1
|
Liu Q, Liu M, Lu W, Li H, Ma Z, Xiong J, Zhang P. Surface-enhanced confocal Raman microscopy to characterize esophageal cancer cell-derived extracellular vesicles and maternal cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:4167-4175. [PMID: 40353506 DOI: 10.1039/d4ay02300e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Exosomes, a subtype of extracellular vesicles, are increasingly recognized as promising biomarkers for human cancers. Rapid detection and classification of esophageal cancer-associated exosomes could significantly improve non-invasive screening for potential patients. This study aims to establish a label-free, direct surface-enhanced Raman scattering (SERS) method to capture characteristic molecular information from both esophageal cancer cells and their corresponding exosomes using confocal Raman microscopy. The results revealed distinct Raman spectra for esophageal cancer cells and their exosomes within the range of 500-1600 cm-1, with notable signal similarities observed at 506-622, 778-832, 1079-1098, and 1572-1630 cm-1. In contrast, significant differences were identified in Raman peaks related to nucleic acids (723, 654, 1354 cm-1) and proteins (998, 1028, 1354, 1560 cm-1). An orthogonal partial least squares discriminant analysis (OPLS-DA) model was utilized to discern subtle variations among these highly similar samples, achieving an accuracy rate of 100%. By comparing the spectral correlations between esophageal cancer cells and their exosomes, this study provides valuable insights into the molecular composition and cellular origins of exosomes. The findings demonstrate the potential of integrating SERS with OPLS-DA for the precise and rapid detection and monitoring of esophageal cancer through exosomal biomarkers, offering a powerful tool for diagnostic applications.
Collapse
Affiliation(s)
- Qianjin Liu
- College of Future Technology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China.
| | - Mengdong Liu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Wenjing Lu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Han Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Zixuan Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Jingwei Xiong
- College of Future Technology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China.
| | - Ping Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Sonar S, Das A, Yeong Zher L, Narayanan Ravi R, Zheng Kong EQ, Dhar R, Narayanan K, Gorai S, Subramaniyan V. Exosome-Based Sensor: A Landmark of the Precision Cancer Diagnostic Era. ACS APPLIED BIO MATERIALS 2025. [PMID: 40366154 DOI: 10.1021/acsabm.5c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Extracellular vesicles are nanoscale vesicles released by a diversity of cells that mediate intercellular communication by transporting an array of biomolecules. They are gaining increasing attention in cancer research due to their ability to carry specific biomarkers. This characteristic makes them potentially useful for highly sensitive, noninvasive diagnostic procedures and more precise prognostic assessments. Consequently, EVs are emerging as a transformative tool in cancer treatment, facilitating early detection and personalized medicine. Despite significant progress, clinical implementation is hindered by challenges in EV isolation, purification, and characterization. However, developing advanced biosensor technologies offers promising solutions to these obstacles. This review highlights recent progress in biosensors for EV detection and analysis, focusing on various sensing modalities including optical, electrochemical, microfluidic, nanomechanical, and biological sensors. We also explore techniques for EV isolation, characterization, and analysis, such as electron microscopy, atomic force microscopy, nanoparticle tracking analysis, and single-particle analysis. Furthermore, the review critically assesses the challenges associated with EV detection and put forward future directions, aiming to usher in a cutting-edge era of precision medicine through advanced, sensor-based, noninvasive early cancer diagnosis by detecting EV-carried biomarkers.
Collapse
Affiliation(s)
- Swarup Sonar
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra 444605, India
| | - Asmit Das
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra 444605, India
| | - Lee Yeong Zher
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Ram Narayanan Ravi
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Eason Qi Zheng Kong
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Rajib Dhar
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Selangor (Darul Ehsan), Malaysia
| | - Kumaran Narayanan
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, 1620 W Harrison Street, Chicago, Illinois 60612, United States
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Selangor (Darul Ehsan), Malaysia
| |
Collapse
|
3
|
Su Y, He W, Zheng L, Fan X, Hu TY. Toward Clarity in Single Extracellular Vesicle Research: Defining the Field and Correcting Missteps. ACS NANO 2025; 19:16193-16203. [PMID: 40271998 PMCID: PMC12060644 DOI: 10.1021/acsnano.5c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Single extracellular vesicle (EV) research holds the potential to revolutionize our understanding of cellular communication and enable breakthroughs in diagnostics and therapeutics. However, the lack of a clear, consensus-driven definition of single EV research has led to methodological inconsistencies, overgeneralized interpretations, and, in some cases, misleading claims. In this perspective, we propose a framework for defining single EV research, critique current challenges and misconceptions in this field, and discuss its implications for biomedical applications. We argue that precise experimental design, rigorous validation, and interdisciplinary collaboration approaches are needed to establish single EV research as a cornerstone of precision medicine.
Collapse
Affiliation(s)
- Yun Su
- Department
of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and
Ocular Oncology, Shanghai Ninth People’s
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Wanzhuo He
- Department
of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and
Ocular Oncology, Shanghai Ninth People’s
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Lei Zheng
- Department
of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision
Medical Diagnostics, Guangdong Engineering and Technology Research
Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory
of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xianqun Fan
- Department
of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and
Ocular Oncology, Shanghai Ninth People’s
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Tony Y. Hu
- Department
of Biochemistry and Molecular Biology, Center for Cellular and Molecular
Diagnostics, Tulane University School of
Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
4
|
Barth I, Lee H. Nanophotonic sensing and label-free imaging of extracellular vesicles. LIGHT, SCIENCE & APPLICATIONS 2025; 14:177. [PMID: 40295495 PMCID: PMC12037801 DOI: 10.1038/s41377-025-01866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
This review examines imaging-based nanophotonic biosensing and interferometric label-free imaging, with a particular focus on vesicle detection. It specifically compares dielectric and plasmonic metasurfaces for label-free protein and extracellular vesicle detection, highlighting their respective advantages and limitations. Key topics include: (i) refractometric sensing principles using resonant dielectric and plasmonic surfaces; (ii) state-of-the-art developments in both plasmonic and dielectric nanostructured resonant surfaces; (iii) a detailed comparison of resonance characteristics, including amplitude, quality factor, and evanescent field enhancement; and (iv) the relationship between sensitivity, near-field enhancement, and analyte overlap in different sensing platforms. The review provides insights into the fundamental differences between plasmonic and dielectric platforms, discussing their fabrication, integration potential, and suitability for various analyte sizes. It aims to offer a unified, application-oriented perspective on the potential of these resonant surfaces for biosensing and imaging, aiming at addressing topics of interest for both photonics experts and potential users of these technologies.
Collapse
Affiliation(s)
- Isabel Barth
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Wang R, Zhang Y, Guo Y, Zeng W, Li J, Wu J, Li N, Zhu A, Li J, Di L, Cao P. Plant-derived nanovesicles: Promising therapeutics and drug delivery nanoplatforms for brain disorders. FUNDAMENTAL RESEARCH 2025; 5:830-850. [PMID: 40242551 PMCID: PMC11997602 DOI: 10.1016/j.fmre.2023.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 09/10/2023] [Indexed: 04/18/2025] Open
Abstract
Plant-derived nanovesicles (PDNVs), including plant extracellular vesicles (EVs) and plant exosome-like nanovesicles (ELNs), are natural nano-sized membranous vesicles containing bioactive molecules. PDNVs consist of a bilayer of lipids that can effectively encapsulate hydrophilic and lipophilic drugs, improving drug stability and solubility as well as providing increased bioavailability, reduced systemic toxicity, and enhanced target accumulation. Bioengineering strategies can also be exploited to modify the PDNVs to achieve precise targeting, controlled drug release, and massive production. Meanwhile, they are capable of crossing the blood-brain barrier (BBB) to transport the cargo to the lesion sites without harboring human pathogens, making them excellent therapeutic agents and drug delivery nanoplatform candidates for brain diseases. Herein, this article provides an initial exposition on the fundamental characteristics of PDNVs, including biogenesis, uptake process, isolation, purification, characterization methods, and source. Additionally, it sheds light on the investigation of PDNVs' utilization in brain diseases while also presenting novel perspectives on the obstacles and clinical advancements associated with PDNVs.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yingjie Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yumiao Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Wei Zeng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jinge Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jie Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Nengjin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Anran Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Peng Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
6
|
Zhang R, Guo Y, Huang C, Fang J. Label-Free SERS Analysis of Biological and Physical Information Heterogeneity of Nanoscale Extracellular Vesicle by Matching Specific Sizes of Enhanced Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409806. [PMID: 39726305 DOI: 10.1002/smll.202409806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The heterogeneity of extracellular vesicles (EVs) surface information represents different functions, which is neglected in previous studies. In this study, a label-free SERS analysis approach is demonstrated to study fundamental EV biological and physical information heterogeneity by matching specific sizes of nano-enhanced particles. This strategy reveals informative, comprehensive, and high-quality SERS spectra of the overall exosome surface, and effectively circumvents the key information loss caused by the spatial resistance of NPs binding to the 293 exosomes' concave structure. The classification of normal and cancerous cell-derived exosomes by PCA method, the accuracy is improved from 91.2% to 95.1% by optimizing sizes of nano-enhanced particles. In addition, stem cell-derived EVs of diverse sizes and morphologies similarly show acuity of spectrum variation to NPs size, which is conductive to qualitative studies. This new strategy will offer a widened in-depth understanding of the surface information, size, and morphology of EVs, which can be applied to the study of biological functions.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yu Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jixiang Fang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
7
|
Wen X, Hao Z, Yin H, Min J, Wang X, Sun S, Ruan G. Engineered Extracellular Vesicles as a New Class of Nanomedicine. CHEM & BIO ENGINEERING 2025; 2:3-22. [PMID: 39975802 PMCID: PMC11835263 DOI: 10.1021/cbe.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 02/21/2025]
Abstract
Extracellular vesicles (EVs) are secreted from biological cells and contain many molecules with diagnostic values or therapeutic functions. There has been great interest in academic and industrial communities to utilize EVs as tools for diagnosis or therapeutics. In addition, EVs can also serve as delivery vehicles for therapeutic molecules. An indicator of the enormous interest in EVs is the large number of review articles published on EVs, with the focus ranging from their biology to their applications. An emerging trend in EV research is to produce and utilize "engineered EVs", which are essentially the enhanced version of EVs. EV engineering can be conducted by cell culture condition control, genetic engineering, or chemical engineering. Given their nanometer-scale sizes and therapeutic potentials, engineered EVs are an emerging class of nanomedicines. So far, an overwhelming majority of the research on engineered EVs is preclinical studies; there are only a very small number of reported clinical trials. This Review focuses on engineered EVs, with a more specific focus being their applications in therapeutics. The various approaches to producing engineered EVs and their applications in various diseases are reviewed. Furthermore, in vivo imaging of EVs, the mechanistic understandings, and the clinical translation aspects are discussed. The discussion is primarily on preclinical studies while briefly mentioning the clinical trials. With continued interdisciplinary research efforts from biologists, pharmacists, physicians, bioengineers, and chemical engineers, engineered EVs could become a powerful solution for many major diseases such as neurological, immunological, and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaowei Wen
- Institute
of Analytical Chemistry and Instrument for Life Science, The Key Laboratory
of Biomedical Information Engineering of Ministry of Education, School
of Life Science and Technology, Xi’an
Jiaotong University, Xi’an, China 710049
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Zerun Hao
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Haofan Yin
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Jie Min
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Xueying Wang
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Sihan Sun
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Gang Ruan
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| |
Collapse
|
8
|
Das A, Sonar S, Kalele K, Subramaniyan V. Fruit exosomes: a sustainable green cancer therapeutic. SUSTAINABLE FOOD TECHNOLOGY 2025; 3:145-160. [DOI: 10.1039/d4fb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2024]
Abstract
Fruit exosomes are the source of natural cancer therapeutic tools.
