1
|
Rech Tondin A, Lanzoni G. Islet Cell Replacement and Regeneration for Type 1 Diabetes: Current Developments and Future Prospects. BioDrugs 2025; 39:261-280. [PMID: 39918671 PMCID: PMC11906537 DOI: 10.1007/s40259-025-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 03/14/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder characterized by the destruction of insulin-producing beta cells in the pancreas, leading to insulin deficiency and chronic hyperglycemia. The main current therapeutic strategies for clinically overt T1D - primarily exogenous insulin administration combined with blood glucose monitoring - fail to fully mimic physiological insulin regulation, often resulting in suboptimal or insufficient glycemic control. Islet cell transplantation has emerged as a promising avenue for functionally replacing endogenous insulin production and achieving long-term glycemic stability. Here, we provide an overview of current islet replacement strategies, ranging from islet transplantation to stem cell-derived islet cell transplantation, and highlight emerging approaches such as immunoengineering. We examine the advancements in immunosuppressive protocols to enhance graft survival, innovative encapsulation, and immunomodulation techniques to protect transplanted islets, and the ongoing challenges in achieving durable and functional islet integration. Additionally, we discuss the latest clinical outcomes, the potential of gene editing technologies, and the emerging strategies for islet cell regeneration. This review aims to highlight the potential of these approaches to transform the management of T1D and improve the quality of life of individuals affected by this condition.
Collapse
Affiliation(s)
- Arthur Rech Tondin
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
2
|
Cuscino N, Castelbuono S, Centi C, Tinnirello R, Cimino M, Zito G, Orlando A, Pinzani M, Conaldi PG, Mattina A, Miceli V. A Bioartificial Device for the Encapsulation of Pancreatic β-Cells Using a Semipermeable Biocompatible Porous Membrane. J Clin Med 2025; 14:1631. [PMID: 40095608 PMCID: PMC11900910 DOI: 10.3390/jcm14051631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by the destruction of pancreatic β-cells, leading to insulin deficiency. Current therapies, such as islet transplantation, face significant challenges, including limited donor availability and the need for lifelong immunosuppression. Encapsulation technologies offer a promising alternative, providing immune protection and maintaining β-cell viability. In this study, we propose an encapsulation device featuring a spiral tubular semipermeable polyethersulfone (PES) membrane reinforced with a rigid biocompatible resin scaffold. Methods: The PES membrane was engineered with a tailored porosity of 0.5 µm, enabling efficient nutrient and oxygen exchange while preventing immune cell infiltration. Using INS-1E insulin-secreting cells aggregated into size-controlled islet-like spheroids (ILSs), we evaluated the device's performance. Results: The device achieved high ILS viability and insulin secretion over 48 h at therapeutic densities, maintaining functionality comparable to free-floating ILSs (control). The PES membrane, with its mechanical stability and biocompatibility, ensured durability without compromising diffusion dynamics, overcoming a critical limitation of other encapsulation approaches. Importantly, the device geometry allowed for the encapsulation of up to 356,000 islet equivalents (IEQs) in a single capillary fiber, reaching therapeutic thresholds for T1D patients. Conclusions: this device, with its innovative design, enables high-density encapsulation while preserving ILS functionality and scalability, making it a potential platform for clinical application. This work highlights the potential of PES-based encapsulation devices to overcome key barriers in T1D treatment, paving the way for personalized, long-term solutions to restore insulin independence.
Collapse
Affiliation(s)
- Nicola Cuscino
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (N.C.); (S.C.); (C.C.); (R.T.); (M.C.); (G.Z.); (A.O.); (M.P.); (P.G.C.)
| | - Salvatore Castelbuono
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (N.C.); (S.C.); (C.C.); (R.T.); (M.C.); (G.Z.); (A.O.); (M.P.); (P.G.C.)
