1
|
Li XH, Huang P, Cheng HP, Zhou Y, Feng DD, Yue SJ, Han Y, Luo ZQ. NMDAR activation attenuates the protective effect of BM-MSCs on bleomycin-induced ALI via the COX-2/PGE 2 pathway. Heliyon 2024; 10:e23723. [PMID: 38205313 PMCID: PMC10776937 DOI: 10.1016/j.heliyon.2023.e23723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
N-methyl-d-aspartate (NMDA) receptor (NMDAR) activation mediates glutamate (Glu) toxicity and involves bleomycin (BLM)-induced acute lung injury (ALI). We have reported that bone marrow-derived mesenchymal stem cells (BM-MSCs) are NMDAR-regulated target cells, and NMDAR activation inhibits the protective effect of BM-MSCs on BLM-induced pulmonary fibrosis, but its effect on ALI remains unknown. Here, we found that Glu release was significantly elevated in plasma of mice at d 7 after intratracheally injected with BLM. BM-MSCs were pretreated with NMDA (the selective agonist of NMDAR) and transplanted into the recipient mice after the BLM challenge. BM-MSCs administration significantly alleviated the pathological changes, inflammatory response, myeloperoxidase activity, and malondialdehyde content in the damaged lungs, but NMDA-pretreated BM-MSCs did not ameliorate BLM-induced lung injury in vivo. Moreover, NMDA down-regulated prostaglandin E2 (PGE2) secretion and cyclooxygenase (COX)-2 expression instead of COX-1 expression in BM-MSCs in vitro. We also found that NMDAR1 expression was increased and COX-2 expression was decreased, but COX-1 expression was not changed in primary BM-MSCs of BLM-induced ALI mice. Further, the cultured supernatants of lipopolysaccharide (LPS)-pretreated RAW264.7 macrophages were collected to detect inflammatory factors after co-culture with NMDA-pretreated BM-MSCs. The co-culture experiments showed that NMDA precondition inhibited the anti-inflammatory effect of BM-MSCs on LPS-induced macrophage inflammation, and PGE2 could partially alleviate this inhibition. Our findings suggest that NMDAR activation attenuated the protective effect of BM-MSCs on BLM-induced ALI in vivo. NMDAR activation inhibited COX-2 expression and PGE2 secretion in BM-MSCs and weakened the anti-inflammatory effect of BM-MSCs on LPS-induced macrophage inflammation in vitro. In conclusion, NMDAR activation attenuates the protective effect of BM-MSCs on BLM-induced ALI via the COX-2/PGE2 pathway. Keywords: Acute Lung Injury, BM-MSCs, NMDA receptor, COX-1/2, PGE2.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Pu Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Health Management Center, Changsha Central Hospital Affiliated to Nanhua University, Changsha, 410018, China
| | - Hai-Peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Dan-Dan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Shao-Jie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Zi-Qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410078, China
| |
Collapse
|
2
|
Liang TY, Lu LH, Tang SY, Zheng ZH, Shi K, Liu JQ. Current status and prospects of basic research and clinical application of mesenchymal stem cells in acute respiratory distress syndrome. World J Stem Cells 2023; 15:150-164. [PMID: 37180997 PMCID: PMC10173811 DOI: 10.4252/wjsc.v15.i4.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and clinically devastating disease that causes respiratory failure. Morbidity and mortality of patients in intensive care units are stubbornly high, and various complications severely affect the quality of life of survivors. The pathophysiology of ARDS includes increased alveolar-capillary membrane permeability, an influx of protein-rich pulmonary edema fluid, and surfactant dysfunction leading to severe hypoxemia. At present, the main treatment for ARDS is mechanical treatment combined with diuretics to reduce pulmonary edema, which primarily improves symptoms, but the prognosis of patients with ARDS is still very poor. Mesenchymal stem cells (MSCs) are stromal cells that possess the capacity to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as the umbilical cord, endometrial polyps, menstrual blood, bone marrow, and adipose tissues. Studies have confirmed the critical healing and immunomodulatory properties of MSCs in the treatment of a variety of diseases. Recently, the potential of stem cells in treating ARDS has been explored via basic research and clinical trials. The efficacy of MSCs has been shown in a variety of in vivo models of ARDS, reducing bacterial pneumonia and ischemia-reperfusion injury while promoting the repair of ventilator-induced lung injury. This article reviews the current basic research findings and clinical applications of MSCs in the treatment of ARDS in order to emphasize the clinical prospects of MSCs.
Collapse
Affiliation(s)
- Tian-Yu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China
| | - Li-Hai Lu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Si-Yu Tang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Zi-Hao Zheng
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Kai Shi
- Department of Respiratory Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Jing-Quan Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China.
| |
Collapse
|
3
|
Yang H, Xie Y, Li T, Liu S, Zeng S, Wang B. A novel minimally invasive OFM technique with orthotopic transplantation of hUC-MSCs and in vivo monitoring of liver metabolic microenvironment in liver fibrosis treatment. Stem Cell Res Ther 2021; 12:534. [PMID: 34627378 PMCID: PMC8502355 DOI: 10.1186/s13287-021-02599-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) transplantation showed promising therapeutic results in liver fibrosis. However, efficient cell delivery method is urgently needed and the therapeutic mechanism remains unclear. This study focused on developing a minimally invasive open-flow microperfusion (OFM) technique, which combined orthotopic transplantation of human umbilical cord-derived (hUC)-MSCs to liver and in vivo monitoring of liver microenvironment in mice with CCl4-induced liver fibrosis. Methods The therapeutic potential of OFM route was evaluated by comparing OFM with intravenous (IV) injection route in terms of hUC-MSCs engraftment at the fibrosis liver, liver histopathological features, liver function and fibrotic markers expression after hUC-MSCs administration. OFM was also applied to sample liver interstitial fluid in vivo, and subsequent metabolomic analysis was performed to investigate metabolic changes in liver microenvironment. Results Compared with IV route, OFM route caused more hUC-MSCs accumulation in the liver and was more effective in improving the remodeling of liver structure and reducing collagen deposition in fibrotic liver. OFM transplantation of hUC-MSCs reduced blood ALT, AST, ALP and TBIL levels and increased ALB levels, to a greater extent than IV route. And OFM route appeared to have a more pronounced effect on ameliorating the CCl4-induced up-regulation of the fibrotic markers, such as α-SMA, collagen I and TGF-β. In vivo monitoring of liver microenvironment demonstrated the metabolic perturbations induced by pathological condition and treatment intervention. Two metabolites and eight metabolic pathways, which were most likely to be associated with the liver fibrosis progression, were regulated by hUC-MSCs administration. Conclusion The results demonstrated that the novel OFM technique would be useful for hUC-MSCs transplantation in liver fibrosis treatment and for monitoring of the liver metabolic microenvironment to explore the underlying therapeutic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02599-w.