Collapse
Affiliation(s)
- Asmit Das
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Swarup Sonar
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ketki Kalele
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra, India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
9
|
Liu Z, Pang B, Wang Y, Zheng J, Li Y, Jiang J. Advances of New Extracellular Vesicle Isolation and Detection Technologies in Cancer Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405872. [PMID: 39676429 DOI: 10.1002/smll.202405872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Cancer is a global health issue threatening people's lives. Currently, cancer detection methods still have a lot of room for improvement in both efficiency and accuracy. The development and application of new technologies are urgently required for early cancer diagnosis and prognosis. Extracellular vesicles (EVs) are a type of phospholipid bilayer vesicle secreted by cells and play an important role in cancer development and metastasis. These small vesicles participate in cancer information transmission, antigen presentation, angiogenesis, immune response, tumor invasion, and mediate signaling pathways in the tumor microenvironment. Liquid biopsy of EV cargo contents is a fast-developing research area, holding promise for early cancer diagnosis and monitoring cancer progression in real-time. However, current EV detection technologies for clinical translation are still facing many challenges. Recent advancements in developing techniques for EV isolation and detection have made significant progress and are paving the way toward clinical application. Here, the advantages and limitations of traditional EV detection and isolation technologies in cancer diagnosis and prognosis are reviewed. The review also focuses on emerging EV detection and isolation technologies in cancer, discusses the challenges faced by current methods, and explores the perspective of new EV detection techniques for future cancer diagnosis.
Collapse
Affiliation(s)
- Zhihan Liu
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Bairen Pang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| | - Yuhui Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Jianping Zheng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Junhui Jiang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
10
|
Dilsiz N. A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl Oncol 2024; 50:102121. [PMID: 39278189 PMCID: PMC11418158 DOI: 10.1016/j.tranon.2024.102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Exosomes are small, round vesicles in the 30 and 120 nm diameter range released by all living cell types. Exosomes play many essential functions in intercellular communication and tissue crosstalk in the human body. They can potentially be used as strong biomarkers and therapeutic agents for early diagnosis, therapy response, and prognosis of different diseases. The main requirements for exosomal large-scale clinical practice application are rapid, easy, high-yield, high purity, characterization, safety, low cost, and therapeutic efficacy. Depending on the sample types, environmental insults, and exosome quantity, exosomes can be isolated from various sources, including body fluids, solid tissues, and cell culture medium using different procedures. This study comprehensively analyzed the current research progress in exosome isolation and characterization strategies along with their advantages and disadvantages. The provided information will make it easier to select exosome separation methods based on the types of biological samples available, and it will facilitate the use of exosomes in translational and clinical research, particularly in cancer. Lay abstract Exosomes have recently received much attention due to their potential to function as biomarkers and novel therapeutic agents for early diagnosis, therapeutic response, and prognosis in various diseases. This review summarizes many approaches for isolating and characterizing exosomes, focusing on developing technologies, and provides an in-depth comparison and analysis of each method, including its principles, advantages, and limitations.
Collapse
Affiliation(s)
- Nihat Dilsiz
- Experimental Medicine Application and Research Center (EMARC) Validebag Research Park, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
11
|
Coupland SE, Sonntag SR, Heimann H, Grisanti S. [The concept of the liquid biopsy in the treatment of malignant eye tumours]. DIE OPHTHALMOLOGIE 2024; 121:946-953. [PMID: 39516408 DOI: 10.1007/s00347-024-02132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
The liquid biopsy is a cutting-edge technique that involves analysing non-solid biological tissues, primarily blood but also ocular fluids, for the presence of cancer cells or fragments of tumour DNA. Unlike traditional biopsies, liquid biopsies are usually minimally invasive and can be performed more frequently, enabling continuous monitoring of disease progression and treatment efficacy. This article (and the associated series of articles) outlines the key developments in liquid biopsy, which include the analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTC) and exosomal RNA and protein biomarkers. Techniques, such as digital droplet PCR and next-generation sequencing (NGS) have made it possible to detect even very low levels of ctDNA, which is crucial for early cancer detection and monitoring minimal residual disease. The detection of rare CTCs is enhanced by techniques, such as microfluidic devices and immunomagnetic separation. Multiomic approaches, whereby exosomal RNA, protein and ctDNA analyses are combined, help to create a more comprehensive picture of tumour biology, including insights into tumour heterogeneity, potentially leading to better diagnostic and prognostic tools and helping to predict treatment response and resistance. The challenges of liquid biopsy application, which will be described in the following article, include (a) standardization, (b) cost and accessibility, (c) validation and clinical utility. However, the liquid biopsy represents a promising frontier in the application of precision ocular oncology, with ongoing research likely to expand its applications and improve its effectiveness in the coming years.
Collapse
Affiliation(s)
- Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, University of Liverpool, 3rd Floor, William Henry Duncan Building, 6 West Derby Street, L7 8TX, Liverpool, Großbritannien.
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, Großbritannien.
| | - Svenja R Sonntag
- Department of Ophthalmology, University Medical Center Schleswig-Holstein, Luebeck, Deutschland
| | - Heinrich Heimann
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, University of Liverpool, 3rd Floor, William Henry Duncan Building, 6 West Derby Street, L7 8TX, Liverpool, Großbritannien
- Liverpool Ocular Oncology Centre, Liverpool University Hospitals Foundation Trust, Liverpool, Großbritannien
| | - Salvatore Grisanti
- Department of Ophthalmology, University Medical Center Schleswig-Holstein, Luebeck, Deutschland
| |
Collapse
|
12
|
Kowkabany G, Bao Y. Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles. Molecules 2024; 29:4672. [PMID: 39407601 PMCID: PMC11477862 DOI: 10.3390/molecules29194672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles that have attracted much attention for their potential in disease diagnosis and therapy. However, the clinical translation is limited by the dosing consistency due to their heterogeneity. Among various characterization techniques, nanoparticle tracking analysis (NTA) offers distinct benefits for EV characterization. In this review, we will discuss the NTA technique with a focus on factors affecting the results; then, we will review the two modes of the NTA techniques along with suitable applications in specific areas of EV studies. EVs are typically characterized by their size, size distribution, concentration, protein markers, and RNA cargos. The light-scattering mode of NTA offers accurate size, size distribution, and concentration information in solution, which is useful for comparing EV isolation methods, storage conditions, and EV secretion conditions. In contrast, fluorescent mode of NTA allows differentiating EV subgroups based on specific markers. The success of fluorescence NTA heavily relies on fluorescent tags (e.g., types of dyes and labeling methods). When EVs are labeled with disease-specific markers, fluorescence NTA offers an effective tool for disease detection in biological fluids, such as saliva, blood, and serum. Finally, we will discuss the limitations and future directions of the NTA technique in EV characterization.