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Claudio Centi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (N.C.); (S.C.); (C.C.); (R.T.); (M.C.); (G.Z.); (A.O.); (M.P.); (P.G.C.)
| | - Rosaria Tinnirello
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (N.C.); (S.C.); (C.C.); (R.T.); (M.C.); (G.Z.); (A.O.); (M.P.); (P.G.C.)
| | - Maura Cimino
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (N.C.); (S.C.); (C.C.); (R.T.); (M.C.); (G.Z.); (A.O.); (M.P.); (P.G.C.)
| | - Giovanni Zito
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (N.C.); (S.C.); (C.C.); (R.T.); (M.C.); (G.Z.); (A.O.); (M.P.); (P.G.C.)
| | - Andrea Orlando
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (N.C.); (S.C.); (C.C.); (R.T.); (M.C.); (G.Z.); (A.O.); (M.P.); (P.G.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Massimo Pinzani
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (N.C.); (S.C.); (C.C.); (R.T.); (M.C.); (G.Z.); (A.O.); (M.P.); (P.G.C.)
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (N.C.); (S.C.); (C.C.); (R.T.); (M.C.); (G.Z.); (A.O.); (M.P.); (P.G.C.)
| | - Alessandro Mattina
- Diabetes Service, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (N.C.); (S.C.); (C.C.); (R.T.); (M.C.); (G.Z.); (A.O.); (M.P.); (P.G.C.)
| |
Collapse
|
3
|
Wan-Chiew N, Baki MM, Lokanathan Y, Fauzi MB, Azman M. Genipin cross-linked gelatin hydrogel for encapsulating wharton jelly mesenchymal stem cells and basic fibroblast growth factor delivery in vocal fold regeneration. Front Cell Dev Biol 2024; 12:1489901. [PMID: 39703693 PMCID: PMC11655468 DOI: 10.3389/fcell.2024.1489901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Approaches to regenerate vocal fold in glottic insufficiency remains to be a focus for exploration. This is attributed to the applications of cells or biological molecules alone result in fast degradation and inadequate for regeneration. Development of an injectable hydrogel for glottic insufficiency is challenging, as it needs to be non-cytotoxic, elastic yet possess good strength and easy to fabricate. This gap prompts us to study the feasibility of our genipin(gn)-crosslinked gelatin (G) hydrogel in encapsulating Wharton's Jelly Mesenchymal Stem Cells (WJMSCs) and basic fibroblast growth factor (bFGF) WJMSCs with the aim to provide regeneration in glottic insufficiency. WJMSCs was encapsulated into two optimised formulations with the density of 2,000,000 cells/mL. The encapsulated cells were tested for its morphology, cell viability, proliferation and migration. Then, the incorporation of basic fibroblast growth factor (bFGF) was done into a final formulation and was tested for the cellular response and in vitro inflammation. 6G 0.4gn demonstrated better cell viability after in vitro culturing for 7 day. After incorporation of bFGF into cell-laden 6G 0.4gn, encapsulated WJMSCs showed to have improved viability and migration. The inflammatory profile of the hydrogel was imperceptible and was regarded as minimal or no pro- and anti-inflammation. Altogether, we have first formulated 6G 0.4gn which is suitable to encapsulate WJMSCs and incorporation of bFGF. Current study fulfils the market need in vocal fold regeneration, by suggesting its rejuvenating potential in glottic insufficiency, yet this combined formulation should be studied further to justify its translation to clinical setting.
Collapse
Affiliation(s)
- Ng Wan-Chiew
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Marina Mat Baki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mawaddah Azman
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Kim KM, D'Elia AM, Rodell CB. Hydrogel-based approaches to target hypersensitivity mechanisms underlying autoimmune disease. Adv Drug Deliv Rev 2024; 212:115395. [PMID: 39004347 DOI: 10.1016/j.addr.2024.115395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
A robust adaptive immune response is essential for combatting pathogens. In the wrong context such as due to genetic and environmental factors, however, the same mechanisms crucial for self-preservation can lead to a loss of self-tolerance. Resulting autoimmunity manifests in the development of a host of organ-specific or systemic autoimmune diseases, hallmarked by aberrant immune responses and tissue damage. The prevalence of autoimmune diseases is on the rise, medical management of which focuses primarily on pharmacological immunosuppression that places patients at a risk of side effects, including opportunistic infections and tumorigenesis. Biomaterial-based drug delivery systems confer many opportunities to address challenges associated with conventional disease management. Hydrogels, in particular, can protect encapsulated cargo (drug or cell therapeutics) from the host environment, afford their presentation in a controlled manner, and can be tailored to respond to disease conditions or support treatment via multiplexed functionality. Moreover, localized delivery to affected sites by these approaches has the potential to concentrate drug action at the site, reduce off-target exposure, and enhance patient compliance by reducing the need for frequent administration. Despite their many benefits for the management of autoimmune disease, such biomaterial-based approaches focus largely on the downstream effects of hypersensitivity mechanisms and have a limited capacity to eradicate the disease. In contrast, direct targeting of mechanisms of hypersensitivity reactions uniquely enables prophylaxis or the arrest of disease progression by mitigating the basis of autoimmunity. One promising approach is to induce self-antigen-specific tolerance, which specifically subdues damaging autoreactivity while otherwise retaining the normal immune responses. In this review, we will discuss hydrogel-based systems for the treatment of autoimmune disease, with a focus on those that target hypersensitivity mechanisms head-on. As the field continues to advance, it will expand the range of therapeutic choices for people coping with autoimmune diseases, providing fresh prospects for better clinical outcomes and improved quality of life.