Collapse
Affiliation(s)
- Hui Yang
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yuanyuan Xie
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Tuo Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Shuo Liu
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Sheng Zeng
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Bin Wang
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
4
|
Fengyun W, LiXin Z, Xinhua Q, Bin F. Mesenchymal Stromal Cells Attenuate Infection-Induced Acute Respiratory Distress Syndrome in Animal Experiments: A Meta-Analysis. Cell Transplant 2021; 29:963689720969186. [PMID: 33164559 PMCID: PMC7784610 DOI: 10.1177/0963689720969186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy is a potential therapy for treating acute lung injury (ALI) or acute respiratory distress syndrome (ARDS), which was widely studied in the last decade. The purpose of our meta-analysis was to investigate the efficacy of MSCs for simulated infection-induced ALI/ARDS in animal trials. PubMed and EMBASE were searched to screen relevant preclinical trials with a prespecified search strategy. 57 studies met the inclusion criteria and were included in our study. Our meta-analysis showed that MSCs can reduce the lung injury score of ALI caused by lipopolysaccharide or bacteria (standardized mean difference (SMD) = −2.97, 95% CI [−3.64 to −2.30], P < 0.00001) and improve the animals’ survival (odds ratio = 3.64, 95% CI [2.55 to 5.19], P < 0.00001). Our study discovered that MSCs can reduce the wet weight to dry weight ratio of the lung (SMD = −2.58, 95% CI [−3.24 to −1.91], P < 0.00001). The proportion of the alveolar sac in the MSC group was higher than that in the control group (SMD = 1.68, 95% CI [1.22 to 2.13], P < 0.00001). Moreover, our study detected that MSCs can downregulate the levels of proinflammatory factors such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the lung and it can upregulate the level of anti-inflammatory factor IL-10. MSCs were also found to reduce the level of neutrophils and total protein in bronchoalveolar lavage fluid, decrease myeloperoxidase (MPO) activity in the lung, and improve lung compliance. MSC therapy may be a promising treatment for ALI/ARDS since it may mitigate the severity of lung injury, modulate the immune balance, and ameliorate the permeability of lung vessels in ALI/ARDS, thus facilitating lung regeneration and repair.
Collapse
Affiliation(s)
- Wang Fengyun
- Department of Critical Care Medicine, 66278The First People's Hospital of Foshan, Foshan, China
| | - Zhou LiXin
- Department of Critical Care Medicine, 66278The First People's Hospital of Foshan, Foshan, China
| | - Qiang Xinhua
- Department of Critical Care Medicine, 66278The First People's Hospital of Foshan, Foshan, China
| | - Fang Bin
- Department of Critical Care Medicine, 66278The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
5
|
Sharma A, Chakraborty A, Jaganathan BG. Review of the potential of mesenchymal stem cells for the treatment of infectious diseases. World J Stem Cells 2021; 13:568-593. [PMID: 34249228 PMCID: PMC8246252 DOI: 10.4252/wjsc.v13.i6.568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The therapeutic value of mesenchymal stem cells (MSCs) for the treatment of infectious diseases and the repair of disease-induced tissue damage has been explored extensively. MSCs inhibit inflammation, reduce pathogen load and tissue damage encountered during infectious diseases through the secretion of antimicrobial factors for pathogen clearance and they phagocytose certain bacteria themselves. MSCs dampen tissue damage during infection by downregulating the levels of pro-inflammatory cytokines, and inhibiting the excessive recruitment of neutrophils and proliferation of T cells at the site of injury. MSCs aid in the regeneration of damaged tissue by differentiating into the damaged cell types or by releasing paracrine factors that direct tissue regeneration, differentiation, and wound healing. In this review, we discuss in detail the various mechanisms by which MSCs help combat pathogens, tissue damage associated with infectious diseases, and challenges in utilizing MSCs for therapy.
Collapse
Affiliation(s)
- Amit Sharma
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anuja Chakraborty
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
6
|
Gorodetsky R, Aicher WK. Allogenic Use of Human Placenta-Derived Stromal Cells as a Highly Active Subtype of Mesenchymal Stromal Cells for Cell-Based Therapies. Int J Mol Sci 2021; 22:5302. [PMID: 34069909 PMCID: PMC8157571 DOI: 10.3390/ijms22105302] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The application of mesenchymal stromal cells (MSCs) from different sources, including bone marrow (BM, bmMSCs), adipose tissue (atMSCs), and human term placenta (hPSCs) has been proposed for various clinical purposes. Accumulated evidence suggests that the activity of the different MSCs is indirect and associated with paracrine release of pro-regenerative and anti-inflammatory factors. A major limitation of bmMSCs-based treatment for autologous application is the limited yield of cells harvested from BM and the invasiveness of the procedure. Similar effects of autologous and allogeneic MSCs isolated from various other tissues were reported. The easily available fresh human placenta seems to represent a preferred source for harvesting abundant numbers of human hPSCs for allogenic use. Cells derived from the neonate tissues of the placenta (f-hPSC) can undergo extended expansion with a low risk of senescence. The low expression of HLA class I and II on f-hPSCs reduces the risk of rejection in allogeneic or xenogeneic applications in normal immunocompetent hosts. The main advantage of hPSCs-based therapies seems to lie in the secretion of a wide range of pro-regenerative and anti-inflammatory factors. This renders hPSCs as a very competent cell for therapy in humans or animal models. This review summarizes the therapeutic potential of allogeneic applications of f-hPSCs, with reference to their indirect pro-regenerative and anti-inflammatory effects and discusses clinical feasibility studies.
Collapse
Affiliation(s)
- Raphael Gorodetsky
- Biotechnology and Radiobiology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Wilhelm K. Aicher
- Center of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72076 Tuebingen, Germany
| |
Collapse
|
7
|
Ma Z, Zhou J, Yang T, Xie W, Song G, Song Z, Chen J. Mesenchymal stromal cell therapy for pancreatitis: Progress and challenges. Med Res Rev 2021; 41:2474-2488. [PMID: 33840113 DOI: 10.1002/med.21801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Pancreatitis is a common gastrointestinal disease with no effective therapeutic options, particularly for cases of severe acute and chronic pancreatitis (CP). Mesenchymal stromal cells (MSCs) are multipotent cells with diverse biological properties, including directional migration, paracrine, immunosuppressive, and antiinflammatory effects, which are considered an ideal candidate cell type for repairing tissue damage caused by various pathogenies. Several researchers have reported significant therapeutic efficacy of MSCs in animal models of acute and CP. However, the specific underlying mechanisms are yet to be clarified and clinical application of MSCs as pancreatitis therapy has rarely been reported. This review mainly focuses on the potential and challenges in clinical application of MSCs for treatment of acute and CP, along with discussion of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ji Chen
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Hou Y, Zhou Z, Liu H, Zhang H, Ding Y, Cui Y, Nie H. Mesenchymal Stem Cell-Conditioned Medium Rescues LPS-Impaired ENaC Activity in Mouse Trachea via WNK4 Pathway. Curr Pharm Des 2021; 26:3601-3607. [PMID: 32003683 DOI: 10.2174/1381612826666200131141732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Airway epithelium plays an essential role in maintaining the homeostasis and function of respiratory system as the first line of host defense. Of note, epithelial sodium channel (ENaC) is one of the victims of LPS-induced airway injury. Regarding the great promise held by mesenchymal stem cells (MSCs) for regenerative medicine in the field of airway injury and the limitations of cell-based MSCs therapy, we focused on the therapeutic effect of MSCs conditioned medium (MSCs-CM) on the ENaC activity in mouse tracheal epithelial cells. METHODS Ussing chamber apparatus was applied to record the short-circuit currents in primary cultured mouse tracheal epithelial cells, which reflects the ENaC activity. Expressions of α and γ ENaC were measured at the protein and mRNA levels by western blot and real-time PCR, respectively. The expression of with-no-lysinekinase- 4 (WNK4) and ERK1/2 were measured at protein levels, and the relationship between WNK4 and ERK1/2 was determined by WNK4 knockdown. RESULTS MSCs-CM restored the LPS-impaired ENaC activity, as well as enhanced the mRNA and protein expressions of ENaC in primary cultured mouse tracheal epithelial cells. Meanwhile, WNK4 and ERK1/2, both negative-regulators of ENaC, were suppressed accordingly after the administration of MSCs-CM in LPS-induced airway injury. After WNK4 gene was knocked down by siRNA, the level of ERK1/2 phosphorylation decreased. CONCLUSION In light of the key role of ENaC in fluid reabsorption and the beneficial effects of MSCs-CM in the injury of airway epithelium, our results suggest that MSCs-CM is effective in alleviating LPS-induced ENaC dysfunction through WNK4-ERK1/2 pathway, which will provide a potent direction for the therapy of airway injury.