Collapse
Affiliation(s)
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
13
|
Sani F, Shafiei F, Dehghani F, Mohammadi Y, Khorraminejad‐Shirazi M, Anvari‐Yazdi AF, Moayedfard Z, Azarpira N, Sani M. Unveiling exosomes: Cutting-edge isolation techniques and their therapeutic potential. J Cell Mol Med 2024; 28:e70139. [PMID: 39431552 PMCID: PMC11492151 DOI: 10.1111/jcmm.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Exosomes are one type of nanosized membrane vesicles with an endocytic origin. They are secreted by almost all cell types and play diverse functional roles. It is essential for research purposes to differentiate exosomes from microvesicles and isolate them from other components in a fluid sample or cell culture medium. Exosomes are important mediators in cell-cell communication. They deliver their cargos, such as mRNA transcripts, microRNA, lipids, cytosolic and membrane proteins and enzymes, to target cells with or without physical connections between cells. They are highly heterogeneous in size, and their biological functions can vary depending on the cell type, their ability to interact with recipient cells and transport their contents, and the environment in which they are produced. This review summarized the recent progress in exosome isolation and characterization techniques. Moreover, we review the therapeutic approaches, biological functions of exosomes in disease progression, tumour metastasis regulation, immune regulation and some ongoing clinical trials.
Collapse
Affiliation(s)
- Farnaz Sani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Faezeh Shafiei
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Farshad Dehghani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Yasaman Mohammadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical ScienceShirazIran
| | - Mohammadhossein Khorraminejad‐Shirazi
- Department of Pathology, School of MedicineShiraz University of Medical SciencesShirazIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Department of Pathology, School of MedicineJahrom University of Medical SciencesJahromIran
| | | | - Zahra Moayedfard
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | - Mahsa Sani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| |
Collapse
|
14
|
Losada PX, Serrato L, Daza AM, Vanegas-García A, Muñoz CH, Rodriguez D, Diaz JC, Pineda R, Rojas Lopez M, Vásquez G. Circulating extracellular vesicles in Systemic Lupus Erythematosus: physicochemical properties and phenotype. Lupus Sci Med 2024; 11:e001243. [PMID: 39153822 PMCID: PMC11331945 DOI: 10.1136/lupus-2024-001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/27/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE This study aimed to identify the physicochemical and phenotypic characteristics of circulating Extracellular Vesicles (EVs) in the plasma of patients with SLE, with or without Lupus Nephritis (LN), and their potential utility as disease biomarkers. METHODS Plasma-circulating EVs were concentrated using differential centrifugation from adult female patients (n=38) who met the 'American College of Rheumatology/European Alliance of Associations for Rheumatology 2019' criteria for SLE diagnosis with (LN) or without LN (nLN), confirmed by renal biopsy. Controls (n=18) were healthy volunteers matched by gender and similar age. The structure, size and Energy Dispersion Spectrum (EDS) of EVs were observed by electron microscopy. The surface charge and size distribution were evaluated using dynamic light scattering. The counts and phenotype of EVs from patients (SLE-EVs) and controls (Ctrl-EVs) were obtained using flow cytometry. Non-parametric statistical tests and exploratory analysis of multiple variables were performed. The discriminatory power of some variables as potential biomarkers of the disease was also evaluated. RESULTS Circulating EVs were heterogeneous in morphology and size, but SLE-EVs reached larger diameters than Ctrl-EVs (p<0.0001). Small SLE-EVs and large SLE-EVs were increased compared with Ctrl-EV (p<0.0001 and p<0.05, respectively). Likewise, patients with SLE (LN or nLN) had higher concentrations of large EVs compared with controls (p<0.001 and p<0.0001, respectively). SLE-EVs showed a different EDS (p<0.001) and were less electronegative (p<0.0001) than Ctrl-EVs. EV-CD45+, EV-CD14+ and EV-IgM+ were more frequent in patients with SLE compared with controls (p<0.001, p<0.05 and p<0.001, respectively). The concentrations of large EVs and EV-IgM+ allowed better discrimination of patients from controls. CONCLUSIONS Plasma-circulating EVs from patients with SLE with and without nephritis are increased in peripheral blood and have different physicochemical properties than controls. Characteristics of EVs such as larger size and the presence of IgM on the surface could help discriminate patients from controls.
Collapse
Affiliation(s)
- Paula X Losada
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| | - Lina Serrato
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| | - Ana María Daza
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| | - Adriana Vanegas-García
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Hospital San Vicente de Paúl, Medellin, Colombia
| | - Carlos H Muñoz
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Sección Reumatología, Hospital San Vicente de Paúl, Medellin, Colombia
| | | | | | | | - Mauricio Rojas Lopez
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
- Unidad de Citometría de Flujo, Universidad de Antioquia, Medellin, Colombia
| | - Gloria Vásquez
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| |
Collapse
|
15
|
Kapoor KS, Kong S, Sugimoto H, Guo W, Boominathan V, Chen YL, Biswal SL, Terlier T, McAndrews KM, Kalluri R. Single Extracellular Vesicle Imaging and Computational Analysis Identifies Inherent Architectural Heterogeneity. ACS NANO 2024; 18:11717-11731. [PMID: 38651873 PMCID: PMC12002403 DOI: 10.1021/acsnano.3c12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM), which has an inherent ability to image biological samples without harsh labeling methods while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources, such as cancer cells, normal cells, immortalized cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366 ± 0.2, and the average equivalent diameter was 132.43 ± 67 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical, rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution images of EVs and offer insights into their potential biological impact.
Collapse
Affiliation(s)
- Kshipra S. Kapoor
- Department of Cancer Biology and Metastasis Research Center, the University of Texas MD Anderson Cancer Center, Houston, TX - 77054, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX - 77005, USA
| | - Seoyun Kong
- Department of Cancer Biology and Metastasis Research Center, the University of Texas MD Anderson Cancer Center, Houston, TX - 77054, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology and Metastasis Research Center, the University of Texas MD Anderson Cancer Center, Houston, TX - 77054, USA
| | - Wenhua Guo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX - 77005, USA
| | - Vivek Boominathan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX - 77005, USA
| | - Yi-Lin Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX - 77005, USA
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX - 77005, USA
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, TX - 77005, USA
| | - Kathleen M. McAndrews
- Department of Cancer Biology and Metastasis Research Center, the University of Texas MD Anderson Cancer Center, Houston, TX - 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology and Metastasis Research Center, the University of Texas MD Anderson Cancer Center, Houston, TX - 77054, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX - 77030, USA
- Department of Bioengineering, Rice University, Houston, TX - 77005, USA
| |
Collapse
|
16
|
Kapoor KS, Kong S, Sugimoto H, Guo W, Boominathan V, Chen YL, Biswal SL, Terlier T, McAndrews KM, Kalluri R. Single extracellular vesicle imaging and computational analysis identifies inherent architectural heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571132. [PMID: 38168235 PMCID: PMC10760062 DOI: 10.1101/2023.12.11.571132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM) which has an inherent ability to image biological samples without harsh labeling methods and while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources such as cancer cells, normal cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366, and the average equivalent diameter was 132.43 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical (S. Spherical), rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution EV images and offer insights into their potential biological impact.
Collapse
|
17
|
E VIGNESHBALAJI, RAMESH DIVYA, SHAJU MANISHACHUNGAN, KUMAR AKSHARA, PANDEY SAMYAK, NAYAK RAKSHA, ALKA V, MUNJAL SRISHTI, SALIMI AMIR, PAI KSREEDHARARANGANATH, BAKKANNAVAR SHANKARM. Biological, pathological, and multifaceted therapeutic functions of exosomes to target cancer. Oncol Res 2023; 32:73-94. [PMID: 38188673 PMCID: PMC10767237 DOI: 10.32604/or.2023.030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/25/2023] [Indexed: 01/09/2024] Open
Abstract
Exosomes, small tiny vesicle contains a large number of intracellular particles that employ to cause various diseases and prevent several pathological events as well in the human body. It is considered a "double-edged sword", and depending on its biological source, the action of exosomes varies under physiological conditions. Also, the isolation and characterization of the exosomes should be performed accurately and the methodology also will vary depending on the exosome source. Moreover, the uptake of exosomes from the recipients' cells is a vital and initial step for all the physiological actions. There are different mechanisms present in the exosomes' cellular uptake to deliver their cargo to acceptor cells. Once the exosomal uptake takes place, it releases the intracellular particles that leads to activate the physiological response. Even though exosomes have lavish functions, there are some challenges associated with every step of their preparation to bring potential therapeutic efficacy. So, overcoming the pitfalls would give a desired quantity of exosomes with high purity.