Collapse
Affiliation(s)
- Kenneth M Kim
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Ermakova P, Vasilchikova E, Baten'kin M, Bogomolova A, Konev A, Anisimova N, Egoshina A, Zakharina M, Tselousova J, Naraliev N, Kuchin D, Lugovaya L, Zagainov V, Chesnokov S, Kashina A, Zagaynova E. Probing of New Polymer-Based Microcapsules for Islet Cell Immunoisolation. Polymers (Basel) 2024; 16:2479. [PMID: 39274113 PMCID: PMC11397890 DOI: 10.3390/polym16172479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Islet allotransplantation offers a promising cell therapy for type 1 diabetes, but challenges such as limited donor availability and immunosuppression persist. Microencapsulation of islets in polymer-coated alginate microcapsules is a favored strategy for immune protection and maintaining islet viability. This study introduces Poly [2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) as an innovative coating material for microcapsules. PMETAC enhances biocompatibility and durability, marking a significant advancement in islet encapsulation. Our approach combines alginate with PMETAC to create Langerhans islet microcapsules, simplifying material composition and preparation and ultimately lowering costs and increasing clinical applicability. Our comprehensive evaluation of the stability (including osmotic stability, thermal stability, and culture condition stability) and cytotoxicity of a novel microencapsulation system based on alginate-PMETAC-alginate offers insights into its potential application in islet immunoisolation strategies. Microcapsules with PMETAC content ranging from 0.01 to 1% are explored in the current work. The results indicate that the coatings made with 0.4% PMETAC show the most promising outcomes, remaining stable in the mentioned tests and exhibiting the required permeability. It was shown that the islets encapsulated in this manner retain viability and functional activity. Thus, alginate microcapsules coated with 0.4% PMETAC are suitable for further animal trials. While our findings are promising, further studies, including animal testing, will be necessary to evaluate the clinical applicability of our encapsulation method.
Collapse
Affiliation(s)
- Polina Ermakova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Ekaterina Vasilchikova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Federal State Educational Institution of Higher Educational Institution "National Research Nizhny, Novgorod State University Named after N.I. Lobachevsky", 603105 Nizhny Novgorod, Russia
| | - Maxim Baten'kin
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Alexandra Bogomolova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Alexey Konev
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Natalia Anisimova
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Alena Egoshina
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Mariya Zakharina
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Julia Tselousova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Nasipbek Naraliev
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Denis Kuchin
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Hospital Named after N.A. Semashko, 603005 Nizhny Novgorod, Russia
| | - Liya Lugovaya
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- State Budgetary Healthcare Institution "Nizhny Novgorod Regional Clinical Oncology Dispensary", 603163 Nizhny Novgorod, Russia
| | - Sergey Chesnokov
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Aleksandra Kashina
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Federal Scientific and Clinical Center for Physico-Chemical Medicine Named after Academician Yu. M. Lopukhin, 119334 Moscow, Russia
| | - Elena Zagaynova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Federal Scientific and Clinical Center for Physico-Chemical Medicine Named after Academician Yu. M. Lopukhin, 119334 Moscow, Russia
| |
Collapse
|
6
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
7
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
8
|
Opara A, Canning P, Alwan A, Opara EC. Challenges and Perspectives for Future Considerations in the Bioengineering of a Bioartificial Pancreas. Ann Biomed Eng 2024; 52:1795-1803. [PMID: 36913086 DOI: 10.1007/s10439-023-03180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
There is an unrelenting interest in the development of a reliable bioartificial pancreas construct since the first description of this technology of encapsulated islets by Lim and Sun in 1980 because it promised to be a curative treatment for Type 1 Diabetes Mellitus (T1DM). Despite the promise of the concept of encapsulated islets, there are still some challenges that impede the full realization of the clinical potential of the technology. In this review, we will first present the justification for continued research and development of this technology. Next, we will review key barriers that impede progress in this field and discuss strategies that can be used to design a reliable construct capable of effective long-term performance after transplantation in diabetic patients. Finally, we will share our perspectives on areas of additional work for future research and development of the technology.
