophil Extracellular Traps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616580. [PMID: 39605723 PMCID: PMC11601580 DOI: 10.1101/2024.10.04.616580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
While neutrophils are the predominant cell type in the lungs of humans with active tuberculosis (TB), they are relatively scarce in the lungs of most strains of mice that are used to study the disease. However, similar to humans, neutrophils account for approximately 45% of CD45+ cells in the lungs of Apoe -/- mice on a high-cholesterol (HC) diet following infection with Mycobacterium tuberculosis (Mtb). We hypothesized that the susceptibility of Apoe -/- HC mice might arise from an unrestrained feed-forward loop in which production of neutrophil extracellular traps (NETs) stimulates production of type I interferons by pDCs which in turn leads to the recruitment and activation of more neutrophils, and demonstrated that depleting neutrophils, depleting plasmacytoid dendritic cells (pDCs), or blocking type I interferon signaling, improved the outcome of infection. In concordance with these results, we found that Mtb-infected in Apoe -/- HC mice produce high levels of LTB4 and 12-HETE, two eicosanoids known to act as neutrophil chemoattractants and showed that blocking leukotriene B4 (LTB4) receptor signaling also improved the outcome of tuberculosis. While production of NETs has been associated with severe tuberculosis in other mouse models and in humans, a causative role for NETs in the pathology has not been directly established. We demonstrate that blocking the activation of peptidylarginine deiminase 4 (PAD4), an enzyme critical to NET formation, leads to fewer NETs in the lungs and, strikingly, completely reverses the hypersusceptibility of Apoe -/- HC mice to tuberculosis.
Collapse
Affiliation(s)
- Dong Liu
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Ana N. Jahn
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Tara A. Murray
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Benjamin H. Gern
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
- University of Washington, Dept. of Pediatrics; Seattle, Washington, USA
| | - Kevin B. Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
- University of Washington, Dept. of Immunology; Seattle, Washington, USA
- University of Washington, Dept. of Pediatrics; Seattle, Washington, USA
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Elizabeth S. Gold
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
- Virginia Mason Franciscan Health; Seattle, WA, 98101, USA
| |
Collapse
|
47
|
Bülow Anderberg S, Huckriede J, Hultström M, Larsson A, de Vries F, Lipcsey M, Nicolaes GAF, Frithiof R. Association of corticosteroid therapy with reduced acute kidney injury and lower NET markers in severe COVID-19: an observational study. Intensive Care Med Exp 2024; 12:85. [PMID: 39340756 PMCID: PMC11438749 DOI: 10.1186/s40635-024-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is common in critical cases of coronavirus disease 2019 (COVID-19) and associated with worse outcome. Dysregulated neutrophil extracellular trap (NET) formation is one of several suggested pathophysiological mechanisms involved in the development of COVID-19 associated AKI. The corticosteroid dexamethasone was implemented as a standard treatment for severe COVID-19 as of June 2020. A sub-analysis of a prospective observational single center study was performed to evaluate the effect of corticosteroid treatment on AKI development and NET markers in critical cases of COVID-19. RESULTS Two hundred and ten adult patients admitted to intensive care at a tertiary level hospital due to respiratory failure or shock secondary to SARS-CoV-2-infection between March 13th 2020 and January 14th 2021 were included in the study. Ninety-seven of those did not receive corticosteroids. One hundred and thirteen patients were treated with corticosteroids [dexamethasone (n = 98) or equivalent treatment (n = 15)], but the incidence of AKI was assessed only in patients that received corticosteroids before any registered renal dysfunction (n = 63). Corticosteroids were associated with a lower incidence of AKI (19% vs 55.8%, p < 0.001). Fewer patients demonstrated detectable concentrations of extracellular histones in plasma when treated with corticosteroids (8.7% vs 43.1%; p < 0.001). Extracellular histones and in particular non-proteolyzed histones were observed more frequently with increasing AKI severity (p < 0.001). MPO-DNA was found in lower concentrations in patients that received corticosteroids before established renal dysfunction (p = 0.03) and was found in higher concentrations in patients with AKI stage 3 (p = 0.03). Corticosteroids did not ameliorate established AKI during the first week of treatment. CONCLUSION Corticosteroid treatment in severe COVID-19 is associated with a lower incidence of AKI and reduced concentrations of NET markers in plasma.