Collapse
Affiliation(s)
- VIGNESH BALAJI E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - DIVYA RAMESH
- Department of Forensic Medicine and Toxicology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - MANISHA CHUNGAN SHAJU
- School of Health and Community Services, Durham College, Oshawa, Ontario, L1G2G5, Canada
| | - AKSHARA KUMAR
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SAMYAK PANDEY
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - RAKSHA NAYAK
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - V. ALKA
- Department of Clinical Psychology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SRISHTI MUNJAL
- Department of Speech and Hearing, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - AMIR SALIMI
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K. SREEDHARA RANGANATH PAI
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SHANKAR M. BAKKANNAVAR
- Department of Forensic Medicine and Toxicology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
18
|
Lee H, Liao JD, Wong TW, Wu CW, Huang BY, Wu SC, Shao PL, Wei YH, Cheng MH. Detection of micro-plasma-induced exosomes secretion in a fibroblast-melanoma co-culture model. Anal Chim Acta 2023; 1281:341910. [PMID: 38783745 DOI: 10.1016/j.aca.2023.341910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Melanoma is a highly aggressive tumor and a significant cause of skin cancer-related death. Timely diagnosis and treatment require identification of specific biomarkers in exosomes secreted by melanoma cells. In this study, label-free surface-enhanced Raman spectroscopy (SERS) method with size-matched selectivity was used to detect membrane proteins in exosomes released from a stimulated environment of fibroblasts (L929) co-cultured with melanoma cells (B16-F10). To promote normal secretion of exosomes, micro-plasma treatment was used to gently induce the co-cultured cells and slightly increase the stress level around the cells for subsequent detection using the SERS method. RESULTS AND DISCUSSION Firstly, changes in reactive oxygen species/reactive nitrogen species (ROS/RNS) concentrations in the cellular microenvironment and the viability and proliferation of healthy cells are assessed. Results showed that micro-plasma treatment increased extracellular ROS/RNS levels while modestly reducing cell proliferation without significantly affecting cell survival. Secondly, the particle size of secreted exosomes isolated from the culture medium of L929, B16-F10, and co-cultured cells with different micro-plasma treatment time did not increase significantly under single-cell conditions at short treatment time but might be changed under co-culture condition or longer treatment time. Third, for SERS signals related to membrane protein biomarkers, exosome markers CD9, CD63, and CD81 can be assigned to significant Raman shifts in the range of 943-1030 and 1304-1561 cm-1, while the characteristics SERS peaks of L929 and B16-F10 cells are most likely located at 1394/1404, 1271 and 1592 cm-1 respectively. SIGNIFICANCE AND NOVELTY Therefore, this micro-plasma-induced co-culture model provides a promising preclinical approach to understand the diagnostic potential of exosomes secreted by cutaneous melanoma/fibroblasts. Furthermore, the label-free SERS method with size-matched selectivity provides a novel approach to screen biomarkers in exosomes secreted by melanoma cells, aiming to reduce the use of labeling reagents and the processing time traditionally required.
Collapse
Affiliation(s)
- Han Lee
- Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Jiunn-Der Liao
- Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, Department of Biochemistry and Molecular Biology, College of Medicine, Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Che-Wei Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80701, Taiwan; Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 80701, Taiwan.
| | - Bo-Yao Huang
- Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Shun-Cheng Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80701, Taiwan; Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 80701, Taiwan.
| | - Pei-Lin Shao
- Department of Nursing, Asia University, 500 Liou Feng Road, Taichung, 413, Taiwan.
| | - Yu-Han Wei
- Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Ming-Hsien Cheng
- Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| |
Collapse
|
19
|
Altıntaş Ö, Saylan Y. Exploring the Versatility of Exosomes: A Review on Isolation, Characterization, Detection Methods, and Diverse Applications. Anal Chem 2023; 95:16029-16048. [PMID: 37874907 DOI: 10.1021/acs.analchem.3c02224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are crucial mediators of intercellular communication and can be classified based on their physical properties, biomolecular structure, and origin. Among EVs, exosomes have garnered significant attention due to their potential as therapeutic and diagnostic tools. Exosomes are released via fusion of multivesicular bodies on plasma membranes and can be isolated from various biofluids using methods such as differential ultracentrifugation, immune affinity capture, ultrafiltration, and size exclusion chromatography. Herein, an overview of different techniques for exosome characterization and isolation, as well as the diverse applications of exosome detection, including their potential use in drug delivery and disease diagnosis, is provided. Additionally, we discuss the emerging field of exosome detection by sensors, which offers an up-and-coming avenue for point-of-care diagnostic tools development. Overall, this review aims to provide a exhaustive and up-to-date summary of the current state of exosome research.
Collapse
Affiliation(s)
- Özge Altıntaş
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Yeşeren Saylan
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| |
Collapse
|
20
|
Adesoye S, Al Abdullah S, Kumari A, Pathiraja G, Nowlin K, Dellinger K. Au-Coated ZnO Surface-Enhanced Raman Scattering (SERS) Substrates: Synthesis, Characterization, and Applications in Exosome Detection. CHEMOSENSORS (BASEL, SWITZERLAND) 2023; 11:554. [PMID: 39371047 PMCID: PMC11450680 DOI: 10.3390/chemosensors11110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Developing a biomolecular detection method that minimizes photodamage while preserving an environment suitable for biological constituents to maintain their physiological state is expected to drive new diagnostic and mechanistic breakthroughs. In addition, ultra-sensitive diagnostic platforms are needed for rapid and point-of-care technologies for various diseases. Considering this, surface-enhanced Raman scattering (SERS) is proposed as a non-destructive and sensitive approach to address the limitations of fluorescence, electrochemical, and other optical detection techniques. However, to advance the applications of SERS, novel approaches that can enhance the signal of substrate materials are needed to improve reproducibility and costs associated with manufacture and scale-up. Due to their physical properties and synthesis, semiconductor-based nanostructures have gained increasing recognition as SERS substrates; however, low signal enhancements have offset their widespread adoption. To address this limitation and assess the potential for use in biological applications, zinc oxide (ZnO) was coated with different concentrations (0.01-0.1 M) of gold (Au) precursor. When crystal violet (CV) was used as a model target with the synthesized substrates, the highest enhancement was obtained with ZnO coated with 0.05 M Au precursor. This substrate was subsequently applied to differentiate exosomes derived from three cell types to provide insight into their molecular diversity. We anticipate this work will serve as a platform for colloidal hybrid SERS substrates in future bio-sensing applications.
Collapse
Affiliation(s)
- Samuel Adesoye
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Anjali Kumari
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Gayani Pathiraja
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Kyle Nowlin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| |
Collapse
|
21
|
Wang K, Wang X, Pan Q, Zhao B. Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation. Mol Cancer 2023; 22:167. [PMID: 37803304 PMCID: PMC10557192 DOI: 10.1186/s12943-023-01870-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignancies. Surgical resection is a potential curative approach for PC, but most patients are unsuitable for operations when at the time of diagnosis. Even with surgery, some patients may still experience tumour metastasis during the operation or shortly after surgery, as precise prognosis evaluation is not always possible. If patients miss the opportunity for surgery and resort to chemotherapy, they may face the challenging issue of chemotherapy resistance. In recent years, liquid biopsy has shown promising prospects in disease diagnosis, treatment monitoring, and prognosis assessment. As a noninvasive detection method, liquid biopsy offers advantages over traditional diagnostic procedures, such as tissue biopsy, in terms of both cost-effectiveness and convenience. The information provided by liquid biopsy helps clinical practitioners understand the molecular mechanisms underlying tumour occurrence and development, enabling the formulation of more precise and personalized treatment decisions for each patient. This review introduces molecular biomarkers and detection methods in liquid biopsy for PC, including circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), noncoding RNAs (ncRNAs), and extracellular vesicles (EVs) or exosomes. Additionally, we summarize the applications of liquid biopsy in the early diagnosis, treatment response, resistance assessment, and prognostic evaluation of PC.