Collapse
Affiliation(s)
- Amoge Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV, 89502, USA
| | - Priyadarshini Canning
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Abdelrahman Alwan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Emmanuel C Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV, 89502, USA.
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
9
|
De Toni T, Dal Buono T, Li CM, Gonzalez GC, Chuang ST, Buchwald P, Tomei AA, Velluto D. Drug Integrating Amphiphilic Nano-Assemblies: 2. Spatiotemporal Distribution within Inflammation Sites. Pharmaceutics 2024; 16:652. [PMID: 38794314 PMCID: PMC11124943 DOI: 10.3390/pharmaceutics16050652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The need for chronic systemic immunosuppression, which is associated with unavoidable side-effects, greatly limits the applicability of allogeneic cell transplantation for regenerative medicine applications including pancreatic islet cell transplantation to restore insulin production in type 1 diabetes (T1D). Cell transplantation in confined sites enables the localized delivery of anti-inflammatory and immunomodulatory drugs to prevent graft loss by innate and adaptive immunity, providing an opportunity to achieve local effects while minimizing unwanted systemic side effects. Nanoparticles can provide the means to achieve the needed localized and sustained drug delivery either by graft targeting or co-implantation. Here, we evaluated the potential of our versatile platform of drug-integrating amphiphilic nanomaterial assemblies (DIANAs) for targeted drug delivery to an inflamed site model relevant for islet transplantation. We tested either passive targeting of intravenous administered spherical nanomicelles (nMIC; 20-25 nm diameter) or co-implantation of elongated nanofibrils (nFIB; 5 nm diameter and >1 μm length). To assess the ability of nMIC and nFIB to target an inflamed graft site, we used a lipophilic fluorescent cargo (DiD and DiR) and evaluated the in vivo biodistribution and cellular uptake in the graft site and other organs, including draining and non-draining lymph nodes, after systemic administration (nMIC) and/or graft co-transplantation (nFIB) in mice. Localized inflammation was generated either by using an LPS injection or by using biomaterial-coated islet-like bead implantation in the subcutaneous site. A cell transplant inflammation model was used as well to test nMIC- and nFIB-targeted biodistribution. We found that nMIC can reach the inflamed site after systemic administration, while nFIB remains localized for several days after co-implantation. We confirmed that DIANAs are taken up by different immune cell populations responsible for graft inflammation. Therefore, DIANA is a useful approach for targeted and/or localized delivery of immunomodulatory drugs to decrease innate and adaptive immune responses that cause graft loss after transplantation of therapeutic cells.
Collapse
Affiliation(s)
- Teresa De Toni
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (T.D.T.); (T.D.B.); (C.M.L.); (G.C.G.); (S.-T.C.); (P.B.); (A.A.T.)
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Teodora Dal Buono
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (T.D.T.); (T.D.B.); (C.M.L.); (G.C.G.); (S.-T.C.); (P.B.); (A.A.T.)
| | - Chris M. Li
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (T.D.T.); (T.D.B.); (C.M.L.); (G.C.G.); (S.-T.C.); (P.B.); (A.A.T.)
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Grisell C. Gonzalez
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (T.D.T.); (T.D.B.); (C.M.L.); (G.C.G.); (S.-T.C.); (P.B.); (A.A.T.)
| | - Sung-Ting Chuang
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (T.D.T.); (T.D.B.); (C.M.L.); (G.C.G.); (S.-T.C.); (P.B.); (A.A.T.)
