1
|
Mallya AS, Burrows T, Hsieh J, Louwagie T, Dutton J, Ogle B, Hubel A. DMSO-free cryopreservation of hiPSC-derived cardiomyocytes: Low temperature characterization and protocol development. RESEARCH SQUARE 2025:rs.3.rs-5183739. [PMID: 40321769 PMCID: PMC12047977 DOI: 10.21203/rs.3.rs-5183739/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Background Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have attracted significant interest for use in disease modeling, drug discovery and potential therapeutic applications. However, conventional hiPSC-CM cryopreservation protocols largely use dimethyl sulfoxide (DMSO) as the cryoprotectant (CPA), which is linked with a loss of post-thaw recovery and function for various cell types and is not ideal for therapeutic protocols. Additionally, the effect of freezing parameters such as cooling rate and nucleation temperature on post-thaw recovery of hiPSC-CMs has not been explored. Methods hiPSC-CMs were generated by Wnt pathway inhibition, followed by sodium I-lactate purification. Subsequently, biophysical characterization of the cells was performed. A differential evolution (DE) algorithm was utilized to determine the optimal composition of a mixture of a sugar, sugar alcohol and amino acid to replace DMSO as the CPA. The hiPSC-CMs were subjected to controlled-rate freezing at different cooling rates and nucleation temperatures. The optimum freezing parameters were identified by post-thaw recoveries and the partitioning ratio obtained from low temperature Raman spectroscopy studies. The post-thaw osmotic behavior of hiPSC-CMs was studied by measuring diameter of cells resuspended in the isotonic culture medium over time. Immunocytochemistry and calcium transient studies were performed to evaluate post-thaw function. Results hiPSC-CMs were found to be slightly larger than hiPSCs and exhibited a large osmotically inactive volume. The best-performing DMSO-free solutions enabled post-thaw recoveries over 90%, which was significantly greater than DMSO (69.4 ± 6.4%). A rapid cooling rate of 5°C/min and a low nucleation temperature of -8°C was found to be optimal for hiPSC-CMs. hiPSC-CMs displayed anomalous osmotic behavior post-thaw, dropping sharply in volume after resuspension. Post-thaw function was preserved when hiPSC-CMs were frozen with the best-performing DMSO-free CPA or DMSO and the cells displayed similar cardiac markers pre-freeze and post-thaw. Conclusions It was shown that a CPA cocktail of naturally-occurring osmolytes could effectively replace DMSO for preserving hiPSC-CMs while preserving morphology and function. Understanding the anomalous osmotic behavior and managing the excessive dehydration of hiPSC-CMs could be crucial to improve post-thaw outcomes. Effective DMSO-free cryopreservation would accelerate the development of drug discovery and therapeutic applications of hiPSC-CMs.
Collapse
|
2
|
Aabling RR, Rusan M, Møller AMJ, Munk-Pedersen N, Holm C, Elmengaard B, Pedersen M, Møller BK. A Narrative Review on Manufacturing Methods Employed in the Production of Mesenchymal Stromal Cells for Knee Osteoarthritis Therapy. Biomedicines 2025; 13:509. [PMID: 40002922 PMCID: PMC11853043 DOI: 10.3390/biomedicines13020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Knee osteoarthritis (OA) is a chronic, progressive, inflammatory, and degenerative whole-joint disease. Early-stage OA treatments typically include physiotherapy, weight-loss, pain relief medications, and intra-articular knee injections, such as corticosteroids, hyaluronic acid, or platelet-rich plasma. These treatments primarily provide symptomatic relief rather than reversing or halting disease progression. Recently, mesenchymal stromal cell (MSC) injections have garnered attention due to their immunomodulatory and regenerative capacities. MSCs, which can be derived from sources such as bone marrow, umbilical cord, or adipose tissue, and can be allogeneic or autologous, have demonstrated promising results in both animal models and several human studies. However, different protocols have been employed, presenting challenges for comparing outcomes. In this review, we address these variable settings, evaluate current practices, and identify key factors critical in optimizing MSC-based therapies by critically reviewing clinical trials of ex vivo expanded MSC therapies for OA undertaken between 2008 and 2023. Specific attention was given to two key aspects: (1) the cell culture process employed in manufacturing of autologous or allogeneic MSC products, and (2) the post-culture methods employed in storage, reconstitution and administration of the MSCs. Our findings suggest that standardizing MSC production for clinical applications remains a significant challenge, primarily due to variations in tissue sources, harvesting techniques, and manufacturing protocols, and due to broad discrepancies in reporting. Thus, we propose a set of minimal reporting criteria to guide future clinical trials. A common reporting guideline is a critical step towards a more standardized MSC production across different laboratories and clinical settings, thereby enhancing reproducibility and advancing the field of regenerative medicine for knee OA, as well as other disease settings.
Collapse
Affiliation(s)
- Rasmus Roost Aabling
- Comparative Medicine Lab, SDCA-Steno Diabetes Center Aarhus, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99 and 11, DK-8200 Aarhus, Denmark
| | - Maria Rusan
- Department of Molecular Medicine, Aarhus University Hospital, Brendstrupgårdsvej 21A, DK-8200 Aarhus, Denmark;
- Department of Clinical Pharmacology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
| | - Anaïs Marie Julie Møller
- Center for Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
| | - Naija Munk-Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark; (N.M.-P.); (M.P.)
| | - Carsten Holm
- Department of Orthopedic Surgery, Elective Surgery Centre, Silkeborg Regional Hospital, Falkevej 1G, DK-8600 Silkeborg, Denmark; (C.H.); (B.E.)
| | - Brian Elmengaard
- Department of Orthopedic Surgery, Elective Surgery Centre, Silkeborg Regional Hospital, Falkevej 1G, DK-8600 Silkeborg, Denmark; (C.H.); (B.E.)