Collapse
Affiliation(s)
- Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongfei Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Honglei Zhang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Xiao K, He W, Guan W, Hou F, Yan P, Xu J, Zhou T, Liu Y, Xie L. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis 2020; 11:863. [PMID: 33060560 PMCID: PMC7567061 DOI: 10.1038/s41419-020-03034-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) is a pulmonary disorder, which can result in fibrosis of the lung tissues. Recently, mesenchymal stem cell (MSC) has become a novel therapeutic method for ALI. However, the potential mechanism by which MSC regulates the progression of ALI remains blurry. The present study focused on investigating the mechanism underneath MSC-reversed lung injury and fibrosis. At first, we determined that coculture with MSC led to the inactivation of NF-κB signaling and therefore suppressed hedgehog pathway in LPS-treated MLE-12 cells. Besides, we confirmed that MSC-exosomes were responsible for the inhibition of EMT process in LPS-treated MLE-12 cells through transmitting miRNAs. Mechanism investigation revealed that MSC-exosome transmitted miR-182-5p and miR-23a-3p into LPS-treated MLE-12 cells to, respectively, target Ikbkb and Usp5. Of note, Usp5 interacted with IKKβ to hamper IKKβ ubiquitination. Moreover, co-inhibition of miR-182-5p and miR-23a-3p offset the suppression of MSC on EMT process in LPS-treated MLE-12 cells as well as in LPS-injured lungs of mice. Besides, the retarding effect of MSC on p65 nuclear translocation was also counteracted after co-inhibiting miR-182-5p and miR-23a-3p, both in vitro and in vivo. In summary, MSC-exosome transmitted miR-23a-3p and miR-182-5p reversed the progression of LPS-induced lung injury and fibrosis through inhibiting NF-κB and hedgehog pathways via silencing Ikbkb and destabilizing IKKβ.
Collapse
Affiliation(s)
- Kun Xiao
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Wanxue He
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China
| | - Wei Guan
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Fei Hou
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China
| | - Peng Yan
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Jianqiao Xu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Ting Zhou
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China
| | - Yuhong Liu
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China. .,Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.
| | - Lixin Xie
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.
| |
Collapse
|
10
|
Chen XY, Chen YY, Lin W, Chien CW, Chen CH, Wen YC, Hsiao TC, Chuang HC. Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells on the Acute Cigarette Smoke-Induced Pulmonary Inflammation Model. Front Physiol 2020; 11:962. [PMID: 32903481 PMCID: PMC7434987 DOI: 10.3389/fphys.2020.00962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022] Open
Abstract
Cigarette smoke (CS) has been reported to induce oxidative stress and inflammatory process in the lungs. However, the role of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in the regulation of pulmonary inflammation remains unclear. The objective of this study is to investigate the effects of hUC-MSCs on lung inflammation in the acute CS-induced pulmonary inflammation animal model. Eight-week-old male C57BL/6 mice were intravenously administered 3 × 106, 1 × 107, and 3 × 107 cells/kg of hUC-MSCs as well as normal saline alone (control) after 3 days of CS exposure. Mice exposed to high-efficiency particulate air (HEPA)-filtered room air served as the CS control group. High-dose (3 × 107 cells/kg) hUC-MSC administration significantly decreased tumor necrosis factor (TNF)-α in the bronchoalveolar lavage fluid (BALF) of CS-exposed mice (p < 0.05). The chemokine (CXC motif) ligand 1/keratinocyte chemoattractant (CXCL1/KC) in BALF were significantly reduced by low-dose (3 × 106 cells/kg) and high-dose (3 × 107 cells/kg) hUC-MSC (p < 0.05). Medium-dose hUC-MSC administration decreased interleukin (IL)-1β in lung of mice, and TNF-α and caspase-3 were decreased in the lung of CS-exposed mice by medium- and high-dose MSC (p < 0.05). Low-dose hUC-MSCs significantly elevated serum CXCL1/KC and IL-1β in CS-exposed mice (p < 0.05). Our results suggest that high-dose hUC-MSCs reduced pulmonary inflammation and had antiapoptotic effects in acute pulmonary inflammation.
Collapse
Affiliation(s)
- Xiao-Yue Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ying Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Willie Lin
- Meridigen Biotech Co. Ltd., Taipei, Taiwan
| | | | | | | | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
11
|
Sun J, Ding X, Liu S, Duan X, Liang H, Sun T. Adipose-derived mesenchymal stem cells attenuate acute lung injury and improve the gut microbiota in septic rats. Stem Cell Res Ther 2020; 11:384. [PMID: 32894198 PMCID: PMC7487801 DOI: 10.1186/s13287-020-01902-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs) may ameliorate sepsis-induced acute lung injury (ALI) and change microorganism populations in the gut microbiota, such as that of Firmicutes and Bacteroidetes. METHODS A total of 60 male adult Sprague-Dawley (SD) rats were separated into three groups: the sham control (SC) group, the sepsis induced by cecal ligation and puncture (CLP) group, and the ADMSC treatment (CLP-ADMSCs) group, in which rats underwent the CLP procedure and then received 1 × 106 ADMSCs. Rats were sacrificed 24 h after the SC or CLP procedures. To study the role of ADMSCs during ALI caused by sepsis and examine the impact of ADMSCs on the gut microbiome composition, rat lungs were histologically evaluated using hematoxylin and eosin (H&E) staining, serum levels of pro-inflammatory factors were detected using enzyme-linked immunosorbent assay (ELISA), and fecal samples were collected and analyzed using 16S rDNA sequencing. RESULTS The serum levels of inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, were significantly increased in rats after the CLP procedure, but were significantly decreased in rats treated with ADMSCs. Histological evaluation of the rat lungs yielded results consistent with the changes in IL-6 levels among all groups. Treatment with ADMSCs significantly increased the diversity of the gut microbiota in rats with sepsis. The principal coordinates analysis (PCoA) results showed that there was a significant difference between the gut microbiota of the CLP-ADMSCs group and that of the CLP group. In rats with sepsis, the proportion of Escherichia-Shigella (P = 0.01) related to lipopolysaccharide production increased, and the proportion of Akkermansia (P = 0.02) related to the regulation of intestinal mucosal thickness and the maintenance of intestinal barrier function decreased. These changes in the gut microbiota break the energy balance, aggravate inflammatory reactions, reduce intestinal barrier functions, and promote the translocation of intestinal bacteria. Intervention with ADMSCs increased the proportion of beneficial bacteria, reduced the proportion of harmful bacteria, and normalized the gut microbiota. CONCLUSIONS Therapeutically administered ADMSCs ameliorate CLP-induced ALI and improves gut microbiota, which provides a potential therapeutic mechanism for ADMSCs in the treatment of sepsis.
