1
|
Reid BM, Vyas S, Chen Z, Chen A, Kanetsky PA, Permuth JB, Sellers TA, Saglam O. Morphologic and molecular correlates of EZH2 as a predictor of platinum resistance in high-grade ovarian serous carcinoma. BMC Cancer 2021; 21:714. [PMID: 34140011 PMCID: PMC8212453 DOI: 10.1186/s12885-021-08413-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Enhancer of zesta homologue 2 (EZH2) is an essential component of polycomb repressive complex 2 (PRC2) that contributes to tumor progression and chemo-resistance. The aim of this study was to comprehensively assess the prognostic value of EZH2 across the morphologic and molecular spectra of high-grade serous ovarian carcinoma (HGSOC) by utilizing both immunohistochemistry (IHC) and proteogenomic technologies. METHODS IHC of EZH2 was performed using a tissue microarray of 79 HGSOC scored (+/-) for lymphovascular invasion (LVI), tumor-infiltrating lymphocytic aggregates ≥1 mm (TIL) and architectural growth patterns. The association of EZH2 H-score with response to therapy and overall survival was evaluated by tumor features. We also evaluated EZH2 transcriptional (RNA sequencing) and protein (mass spectrometry) expression from bulk tumor samples from 336 HGSOC from The Cancer Genome Atlas (TCGA). EZH2 expression and co-expression networks were compared by clinical outcomes. RESULTS For HGSOC without TIL (58%), EZH2 expression was almost 2-fold higher in platinum resistant tumors (P = 0.01). Conversely, EZH2 was not associated with platinum resistance among TIL+ HGSOC (P = 0.41). EZH2 expression was associated with reduced survival for tumors with LVI (P = 0.04). Analysis of TCGA found higher EZH2 expression in immunoreactive and proliferative tumors (P = 6.7 × 10- 5) although protein levels were similar across molecular subtypes (P = 0.52). Both mRNA and protein levels of EZH2 were lower in platinum resistant tumors although they were not associated with survival. Co-expression analysis revealed EZH2 networks totaling 1049 mRNA and 448 proteins that were exclusive to platinum sensitive or resistant tumors. The EZH2 network in resistant HGSOC included CARM1 which was positively correlated with EZH2 at both mRNA (r = 0.33, p = 0.003) and protein (r = 0.14, P = 0.01) levels. Further, EZH2 co-expression with CARM1 corresponded to a decreased prognostic significance of EZH2 expression in resistant tumors. CONCLUSIONS Our findings demonstrate that EZH2 expression varies based on its interactions with immunologic pathways and tumor microenvironment, impacting the prognostic interpretation. The association between high EZH2 expression and platinum resistance in TIL- HGSOC warrants further study of the implications for therapeutic strategies.
Collapse
Affiliation(s)
- Brett M Reid
- Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Shraddha Vyas
- Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Zhihua Chen
- Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ann Chen
- Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | - Ozlen Saglam
- Department of Pathology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL, 33612, USA
| |
Collapse
|
2
|
Steed KL, Jordan HR, Tollefsbol TO. SAHA and EGCG Promote Apoptosis in Triple-negative Breast Cancer Cells, Possibly Through the Modulation of cIAP2. Anticancer Res 2020; 40:9-26. [PMID: 31892549 DOI: 10.21873/anticanres.13922] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIM Inhibition of apoptosis is one of the hallmarks of cancer, and anti-apoptotic genes are often targets of genetic and epigenetic alterations. Cellular inhibitor of apoptosis 2 (cIAP2) has a role in degrading caspases by linking them to ubiquitin molecules, and is upregulated in triple-negative breast cancer (TNBC). Previous studies have demonstrated that cIAP2 may play a role in the epithelial-to-mesenchymal transition (EMT). MATERIALS AND METHODS Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, was administered to triple-negative breast cancer (TNBC) cells alone or in combination with epigallocatechin-3-gallate (EGCG), a DNA methyltransferase (DNMT) inhibitor isolated from green tea. RESULTS The compounds were able to decrease the expression of cIAP2 while increasing the expression of pro-apoptotic caspase 7. There were also changes in histone modifications, suggesting a role of epigenetic mechanisms in these changes in expression of cIAP2. These changes resulted in an increase in apoptosis. SAHA and EGCG were also capable of limiting TNBC cell migration across a fibronectin (FN) matrix. CONCLUSION SAHA and EGCG reduce the metastatic potential of TNBC by inducing the apoptotic pathway.