Collapse
Affiliation(s)
- Kangchun Wang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Bei Zhao
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
22
|
Zhang J, Wu J, Wang G, He L, Zheng Z, Wu M, Zhang Y. Extracellular Vesicles: Techniques and Biomedical Applications Related to Single Vesicle Analysis. ACS NANO 2023; 17:17668-17698. [PMID: 37695614 DOI: 10.1021/acsnano.3c03172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Extracellular vesicles (EVs) are extensively dispersed lipid bilayer membrane vesicles involved in the delivery and transportation of molecular payloads to certain cell types to facilitate intercellular interactions. Their significant roles in physiological and pathological processes make EVs outstanding biomarkers for disease diagnosis and treatment monitoring as well as ideal candidates for drug delivery. Nevertheless, differences in the biogenesis processes among EV subpopulations have led to a diversity of biophysical characteristics and molecular cargos. Additionally, the prevalent heterogeneity of EVs has been found to substantially hamper the sensitivity and accuracy of disease diagnosis and therapeutic monitoring, thus impeding the advancement of clinical applications. In recent years, the evolution of single EV (SEV) analysis has enabled an in-depth comprehension of the physical properties, molecular composition, and biological roles of EVs at the individual vesicle level. This review examines the sample acquisition tactics prior to SEV analysis, i.e., EV isolation techniques, and outlines the current state-of-the-art label-free and label-based technologies for SEV identification. Furthermore, the challenges and prospects of biomedical applications based on SEV analysis are systematically discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiacheng Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Guanzhao Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Luxuan He
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ziwei Zheng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Minhao Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Yuanqing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
23
|
Paul N, Sultana Z, Fisher JJ, Maiti K, Smith R. Extracellular vesicles- crucial players in human pregnancy. Placenta 2023; 140:30-38. [PMID: 37531747 DOI: 10.1016/j.placenta.2023.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/04/2023]
Abstract
Extracellular vesicles (EVs) are lipid-bilayer enclosed membrane vesicles released by cells in physiological and pathological states. EVs are generated and released through a variety of pathways and mediate cellular communication by carrying and transferring signals to recipient cells. EVs are specifically loaded with proteins, nucleic acids (RNAs and DNA), enzymes and lipids, and carry a range of surface proteins and adhesion molecules. EVs contribute to intercellular signalling, development, metabolism, tissue homeostasis, antigen presentation, gene expression and immune regulation. EVs have been categorised into three different subgroups based on their size: exosomes (30-150 nm), microvesicles (100-1000 nm) and apoptotic bodies (1-5 μm). The status of the cells of origin of EVs influences their biology, heterogeneity and functions. EVs, especially exosomes, have been studied for their potential roles in feto-maternal communication and impacts on normal pregnancy and pregnancy disorders. This review presents an overview of EVs, emphasising exosomes and microvesicles in a general context, and then focusing on the roles of EVs in human pregnancy and their potential as diagnostics for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Nilanjana Paul
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| | - Zakia Sultana
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| | - Joshua J Fisher
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| | | | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| |
Collapse
|
24
|
Mu N, Li J, Zeng L, You J, Li R, Qin A, Liu X, Yan F, Zhou Z. Plant-Derived Exosome-Like Nanovesicles: Current Progress and Prospects. Int J Nanomedicine 2023; 18:4987-5009. [PMID: 37693885 PMCID: PMC10492547 DOI: 10.2147/ijn.s420748] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Exosomes are small extracellular vesicles, ranging in size from 30-150nm, which can be derived from various types of cells. In recent years, mammalian-derived exosomes have been extensively studied and found to play a crucial role in regulating intercellular communication, thereby influencing the development and progression of numerous diseases. Traditional Chinese medicine has employed plant-based remedies for thousands of years, and an increasing body of evidence suggests that plant-derived exosome-like nanovesicles (PELNs) share similarities with mammalian-derived exosomes in terms of their structure and function. In this review, we provide an overview of recent advances in the study of PELNs and their potential implications for human health. Specifically, we summarize the roles of PELNs in respiratory, digestive, circulatory, and other diseases. Furthermore, we have extensively investigated the potential shortcomings and challenges in current research regarding the mechanism of action, safety, administration routes, isolation and extraction methods, characterization and identification techniques, as well as drug-loading capabilities. Based on these considerations, we propose recommendations for future research directions. Overall, our review highlights the potential of PELNs as a promising area of research, with broad implications for the treatment of human diseases. We anticipate continued interest in this area and hope that our summary of recent findings will stimulate further exploration into the implications of PELNs for human health.
Collapse
Affiliation(s)
- Nai Mu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, People’s Republic of China
- Geriatric Diseases Institute of Chengdu, Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Jie Li
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Li Zeng
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Juan You
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Rong Li
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Anquan Qin
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Xueping Liu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, People’s Republic of China
| | - Fang Yan
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Zheng Zhou
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, People’s Republic of China
- Geriatric Diseases Institute of Chengdu, Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
25
|
Asao T, Tobias GC, Lucotti S, Jones DR, Matei I, Lyden D. Extracellular vesicles and particles as mediators of long-range communication in cancer: connecting biological function to clinical applications. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:461-485. [PMID: 38707985 PMCID: PMC11067132 DOI: 10.20517/evcna.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Over the past decade, extracellular vesicles and particles (EVPs) have emerged as critical mediators of intercellular communication, participating in numerous physiological and pathological processes. In the context of cancer, EVPs exert local effects, such as increased invasiveness, motility, and reprogramming of tumor stroma, as well as systemic effects, including pre-metastatic niche formation, determining organotropism, promoting metastasis and altering the homeostasis of various organs and systems, such as the liver, muscle, and circulatory system. This review provides an overview of the critical advances in EVP research during the past decade, highlighting the heterogeneity of EVPs, their roles in intercellular communication, cancer progression, and metastasis. Moreover, the clinical potential of systemic EVPs as useful cancer biomarkers and therapeutic agents is explored. Last but not least, the progress in EVP analysis technologies that have facilitated these discoveries is discussed, which may further propel EVP research in the future.
Collapse
Affiliation(s)
- Tetsuhiko Asao
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 163-8001, Japan
| | - Gabriel Cardial Tobias
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
26
|
Pezzotti G, Adachi T, Imamura H, Bristol DR, Adachi K, Yamamoto T, Kanamura N, Marin E, Zhu W, Kawai T, Mazda O, Kariu T, Waku T, Nichols FC, Riello P, Rizzolio F, Limongi T, Okuma K. In Situ Raman Study of Neurodegenerated Human Neuroblastoma Cells Exposed to Outer-Membrane Vesicles Isolated from Porphyromonas gingivalis. Int J Mol Sci 2023; 24:13351. [PMID: 37686157 PMCID: PMC10488263 DOI: 10.3390/ijms241713351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to elucidate the chemistry of cellular degeneration in human neuroblastoma cells upon exposure to outer-membrane vesicles (OMVs) produced by Porphyromonas gingivalis (Pg) oral bacteria by monitoring their metabolomic evolution using in situ Raman spectroscopy. Pg-OMVs are a key factor in Alzheimer's disease (AD) pathogenesis, as they act as efficient vectors for the delivery of toxins promoting neuronal damage. However, the chemical mechanisms underlying the direct impact of Pg-OMVs on cell metabolites at the molecular scale still remain conspicuously unclear. A widely used in vitro model employing neuroblastoma SH-SY5Y cells (a sub-line of the SK-N-SH cell line) was spectroscopically analyzed in situ before and 6 h after Pg-OMV contamination. Concurrently, Raman characterizations were also performed on isolated Pg-OMVs, which included phosphorylated dihydroceramide (PDHC) lipids and lipopolysaccharide (LPS), the latter in turn being contaminated with a highly pathogenic class of cysteine proteases, a key factor in neuronal cell degradation. Raman characterizations located lipopolysaccharide fingerprints in the vesicle structure and unveiled so far unproved aspects of the chemistry behind protein degradation induced by Pg-OMV contamination of SH-SY5Y cells. The observed alterations of cells' Raman profiles were then discussed in view of key factors including the formation of amyloid β (Aβ) plaques and hyperphosphorylated Tau neurofibrillary tangles, and the formation of cholesterol agglomerates that exacerbate AD pathologies.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy;
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Davide Redolfi Bristol
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Keiji Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
| | - Toru Kariu
- Department of Life Science, Shokei University, Chuo-ku, Kuhonji, Kumamoto 862-8678, Japan;
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Frank C. Nichols
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, 263 Farmington Avenue, Storrs, CT 06030, USA;
| | - Pietro Riello
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy;
| | - Kazu Okuma
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
| |
Collapse
|
27
|
Saadeldin IM, Ehab S, Cho J. Relevance of multilamellar and multicompartmental vesicles in biological fluids: understanding the significance of proportional variations and disease correlation. Biomark Res 2023; 11:77. [PMID: 37633948 PMCID: PMC10464313 DOI: 10.1186/s40364-023-00518-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Extracellular vesicles (EVs) have garnered significant interest in the field of biomedical science due to their potential applications in therapy and diagnosis. These vesicles participate in cell-to-cell communication and carry a diverse range of bioactive cargo molecules, such as nucleic acids, proteins, and lipids. These cargoes play essential roles in various signaling pathways, including paracrine and endocrine signaling. However, our understanding of the morphological and structural features of EVs is still limited. EVs could be unilamellar or multilamellar or even multicompartmental structures. The relative proportions of these EV subtypes in biological fluids have been associated with various human diseases; however, the mechanism remains unclear. Cryo-electron microscopy (cryo-EM) holds great promise in the field of EV characterization due to high resolution properties. Cryo-EM circumvents artifacts caused by fixation or dehydration, allows for the preservation of native conformation, and eliminates the necessity for staining procedures. In this review, we summarize the role of EVs biogenesis and pathways that might have role on their structure, and the role of cryo-EM in characterization of EVs morphology in different biological samples and integrate new knowledge of the alterations of membranous structures of EVs which could be used as biomarkers to human diseases.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seif Ehab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
28
|
Borșa RM, Toma V, Onaciu A, Moldovan CS, Mărginean R, Cenariu D, Știufiuc GF, Dinu CM, Bran S, Opriș HO, Văcăraș S, Onișor-Gligor F, Sentea D, Băciuț MF, Iuga CA, Știufiuc RI. Developing New Diagnostic Tools Based on SERS Analysis of Filtered Salivary Samples for Oral Cancer Detection. Int J Mol Sci 2023; 24:12125. [PMID: 37569501 PMCID: PMC10418512 DOI: 10.3390/ijms241512125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer still represents one of the biggest challenges in current medical practice. Among different types of cancer, oral cancer has a huge impact on patients due to its great visibility, which is more likely to create social stigma and increased anxiety. New early diagnose methods are still needed to improve treatment efficiency and patients' life quality. Raman/SERS (Surface Enhanced Raman Spectroscopy) spectroscopy has a unique and powerful potential for detecting specific molecules that can become priceless biomarkers in different pathologies, such as oral cancer. In this study, a batch of saliva samples obtained from a group of 17 patients with oro-maxillofacial pathologies compared with saliva samples from 18 healthy donors using the aforementioned methods were evaluated. At the same time, opiorphin, potassium thiocyanate and uric acid were evaluated as potential specific biomarkers for oro-maxillofacial pathologies using multivariate analysis. A careful examination of SERS spectra collected on saliva samples showed that the spectra are dominated by the vibrational bands of opiorphin, potassium thiocyanate and uric acid. Given the fact that all these small molecules are found in very small amounts, we filtrated all the samples to get rid of large molecules and to improve our analysis. By using solid plasmonic substrates, we were able to gain information about molecular concentration and geometry of interaction. On the other hand, the multivariate analysis of the salivary spectra contributed to developing a new detection method for oral cancer.