Collapse
Affiliation(s)
- Junyi Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052 China
- Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052 China
| | - Xianfei Ding
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052 China
- Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052 China
| | - Shaohua Liu
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052 China
| | - Xiaoguang Duan
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052 China
| | - Huoyan Liang
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052 China
- Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052 China
| | - Tongwen Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052 China
| |
Collapse
|
12
|
Byrnes D, Masterson CH, Artigas A, Laffey JG. Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Semin Respir Crit Care Med 2020; 42:20-39. [PMID: 32767301 DOI: 10.1055/s-0040-1713422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis and acute respiratory distress syndrome (ARDS) constitute devastating conditions with high morbidity and mortality. Sepsis results from abnormal host immune response, with evidence for both pro- and anti-inflammatory activation present from the earliest phases. The "proinflammatory" response predominates initially causing host injury, with later-phase sepsis characterized by immune cell hypofunction and opportunistic superinfection. ARDS is characterized by inflammation and disruption of the alveolar-capillary membrane leading to injury and lung dysfunction. Sepsis is the most common cause of ARDS. Approximately 20% of deaths worldwide in 2017 were due to sepsis, while ARDS occurs in over 10% of all intensive care unit patients and results in a mortality of 30 to 45%. Given the fact that sepsis and ARDS share some-but not all-underlying pathophysiologic injury mechanisms, the lack of specific therapies, and their frequent coexistence in the critically ill, it makes sense to consider therapies for both conditions together. In this article, we will focus on the therapeutic potential of mesenchymal stem/stromal cells (MSCs). MSCs are available from several tissues, including bone marrow, umbilical cord, and adipose tissue. Allogeneic administration is feasible, an important advantage for acute conditions like sepsis or ARDS. They possess diverse mechanisms of action of relevance to sepsis and ARDS, including direct and indirect antibacterial actions, potent effects on the innate and adaptive response, and pro-reparative effects. MSCs can be preactivated thereby potentiating their effects, while the use of their extracellular vesicles can avoid whole cell administration. While early-phase clinical trials suggest safety, considerable challenges exist in moving forward to phase III efficacy studies, and to implementation as a therapy should they prove effective.
Collapse
Affiliation(s)
- Declan Byrnes
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Claire H Masterson
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Antonio Artigas
- Critical Care Center, Corporació Sanitaria Parc Tauli, CIBER Enfermedades Respiratorias, Autonomous University of Barcelona, Sabadell, Spain
| | - John G Laffey
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Department of Anaesthesia, SAOLTA University Health Group, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
13
|
Stromal Cell-Derived Factor-1 Enhances the Therapeutic Effects of Human Endometrial Regenerative Cells in a Mouse Sepsis Model. Stem Cells Int 2020; 2020:4820543. [PMID: 32256608 PMCID: PMC7103048 DOI: 10.1155/2020/4820543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Endometrial regenerative cells (ERCs) are mesenchymal-like stromal cells obtained from human menstrual blood, whose positive therapeutic effects have been validated in several experimental models. Stromal cell-derived factor-1 (SDF-1), the ligand for CXCR4, plays an important role in the migration of mesenchymal stromal cells. The purpose of this study was to investigate the role of the SDF-1/CXCR4 pathway in the therapeutic effects of ERCs in a mouse sepsis model. Through preexperiment and confirmation, wild-type C57BL/6 mice were intraperitoneally injected with 10 mg/kg lipopolysaccharide (LPS). The therapeutic effects of ERCs with different pretreatments were evaluated by assessing sepsis-related symptoms, detecting tissue damage and measuring levels of inflammatory and oxidative stress-related factors. The in vitro experiments demonstrated that there was a much higher CXCR4 expression on ERCs when they were cocultured with SDF-1. The ex vivo experiment results showed that SDF-1 expression significantly increased in mouse tissues. Further experiments also confirmed that, compared with the unmodified ERC treatment group, SDF-1 pretreatment significantly enhanced the therapeutic effects of ERCs on alleviating sepsis symptoms, ameliorating pathological changes, reducing Bax level, and increasing Bcl-2 and PCNA expressions in mouse liver tissues. Furthermore, it was also found that SDF-1-pretreated ERCs contributed to reducing the levels of proinflammatory cytokines (TNF-α, IL-1β) and increasing the levels of anti-inflammatory factors (IL-4, IL10) in mouse serum, liver, and lung. Moreover, SDF-1-pretreated ERCs could also significantly decrease the levels of iNOS and MDA and increase the expression of Nrf2, HO-1, and SOD in liver tissues. Taken together, these results indicate that SDF-1 pretreatment plays a key role in improving the therapeutic effects of ERCs in alleviating sepsis-related symptoms, reducing tissue damage, regulating inflammatory imbalance, and relieving oxidative stress in a mouse sepsis model, which provides more possibilities for the clinical application of ERCs in sepsis and relevant diseases.
Collapse
|
14
|
Liu D, Song G, Ma Z, Geng X, Dai Y, Yang T, Meng H, Gong J, Zhou B, Song Z. Resveratrol improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells in rats with severe acute pancreatitis. Int Immunopharmacol 2020; 80:106128. [PMID: 31978799 DOI: 10.1016/j.intimp.2019.106128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Bone marrow-derived mesenchymal stem cells (BMSCs) are effective in the treatment of severe acute pancreatitis (SAP), but their therapeutic effects could still be improved. In order to optimize the clinical application of BMSCs, we adopted the strategy of resveratrol (Res) pretreatment of BMSCs (Res-BMSCs) and applied it to a rat model of sodium taurocholate (NaT)-induced acute pancreatitis. METHODS SAP was induced by injection of 3% NaT into the pancreatic duct and successful induction of SAP occurred after 12 h. Rats were treated with BMSCs, Res or BMSCs primed with Res at 40 mmol/L, Vandetanib (ZD6474) daily oral dosages of 50 mg/kg vandetanib. RESULTS Res stimulated BMSCs to secrete vascular endothelial growth factor A (VEGFA), activated the downstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, and inhibited pancreatic cell apoptosis. In addition, conditioned medium (CM) from Res-BMSCs enhanced the proliferation of human umbilical vein endothelial cells (HUVECs) in vitro, increased resistance to apoptosis and promoted the expression of angiogenesis-related proteins CD31, VEGF and VEGFR2 in pancreatic tissue, but Vandetanib partly abolished these effects by blocking the VEGFA- mediated pathway. CONCLUSION Resveratrol-preprocessed BMSCs can activate the PI3K/AKT signaling pathway in pancreatic cells and HUVECs through paracrine release of VEGFA; thus, achieving the therapeutic effect of resisting apoptosis of pancreatic cells and promoting regeneration of damaged blood vessels. Res pretreatment may be a new strategy to improve the therapeutic effect of BMSCs on SAP.
Collapse
Affiliation(s)
- Dalu Liu
- Shanghai Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Zhilong Ma
- Department of General Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200072, China
| | - Xiang Geng
- The Affiliated Changzhou NO. 2 People's Hospital of Najing Medical University, Changzhou 213000, China
| | - Yuxiang Dai
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China.
| | - Hongbo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Jian Gong
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Bo Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Zhenshun Song
- Shanghai Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China.
| |
Collapse
|
15
|
Lu Z, Chang W, Meng S, Xu X, Xie J, Guo F, Yang Y, Qiu H, Liu L. Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury. Stem Cell Res Ther 2019; 10:372. [PMID: 31801626 PMCID: PMC6894226 DOI: 10.1186/s13287-019-1488-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been shown to alleviate acute lung injury (ALI) via paracrine hepatocyte growth factor (HGF) and to induce the differentiation of dendritic cells (DCs) into tolerogenic dendritic cells (DCregs) and participate in the immune response. However, whether MSCs induce the production of DCregs by secreting HGF to alleviate early ALI remains unclear. We observed that the protective effect of mouse bone marrow-derived MSCs against lipopolysaccharide (LPS)-induced ALI was achieved by inducing mature DCs (mDCs) to differentiate into DCregs, and its mechanism is related to the activation of the HGF/Akt pathway. METHODS MSCs or MSCs with overexpression or knockdown of HGF were cocultured with DCs derived from mouse bone marrow using a Transwell system for 3 days. Moreover, we used MSCs or MSCs with overexpression or knockdown of HGF to treat LPS-induced ALI mice for 24 h. Flow cytometry was performed to measure the phagocytosis, accumulation, and maturation of DCs, as well as proliferation of T cells. Lung injury was estimated by lung wet weight to body weight ratio (LWW/BW) and histopathological analysis. Furthermore, we used the Akt inhibitor MK-2206 in a coculture system to elucidate the role of the HGF/Akt pathway in regulating the differentiation of DCs into regulatory DCs and relieving lung injury in early ALI mice. RESULTS Immature DCs (imDCs) were induced to mature after 24 h of LPS (50 ng/ml) stimulation. MSCs or HGF induced the differentiation of mDCs into regulatory DCs characterized by low expression of MHCII, CD86, and CD40 molecules, strong phagocytic function, and the ability to inhibit T cell proliferation. The effect of MSCs on DCregs was enhanced with the increase in HGF secretion and was weakened with the decrease in HGF secretion. DCregs induced by recombinant HGF were attenuated by the Akt inhibitor MK-2206. Lung DC aggregation and mDC ratio increased in LPS-induced ALI mice, while treatment with MSCs decreased lung DC aggregation and maturation and alleviated lung pathological injury. High expression of the HGF gene enhanced the above effect of MSCs, while decreased expression of HGF weakened the above effect of MSCs. CONCLUSIONS MSCs alleviate early ALI via paracrine HGF by inducing mDCs to differentiate into regulatory DCs. Furthermore, the mechanism of HGF-induced differentiation of mDCs into DCregs is related to the activation of the Akt pathway.