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark; (N.M.-P.); (M.P.)
| | - Bjarne Kuno Møller
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
- Center for Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
| |
Collapse
|
3
|
Yang T, Lv X, Bai Y, Jiang H, Chang X, Wang J, Luo G. An all-in-one microfluidic cryopreservation system and protocols with gradually increasing CPA concentration. LAB ON A CHIP 2025; 25:565-576. [PMID: 39816004 DOI: 10.1039/d4lc00888j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In regular biosample cryopreservation operations, dropwise pipetting and continuous swirling are ordinarily needed to prevent cell damage (e.g. sudden osmotic change, toxicity and dissolution heat) caused by the high-concentration cryoprotectant (CPA) addition process. The following CPA removal process after freezing and rewarming also requires multiple sample transfer processes and manual work. In order to optimize the cryopreservation process, especially for trace sample preservation, here we present a microfluidic approach integrating CPA addition, sample storage, CPA removal and sample resuspension processes on a 30 × 30 × 4 mm3 three-layer chip. The sample solution could be added into CPA solution with pre-generated increasing concentration to decrease possible osmotic damage. Utilizing specially designed microfluidic structure and fluid field analysis, on-chip sample enrichment and CPA removal were achieved. A novel dead-end micro valve strategy with a simplified control module was applied and evaluated to assist on-chip mixing and sample pellet resuspension. The entire biosample cryopreservation process was also performed that verified the functions of the integrated microfluidic platform. Altogether, this developed platform could be an effective approach to realize automatic, all-in-one, low-damage cryopreservation operation.
Collapse
Affiliation(s)
- Tianhang Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan, China
| | - Xinbei Lv
- School of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| | - Yuqiao Bai
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Huabin Jiang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaoran Chang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Jinxian Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou ZhongKe Medical Device Industry Development Co., Ltd, Suzhou, China
| | - Gangyin Luo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- College of Life Sciences, Shandong Normal University, Jinan, China
- Suzhou ZhongKe Medical Device Industry Development Co., Ltd, Suzhou, China
| |
Collapse
|
4
|
Viana JVDS, de Oliveira LRM, Rodrigues LLV, Silva YLFE, Rodrigues ALR, Silva AR, Alves PV, Silva HVR, Pereira AF. Establishment and characterization of fibroblast lines from the northern tiger cat (Leopardus tigrinus, Schreber, 1775) during extended passage and cryopreservation. Cell Biol Int 2025; 49:33-44. [PMID: 39285526 DOI: 10.1002/cbin.12244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 12/18/2024]
Abstract
The establishment of fibroblast lines enables several applications from the formation of biobanks for the conservation of biodiversity to the use of these cells in physiological and toxicological assays. Considered a species vulnerable to extinction, the characterization of fibroblastic lines of northern tiger cat would contribute to its conservation. Therefore, we established and characterized fibroblasts derived from northern tiger cat during extended passage (third, seventh, and eleventh passages) and cryopreservation with regard to the morphology, viability, apoptotic classification, metabolism, proliferative activity, and oxidative stress by reactive oxygen species (ROS) levels and mitochondrial membrane potential (ΔΨm). Initially, we identified four dermal fibroblast lines by morphology, immunophenotyping, and karyotyping assays. In vitro culture after the third, seventh, and eleventh passages did not affect the viability, apoptotic classification, and ROS levels. Nevertheless, cells at seventh and eleventh passages featured a reduction in metabolism and an alteration in ΔΨm when compared to third passage cells. Additionally, cells at eleventh passage showed changes in the proliferative activity and morphology when compared to other passages. Regarding cryopreservation, no effect was observed on cryopreserved cells for morphology, viability, apoptotic classification, metabolism, and proliferative activity. Nevertheless, cryopreserved cells had alteration for ROS levels and ΔΨm. In summary, fibroblasts from northern tiger cat were affected by extended passage (seventh and eleventh passages) and cryopreservation. Adjustments to the in vitro culture and cryopreservation are necessary to reduce cellular oxidative stress caused by in vitro conditions.
Collapse
|
5
|
Mommaerts K, Okawa S, Schmitt M, Kofanova O, Turner TR, Ben RN, Del Sol A, Mathieson W, Schwamborn JC, Acker JP, Betsou F. Ice recrystallization inhibitors enable efficient cryopreservation of induced pluripotent stem cells: A functional and transcriptomic analysis. Stem Cell Res 2024; 81:103583. [PMID: 39467374 DOI: 10.1016/j.scr.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/28/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The successful use of human induced pluripotent stem cells (iPSCs) for research or clinical applications requires the development of robust, efficient, and reproducible cryopreservation protocols. After cryopreservation, the survival rate of iPSCs is suboptimal and cell line-dependent. We assessed the use of ice recrystallization inhibitors (IRIs) for cryopreservation of human iPSCs. A toxicity screening study was performed to assess specific small-molecule carbohydrate-based IRIs and concentrations for further evaluation. Then, a cryopreservation study compared the cryoprotective efficiency of 15 mM IRIs in 5 % or 10 % DMSO-containing solutions and with CryoStor® CS10. Three iPSC lines were cryopreserved as single-cell suspensions in the cryopreservation solutions and post-thaw characteristics, including pluripotency and differential gene expression were assessed. We demonstrate the fitness-for-purpose of 15 mM IRI in 5 % DMSO as an efficient cryoprotective solution for iPSCs in terms of post-thaw recovery, viability, pluripotency, and transcriptomic changes. This mRNA sequencing dataset has the potential to be used for molecular mechanism analysis relating to cryopreservation. Use of IRIs can reduce DMSO concentrations and its associated toxicities, thereby improving the utility, effectiveness, and efficiency of cryopreservation.
Collapse
Affiliation(s)
- Kathleen Mommaerts
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg.