Collapse
Affiliation(s)
- Sara Bülow Anderberg
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden.
| | - Joram Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Michael Hultström
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Miklos Lipcsey
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden
- Uppsala Centre for Paediatric Anesthesia and Intensive Care Research, Uppsala, Sweden
| |
Collapse
|
48
|
Guryanova SV. Bacteria and Allergic Diseases. Int J Mol Sci 2024; 25:10298. [PMID: 39408628 PMCID: PMC11477026 DOI: 10.3390/ijms251910298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Microorganisms colonize all barrier tissues and are present on the skin and all mucous membranes from birth. Bacteria have many ways of influencing the host organism, including activation of innate immunity receptors by pathogen-associated molecular patterns and synthesis of various chemical compounds, such as vitamins, short-chain fatty acids, bacteriocins, toxins. Bacteria, using extracellular vesicles, can also introduce high-molecular compounds, such as proteins and nucleic acids, into the cell, regulating the metabolic pathways of the host cells. Epithelial cells and immune cells recognize bacterial bioregulators and, depending on the microenvironment and context, determine the direction and intensity of the immune response. A large number of factors influence the maintenance of symbiotic microflora, the diversity of which protects hosts against pathogen colonization. Reduced bacterial diversity is associated with pathogen dominance and allergic diseases of the skin, gastrointestinal tract, and upper and lower respiratory tract, as seen in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, and asthma. Understanding the multifactorial influence of microflora on maintaining health and disease determines the effectiveness of therapy and disease prevention and changes our food preferences and lifestyle to maintain health and active longevity.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; ; Tel.: +7-(915)3150073
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
49
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
50
|
Khanmohammadi M, Danish H, Sekar NC, Suarez SA, Chheang C, Peter K, Khoshmanesh K, Baratchi S. Cyclic stretch enhances neutrophil extracellular trap formation. BMC Biol 2024; 22:209. [PMID: 39289752 PMCID: PMC11409804 DOI: 10.1186/s12915-024-02009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Neutrophils, the most abundant leukocytes circulating in blood, contribute to host defense and play a significant role in chronic inflammatory disorders. They can release their DNA in the form of extracellular traps (NETs), which serve as scaffolds for capturing bacteria and various blood cells. However, uncontrolled formation of NETs (NETosis) can lead to excessive activation of coagulation pathways and thrombosis. Once neutrophils are migrated to infected or injured tissues, they become exposed to mechanical forces from their surrounding environment. However, the impact of transient changes in tissue mechanics due to the natural process of aging, infection, tissue injury, and cancer on neutrophils remains unknown. To address this gap, we explored the interactive effects of changes in substrate stiffness and cyclic stretch on NETosis. Primary neutrophils were cultured on a silicon-based substrate with stiffness levels of 30 and 300 kPa for at least 3 h under static conditions or cyclic stretch levels of 5% and 10%, mirroring the biomechanics of aged and young arteries. RESULTS Using this approach, we found that neutrophils are sensitive to cyclic stretch and that increases in stretch intensity and substrate stiffness enhance nuclei decondensation and histone H3 citrullination (CitH3). In addition, stretch intensity and substrate stiffness promote the response of neutrophils to the NET-inducing agents phorbol 12-myristate 13-acetate (PMA), adenosine triphosphate (ATP), and lipopolysaccharides (LPS). Stretch-induced activation of neutrophils was dependent on calpain activity, the phosphatidylinositol 3-kinase (PI3K)/focal adhesion kinase (FAK) signalling and actin polymerization. CONCLUSIONS In summary, these results demonstrate that the mechanical forces originating from the surrounding tissue influence NETosis, an important neutrophil function, and thus identify a potential novel therapeutic target.
Collapse
Affiliation(s)
- Manijeh Khanmohammadi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Habiba Danish
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Chanly Chheang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Karlheinz Peter
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Khashayar Khoshmanesh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|