Collapse
Affiliation(s)
- Zhonghua Lu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shanshan Meng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Xiuping Xu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China.
| |
Collapse
|
16
|
AT1R-Mediated Apoptosis of Bone Marrow Mesenchymal Stem Cells Is Associated with mtROS Production and mtDNA Reduction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4608165. [PMID: 31772704 PMCID: PMC6854225 DOI: 10.1155/2019/4608165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
Angiotensin II (Ang II) is used as an inducer for the differentiation of mesenchymal stem cells (MSCs). Whether the commonly used doses of Ang II for MSC differentiation affect cell apoptosis has not been elucidated. In this study, we investigated the effect of Ang II on the apoptosis of bone marrow MSCs (BMMSCs), and its relations to the activation of Ang II receptor-1- (AT1R-) signaling, mitochondrial ROS (mtROS) generation, and mitochondrial DNA (mtDNA) leakage. AT1R expression in BMMSCs was identified by immunostaining and Western-blotting assays. BMMSC viability was measured by MTT assay following exposure to 1 nM~1 mM Ang II for 12 hours. Cell apoptosis, mtROS, and mtDNA levels were detected by FAM-FLICA® Poly Caspase, MitoSOX™ superoxide, and PicoGreen staining, respectively. The expressions of Bcl2 and Bax were measured by Western-blotting assays. Next, we used losartan to block AT1R-signaling and subsequently measured apoptosis, mtROS, and mtDNA levels, again. The maximum viability of BMMSCs was in response to 100 nM Ang II, after that it began to decrease with the increase of Ang II doses, indicating that Ang II (≧1 μM) may cause apoptosis of BMMSCs. As expected, 1 μM and 10 μM Ang II both caused BMMSC apoptosis. Furthermore, 1 μM and 10 μM Ang II could also induce mtROS generation and cause a marked mtDNA leakage. The application of losartan markedly inhibited Ang II-induced mtROS production, mtDNA leakage, and BMMSC apoptosis. In conclusion, the activation of AT1R-signaling stimulates apoptosis of BMMSCs, which is associated mtROS production and mtDNA reduction.
Collapse
|
17
|
Yi X, Wei X, Lv H, An Y, Li L, Lu P, Yang Y, Zhang Q, Yi H, Chen G. Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3. Exp Cell Res 2019; 383:111454. [PMID: 31170401 DOI: 10.1016/j.yexcr.2019.05.035] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) have been widely documented for their potential role in the treatment of various clinical disorders, including acute lung injury (ALI). ALI represents a clinical syndrome associated with histopathological diffuse alveolar damage. Recent evidence has demonstrated that exosomes derived from MSCs may serve as a reservoir of anti-apoptotic microRNAs (miRs) conferring protection from certain diseases. Hence, the current study was performed with the aim of investigating whether MSCs-exosomal miR-30b-3p could confer protection against ALI. A bioinformatic analysis and a dual luciferase assay were initially performed to verify that SAA3 was highly-expressed in ALI which was confirmed to be a target gene of miR-30b-3p. Next, the lipopolysaccharide (LPS)-treated type II alveolar epithelial cells (AECs) (MLE-12) were transfected with mimics or inhibitors of miR-30b-3p, or sh-SAA3. It was revealed that LPS induced AEC apoptosis, which could be inhibited by overexpressing miR-30b-3p by down-regulating the expression of SAA3. After co-culture of PKH26-labeled exosomes with MLE-12 cells, we found that the number of PKH26-labeled exosomes endocytosed by MLE-12 cells gradually increased. Furthermore, the LPS-treated MLE-12 cells co-cultured with MSC-exosomes overexpressing miR-30b-3p exhibited increased miR-30b-3p, decreased SAA3 level, as well as increased cell proliferation, accompanied by diminished cell apoptosis in LPS-treated MLE-12 cells. Finally, the protective effect of MSCs-exosomal miR-30b-3p on the AECs in vivo was investigated in an ALI mouse model with tail vein injection of MSC-exosomes with elevated miR-30b-3p, showing that overexpression of miR-30b-3p in MSC-exosomes conferred protective effects against ALI. Taken together, these findings highlighted the potential of MSC-exosomes overexpressing miR-30b-3p in preventing ALI. The exosomes derived from MSCs hold potential as future therapeutic strategies in the treatment of ALI.
Collapse
Affiliation(s)
- Xiaomeng Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Xuxia Wei
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Haijin Lv
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Yuling An
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Lijuan Li
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Pinglan Lu
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Yang Yang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Huimin Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| | - Guihua Chen
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
18
|
Ma Z, Song G, Liu D, Qian D, Wang Y, Zhou J, Gong J, Meng H, Zhou B, Yang T, Song Z. N-Acetylcysteine enhances the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation in rats with severe acute pancreatitis. Pancreatology 2019; 19:258-265. [PMID: 30660392 DOI: 10.1016/j.pan.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a high mortality disease, for which there is a lack of effective therapies. Previous research has demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs), which have immunomodulatory and antioxidant properties, have potential for the treatment of SAP. It remains unclear, however, whether the free radical scavenger N-acetylcysteine (NAC) can enhance the therapeutic efficacy of BMSC transplantation in SAP. In this study, we investigated the effect of combining treatment with NAC and BMSCs in a rat model of SAP. METHODS SAP was induced by injection of sodium taurocholate into the pancreatic duct and, after successful induction of SAP, the rats were treated with BMSCs and NAC, either singly or in combination. RESULTS After 3 days, serum levels of amylase, proinflammatory factors, malondialdehyde, and reactive oxygen species were significantly decreased in animals treated with BMSCs or NAC, compared with vehicle-treated animals. In contrast, total glutathione, superoxide dismutase and catalase were markedly increased after treatment with BMSCs or NAC. However, oxidative stress markers and inflammatory factors were significantly improved in the SAP + BMSCs + NAC group compared with those in the SAP + NAC group and the SAP + BMSCs group. CONCLUSIONS Combined NAC and BMSC therapy was found to alleviate oxidative stress damage to the pancreas and to inhibit the inflammatory response to a significantly greater extent than single therapy with either BMSCs or NAC. Because NAC enhances the therapeutic efficacy of BMSC transplantation in a rat model of SAP, combined therapy may provide a promising new approach for the treatment of SAP.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dalu Liu
- Shanghai Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Daohai Qian
- Department of Hepatobiliary Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Yuxiang Wang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jia Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jian Gong
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongbo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Bo Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
19
|
Ji S, Wu C, Tong L, Wang L, Zhou J, Chen C, Song Y. Better therapeutic potential of bone marrow-derived mesenchymal stem cells compared with chorionic villi-derived mesenchymal stem cells in airway injury model. Regen Med 2019; 14:165-177. [PMID: 30994416 DOI: 10.2217/rme-2018-0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: To determine the efficiency of mesenchymal stem cells (MSCs) of different sources on airway epithelial cells regeneration and track where and to what extent transplanted MSCs home to injured tissues. Materials & methods: We performed DiO-labeled human bone marrow-derived MSCs (hBMSCs) or human chorionic villi-derived MSCs transplantation studies using naphthalene-induced airway injury animal models. Results: Compared with human chorionic villi-derived MSCs, hBMSCs facilitated airway epithelium regeneration faster and better from day 5 after transplantation; moreover, more transplanted hBMSCs distributed in injured lung tissues at the early stage of postinjury, which was mediated by C-X-C motif chemokine ligand 12. Conclusion: hBMSCs possessed better potential of migration to the damaged lung and promoting the repair of the injured airway epithelium.