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Margaux Schmitt
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Olga Kofanova
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | | | - Robert N Ben
- PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada; Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - William Mathieson
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Jason P Acker
- PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada; Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Fay Betsou
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| |
Collapse
|
6
|
Hernandez-Jimenez R, Patel A, Machado-Olavarria A, Mathieu H, Wohlfahrt J, Guergues J, Stevens SM, Dharap A. Cellular resiliency and survival of Neuro-2a cells under extreme stress. Exp Cell Res 2024; 443:114275. [PMID: 39383928 PMCID: PMC11756371 DOI: 10.1016/j.yexcr.2024.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Stressors such as hypoxia, hypothermia, and acute toxicity often result in widespread cell death. This study investigated the outcomes of Neuro-2a (N2a; mouse neuroblastoma) cells following a cryogenic storage failure that exposed them to a combination of these stressors over a period of approximately 24-30 hours. Remarkably, a small fraction of the cells survived the event, underwent a period of dormancy, and eventually recovered to a healthy state. To understand the underlying resilience mechanisms, we created a model to replicate the dewar failure event and examined changes in phenotype, transcriptomics, proteomics, and mitochondrial activity of the surviving cells during recovery. We found that the surviving cells initially displayed a stressed morphology with irregular membranes and a clustered apperance. They showed an increased expression of proteins related to DNA repair and chromatin modification pathways as well as heightened mitochondrial function shortly after the stress event. As recovery progressed, the stress-responsive pathways, mitochondrial activity, and growth rates normalized toward that of healthy controls, indicating a return to a stable baseline state. These findings suggest that an initial robust energetic state supports key stress-responsive and repair pathways at the early stages of recovery, facilitating cell survival and resiliency after extreme stress. This work provides valuable insights into cellular resilience mechanisms with potential implications for improving cell preservation and recovery in biomedical applications and developing therapeutic strategies for conditions involving cell damage and stress.
Collapse
Affiliation(s)
- Randall Hernandez-Jimenez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States; Byrd Alzheimer's Center & Research Institute, University of South Florida, Tampa, FL, 33613, United States
| | - Ankit Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States; Byrd Alzheimer's Center & Research Institute, University of South Florida, Tampa, FL, 33613, United States
| | - Ana Machado-Olavarria
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States; Byrd Alzheimer's Center & Research Institute, University of South Florida, Tampa, FL, 33613, United States
| | - Hailey Mathieu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States; Byrd Alzheimer's Center & Research Institute, University of South Florida, Tampa, FL, 33613, United States
| | - Jessica Wohlfahrt
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Jennifer Guergues
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Stanley M Stevens
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Ashutosh Dharap
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States; Byrd Alzheimer's Center & Research Institute, University of South Florida, Tampa, FL, 33613, United States.
| |
Collapse
|
7
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Structural investigation, computational analysis, and theoretical cryoprotectant approach of antifreeze protein type IV mutants. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:385-403. [PMID: 39327310 DOI: 10.1007/s00249-024-01719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 09/28/2024]
Abstract
Antifreeze proteins (AFPs) have unique features to sustain life in sub-zero environments due to ice recrystallization inhibition (IRI) and thermal hysteresis (TH). AFPs are in demand as agents in cryopreservation, but some antifreeze proteins have low levels of activity. This research aims to improve the cryopreservation activity of an AFPIV. In this in silico study, the helical peptide afp1m from an Antarctic yeast AFP was modeled into a sculpin AFPIV, to replace each of its four α-helices in turn, using various computational tools. Additionally, a new linker between the first two helices of AFPIV was designed, based on a flounder AFPI, to boost the ice interaction activity of the mutants. Bioinformatics tools such as ExPASy Prot-Param, Pep-Wheel, SOPMA, GOR IV, Swiss-Model, Phyre2, MODFOLD, MolPropity, and ProQ were used to validate and analyze the structural and functional properties of the model proteins. Furthermore, to evaluate the AFP/ice interaction, molecular dynamics (MD) simulations were executed for 20, 100, and 500 ns at various temperatures using GROMACS software. The primary, secondary, and 3D modeling analysis showed the best model for a redesigned antifreeze protein (AFP1mb, with afp1m in place of the fourth AFPIV helix) with a QMEAN (Swiss-Model) Z score value of 0.36, a confidence of 99.5%, a coverage score of 22%, and a p value of 0.01. The results of the MD simulations illustrated that AFP1mb had more rigidity and better ice interactions as a potential cryoprotectant than the other models; it also displayed enhanced activity in limiting ice growth at different temperatures.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Fang WH, Vangsness CT. Orthobiologic Products: Preservation Options for Orthopedic Research and Clinical Applications. J Clin Med 2024; 13:6577. [PMID: 39518716 PMCID: PMC11546119 DOI: 10.3390/jcm13216577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The biological products used in orthopedics include musculoskeletal allografts-such as bones, tendons, ligaments, and cartilage-as well as biological therapies. Musculoskeletal allografts support the body's healing process by utilizing preserved and sterilized donor tissue. These allografts are becoming increasingly common in surgical practice, allowing patients to avoid more invasive procedures and the risks associated with donor site morbidity. Bone grafting is one of the most frequently used procedures in orthopedics and traumatology. Biologic approaches aim to improve clinical outcomes by enhancing the body's natural healing capacity and reducing inflammation. They serve as an alternative to surgical interventions. While preliminary results from animal studies and small-scale clinical trials have been promising, the field of biologics still lacks robust clinical evidence supporting their efficacy. Biological therapies include PRP (platelet-rich plasma), mesenchymal stem cells (MSCs)/stromal cells/progenitor cells, bone marrow stem/stromal cells (BMSCs), adipose stem/stromal cells/progenitor cells (ASCs), cord blood (CB), and extracellular vesicles (EVs), including exosomes. The proper preservation and storage of these cellular therapies are essential for future use. Preservation techniques include cryopreservation, vitrification, lyophilization, and the use of cryoprotective agents (CPAs). The most commonly used CPA is DMSO (dimethyl sulfoxide). The highest success rates and post-thaw viability have been achieved by preserving PRP with a rate-controlled freezer using 6% DMSO and storing other cellular treatments using a rate-controlled freezer with 5% or 10% DMSO as the CPA. Extracellular vesicles (EVs) have shown the best results when lyophilized with 50 mM or 4% trehalose to prevent aggregation and stored at room temperature.