Collapse
Affiliation(s)
- Rareș-Mario Borșa
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Valentin Toma
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Anca Onaciu
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Cristian-Silviu Moldovan
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Radu Mărginean
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Diana Cenariu
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | | | - Cristian-Mihail Dinu
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Simion Bran
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Horia-Octavian Opriș
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Sergiu Văcăraș
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Florin Onișor-Gligor
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Dorin Sentea
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Mihaela-Felicia Băciuț
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Cristina-Adela Iuga
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| | - Rareș-Ionuț Știufiuc
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
- TRANSCEND Research Center, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
29
|
Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev 2023:114974. [PMID: 37356623 DOI: 10.1016/j.addr.2023.114974] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Extracellular Vesicles (EVs), particularly exosomes, recently exploded into nanomedicine as an emerging drug delivery approach due to their superior biocompatibility, circulating stability, and bioavailability in vivo. However, EV heterogeneity makes molecular targeting precision a critical challenge. Deciphering key molecular drivers for controlling EV tissue targeting specificity is in great need. Artificial intelligence (AI) brings powerful prediction ability for guiding the rational design of engineered EVs in precision control for drug delivery. This review focuses on cutting-edge nano-delivery via integrating large-scale EV data with AI to develop AI-directed EV therapies and illuminate the clinical translation potential. We briefly review the current status of EVs in drug delivery, including the current frontier, limitations, and considerations to advance the field. Subsequently, we detail the future of AI in drug delivery and its impact on precision EV delivery. Our review discusses the current universal challenge of standardization and critical considerations when using AI combined with EVs for precision drug delivery. Finally, we will conclude this review with a perspective on future clinical translation led by a combined effort of AI and EV research.
Collapse
Affiliation(s)
- Zachary F Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Kiley S Graim
- Department of Computer & Information Science & Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA.
| |
Collapse
|
30
|
Bean AC, Sahu A, Piechocki C, Gualerzi A, Picciolini S, Bedoni M, Ambrosio F. Neuromuscular electrical stimulation enhances the ability of serum extracellular vesicles to regenerate aged skeletal muscle after injury. Exp Gerontol 2023; 177:112179. [PMID: 37087025 PMCID: PMC10278579 DOI: 10.1016/j.exger.2023.112179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
Exercise promotes healthy aging of skeletal muscle. This benefit may be mediated by youthful factors in the circulation released in response to an exercise protocol. While numerous studies to date have explored soluble proteins as systemic mediators of rejuvenating effect of exercise on tissue function, here we showed that the beneficial effect of skeletal muscle contractile activity on aged muscle function is mediated, at least in part, by regenerative properties of circulating extracellular vesicles (EVs). Muscle contractile activity elicited by neuromuscular electrical stimulation (NMES) decreased intensity of expression of the tetraspanin surface marker, CD63, on circulating EVs. Moreover, NMES shifted the biochemical Raman fingerprint of circulating EVs in aged animals with significant changes in lipid and sugar content in response to NMES when compared to controls. As a demonstration of the physiological relevance of these EV changes, we showed that intramuscular administration of EVs derived from aged animals subjected to NMES enhanced aged skeletal muscle healing after injury. These studies suggest that repetitive muscle contractile activity enhances the regenerative properties of circulating EVs in aged animals.
Collapse
Affiliation(s)
- Allison C Bean
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Camilla Piechocki
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | | | | | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
31
|
Brezgin S, Parodi A, Kostyusheva A, Ponomareva N, Lukashev A, Sokolova D, Pokrovsky VS, Slatinskaya O, Maksimov G, Zamyatnin AA, Chulanov V, Kostyushev D. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol Adv 2023; 64:108122. [PMID: 36813011 DOI: 10.1016/j.biotechadv.2023.108122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.
Collapse
Affiliation(s)
- Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Darina Sokolova
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Vadim S Pokrovsky
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Olga Slatinskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Vladimir Chulanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia; Department of Infectious Diseases, Sechenov University, Moscow 119048, Russia; National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow 127994, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
32
|
Faur CI, Dinu C, Toma V, Jurj A, Mărginean R, Onaciu A, Roman RC, Culic C, Chirilă M, Rotar H, Fălămaș A, Știufiuc GF, Hedeșiu M, Almășan O, Știufiuc RI. A New Detection Method of Oral and Oropharyngeal Squamous Cell Carcinoma Based on Multivariate Analysis of Surface Enhanced Raman Spectra of Salivary Exosomes. J Pers Med 2023; 13:jpm13050762. [PMID: 37240933 DOI: 10.3390/jpm13050762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Raman spectroscopy recently proved a tremendous capacity to identify disease-specific markers in various (bio)samples being a non-invasive, rapid, and reliable method for cancer detection. In this study, we first aimed to record vibrational spectra of salivary exosomes isolated from oral and oropharyngeal squamous cell carcinoma patients and healthy controls using surface enhancement Raman spectroscopy (SERS). Then, we assessed this method's capacity to discriminate between malignant and non-malignant samples by means of principal component-linear discriminant analysis (PC-LDA) and we used area under the receiver operating characteristics with illustration as the area under the curve to measure the power of salivary exosomes SERS spectra analysis to identify cancer presence. The vibrational spectra were collected on a solid plasmonic substrate developed in our group, synthesized using tangential flow filtered and concentrated silver nanoparticles, capable of generating very reproducible spectra for a whole range of bioanalytes. SERS examination identified interesting variations in the vibrational bands assigned to thiocyanate, proteins, and nucleic acids between the saliva of cancer and control groups. Chemometric analysis indicated discrimination sensitivity between the two groups up to 79.3%. The sensitivity is influenced by the spectral interval used for the multivariate analysis, being lower (75.9%) when the full-range spectra were used.
Collapse
Affiliation(s)
- Cosmin Ioan Faur
- Department of Oral Radiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Valentin Toma
- MedFuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Anca Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Radu Mărginean
- MedFuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Anca Onaciu
- MedFuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Rareș Călin Roman
- Department of Oral and Craniomaxillofacial Surgery, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Carina Culic
- Department of Odontology, Endodontics, Oral Pathology, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Magdalena Chirilă
- Department of Otorhinolaryngology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Horațiu Rotar
- Department of Oral and Craniomaxillofacial Surgery, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Alexandra Fălămaș
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | | | - Mihaela Hedeșiu
- Department of Oral Radiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Oana Almășan
- Department of Prosthodontics and Dental Materials, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Rares Ionuț Știufiuc
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
33
|
Wu Q, Ding Q, Lin W, Weng Y, Feng S, Chen R, Chen C, Qiu S, Lin D. Profiling of Tumor Cell-Delivered Exosome by Surface Enhanced Raman Spectroscopy-Based Biosensor for Evaluation of Nasopharyngeal Cancer Radioresistance. Adv Healthc Mater 2023; 12:e2202482. [PMID: 36528342 DOI: 10.1002/adhm.202202482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Although the advancement of radiotherapy significantly improves the survival of nasopharyngeal cancer (NPC), radioresistance associated with recurrence and poor outcomes still remains a daunting challenge in the clinical scenario. Currently, effective biomarkers and convenient detection methods for predicting radioresistance have not been well established. Here, the surface-enhanced Raman spectroscopy combined with proteomics is used to firstly profile the characteristic spectral patterns of exosomes secreted from self-established NPC radioresistance cells, and reveals specific variations of proteins expression during radioresistance formation, including collagen alpha-2 (I) chain (COL1A2) that is associated with a favorable prognosis in NPC and is negatively associated with DNA repair scores and DNA repair-related genes via bioinformatic analysis. Furthermore, deep learning model-based diagnostic model is generated to accurately identify the exosomes from radioresistance group. This work demonstrates the promising potential of exosomes as a novel biomarker for predicting the radioresistance and develops a rapid and sensitive liquid biopsy method that will provide a personalized and precise strategy for clinical NPC treatment.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian, 350001, China
| | - Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Wanzun Lin
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
| | - Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
| | - Rong Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
| |
Collapse
|
34
|
Cryo-electron microscopy of adipose tissue extracellular vesicles in obesity and type 2 diabetes mellitus. PLoS One 2023; 18:e0279652. [PMID: 36827314 PMCID: PMC10045588 DOI: 10.1371/journal.pone.0279652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane vesicles which play an important role in cell-to-cell communication and physiology. EVs deliver biological information from producing to recipient cells by transport of different cargo such as proteins, mRNAs, microRNAs, non-coding RNAs and lipids. Adipose tissue EVs could regulate metabolic and inflammatory interactions inside adipose tissue depots as well as distal tissues. Thus, adipose tissue EVs are assumed to be implicated in obesity-associated pathologies, notably in insulin resistance and type 2 diabetes mellitus (T2DM). In this study we for the first time characterize EVs secreted by visceral (VAT) and subcutaneous adipose tissue (SAT) of patients with obesity and T2DM with standard methods as well as analyze their morphology with cryo-electron microscopy. Cryo-electron microscopy allowed us to visualize heterogeneous population of EVs of various size and morphology including single EVs and EVs with internal membrane structures in samples from obese patients as well from the control group. Single vesicles prevailed (up to 85% for SAT, up to 75% for VAT) and higher proportion of EVs with internal membrane structures compared to SAT was typical for VAT. Decreased size of single and double SAT EVs compared to VAT EVs, large proportion of multilayered EVs and all EVs with internal membrane structures secreted by VAT distinguished obese patients with/without T2DM from the control group. These findings could support the idea of modified biogenesis of EVs during obesity and T2DM.