Collapse
Affiliation(s)
- Shimeng Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chaomin Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai 201700, China
| | - Lin Tong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai 201700, China.,Shanghai Public Health Clinical Center, Shanghai 201508, China.,National Clinical Research Center for Aging & Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
20
|
Horie S, Gonzalez HE, Laffey JG, Masterson CH. Cell therapy in acute respiratory distress syndrome. J Thorac Dis 2018; 10:5607-5620. [PMID: 30416812 DOI: 10.21037/jtd.2018.08.28] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is driven by a severe pro-inflammatory response resulting in lung damage, impaired gas exchange and severe respiratory failure. There is no specific treatment that effectively improves outcome in ARDS. However, in recent years, cell therapy has shown great promise in preclinical ARDS studies. A wide range of cells have been identified as potential candidates for use, among these are mesenchymal stromal cells (MSCs), which are adult multi-lineage cells that can modulate the immune response and enhance repair of damaged tissue. The therapeutic potential of MSC therapy for sepsis and ARDS has been demonstrated in multiple in vivo models. The therapeutic effect of these cells seems to be due to two different mechanisms; direct cellular interaction, and paracrine release of different soluble products such as extracellular vesicles (EVs)/exosomes. Different approaches have also been studied to enhance the therapeutic effect of these cells, such as the over-expression of anti-inflammatory or pro-reparative molecules. Several clinical trials (phase I and II) have already shown safety of MSCs in ARDS and other diseases. However, several translational issues still need to be addressed, such as the large-scale production of cells, and their potentiality and variability, before the therapeutic potential of stem cells therapies can be realized.
Collapse
Affiliation(s)
- Shahd Horie
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland
| | - Hector Esteban Gonzalez
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,Department of Anesthesia and Intensive Care Medicine, Galway University Hospitals, SAOLTA Hospital Group, Ireland
| | - Claire H Masterson
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
21
|
Xu XP, Huang LL, Hu SL, Han JB, He HL, Xu JY, Xie JF, Liu AR, Liu SQ, Liu L, Huang YZ, Guo FM, Yang Y, Qiu HB. Genetic Modification of Mesenchymal Stem Cells Overexpressing Angiotensin II Type 2 Receptor Increases Cell Migration to Injured Lung in LPS-Induced Acute Lung Injury Mice. Stem Cells Transl Med 2018; 7:721-730. [PMID: 30133167 PMCID: PMC6186265 DOI: 10.1002/sctm.17-0279] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/22/2018] [Accepted: 04/29/2018] [Indexed: 12/12/2022] Open
Abstract
Although mesenchymal stem cells (MSCs) transplantation has been shown to promote the lung respiration in acute lung injury (ALI) in vivo, its overall restorative capacity appears to be restricted mainly because of low retention in the injured lung. Angiotensin II (Ang II) are upregulated in the injured lung. Our previous study showed that Ang II increased MSCs migration via Ang II type 2 receptor (AT2R). To determine the effect of AT2R in MSCs on their cell migration after systemic injection in ALI mice, a human AT2R expressing lentiviral vector and a lentivirus vector carrying AT2R shRNA were constructed and introduced into human bone marrow MSCs. A mouse model of lipopolysaccharide‐induced ALI was used to investigate the migration of AT2R‐regulated MSCs and the therapeutic potential in vivo. Overexpression of AT2R dramatically increased Ang II‐enhanced human bone marrow MSC migration in vitro. Moreover, MSC‐AT2R accumulated in the damaged lung tissue at significantly higher levels than control MSCs 24 and 72 hours after systematic MSC transplantation in ALI mice. Furthermore, MSC‐AT2R‐injected ALI mice exhibited a significant reduction of pulmonary vascular permeability and improved the lung histopathology and had additional anti‐inflammatory effects. In contrast, there were less lung retention in MSC‐ShAT2R‐injected ALI mice compared with MSC‐Shcontrol after transplantation. Thus, MSC‐ShAT2R‐injected group exhibited a significant increase of pulmonary vascular permeability and resulted in a deteriorative lung inflammation. Our results demonstrate that overexpression of AT2R enhance the migration of MSCs in ALI mice and may provide a new therapeutic strategy for ALI. Stem Cells Translational Medicine2018;7:721–730
Collapse
Affiliation(s)
- Xiu-Ping Xu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Li-Li Huang
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Shu-Ling Hu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Ji-Bin Han
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Hong-Li He
- Department of Critical Care Medicine, Affiliated Hospital of University of Electronic Science and Technology of China & Sichuan Provincial People's Hospital, Chengdu, People's Republic of China
| | - Jing-Yuan Xu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Jian-Feng Xie
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Ai-Ran Liu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Song-Qiao Liu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Ling Liu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Ying-Zi Huang
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Feng-Mei Guo
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Yi Yang
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Hai-Bo Qiu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
22
|
Liu G, Lv H, An Y, Wei X, Yi X, Yi H. Tracking of transplanted human umbilical cord-derived mesenchymal stem cells labeled with fluorescent probe in a mouse model of acute lung injury. Int J Mol Med 2018. [PMID: 29532861 PMCID: PMC5846645 DOI: 10.3892/ijmm.2018.3491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was topreliminarily visualize the distribution of humanumbilical cord-derived-mesenchymal stem cells (hUC-MSCs) in treating acute lung injury (ALI) using a targeted fluorescent technique. Anovel fluorescent molecule probe was first synthesized via the specific binding of antigen and antibody in vitro to label the hUC-MSCs. Two groups of mice, comprising a normal saline (NS)+MSC group and lipopolysaccharide (LPS)+MSC group, were subjected to optical imaging. At 4 h following ALI mouse model construction, the labeled hUC-MSCs were transplanted into the mice in the NS+MSC group and LPS+MSC group by tail vein injection. The mice were sacrificed 30 min, 1 day, 3 days and 7 days following injection of the labeled hUC-MSCs, and the lungs, heart, spleen, kidneys and liver were removed. The excised lungs, heart, spleen, kidneys and liver were then detected on asmall animal fluorescent imager. The fluorescent results showed that the signal intensity in the lungs of the LPS+MSC group was significantly higher, compared with that of the NS+MSC group at 30 min (3.53±0.06×10−4, vs. 1.95±0.05×10−4 scaled counts/sec), 1 day (36.20±0.77×10−4, vs. 23.45±0.43×10−4 scaled counts/sec), 3 days (11.83±0.26×10−4, vs. 5.39±0.10×10−4 scaled counts/sec), and 7 days (3.14±0.04×10−4, vs. 0.00±0.00×10−4 scaled counts/sec; all P<0.05). The fluorescence intensity in the liver of the LPS+MSC group, vs. NS+MSC group was measured at 30 min (0.00±0.00×10−4, vs. 0.00±0.00×10−4 scaled counts/sec); 1 day (5.53±0.08×10−4, vs. 5.44±0.16×10−4 scaled counts/sec); 3 days (0.00±0.00×10−4, vs. 8.67±0.05×10−4 scaled counts/sec); 7 days (0.00±0.00×10−4, vs. 0.00±0.00×10−4 scaled counts/sec). The signal intensity of the heart, spleen and kidneys was minimal. In conclusion, the novel targeted fluorescence molecular probe was suitable for tracking the distribution processes of hUC-MSCs in treating ALI.