Collapse
Affiliation(s)
- Kayla L Steed
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, U.S.A.,School of Nursing, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Harrison R Jordan
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, U.S.A. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, U.S.A.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, U.S.A.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, U.S.A.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
3
|
Vincent A, Ouelkdite-Oumouchal A, Souidi M, Leclerc J, Neve B, Van Seuningen I. Colon cancer stemness as a reversible epigenetic state: Implications for anticancer therapies. World J Stem Cells 2019; 11:920-936. [PMID: 31768220 PMCID: PMC6851010 DOI: 10.4252/wjsc.v11.i11.920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of cancer cell plasticity, i.e. their ability to reprogram into cancer stem cells (CSCs) either naturally or under chemotherapy and/or radiotherapy, has changed, once again, the way we consider cancer treatment. If cancer stemness is a reversible epigenetic state rather than a genetic identity, opportunities will arise for therapeutic strategies that remodel epigenetic landscapes of CSCs. However, the systematic use of DNA methyltransferase and histone deacetylase inhibitors, alone or in combination, in advanced solid tumors including colorectal cancers, regardless of their molecular subtypes, does not seem to be the best strategy. In this review, we first summarize the knowledge researchers have gathered on the epigenetic signatures of CSCs with the difficulty of isolating rare populations of cells. We raise questions about the relevant use of currently available epigenetic inhibitors (epidrugs) while the expression of numerous cancer stem cell markers are often repressed by epigenetic mechanisms. These markers include the three cluster of differentiation CD133, CD44 and CD166 that have been extensively used for the isolation of colon CSCs.and . Finally, we describe current treatment strategies using epidrugs, and we hypothesize that, using correlation tools comparing associations of relevant CSC markers with chromatin modifier expression, we could identify better candidates for epienzyme targeting.
Collapse
Affiliation(s)
- Audrey Vincent
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Aïcha Ouelkdite-Oumouchal
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Mouloud Souidi
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Julie Leclerc
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
- Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille F-59000, France
| | - Bernadette Neve
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Isabelle Van Seuningen
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| |
Collapse
|
4
|
Royston KJ, Paul B, Nozell S, Rajbhandari R, Tollefsbol TO. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Exp Cell Res 2018; 368:67-74. [PMID: 29689276 PMCID: PMC6733260 DOI: 10.1016/j.yexcr.2018.04.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 12/13/2022]
Abstract
Little is known about the effects of combinatorial dietary compounds on the regulation of epigenetic mechanisms involved in breast cancer prevention. The human diet consists of a multitude of components, and there is a need to elucidate how certain compounds interact in collaboration. Withaferin A (WA), found in the Indian winter cherry and documented as a DNA methyltransferase (DNMT) inhibitor, and sulforaphane (SFN), a well-known histone deacetylase (HDAC) inhibitor found in cruciferous vegetables, are two epigenetic modifying compounds that have only recently been studied in conjunction. The use of DNMT and HDAC inhibitors to reverse the malignant expression of certain genes in breast cancer has shown considerable promise. Previously, we found that SFN + WA synergistically promote breast cancer cell death. Herein, we determined that these compounds inhibit cell cycle progression from S to G2 phase in MDA-MB-231 and MCF-7 breast cancer. Furthermore, we demonstrate that this unique combination of epigenetic modifying compounds down-regulates the levels of Cyclin D1 and CDK4, and pRB; conversely, the levels of E2F mRNA and tumor suppressor p21 are increased independently of p53. We find these events coincide with an increase in unrestricted histone methylation. We propose SFN + WA-induced breast cancer cell death is attributed, in part, to epigenetic modifications that result in the modulated expression of key genes responsible for the regulation of cancer cell senescence.