Collapse
Affiliation(s)
- William H. Fang
- Department of Orthopedic Surgery, Valley Health Systems, 620 Shadow Lane, Las Vegas, NV 89106, USA
| | - C. Thomas Vangsness
- Department of Orthopedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
Tan Y, Salkhordeh M, Murray ABP, Souza-Moreira L, Stewart DJ, Mei SHJ. Key quality parameter comparison of mesenchymal stem cell product cryopreserved in different cryopreservation solutions for clinical applications. Front Bioeng Biotechnol 2024; 12:1412811. [PMID: 39148941 PMCID: PMC11324487 DOI: 10.3389/fbioe.2024.1412811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Cryopreservation is a critical process of cell products for achieving a commercial viability through wide scale adoption. By preserving cells in a lower temperature, cryopreservation enables a product to be off-the-shelf and ready for infusion. An optimized cryopreservation strategy can maintain the viability, phenotype, and potency of thawed mesenchymal stromal/stem cells (MSCs) while being regulatory compliant. We compared three clinical-ready formulations with one research cryopreservation solutions and evaluated key quality parameters of post thawed MSCs. Method and result MSCs were cryopreserved at 3, 6, and 9 million cells/mL (M/mL) in four different cryopreservation solutions: NutriFreez (10% dimethyl sulfoxide [DMSO]), Plasmalyte A (PLA)/5% human albumin (HA)/10% DMSO (PHD10), CryoStor CS5 (5% DMSO), and CryoStor CS10 (10% DMSO). To establish post thaw viability, cells were evaluated with no dilution of DMSO (from 3 M/mL), 1:1 dilution (from 6 M/mL), or 1:2 dilution (from 9 M/mL) with PLA/5% HA, to achieve uniform concentration at 3 M/mL. Cell viability was measured at 0-, 2-, 4-, and 6-h post thaw with Trypan blue exclusion and Annexin V/PI staining. Dilution (1:2) of final cell products from 9M/mL resulted in an improvement of cell viability over 6 h but showed a trend of decreased recovery. MSCs cryopreserved in solutions with 10% DMSO displayed comparable viabilities and recoveries up to 6 h after thawing, whereas a decreasing trend was noted in cell viability and recovery with CS5. Cells from all groups exhibited surface marker characteristics of MSCs. We further evaluated cell proliferation after 6-day recovery in culture. While cells cryopreserved in NutriFreez and PHD10 presented similar cell growth post thaw, MSCs cryopreserved in CS5 and CS10 at 3 M/mL and 6M/mL showed 10-fold less proliferative capacity. No significant differences were observed between MSCs cryopreserved in NutriFreez and PHD10 in their potency to inhibit T cell proliferation and improve monocytic phagocytosis. Conclusion MSCs can be cryopreserved up to 9 M/mL without losing notable viability and recovery, while exhibiting comparable post thaw potency with NutriFreez and PHD10. These results highlight the importance of key parameter testing for selecting the optimal cryopreservation solution for MSC-based therapy.
Collapse
Affiliation(s)
- Yuan Tan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mahmoud Salkhordeh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Aidan B P Murray
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Luciana Souza-Moreira
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
10
|
Sogore T, Guo M, Sun N, Jiang D, Shen M, Ding T. Microbiological and chemical hazards in cultured meat and methods for their detection. Compr Rev Food Sci Food Saf 2024; 23:e13392. [PMID: 38865212 DOI: 10.1111/1541-4337.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Cultured meat, which involves growing meat in a laboratory rather than breeding animals, offers potential benefits in terms of sustainability, health, and animal welfare compared to conventional meat production. However, the cultured meat production process involves several stages, each with potential hazards requiring careful monitoring and control. Microbial contamination risks exist in the initial cell collection from source animals and the surrounding environment. During cell proliferation, hazards may include chemical residues from media components such as antibiotics and growth factors, as well as microbial issues from improper bioreactor sterilization. In the differentiation stage where cells become muscle tissue, potential hazards include residues from scaffolding materials, microcarriers, and media components. Final maturation and harvesting stages risk environmental contamination from nonsterile conditions, equipment, or worker handling if proper aseptic conditions are not maintained. This review examines the key microbiological and chemical hazards that must be monitored and controlled during the manufacturing process for cultured meats. It describes some conventional and emerging novel techniques that could be applied for the detection of microbial and chemical hazards in cultured meat. The review also outlines the current evolving regulatory landscape around cultured meat and explains how thorough detection and characterization of microbiological and chemical hazards through advanced analytical techniques can provide crucial data to help develop robust, evidence-based food safety regulations specifically tailored for the cultured meat industry. Implementing new digital food safety methods is recommended for further research on the sensitive and effective detection of microbiological and chemical hazards in cultured meat.
Collapse
Affiliation(s)
- Tahirou Sogore
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Meimei Guo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Na Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donglei Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Mofei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| |
Collapse
|
11
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
12
|
Campos Cassavia Cintra de Oliveira L, Queiroz Vacari G, Maurício Barbanti Duarte J. A Method to Freeze Skin Samples for Cryobanks: A Test of Some Cryoprotectants for an Endangered Deer. Biopreserv Biobank 2024; 22:211-216. [PMID: 37944047 DOI: 10.1089/bio.2023.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
The genetic diversity of endangered deer species, such as Mazama jucunda, can be preserved with the help of somatic cell cryopreservation. This procedure allows obtaining several cells from the individual even after its death, which is very important for applications in reproductive biotechnologies. This study's objective was to test cryopreservation protocols of skin fragments of M. jucunda, using different cryoprotectants in slow freezing. We evaluated four treatments, composed of three cryoprotectants, dimethyl sulfoxide (DMSO), polyvinylpyrrolidone (PVP), and ethylene glycol (EG), used alone and in combination. There was also a control group where the tissue did not undergo cryopreservation. Skin fragments were collected from the medial region of the pelvic limbs of three individuals. Each fragment was divided into 10 equal parts, standardized by weight, making two pieces for each treatment and control from each animal. The collected fragments were evaluated in culture, based on the speed of occupation of the free spaces of the cell culture flask. Cell viability was also evaluated using Trypan Blue dye and the mitotic index to understand the effect of toxicity and freezing on cell membrane integrity and cell division capacity, respectively. The treatments that used association with PVP proved to be more damaging to the cells, taking longer to reach confluence. EG alone showed better results than DMSO in the slow-freezing protocol. Clinical Trial Registration Number is 1390/21.