Collapse
Affiliation(s)
- Genglong Liu
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Haijin Lv
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuling An
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xuxia Wei
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaomeng Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Huimin Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
23
|
Zheng Y, Liu SQ, Sun Q, Xie JF, Xu JY, Li Q, Pan C, Liu L, Huang YZ. Plasma microRNAs levels are different between pulmonary and extrapulmonary ARDS patients: a clinical observational study. Ann Intensive Care 2018; 8:23. [PMID: 29442256 PMCID: PMC5811418 DOI: 10.1186/s13613-018-0370-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) obviously alleviate the damage of the structure and function of pulmonary vascular endothelial cells (VEC). The therapeutic effects of MSC are significantly different between pulmonary ARDS (ARDSp) and extrapulmonary ARDS (ARDSexp). MicroRNAs (miRNAs), as important media of MSC regulating VEC, are not studied between ARDSp and ARDSexp. We aimed to explore the plasma levels difference of miRNAs that regulate VEC function and are associated with MSC (MSC-VEC-miRNAs) between ARDSp and ARDSexp patients. METHODS MSC-VEC-miRNAs were obtained through reviewing relevant literatures screened in PubMed database. We enrolled 57 ARDS patients within 24 h of admission to the ICU and then collected blood samples, extracted plasma supernatant. Patients' clinical data were collected. Then, plasma expression of MSC-VEC-miRNAs was measured by real-time fluorescence quantitative PCR. Simultaneously, plasma endothelial injury markers VCAM-1, vWF and inflammatory factors TNF-α, IL-10 were detected by ELISA method. RESULTS Fourteen miRNAs were picked out after screening. A total of 57 ARDS patients were included in this study, among which 43 cases pertained to ARDSp group and 14 cases pertained to ARDSexp group. Plasma miR-221 and miR-27b levels in ARDSexp group exhibited significantly lower than that in ARDSp group (miR-221, 0.22 [0.12-0.49] vs. 0.57 [0.22-1.57], P = 0.008, miR-27b, 0.34 [0.10-0.46] vs. 0.60 [0.20-1.46], P = 0.025). Plasma vWF concentration in ARDSexp group exhibited significantly lower than that in ARDSp group (0.77 [0.29-1.54] vs. 1.80 [0.95-3.51], P = 0.048). Significant positive correlation was found between miR-221 and vWF in plasma levels (r = 0.688, P = 0.022). Plasma miR-26a and miR-27a levels in non-survival group exhibited significantly lower than that in survival group (miR-26a, 0.17 [0.08-0.20] vs. 0.69 [0.24-2.33] P = 0.018, miR-27a, 0.23 [0.16-0.58] vs. 1.45 [0.38-3.63], P = 0.021) in ARDSp patients. CONCLUSION Plasma miR-221, miR-27b and vWF levels in ARDSexp group are significantly lower than that in ARDSp group. Plasma miR-26a and miR-27a levels in non-survival group are significantly lower than that in survival group in ARDSp patients.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China.,Department of Critical Care Medicine, The First Affiliated Hospital of Medical School of Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China
| | - Song-Qiao Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Qin Sun
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Jian-Feng Xie
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Jing-Yuan Xu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Qing Li
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Chun Pan
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Ying-Zi Huang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
24
|
Yao Y, Zheng Z, Song Q. Mesenchymal stem cells: A double-edged sword in radiation-induced lung injury. Thorac Cancer 2017; 9:208-217. [PMID: 29235254 PMCID: PMC5792737 DOI: 10.1111/1759-7714.12573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 01/06/2023] Open
Abstract
Radiation therapy is an important treatment modality for multiple thoracic malignancies. However, radiation‐induced lung injury (RILI), which is the term generally used to describe damage to the lungs caused by exposure to ionizing radiation, remains a critical issue affecting both tumor control and patient quality of life. Despite tremendous effort, there is no current consensus regarding the optimal treatment approach for RILI. Because of a number of functional advantages, including self‐proliferation, multi‐differentiation, injury foci chemotaxis, anti‐inflammation, and immunomodulation, mesenchymal stem cells (MSCs) have been a focus of research for many years. Accumulating evidence indicates the therapeutic potential of transplantation of MSCs derived from adipose tissue, umbilical cord blood, and bone marrow for inflammatory diseases, including RILI. However, reports have also shown that MSCs, including fibrocytes, lung hematopoietic progenitor cells, and ABCG2+ MSCs, actually enhance the progression of lung injuries. These contradictory results suggest that MSCs may have dual effects and that caution should be taken when using MSCs to treat RILI. In this review, we present and discuss recent evidence of the double‐edged function of MSCs and provide comments on the prospects of these findings.
Collapse
Affiliation(s)
- Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongliang Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Zhang J, Deng Z, Jin L, Yang C, Liu J, Song H, Han W, Si Y. Spleen-Derived Anti-Inflammatory Cytokine IL-10 Stimulated by Adipose Tissue-Derived Stem Cells Protects Against Type 2 Diabetes. Stem Cells Dev 2017; 26:1749-1758. [PMID: 29032727 DOI: 10.1089/scd.2017.0119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Considering that the spleen plays an important role in the occurrence and development of diabetes, we aimed at investigating the role of the spleen in the treatment of type 2 diabetes (T2D) with adipose tissue-derived stem cells (ADSCs). We established a T2D/splenectomy (SPX) rat model by using high-fat diet/streptozotocin administration with SPX, assessed the therapeutic effects of ADSCs, and explored the possible mechanism. A single ADSC infusion was found to ameliorate hyperglycemia and insulin resistance in diabetic rats, accompanied by a considerable number of ADSCs homing to the spleens in T2D rats. Moreover, four times of infusion of ADSCs resulted in a more significant reduction of blood glucose and insulin resistance, whereas SPX exacerbated hyperglycemia and insulin resistance and attenuated the effects of ADSCs. In addition, ADSC infusion promoted anti-inflammatory cytokine interleukin (IL)-10 expression and inhibited pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor (TNF)-α expression in both the spleen and serum of T2D rats without SPX. ADSCs also inhibited serum IL-6, IL-1β, and TNF-α expression, but cannot promote IL-10 expression in T2D rats with SPX. Therefore, these data indicate that the effect of ADSCs ameliorating hyperglycemia and insulin resistance may be partially through promoting spleen-derived anti-inflammatory cytokine IL-10 expression. These novel findings further confirmed the essential role of the spleen in the ADSC treatment of T2D and provide an important theoretical basis for the potential application of ADSCs in T2D therapy.