Collapse
|
35
|
Drack A, Rai A, Greening DW. Generation of Red Blood Cell Nanovesicles as a Delivery Tool. Methods Mol Biol 2023; 2628:321-336. [PMID: 36781795 DOI: 10.1007/978-1-0716-2978-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Extracellular vesicles (EVs) are natural membranous vesicles with immense potential as drug delivery tools. However, their large-scale production remains a huge technical challenge, is time consuming, and expensive. Thus, EV mimetics (nanovesicles) generated from easily sourced red blood cells (RBCs) have gained vested interest as an effective and scalable drug delivery system. Their surface proteins (e.g., CD47) inherited from parental RBCs also improve their biocompatibility and bioavailability. Here, we outline a step-by-step guide for large-scale production of RBC nanovesicles using one-step extrusion method coupled to rapid density-cushion centrifugation. We also outline protocol for their extensive biophysical characterization (size and morphology using single particle analysis and cryogenic electron microscopy), and in-depth mass spectrometry-based proteome characterization. Finally, we outline two strategies (active loading during extrusion vs. passive loading via diffusion) to incorporate pharmacological compound(s) into nanovesicles and detect their loading using spectrophotometry.
Collapse
Affiliation(s)
- Auriane Drack
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC, Australia.
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia.
- Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
36
|
Hasan MR, Hellesø OG. Metasurface supporting quasi-BIC for optical trapping and Raman-spectroscopy of biological nanoparticles. OPTICS EXPRESS 2023; 31:6782-6795. [PMID: 36823928 DOI: 10.1364/oe.473064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Optical trapping combined with Raman spectroscopy have opened new possibilities for analyzing biological nanoparticles. Conventional optical tweezers have proven successful for trapping of a single or a few particles. However, the method is slow and cannot be used for the smallest particles. Thus, it is not adapted to analyze a large number of nanoparticles, which is necessary to get statistically valid data. Here, we propose quasi-bound states in the continuum (quasi-BICs) in a silicon nitride (Si3N4) metasurface to trap smaller particles and many simultaneously. The quasi-BIC metasurface contains multiple zones with high field-enhancement ('hotspots') at a wavelength of 785 nm, where a single nanoparticle can be trapped at each hotspot. We numerically investigate the optical trapping of a type of biological nanoparticles, namely extracellular vesicles (EVs), and study how their presence influences the resonance behavior of the quasi-BIC. It is found that perturbation theory and a semi-analytical expression give good estimates for the resonance wavelength and minimum of the potential well, as a function of the particle radius. This wavelength is slightly shifted relative to the resonance of the metasurface without trapped particles. The simulations show that the Q-factor can be increased by using a thin metasurface. The thickness of the layer and the asymmetry of the unit cell can thus be used to get a high Q-factor. Our findings show the tight fabrication tolerances necessary to make the metasurface. If these can be overcome, the proposed metasurface can be used for a lab-on-a-chip for mass-analysis of biological nanoparticles.
Collapse
|
37
|
Mangolini V, Gualerzi A, Picciolini S, Rodà F, Del Prete A, Forleo L, Rossetto RA, Bedoni M. Biochemical Characterization of Human Salivary Extracellular Vesicles as a Valuable Source of Biomarkers. BIOLOGY 2023; 12:227. [PMID: 36829504 PMCID: PMC9953587 DOI: 10.3390/biology12020227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Extracellular vesicles (EVs) are natural nanoparticles secreted under physiological and pathological conditions. Thanks to their diagnostic potential, EVs are increasingly being studied as biomarkers of a variety of diseases, including neurological disorders. To date, most studies on EV biomarkers use blood as the source, despite different disadvantages that may cause an impure isolation of the EVs. In the present article, we propose the use of saliva as a valuable source of EVs that could be studied as biomarkers in an easily accessible biofluid. Using a comparable protocol for the isolation of EVs from both liquid biopsies, salivary EVs showed greater purity in terms of co-isolates (evaluated by nanoparticle tracking analysis and Conan test). In addition, Raman spectroscopy was used for the identification of the overall biochemical composition of EVs coming from the two different biofluids. Even considering the limited amount of EVs that can be isolated from saliva, the use of Raman spectroscopy was not hampered, and it was able to provide a comprehensive characterization of EVs in a high throughput and repeatable manner. Raman spectroscopy can thus represent a turning point in the application of salivary EVs in clinics, taking advantage of the simple method of collection of the liquid biopsy and of the quick, sensitive and label-free biophotonics-based approach.
Collapse
Affiliation(s)
- Valentina Mangolini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milano, Italy
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, 25122 Brescia, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milano, Italy
| | | | - Francesca Rodà
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milano, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 42100 Modena, Italy
| | | | - Luana Forleo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milano, Italy
| | | | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milano, Italy
| |
Collapse
|
38
|
Xu B, Chen Y, Peng M, Zheng JH, Zuo C. Exploring the potential of exosomes in diagnosis and drug delivery for pancreatic ductal adenocarcinoma. Int J Cancer 2023; 152:110-122. [PMID: 35765844 PMCID: PMC9796664 DOI: 10.1002/ijc.34195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
Pancreatic cancer (PC) is a cancer of the digestive system, and pancreatic ductal adenocarcinoma (PDAC) accounts for approximately 90% of all PC cases. Exosomes derived from PDAC (PDAC-exosomes) promote PDAC development and metastasis. Exosomes are nanoscale vesicles secreted by most cells, which can carry biologically active molecules and mediate communication and cargo transportation among cells. Recent studies have focused on transforming exosomes into good drug delivery systems (DDSs) to improve the clinical treatment of PDAC. This review considers PDAC as the main research object to introduce the role of PDAC-exosomes in PDAC development and metastasis. This review focuses on the following two themes: (a) the great potential of PDAC-exosomes as new diagnostic markers for PDAC, and (b) the transformation of exosomes into potential DDSs.
Collapse
Affiliation(s)
- Biaoming Xu
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| | - Yu Chen
- Institute of Pathogen Biology and Immunology of College of BiologyHunan Provincial Key Laboratory of Medical Virology, Hunan UniversityChangshaChina
| | - Mingjing Peng
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| | - Jin Hai Zheng
- Institute of Pathogen Biology and Immunology of College of BiologyHunan Provincial Key Laboratory of Medical Virology, Hunan UniversityChangshaChina
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| |
Collapse
|
39
|
Qiu L, Liu X, Zhu L, Luo L, Sun N, Pei R. Current Advances in Technologies for Single Extracellular Vesicle Analysis and Its Clinical Applications in Cancer Diagnosis. BIOSENSORS 2023; 13:129. [PMID: 36671964 PMCID: PMC9856491 DOI: 10.3390/bios13010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) have been regarded as one of the most potential diagnostic biomarkers for different cancers, due to their unique physiological and pathological functions. However, it is still challenging to precisely analyze the contents and sources of EVs, due to their heterogeneity. Herein, we summarize the advances in technologies for a single EV analysis, which may provide new strategies to study the heterogeneity of EVs, as well as their cargo, more specifically. Furthermore, the applications of a single EV analysis on cancer early diagnosis are also discussed.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xingzhu Liu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Libo Zhu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Na Sun
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
40
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
41
|
Kishimoto T, Masui K, Minoshima W, Hosokawa C. Recent advances in optical manipulation of cells and molecules for biological science. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Suri K, D'Souza A, Huang D, Bhavsar A, Amiji M. Bacterial extracellular vesicle applications in cancer immunotherapy. Bioact Mater 2022; 22:551-566. [PMID: 36382022 PMCID: PMC9637733 DOI: 10.1016/j.bioactmat.2022.10.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer therapy is undergoing a paradigm shift toward immunotherapy focusing on various approaches to activate the host immune system. As research to identify appropriate immune cells and activate anti-tumor immunity continues to expand, scientists are looking at microbial sources given their inherent ability to elicit an immune response. Bacterial extracellular vesicles (BEVs) are actively studied to control systemic humoral and cellular immune responses instead of using whole microorganisms or other types of extracellular vesicles (EVs). BEVs also provide the opportunity as versatile drug delivery carriers. Unlike mammalian EVs, BEVs have already made it to the clinic with the meningococcal vaccine (Bexsero®). However, there are still many unanswered questions in the use of BEVs, especially for chronic systemically administered immunotherapies. In this review, we address the opportunities and challenges in the use of BEVs for cancer immunotherapy and provide an outlook towards development of BEV products that can ultimately translate to the clinic.