Collapse
Affiliation(s)
- Laura Campos Cassavia Cintra de Oliveira
- Departamento de Zootecnia, Deer Conservation and Research Center (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias, São Paulo State University, Jaboticabal, Brazil
| | - Gabrielle Queiroz Vacari
- Departamento de Zootecnia, Deer Conservation and Research Center (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias, São Paulo State University, Jaboticabal, Brazil
| | - José Maurício Barbanti Duarte
- Departamento de Zootecnia, Deer Conservation and Research Center (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias, São Paulo State University, Jaboticabal, Brazil
| |
Collapse
|
13
|
Tornacı S, Erginer M, Gökalsın B, Aysan A, Çetin M, Sadauki M, Fındıklı N, Genç S, Sesal C, Toksoy Öner E. Investigating the cryoprotective efficacy of fructans in mammalian cell systems via a structure-functional perspective. Carbohydr Polym 2024; 328:121704. [PMID: 38220340 DOI: 10.1016/j.carbpol.2023.121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Fructans have long been known with their role in protecting organisms against various stress factors due to their ability to induce controlled dehydration and support membrane stability. Considering the vital importance of such features in cryo-technologies, this study aimed to explore the cryoprotective efficacy of fructans in mammalian cell systems where structurally different fructan polymers were examined on in vitro cell models derived from organs such as the liver, frequently used in transplantation, osteoblast, and cord cells, commonly employed in cell banking, as well as human seminal fluids that are of vital importance in assisted reproductive technology. To gain insights into the fructan/membrane interplay, structural differences were linked to rheological properties as well as to lipid membrane interactions where both fluorescein leakage from unilamellar liposomes and membrane integrity of osteoblast cells were monitored. High survival rates obtained with human endothelial, osteoblast and liver cells for up to two months clearly showed that fructans could be considered as effective non-permeating cryoprotectants, especially for extended periods of cryopreservation. In trials with human seminal fluid, short chained levan in combination with human serum albumin and glycerol proved very effective in preserving semen samples across multiple patients without any morphological abnormalities.
Collapse
Affiliation(s)
- Selay Tornacı
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Merve Erginer
- Istanbul University-Cerrahpaşa, Institute of Nanotechnology and Biotechnology, Istanbul, Turkey
| | - Barış Gökalsın
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Arzu Aysan
- Gebze Technical University, Department of Molecular Biology and Genetics, Kocaeli, Turkey
| | - Metin Çetin
- Gebze Technical University, Department of Molecular Biology and Genetics, Kocaeli, Turkey
| | - Mubarak Sadauki
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Necati Fındıklı
- Department of Biomedical Engineering, Beykent University, Istanbul, Turkey; Bahceci Health Group, Istanbul, Turkey
| | - Seval Genç
- Marmara University, Department of Metallurgical & Materials Engineering, Istanbul, Turkey
| | - Cenk Sesal
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey.
| |
Collapse
|
14
|
Xu R, Shi X, Huang H, Tan WS, Cai H. Development of a Me 2SO-free cryopreservation medium and its long-term cryoprotection on the CAR-NK cells. Cryobiology 2024; 114:104835. [PMID: 38070820 DOI: 10.1016/j.cryobiol.2023.104835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Cryopreservation is a crucial step in the supply process of off-the-shelf chimeric antigen receptor engineered natural killer (CAR-NK) cell products. Concerns have been raised over the clinical application of dimethyl sulfoxide (Me2SO) due to the potential for adverse reactions following infusion and limited cell-specific cytotoxic effects if misapplied. In this study, we developed a Me2SO-free cryopreservation medium specifically tailored for CAR-NK cells to address this limitation. The cryopreservation medium was formulated using human serum albumin (HSA) and glycerol as the base components. Following initial screening of seven clinically-compatible solutions, four with cryoprotective properties were identified. These were combined and optimized into a single formulation: IF-M. The viability, phenotype, and function of CAR-NK cells were evaluated after short-term and long-term cryopreservation to assess the effectiveness of IF-M, with Me2SO serving as the control group. The viability and recovery of CAR-NK cells in the IF-M group were significantly higher than those in the Me2SO group within 90 days of cryopreservation. Moreover, after 1 year of cryopreservation the cytotoxic capacity of CAR-NK cells cryopreserved with IF-M was comparable to that of fresh CAR-NK cells and significantly superior to that of CAR-NK cells cryopreserved in Me2SO. The CD107a expression intensity of CAR-NK cells in IF-M group was significantly higher than that of Me2SO group. No statistical differences were observed in other indicators under different cryopreservation times. These results underscore the robustness of IF-M as a suitable replacement for traditional Me2SO-based cryopreservation medium for the long-term cryopreservation and clinical application of off-the-shelf CAR-NK cells.