Collapse
Affiliation(s)
- Kendra J Royston
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, 175 Campbell Hall, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
| | - Bidisha Paul
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, 175 Campbell Hall, Birmingham, AL 35294, USA
| | - Susan Nozell
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Birmingham, AL 35233, USA
| | - Rajani Rajbhandari
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Birmingham, AL 35233, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, 175 Campbell Hall, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA; Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Wen Y, Cai J, Hou Y, Huang Z, Wang Z. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget 2018; 8:37974-37990. [PMID: 28415635 PMCID: PMC5514966 DOI: 10.18632/oncotarget.16467] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications in cancer stem cells largely result in phenotypic and functional heterogeneity in many solid tumors. Increasing evidence indicates that enhancer of zeste homolog 2 (EZH2), the catalytic subunit of Polycomb repressor complex 2, is highly expressed in cancer stem cells of numerous malignant tumors and has a critical function in cancer stem cell expansion and maintenance. Here, we review up-to-date information regarding EZH2 expression patterns, functions, and molecular mechanisms in cancer stem cells in various malignant tumors and discuss the therapeutic potential of targeting EZH2 in tumors.
Collapse
Affiliation(s)
- Yiping Wen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaya Hou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Meseure D, Drak Alsibai K, Nicolas A. Pivotal role of pervasive neoplastic and stromal cells reprogramming in circulating tumor cells dissemination and metastatic colonization. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2014; 7:95-115. [PMID: 25523234 PMCID: PMC4275542 DOI: 10.1007/s12307-014-0158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023]
Abstract
Reciprocal interactions between neoplastic cells and their microenvironment are crucial events in carcinogenesis and tumor progression. Pervasive stromal reprogramming and remodeling that transform a normal to a tumorigenic microenvironment modify numerous stromal cells functions, status redox, oxidative stress, pH, ECM stiffness and energy metabolism. These environmental factors allow selection of more aggressive cancer cells that develop important adaptive strategies. Subpopulations of cancer cells acquire new properties associating plasticity, stem-like phenotype, unfolded protein response, metabolic reprogramming and autophagy, production of exosomes, survival to anoikis, invasion, immunosuppression and therapeutic resistance. Moreover, by inducing vascular transdifferentiation of cancer cells and recruiting endothelial cells and pericytes, the tumorigenic microenvironment induces development of tumor-associated vessels that allow invasive cells to gain access to the tumor vessels and to intravasate. Circulating cancer cells can survive in the blood stream by interacting with the intravascular microenvironment, extravasate through the microvasculature and interact with the metastatic microenvironment of target organs. In this review, we will focus on many recent paradigms involved in the field of tumor progression.
Collapse
Affiliation(s)
- Didier Meseure
- Platform of Investigative Pathology and Department of Biopathology, Curie Institute, 26 rue d'Ulm, 75248, Paris, Cedex 05, France,
| | | | | |
Collapse
|
7
|
Avissar-Whiting M, Koestler DC, Houseman EA, Christensen BC, Kelsey KT, Marsit CJ. Polycomb group genes are targets of aberrant DNA methylation in renal cell carcinoma. Epigenetics 2011; 6:703-9. [PMID: 21610323 DOI: 10.4161/epi.6.6.16158] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The combined effects of genetic and epigenetic aberrations are well recognized as causal in tumorigenesis. Here, we defined profiles of DNA methylation in primary renal cell carcinomas (RCC) and assessed the association of these profiles with the expression of genes required for the establishment and maintenance of epigenetic marks. A bead-based methylation array platform was used to measure methylation of 1,413 CpG loci in ~800 cancer-associated genes and three methylation classes were derived by unsupervised clustering of tumors using recursively partitioned mixture modeling (RPMM). Quantitative RT-PCR was performed on all tumor samples to determine the expression of DNMT1, DNMT3B, VEZF1 and EZH2. Additionally, methylation at LINE-1 and AluYb8 repetitive elements was measured using bisulfite pyrosequencing. Associations between methylation class and tumor stage (p = 0.05), LINE-1 (p < 0.0001) and AluYb8 (p < 0.0001) methylation, as well as EZH2 expression (p < 0.0001) were noted following univariate analyses. A multinomial logistic regression model controlling for potential confounders revealed that AluYb8 (p < 0.003) methylation and EZH2 expression (p < 0.008) were significantly associated with methylation class membership. Because EZH2 is a member of the Polycomb repressive complex 2 (PRC2), we next analyzed the distribution of Polycomb group (PcG) targets among methylation classes derived by clustering the 1,413 array CpG loci using RPMM. PcG target genes were significantly enriched (p < 0.0001) in methylation classes with greater differential methylation between RCC and non-diseased kidney tissue. This work contributes to our understanding of how repressive marks on DNA and chromatin are dysregulated in carcinogenesis, knowledge that might aid the development of therapies or preventive strategies for human malignancies.
Collapse
|