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (T.D.T.); (T.D.B.); (C.M.L.); (G.C.G.); (S.-T.C.); (P.B.); (A.A.T.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alice A. Tomei
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (T.D.T.); (T.D.B.); (C.M.L.); (G.C.G.); (S.-T.C.); (P.B.); (A.A.T.)
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Diana Velluto
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (T.D.T.); (T.D.B.); (C.M.L.); (G.C.G.); (S.-T.C.); (P.B.); (A.A.T.)
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Raoufinia R, Rahimi HR, Saburi E, Moghbeli M. Advances and challenges of the cell-based therapies among diabetic patients. J Transl Med 2024; 22:435. [PMID: 38720379 PMCID: PMC11077715 DOI: 10.1186/s12967-024-05226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Diabetes mellitus is a significant global public health challenge, with a rising prevalence and associated morbidity and mortality. Cell therapy has evolved over time and holds great potential in diabetes treatment. In the present review, we discussed the recent progresses in cell-based therapies for diabetes that provides an overview of islet and stem cell transplantation technologies used in clinical settings, highlighting their strengths and limitations. We also discussed immunomodulatory strategies employed in cell therapies. Therefore, this review highlights key progresses that pave the way to design transformative treatments to improve the life quality among diabetic patients.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Espona-Noguera A, Tampieri F, Canal C. Engineering alginate-based injectable hydrogels combined with bioactive polymers for targeted plasma-derived oxidative stress delivery in osteosarcoma therapy. Int J Biol Macromol 2024; 257:128841. [PMID: 38104678 DOI: 10.1016/j.ijbiomac.2023.128841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Reactive Oxygen and Nitrogen Species (RONS) in biological systems display hormetic effects, capable of either promoting cell regenerative effects or inducing cell death. Recently, hydrogels have emerged as a promising delivery platform for RONS generated from Cold Atmospheric Plasmas (CAP), known as Plasma-Treated Hydrogels (PTH). PTH have been proposed as an alternative therapy to conventional cancer treatments, offering reduced side effects through the controlled and localized delivery of plasma-derived RONS. In this work, we have developed alginate-based PTH with dual therapeutic action provided by plasma-derived RONS acting as selective anticancer agents for osteosarcoma treatment, and biomolecules (hyaluronic acid and gelatin) to promote stem cell-mediated bone regeneration. For this purpose, we designed a novel manufacturing process to maximize the load of plasma-derived RONS within the PTH. Then, we assessed the PTH bioactivity on osteosarcoma MG-63 cells, and human mesenchymal stem cells (hMSCs). The results showed that the PTH composed of 0.25 % alginate +1 % hyaluronic acid is the most promising formulation in osteosarcoma treatment, showing a dual-action bioactivity as a selective cytotoxic anticancer agent, and as promoter of the proliferation and osteogenic differentiation of hMSCs. These findings provide strong evidence of the significant potential of PTH in the oncological field.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| |
Collapse
|
12
|
Duman BÖ, Yazir Y, Halbutoğullari ZS, Mert S, Öztürk A, Gacar G, Duruksu G. Production of alginate macrocapsule device for long-term normoglycaemia in the treatment of type 1 diabetes mellitus with pancreatic cell sheet engineering. Biomed Mater 2024; 19:025008. [PMID: 38194706 DOI: 10.1088/1748-605x/ad1c9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Type 1 diabetes-mellitus (T1DM) is characterized by damage of beta cells in pancreatic islets. Cell-sheet engineering, one of the newest therapeutic approaches, has also been used to create functional islet systems by creating islet/beta cell-sheets and transferring these systems to areas that require minimally invasive intervention, such as extrahepatic areas. Since islets, beta cells, and pancreas transplants are allogeneic, immune problems such as tissue rejection occur after treatment, and patients become insulin dependent again. In this study, we aimed to design the most suitable cell-sheet treatment method and macrocapsule-device that could provide long-term normoglycemia in rats. Firstly, mesenchymal stem cells (MSCs) and beta cells were co-cultured in a temperature-responsive culture dish to obtain a cell-sheet and then the cell-sheets macroencapsulated using different concentrations of alginate. The mechanical properties and pore sizes of the macrocapsule-device were characterized. The viability and activity of cell-sheets in the macrocapsule were evaluatedin vitroandin vivo. Fasting blood glucose levels, body weight, and serum insulin & C-peptide levels were evaluated after transplantation in diabetic-rats. After the transplantation, the blood glucose level at 225 mg dl-1on the 10th day dropped to 168 mg dl-1on the 15th day, and remained at the normoglycemic level for 210 days. In this study, an alginate macrocapsule-device was successfully developed to protect cell-sheets from immune attacks after transplantation. The results of our study provide the basis for future animal and human studies in which this method can be used to provide long-term cellular therapy in T1DM patients.