Collapse
Affiliation(s)
- Jinying Zhang
- 1 Institute of Basic Medicine Science , Chinese PLA General Hospital, Beijing, China
| | - Zihui Deng
- 1 Institute of Basic Medicine Science , Chinese PLA General Hospital, Beijing, China
| | - Liyuan Jin
- 2 Department of Cardiology, Chinese PLA General Hospital , Beijing, China
| | - Chen Yang
- 2 Department of Cardiology, Chinese PLA General Hospital , Beijing, China
| | - Jiejie Liu
- 1 Institute of Basic Medicine Science , Chinese PLA General Hospital, Beijing, China
| | - Haijing Song
- 1 Institute of Basic Medicine Science , Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- 1 Institute of Basic Medicine Science , Chinese PLA General Hospital, Beijing, China
| | - Yiling Si
- 1 Institute of Basic Medicine Science , Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Wang H, Zheng R, Chen Q, Shao J, Yu J, Hu S. Mesenchymal stem cells microvesicles stabilize endothelial barrier function partly mediated by hepatocyte growth factor (HGF). Stem Cell Res Ther 2017; 8:211. [PMID: 28969681 PMCID: PMC5623961 DOI: 10.1186/s13287-017-0662-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background Mesenchymal stem cells microvesicles (MSC-MVs) stabilize endothelial barrier function in acute lung injury (ALI); however, the detailed mechanism remains to be further defined. Hepatocyte growth factor (HGF), which is derived from MSC-MVs, might have a key role in the restoration of endothelial barrier function by MSC-MVs. Methods MSCs with lentiviral vector-mediated HGF gene knockdown (siHGF-MSC) were generated. A co-culture model of pulmonary microvascular endothelial cells and MSC-MVs collected from MSCs or siHGF-MSCs after 24 h of hypoxic culture was utilized. Then, endothelial paracellular and transcellular permeabilities were detected. VE-cadherin, and occludin protein expression in the endothelial cells was measured using Western blot. Endothelial cell proliferation was analysed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. Endothelial cell apoptosis was analysed using TUNEL assay. Finally, IL-6 and IL-10 production was determined via an enzyme-linked immunosorbent assay (ELISA). Results Treatment with MSC-MVs significantly decreased LPS-induced endothelial paracellular and transcellular permeabilities, and the effect was significantly inhibited after HGF gene knockdown in MSC-MVs. Furthermore, treatment with MSC-MVs increased the expression of the endothelial intercellular junction proteins VE-cadherin and occludin. Treatment with MSC-MVs also decreased endothelial apoptosis and induced endothelial cell proliferation. Finally, the treatment reduced IL-6 production and increased IL-10 production in the conditioned media of endothelial cells. However, the effects of the treatment with MSC-MVs were inhibited after HGF gene knockdown. Conclusions MSC-MVs protect the barrier functions of pulmonary microvascular endothelial cells, which can be partly attributed to the presence of HGF in the MSC-MVs.
Collapse
Affiliation(s)
- Hualing Wang
- Department of Cardiology, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Ruiqiang Zheng
- Department of Cardiology, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Qihong Chen
- Department of Critical Care Medicine, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China.
| | - Jun Shao
- Department of Critical Care Medicine, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Jiangquan Yu
- Department of Critical Care Medicine, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Shuling Hu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
27
|
Xu XP, He HL, Hu SL, Han JB, Huang LL, Xu JY, Xie JF, Liu AR, Yang Y, Qiu HB. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro. Stem Cell Res Ther 2017; 8:164. [PMID: 28697804 PMCID: PMC5506621 DOI: 10.1186/s13287-017-0617-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) migrate via the bloodstream to sites of injury and are possibly attracted by inflammatory factors. As a proinflammatory mediator, angiotensin II (Ang II) reportedly enhances the migration of various cell types by signaling via the Ang II receptor in vitro. However, few studies have focused on the effects of Ang II on MSC migration and the underlying mechanisms. Methods Human bone marrow MSCs migration was measured using wound healing and Boyden chamber migration assays after treatments with different concentrations of Ang II, an AT1R antagonist (Losartan), and/or an AT2R antagonist (PD-123319). To exclude the effect of proliferation on MSC migration, we measured MSC proliferation after stimulation with the same concentration of Ang II. Additionally, we employed the focal adhesion kinase (FAK) inhibitor PF-573228, RhoA inhibitor C3 transferase, Rac1 inhibitor NSC23766, or Cdc42 inhibitor ML141 to investigate the role of cell adhesion proteins and the Rho-GTPase protein family (RhoA, Rac1, and Cdc42) in Ang II-mediated MSC migration. Cell adhesion proteins (FAK, Talin, and Vinculin) were detected by western blot analysis. The Rho-GTPase family protein activities were assessed by G-LISA and F-actin levels, which reflect actin cytoskeletal organization, were detected by using immunofluorescence. Results Human bone marrow MSCs constitutively expressed AT1R and AT2R. Additionally, Ang II increased MSC migration in an AT2R-dependent manner. Notably, Ang II-enhanced migration was not mediated by Ang II-mediated cell proliferation. Interestingly, Ang II-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased Talin and Vinculin expression. Moreover, RhoA and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. Furthermore, FAK, Talin, and Vinculin activation and F-actin reorganization in response to Ang II were prevented by PD-123319 but not Losartan, indicating that FAK activation and F-actin reorganization were downstream of AT2R. Conclusions These data indicate that Ang II-AT2R regulates human bone marrow MSC migration by signaling through the FAK and RhoA/Cdc42 pathways. This study provides insights into the mechanisms by which MSCs home to injury sites and will enable the rational design of targeted therapies to improve MSC engraftment.
Collapse
Affiliation(s)
- Xiu-Ping Xu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hong-Li He
- Department of Critical Care Medicine, Affiliated Hospital of University of Electronic Science and Technology of China & Sichuan Provincial People's Hospital, Chengdu, 610072, People's Republic of China
| | - Shu-Ling Hu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ji-Bin Han
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Li-Li Huang
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jing-Yuan Xu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jian-Feng Xie
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ai-Ran Liu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yi Yang
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hai-Bo Qiu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
28
|
Li X, Yue S, Luo Z. Mesenchymal stem cells in idiopathic pulmonary fibrosis. Oncotarget 2017; 8:102600-102616. [PMID: 29254275 PMCID: PMC5731985 DOI: 10.18632/oncotarget.18126] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a major cause of respiratory failure in critically ill patients and common outcome of various lung interstitial diseases. Its mortality remains high, and no effective pharmacotherapy, in addition to artificial ventilation and transplantation, exists. As such, the administration of mesenchymal stem or stromal cells (MSCs) is currently investigated as a new therapeutic method for pulmonary fibrosis. Clinical trials on MSC-based therapy as a potential treatment for lung injury and fibrosis are also performed. MSCs can migrate to injured sites and secrete multiple paracrine factors and then regulate endothelial and epithelial permeability, decrease inflammation, enhance tissue repair, and inhibit bacterial growth. In this review, recent studies on stem cells, particularly MSCs, involved in alleviating lung inflammation and fibrosis and their potential MSC-induced mechanisms, including migration and differentiation, soluble factor and extracellular vesicle secretion, and endogenous regulatory functions, were summarized.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shaojie Yue
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
29
|
Standiford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res 2016; 167:183-91. [PMID: 26003524 PMCID: PMC4635065 DOI: 10.1016/j.trsl.2015.04.015] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022]
Abstract
There is no Food and Drug Administration-approved treatment for acute respiratory distress syndrome (ARDS), in spite of the relatively large number of patients with the diagnosis. In this report, we provide an overview of preclinical studies and a description of completed and future clinical trials in humans with ARDS. Preclinical studies dealing with acute lung injury have suggested roles for complement and complement receptors, as well as the evolving role of histones, but details of these pathways are inadequately understood. Anti-inflammatory interventions have not been convincingly effective. Various cell growth factors are being considered for clinical study. Interventions to block complement activation or its products are under consideration. Stem cell therapies have shown efficacy in preclinical studies, which have motivated phase I/II trials in humans with ARDS.
Collapse
Affiliation(s)
- Theodore J Standiford
- Department of Internal Medicine, Pulmonary and Critical Care, University of Michigan Medical School, Ann Arbor, Mich
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich.
| |
Collapse
|