Collapse
Affiliation(s)
- Ruisheng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaodi Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
15
|
Alasmar S, Huang J, Chopra K, Baumann E, Aylsworth A, Hewitt M, Sandhu JK, Tauskela JS, Ben RN, Jezierski A. Improved Cryopreservation of Human Induced Pluripotent Stem Cell (iPSC) and iPSC-derived Neurons Using Ice-Recrystallization Inhibitors. Stem Cells 2023; 41:1006-1021. [PMID: 37622655 PMCID: PMC10631806 DOI: 10.1093/stmcls/sxad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023]
Abstract
Human induced pluripotent stem cells (iPSCs) and iPSC-derived neurons (iPSC-Ns) represent a differentiated modality toward developing novel cell-based therapies for regenerative medicine. However, the successful application of iPSC-Ns in cell-replacement therapies relies on effective cryopreservation. In this study, we investigated the role of ice recrystallization inhibitors (IRIs) as novel cryoprotectants for iPSCs and terminally differentiated iPSC-Ns. We found that one class of IRIs, N-aryl-D-aldonamides (specifically 2FA), increased iPSC post-thaw viability and recovery with no adverse effect on iPSC pluripotency. While 2FA supplementation did not significantly improve iPSC-N cell post-thaw viability, we observed that 2FA cryopreserved iPSC-Ns re-established robust neuronal network activity and synaptic function much earlier compared to CS10 cryopreserved controls. The 2FA cryopreserved iPSC-Ns retained expression of key neuronal specific and terminally differentiated markers and displayed functional electrophysiological and neuropharmacological responses following treatment with neuroactive agonists and antagonists. We demonstrate how optimizing cryopreservation media formulations with IRIs represents a promising strategy to improve functional cryopreservation of iPSCs and post-mitotic iPSC-Ns, the latter of which have been challenging to achieve. Developing IRI enabling technologies to support an effective cryopreservation and an efficiently managed cryo-chain is fundamental to support the delivery of successful iPSC-derived therapies to the clinic.
Collapse
Affiliation(s)
- Salma Alasmar
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Jez Huang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Karishma Chopra
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Amy Aylsworth
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, , Faculty of Medicine, Ottawa, ON, Canada
| | - Joseph S Tauskela
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, , Faculty of Medicine, Ottawa, ON, Canada
| |
Collapse
|
16
|
Keyzner A, Azzi J, Jakubowski R, Sinitsyn Y, Tindle S, Shpontak S, Kwon D, Isola L, Iancu-Rubin C. Cryopreservation of Allogeneic Hematopoietic Cell Products During COVID-19 Pandemic: Graft Characterization and Engraftment Outcomes. Transplant Proc 2023; 55:1799-1809. [PMID: 37210273 PMCID: PMC10121136 DOI: 10.1016/j.transproceed.2023.03.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND The COVID-19 pandemic triggered the deployment of unfamiliar measures to safeguard successful allogeneic hematopoietic cell transplantation (allo-HCT). Among these measures, cryopreservation offered logistical benefits that could outlast the pandemic, including graft availability and timely clinical service. The purpose of this study was to evaluate graft quality and hematopoietic reconstitution in patients transplanted with cryopreserved allogeneic stem cell products during the COVID-19 pandemic. METHODS We evaluated 44 patients who underwent allo-HCT using cryopreserved grafts consisting of hematopoietic progenitor cells (HPC) apheresis (A) and bone marrow (BM) products at Mount Sinai Hospital. Comparative analyses of 37 grafts infused fresh during the one-year period preceding the pandemic were performed. Assessment of cellular therapy products included total nucleated cell and CD34+ cell enumeration, viability, and post-thaw recovery. The primary clinical endpoint was the evaluation of engraftment (absolute neutrophil count [ANC] and platelet count) and donor chimerism (presence of CD33+ and CD3+ donor cells) at day +30 and +100 post-transplant. Adverse events related to cell infusion were also analyzed. RESULTS Patient characteristics were comparable between the fresh and cryopreserved groups with 2 exceptions in the HPC-A cohort: the number of patients in the cryopreserved group that received haploidentical grafts was 6 times that in the fresh group, and the number of patients in the fresh group with a Karnofsky performance score >90 was double that in the cryopreserved group. The quality of HPC-A and HPC-BM products was not affected by cryopreservation, and all grafts met the release criteria for infusion. The pandemic did not affect the time between collection and cryopreservation (median, 24 hours) and time in storage (median, 15 days). Median time to ANC recovery was significantly delayed in recipients of cryopreserved HPC-A (15 vs 11 days, P = .0121), and there was a trend toward delayed platelet engraftment (24 vs 19 days, P = .0712). The delay in ANC and platelet recovery was not observed when only matched graft recipients were compared. Cryopreservation did not affect the ability of HPC-BM grafts to engraft and reconstitute hematopoiesis, and there was no difference in the rates of ANC and platelet recovery. Achievement of donor CD3/CD33 chimerism was not affected by cryopreservation of either HPC-A or HPC-BM products. Graft failure was observed in only 1 case, a recipient of cryopreserved HPC-BM. Three recipients of cryopreserved HPC-A grafts died before ANC engraftment from infectious complications. Remarkably, 22% of our studied population had myelofibrosis, and almost half received cryopreserved HPC-A grafts with no graft failure observed. Finally, patients receiving cryopreserved grafts were at a higher risk of infusion-related adverse events than those receiving fresh grafts. CONCLUSIONS Cryopreservation of allogeneic grafts results in adequate product quality with minimal impact on short-term clinical outcomes, except for an increased risk of infusion-related adverse events. Cryopreservation is a safe option in terms of graft quality and hematopoietic reconstitution with logistical benefits, but additional data are needed to determine long-term outcomes and assess whether this is a suitable strategy for at-risk patients.
Collapse
Affiliation(s)
- Alla Keyzner
- Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jacques Azzi
- Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | - Deukwoo Kwon
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Luis Isola
- Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Camelia Iancu-Rubin
- Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
17
|
Harley-Troxell ME, Dhar M. Assembling Spheroids of Rat Primary Neurons Using a Stress-Free 3D Culture System. Int J Mol Sci 2023; 24:13506. [PMID: 37686310 PMCID: PMC10488062 DOI: 10.3390/ijms241713506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Neural injuries disrupt the normal functions of the nervous system, whose complexities limit current treatment options. Because of their enhanced therapeutic effects, neurospheres have the potential to advance the field of regenerative medicine and neural tissue engineering. Methodological steps can pose challenges for implementing neurosphere assemblies; for example, conventional static cultures hinder yield and throughput, while the presence of the necrotic core, time-consuming methodology, and high variability can slow their progression to clinical application. Here we demonstrate the optimization of primary neural cell-derived neurospheres, developed using a high-throughput, stress-free, 3D bioreactor. This process provides a necessary baseline for future studies that could develop co-cultured assemblies of stem cells combined with endothelial cells, and/or biomaterials and nanomaterials for clinical therapeutic use. Neurosphere size and neurite spreading were evaluated under various conditions using Image J software. Primary neural cells obtained from the hippocampi of three-day-old rat pups, when incubated for 24 h in a reactor coated with 2% Pluronic and seeded on Poly-D-Lysine-coated plates establish neurospheres suitable for therapeutic use within five days. Most notably, neurospheres maintained high cell viability of ≥84% and expressed the neural marker MAP2, neural marker β-Tubulin III, and glial marker GFAP at all time points when evaluated over seven days. Establishing these factors reduces the variability in developing neurospheres, while increasing the ease and output of the culture process and maintaining viable cellular constructs.