Collapse
Affiliation(s)
- Büşra Öncel Duman
- European Vocational School, Medical Laboratory Techniques Program, Kocaeli Health and Technology University, 41030 Kocaeli, Turkey
| | - Yusufhan Yazir
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Zehra Seda Halbutoğullari
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Serap Mert
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Chemistry and Chemical Processing Technology, Kocaeli University, Kocaeli, Turkey
- Department of Polymer Science and Technology, Kocaeli University, Kocaeli, Turkey
| | - Ahmet Öztürk
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gülçin Gacar
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
13
|
Li H, Shang Y, Feng Q, Liu Y, Chen J, Dong H. A novel bioartificial pancreas fabricated via islets microencapsulation in anti-adhesive core-shell microgels and macroencapsulation in a hydrogel scaffold prevascularized in vivo. Bioact Mater 2023; 27:362-376. [PMID: 37180642 PMCID: PMC10172916 DOI: 10.1016/j.bioactmat.2023.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Islets transplantation is a promising treatment for type 1 diabetes mellitus. However, severe host immune rejection and poor oxygen/nutrients supply due to the lack of surrounding capillary network often lead to transplantation failure. Herein, a novel bioartificial pancreas is constructed via islets microencapsulation in core-shell microgels and macroencapsulation in a hydrogel scaffold prevascularized in vivo. Specifically, a hydrogel scaffold containing methacrylated gelatin (GelMA), methacrylated heparin (HepMA) and vascular endothelial growth factor (VEGF) is fabricated, which can delivery VEGF in a sustained style and thus induce subcutaneous angiogenesis. In addition, islets-laden core-shell microgels using methacrylated hyaluronic acid (HAMA) as microgel core and poly(ethylene glycol) diacrylate (PEGDA)/carboxybetaine methacrylate (CBMA) as shell layer are prepared, which provide a favorable microenvironment for islets and simultaneously the inhibition of host immune rejection via anti-adhesion of proteins and immunocytes. As a result of the synergistic effect between anti-adhesive core-shell microgels and prevascularized hydrogel scaffold, the bioartificial pancreas can reverse the blood glucose levels of diabetic mice from hyperglycemia to normoglycemia for at least 90 days. We believe this bioartificial pancreas and relevant fabrication method provide a new strategy to treat type 1 diabetes, and also has broad potential applications in other cell therapies.