Collapse
Affiliation(s)
- Kanika Suri
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Aashray Bhavsar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA,Corresponding author. Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Tang Q, Xiao X, Li R, He H, Li S, Ma C. Recent Advances in Detection for Breast-Cancer-Derived Exosomes. Molecules 2022; 27:molecules27196673. [PMID: 36235208 PMCID: PMC9571663 DOI: 10.3390/molecules27196673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer is the most common malignant tumor in women, its incidence is secret, and more than half of the patients are diagnosed in the middle and advanced stages, so it is necessary to develop simple and efficient detection methods for breast cancer diagnosis to improve the survival rate and quality of life of breast cancer patients. Exosomes are extracellular vesicles secreted by all kinds of living cells, and play an important role in the occurrence and development of breast cancer and the formation of the tumor microenvironment. Exosomes, as biomarkers, are an important part of breast cancer fluid biopsy and have become ideal targets for the early diagnosis, curative effect evaluation, and clinical treatment of breast cancer. In this paper, several traditional exosome detection methods, including differential centrifugation and immunoaffinity capture, were summarized, focusing on the latest research progress in breast cancer exosome detection. It was summarized from the aspects of optics, electrochemistry, electrochemiluminescence and other aspects. This review is expected to provide valuable guidance for exosome detection of clinical breast cancer and the establishment of more reliable, efficient, simple and innovative methods for exosome detection of breast cancer in the future.
Collapse
Affiliation(s)
- Qin Tang
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Xinying Xiao
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ranhao Li
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Shanni Li
- School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.L.); (C.M.)
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.L.); (C.M.)
| |
Collapse
|
44
|
Delrue C, Speeckaert MM. The Potential Applications of Raman Spectroscopy in Kidney Diseases. J Pers Med 2022; 12:jpm12101644. [PMID: 36294783 PMCID: PMC9604710 DOI: 10.3390/jpm12101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022] Open
Abstract
Raman spectroscopy (RS) is a spectroscopic technique based on the inelastic interaction of incident electromagnetic radiation (from a laser beam) with a polarizable molecule, which, when scattered, carries information from molecular vibrational energy (the Raman effect). RS detects biochemical changes in biological samples at the molecular level, making it an effective analytical technique for disease diagnosis and prognosis. It outperforms conventional sample preservation techniques by requiring no chemical reagents, reducing analysis time even at low concentrations, and working in the presence of interfering agents or solvents. Because routinely utilized biomarkers for kidney disease have limitations, there is considerable interest in the potential use of RS. RS may identify and quantify urinary and blood biochemical components, with results comparable to reference methods in nephrology.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
- Correspondence: ; Tel.: +32-9-332-4509
| |
Collapse
|
45
|
Guimarães CF, Cruz-Moreira D, Caballero D, Pirraco RP, Gasperini L, Kundu SC, Reis RL. Shining a Light on Cancer - Photonics in Microfluidic Tumor Modelling and Biosensing. Adv Healthc Mater 2022:e2201442. [PMID: 35998112 DOI: 10.1002/adhm.202201442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Microfluidic platforms represent a powerful approach to miniaturizing important characteristics of cancers, improving in vitro testing by increasing physiological relevance. Different tools can manipulate cells and materials at the microscale, but few offer the efficiency and versatility of light and optical technologies. Moreover, light-driven technologies englobe a broad toolbox for quantifying critical biological phenomena. Herein, we review the role of photonics in microfluidic 3D cancer modeling and biosensing from three major perspectives. First, we look at optical-driven technologies that allow biomaterials and living cells to be manipulated with micro-sized precision and the opportunities to advance 3D microfluidic models by engineering cancer microenvironments' hallmarks, such as their architecture, cellular complexity, and vascularization. Second, we delve into the growing field of optofluidics, exploring how optical tools can directly interface microfluidic chips, enabling the extraction of relevant biological data, from single fluorescent signals to the complete 3D imaging of diseased cells within microchannels. Third, we review advances in optical cancer biosensing, focusing on how light-matter interactions can detect biomarkers, rare circulating tumor cells, and cell-derived structures such as exosomes. We overview photonic technologies' current challenges and caveats in microfluidic 3D cancer models, outlining future research avenues that may catapult the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Daniela Cruz-Moreira
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - David Caballero
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Luca Gasperini
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| |
Collapse
|
46
|
Imanbekova M, Suarasan S, Lu Y, Jurchuk S, Wachsmann-Hogiu S. Recent advances in optical label-free characterization of extracellular vesicles. NANOPHOTONICS 2022; 11:2827-2863. [PMID: 35880114 PMCID: PMC9128385 DOI: 10.1515/nanoph-2022-0057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) are complex biological nanoparticles endogenously secreted by all eukaryotic cells. EVs carry a specific molecular cargo of proteins, lipids, and nucleic acids derived from cells of origin and play a significant role in the physiology and pathology of cells, organs, and organisms. Upon release, they may be found in different body fluids that can be easily accessed via noninvasive methodologies. Due to the unique information encoded in their molecular cargo, they may reflect the state of the parent cell and therefore EVs are recognized as a rich source of biomarkers for early diagnostics involving liquid biopsy. However, body fluids contain a mixture of EVs released by different types of healthy and diseased cells, making the detection of the EVs of interest very challenging. Recent research efforts have been focused on the detection and characterization of diagnostically relevant subpopulations of EVs, with emphasis on label-free methods that simplify sample preparation and are free of interfering signals. Therefore, in this paper, we review the recent progress of the label-free optical methods employed for the detection, counting, and morphological and chemical characterization of EVs. We will first briefly discuss the biology and functions of EVs, and then introduce different optical label-free techniques for rapid, precise, and nondestructive characterization of EVs such as nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy, surface plasmon resonance spectroscopy, Raman spectroscopy, and SERS spectroscopy. In the end, we will discuss their applications in the detection of neurodegenerative diseases and cancer and provide an outlook on the future impact and challenges of these technologies to the field of liquid biopsy via EVs.
Collapse
Affiliation(s)
- Meruyert Imanbekova
- Bioengineering, McGill University Faculty of Engineering, Montreal, QC, Canada
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Yao Lu
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, 1006, Montreal, QC, H3C6W1, Canada
| | - Sarah Jurchuk
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, Rm#350, Montreal, QC, H3A 0E9, Canada
| | - Sebastian Wachsmann-Hogiu
- Bioengineering, McGill University Faculty of Engineering, 3480 University St., MC362, Montreal, H3A 0E9l, Canada
| |
Collapse
|
47
|
Functionalized nanomaterials in separation and analysis of extracellular vesicles and their contents. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Wang T, Xing Y, Cheng Z, Yu F. Analysis of Single Extracellular Vesicles for Biomedical Applications with Especial Emphasis on Cancer Investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Cong M, Tan S, Li S, Gao L, Huang L, Zhang HG, Qiao H. Technology insight: Plant-derived vesicles-How far from the clinical biotherapeutics and therapeutic drug carriers? Adv Drug Deliv Rev 2022; 182:114108. [PMID: 34990792 DOI: 10.1016/j.addr.2021.114108] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/19/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Within the past decades, extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. Besides EVs, exosome-like nanoparticles (ELNs) derived from plants were also emerging. Comparing to EVs, ELNs are source-widespread, cost-effective and easy to obtain. Their definite activities can be utilized for potential prevention/treatment of an abundance of diseases, including metabolic syndrome, cancer, colitis, alcoholic hepatitis and infectious diseases, which highlights ELNs as promising biotherapeutics. In addition, the potential of ELNs as natural or engineered drug carriers is also attractive. In this review, we tease out the timeline of plant EVs and ELNs, introduce the arising separation, purification and characterization techniques, state the stability and transport manner, discuss the therapeutic opportunities as well as the potential as novel drug carriers. Finally, the challenges and the direction of efforts to realize the clinical transformation of ELNs are also discussed.
Collapse
|
50
|
DiStefano TJ, Vaso K, Danias G, Chionuma HN, Weiser JR, Iatridis JC. Extracellular Vesicles as an Emerging Treatment Option for Intervertebral Disc Degeneration: Therapeutic Potential, Translational Pathways, and Regulatory Considerations. Adv Healthc Mater 2022; 11:e2100596. [PMID: 34297485 PMCID: PMC8783929 DOI: 10.1002/adhm.202100596] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Emergent approaches in regenerative medicine look toward the use of extracellular vesicles (EVs) as a next-generation treatment strategy for intervertebral disc (IVD) degeneration (IVDD) because of their ability to attenuate chronic inflammation, reduce apoptosis, and stimulate proliferation in a number of tissue systems. Yet, there are no Food and Drug Administration (FDA)-approved EV therapeutics in the market with an indication for IVDD, which motivates this article to review the current state of the field and provide an IVD-specific framework to assess its efficacy. In this systematic review, 29 preclinical studies that investigate EVs in relation to the IVD are identified, and additionally, the regulatory approval process is reviewed in an effort to accelerate emerging EV-based therapeutics toward FDA submission and timeline-to-market. The majority of studies focus on nucleus pulposus responses to EV treatment, where the main findings show that stem cell-derived EVs can decelerate the progression of IVDD on the molecular, cellular, and organ level. The findings also highlight the importance of the EV parent cell's pathophysiological and differentiation state, which affects downstream treatment responses and therapeutic outcomes. This systematic review substantiates the use of EVs as a promising cell-free strategy to treat IVDD and enhance endogenous repair.
Collapse
Affiliation(s)
- Tyler J. DiStefano
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Keti Vaso
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York NY, USA
| | - George Danias
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Henry N. Chionuma
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Jennifer R. Weiser
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York NY, USA
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|