Collapse
Affiliation(s)
| | - Madhu Dhar
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
18
|
Li CH, Zhao J, Zhang HY, Wang B. Banking of perinatal mesenchymal stem/stromal cells for stem cell-based personalized medicine over lifetime: Matters arising. World J Stem Cells 2023; 15:105-119. [PMID: 37181005 PMCID: PMC10173813 DOI: 10.4252/wjsc.v15.i4.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 03/22/2023] [Indexed: 04/26/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are currently applied in regenerative medicine and tissue engineering. Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefits for patients. MSCs derived from either human adult or perinatal tissues have their own unique advantages in their medical practices. Usually, clinical studies are conducted by using of cultured MSCs after thawing or short-term cryopreserved-then-thawed MSCs prior to administration for the treatment of a wide range of diseases and medical disorders. Currently, cryogenically banking perinatal MSCs for potential personalized medicine for later use in lifetime has raised growing interest in China as well as in many other countries. Meanwhile, this has led to questions regarding the availability, stability, consistency, multipotency, and therapeutic efficiency of the potential perinatal MSC-derived therapeutic products after long-term cryostorage. This opinion review does not minimize any therapeutic benefit of perinatal MSCs in many diseases after short-term cryopreservation. This article mainly describes what is known about banking perinatal MSCs in China and, importantly, it is to recognize the limitation and uncertainty of the perinatal MSCs stored in cryobanks for stem cell medical treatments in whole life. This article also provides several recommendations for banking of perinatal MSCs for potentially future personalized medicine, albeit it is impossible to anticipate whether the donor will benefit from banked MSCs during her/his lifetime.
Collapse
Affiliation(s)
- Cheng-Hai Li
- Stem Cell Program of Clinical Research Center, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| | - Jing Zhao
- Department of Clinical Laboratory, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| | - Hong-Yan Zhang
- Department of Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou 450000, Henan Province, China
| | - Bin Wang
- Department of Neurosurgery, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China.
| |
Collapse
|
19
|
Partanen A, Turunen A, Silvennoinen R, Valtola J, Pyörälä M, Siitonen T, Sikiö A, Putkonen M, Sankelo M, Penttilä K, Kuittinen T, Mäntymaa P, Pelkonen J, Jantunen E, Varmavuo V. Impact of the number of cryopreserved CD34 + cells in the infused blood grafts on hematologic recovery and survival in myeloma patients after autologous stem cell transplantation: Experience from the GOA study. J Clin Apher 2023; 38:33-44. [PMID: 36239392 DOI: 10.1002/jca.22022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Prospective data on the impact of CD34+ cell loss during cryopreservation and the amount of cryopreserved CD34+ cells infused after high-dose therapy on hematologic recovery and post-transplant outcome in multiple myeloma (MM) are scarce. PATIENTS AND METHODS This post-hoc study aimed to investigate factors associating with CD34+ cell loss during cryopreservation and the effects of the infusion of a very low number (<1.0 × 106 /kg, group A), low number (1-1.9 × 106 /kg, group B), and optimal number (≥2 × 106 /kg, group C) of thawed viable CD34+ cells on hematologic recovery, progression free survival, and overall survival after autologous stem cell transplantation among 127 patients with MM. RESULTS In group C, pegfilgrastim use (P = 0.001), plerixafor use (P = 0.039), and older age ≥ 60 years (P = 0.026) were associated with less loss of CD34+ cells during cryopreservation. Better mobilization efficacy correlated with greater CD34+ cell loss in group B (P = 0.013 and P = 0.001) and in group C (P < 0.001 and P < 0.001). Early platelet engraftment was slowest in group A (20 d vs 12 d in group B vs 11 d in group C, P = 0.003). The infused viable CD34+ cell count <1.0 × 106 /kg seemed not to have influence on PFS (P = 0.322) or OS (P = 0.378) in MM patients. CONCLUSIONS Cryopreservation impacts significantly on the CD34+ cell loss. A very low number of graft viable CD34+ cells did not affect PFS or OS.
Collapse
Affiliation(s)
- Anu Partanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Antti Turunen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Raija Silvennoinen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland.,Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jaakko Valtola
- Department of Medicine, Central Hospital of Savonlinna, Savonlinna, Finland
| | - Marja Pyörälä
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Timo Siitonen
- Department of Medicine, Oulu University Hospital, Oulu, Finland
| | - Anu Sikiö
- Department of Medicine, Central Hospital of Central Finland, Jyväskylä, Finland
| | - Mervi Putkonen
- Department of Medicine, Turku University Hospital, Turku, Finland
| | - Marja Sankelo
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Karri Penttilä
- Department of Medicine, Central Hospital of Savonlinna, Savonlinna, Finland.,Finnish Medicines Agency, Kuopio, Finland
| | - Taru Kuittinen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | | | - Jukka Pelkonen
- Eastern Finland Laboratory Centre, Kuopio, Finland.,Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
| | - Esa Jantunen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Medicine, North Karelia Hospital District, Joensuu, Finland
| | - Ville Varmavuo
- Department of Medicine, Kymenlaakso Central Hospital, Kotka, Finland
| |
Collapse
|
20
|
Broucke K, Van Pamel E, Van Coillie E, Herman L, Van Royen G. Cultured meat and challenges ahead: A review on nutritional, technofunctional and sensorial properties, safety and legislation. Meat Sci 2023; 195:109006. [DOI: 10.1016/j.meatsci.2022.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
21
|
Sun JD, Sun Y, Qiao T, Zhang SE, Dyce PW, Geng YW, Wang P, Ge W, Shen W, Cheng SF. Cryopreservation of porcine skin-derived stem cells using melatonin or trehalose maintains their ability to self-renew and differentiate. Cryobiology 2022; 107:23-34. [PMID: 35716769 DOI: 10.1016/j.cryobiol.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Porcine skin-derived stem cells (pSDSCs) are a type of adult stem cells (ASCs) that retain the ability to self-renew and differentiate. Currently, pSDSCs research has entered an intense period of development; however there has been no research regarding methods of cryopreservation. In this paper, we explored an efficient cryopreservation method for pSDSCs. Our results demonstrated that cryopreserving 50 μm diameter pSDSCs aggregates resulted in a lower apoptosis rate and a greater ability to proliferate to form larger spherical cell aggregates than during single-cell cryopreservation. To further optimize the cryopreservation method, we added different concentrations of melatonin (N-acetyl-5-methoxytryptamine, MLT) and trehalose (d-trehalose anhydrous, TRE) to act as cryoprotectants (CPAs) for the pSDSCs. After comparative experiments, we found that the cryopreservation efficiency of 50 mM TRE was superior. Further experiments demonstrated that the reason why 50 mM TRE improved cryopreservation efficiency was that it reduced the intracellular oxidative stress and mitochondrial damage caused by cryopreservation. Taken together, our results suggest that cryopreserving 50 μm diameter pSDSCs aggregates in F12 medium with 10% dimethyl sulfoxide (DMSO) and 50 mM TRE promotes the long-term storage of pSDSCs.
Collapse
Affiliation(s)
- Jia-Dong Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yuan-Wei Geng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ping Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
22
|
Marcantonini G, Bartolini D, Zatini L, Costa S, Passerini M, Rende M, Luca G, Basta G, Murdolo G, Calafiore R, Galli F. Natural Cryoprotective and Cytoprotective Agents in Cryopreservation: A Focus on Melatonin. Molecules 2022; 27:3254. [PMID: 35630729 PMCID: PMC9145333 DOI: 10.3390/molecules27103254] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 01/31/2023] Open
Abstract
Cryoprotective and cytoprotective agents (Cytoprotective Agents) are fundamental components of the cryopreservation process. This review presents the essentials of the cryopreservation process by examining its drawbacks and the role of cytoprotective agents in protecting cell physiology. Natural cryoprotective and cytoprotective agents, such as antifreeze proteins, sugars and natural deep eutectic systems, have been compared with synthetic ones, addressing their mechanisms of action and efficacy of protection. The final part of this article focuses melatonin, a hormonal substance with antioxidant properties, and its emerging role as a cytoprotective agent for somatic cells and gametes, including ovarian tissue, spermatozoa and spermatogonial stem cells.
Collapse
Affiliation(s)
- Giada Marcantonini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| | - Linda Zatini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| | - Stefania Costa
- Angelantoni Life Science S.r.l., 06056 Massa Martana, Italy; (S.C.); (M.P.)
| | | | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinic and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy;
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
| | - Giuseppe Basta
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
| | - Giuseppe Murdolo
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
| | - Riccardo Calafiore
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| |
Collapse
|
23
|
Baust JM, Snyder KK, Van Buskirk RG, Baust JG. Assessment of the Impact of Post-Thaw Stress Pathway Modulation on Cell Recovery following Cryopreservation in a Hematopoietic Progenitor Cell Model. Cells 2022; 11:cells11020278. [PMID: 35053394 PMCID: PMC8773610 DOI: 10.3390/cells11020278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The development and use of complex cell-based products in clinical and discovery science continues to grow at an unprecedented pace. To this end, cryopreservation plays a critical role, serving as an enabling process, providing on-demand access to biological material, facilitating large scale production, storage, and distribution of living materials. Despite serving a critical role and substantial improvements over the last several decades, cryopreservation often remains a bottleneck impacting numerous areas including cell therapy, tissue engineering, and tissue banking. Studies have illustrated the impact and benefit of controlling cryopreservation-induced delayed-onset cell death (CIDOCD) through various “front end” strategies, such as specialized media, new cryoprotective agents, and molecular control during cryopreservation. While proving highly successful, a substantial level of cell death and loss of cell function remains associated with cryopreservation. Recently, we focused on developing technologies (RevitalICE™) designed to reduce the impact of CIDOCD through buffering the cell stress response during the post-thaw recovery phase in an effort to improve the recovery of previously cryopreserved samples. In this study, we investigated the impact of modulating apoptotic caspase activation, oxidative stress, unfolded protein response, and free radical damage in the initial 24 h post-thaw on overall cell survival. Human hematopoietic progenitor cells in vitro cryopreserved in both traditional extracellular-type and intracellular-type cryopreservation freeze media were utilized as a model cell system to assess impact on survival. Our findings demonstrated that through the modulation of several of these pathways, improvements in cell recovery were obtained, regardless of the freeze media and dimethyl sulfoxide concentration utilized. Specifically, through the use of oxidative stress inhibitors, an average increase of 20% in overall viability was observed. Furthermore, the results demonstrated that by using the post-thaw recovery reagent on samples cryopreserved in intracellular-type media (Unisol™), improvements in overall cell survival approaching 80% of non-frozen controls were attained. While improvements in overall survival were obtained, an assessment on the impact of specific cell subpopulations and functionality remains to be completed. While work remains, these results represent an important step forward in the development of improved cryopreservation processes for use in discovery science, and commercial and clinical settings.
Collapse
Affiliation(s)
- John M. Baust
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
- Correspondence: ; Tel.: +1-(607)-687-8701
| | - Kristi K. Snyder
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
| | - Robert G. Van Buskirk
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA;
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - John G. Baust
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA;
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| |
Collapse
|