Collapse
Affiliation(s)
- Haofei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Yulian Shang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Qi Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yang Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Junlin Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Hua Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Lu K, Brauns T, Sluder AE, Poznansky MC, Dogan F. Combinatorial islet protective therapeutic approaches in β-cell transplantation: Rationally designed solutions using a target product profile. FASEB Bioadv 2023; 5:287-304. [PMID: 37415930 PMCID: PMC10320848 DOI: 10.1096/fba.2023-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
While progress has been made in the development of islet cell transplantation (ICT) as a viable alternative to the use of exogenous insulin therapy in the treatment of type 1 diabetes, it has not yet achieved its full potential in clinical studies. Ideally, ICT would enable lifelong maintenance of euglycemia without the need for exogenous insulin, blood glucose monitoring or systemic immune suppression. To achieve such an optimal result, therapeutic approaches should simultaneously promote long-term islet viability, functionality, and localized immune protection. In practice, however, these factors are typically tackled individually. Furthermore, while the requirements of optimal ICT are implicitly acknowledged across numerous publications, the literature contains few comprehensive articulations of the target product profile (TPP) for an optimal ICT product, including key characteristics of safety and efficacy. This review aims to provide a novel TPP for ICT and presents promising tried and untried combinatorial approaches that could be used to achieve the target product profile. We also highlight regulatory barriers to the development and adoption of ICT, particularly in the United States, where ICT is only approved for use in academic clinical trials and is not reimbursed by insurance carriers. Overall, this review argues that the clear definition of a TPP in addition to the use of combinatorial approaches could help to overcome the clinical barriers to the widespread adoption of ICT for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Katie Lu
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| | - Timothy Brauns
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Ann E. Sluder
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Fatma Dogan
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
15
|
Singh A, Afshan N, Singh A, Singh SK, Yadav S, Kumar M, Sarma DK, Verma V. Recent trends and advances in type 1 diabetes therapeutics: A comprehensive review. Eur J Cell Biol 2023; 102:151329. [PMID: 37295265 DOI: 10.1016/j.ejcb.2023.151329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/12/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of pancreatic β-cells, leading to insulin deficiency. Insulin replacement therapy is the current standard of care for T1D, but it has significant limitations. However, stem cell-based replacement therapy has the potential to restore β-cell function and achieve glycaemic control eradicating the necessity for drugs or injecting insulin externally. While significant progress has been made in preclinical studies, the clinical translation of stem cell therapy for T1D is still in its early stages. In continuation, further research is essentially required to determine the safety and efficacy of stem cell therapies and to develop strategies to prevent immune rejection of stem cell-derived β-cells. The current review highlights the current state of cellular therapies for T1D including, different types of stem cell therapies, gene therapy, immunotherapy, artificial pancreas, and cell encapsulation being investigated, and their potential for clinical translation.
Collapse
Affiliation(s)
- Akash Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Noor Afshan
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anshuman Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Suraj Kumar Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sudhanshu Yadav
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Vinod Verma
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
16
|
Trombino S, Sole R, Curcio F, Cassano R. Polymeric Based Hydrogel Membranes for Biomedical Applications. MEMBRANES 2023; 13:576. [PMID: 37367780 DOI: 10.3390/membranes13060576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The development of biomedical applications is a transdisciplinary field that in recent years has involved researchers from chemistry, pharmacy, medicine, biology, biophysics, and biomechanical engineering. The fabrication of biomedical devices requires the use of biocompatible materials that do not damage living tissues and have some biomechanical characteristics. The use of polymeric membranes, as materials meeting the above-mentioned requirements, has become increasingly popular in recent years, with outstanding results in tissue engineering, for regeneration and replenishment of tissues constituting internal organs, in wound healing dressings, and in the realization of systems for diagnosis and therapy, through the controlled release of active substances. The biomedical application of hydrogel membranes has had little uptake in the past due to the toxicity of cross-linking agents and to the existing limitations regarding gelation under physiological conditions, but now it is proving to be a very promising field This review presents the important technological innovations that the use of membrane hydrogels has promoted, enabling the resolution of recurrent clinical problems, such as post-transplant rejection crises, haemorrhagic crises due to the adhesion of proteins, bacteria, and platelets on biomedical devices in contact with blood, and poor compliance of patients undergoing long-term drug therapies.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| |
Collapse
|
17
|
Pham CHL, Zuo Y, Chen Y, Tran NM, Nguyen DT, Dang TT. Waffle-inspired hydrogel-based macrodevice for spatially controlled distribution of encapsulated therapeutic microtissues and pro-angiogenic endothelial cells. Bioeng Transl Med 2023; 8:e10495. [PMID: 37206238 PMCID: PMC10189477 DOI: 10.1002/btm2.10495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 03/17/2023] Open
Abstract
Macro-encapsulation systems for delivery of cellular therapeutics in diabetes treatment offer major advantages such as device retrievability and high cell packing density. However, microtissue aggregation and absence of vasculature have been implicated in the inadequate transfer of nutrients and oxygen to the transplanted cellular grafts. Herein, we develop a hydrogel-based macrodevice to encapsulate therapeutic microtissues positioned in homogeneous spatial distribution to mitigate their aggregation while concurrently supporting an organized intra-device network of vascular-inductive cells. Termed Waffle-inspired Interlocking Macro-encapsulation (WIM) device, this platform comprises two modules with complementary topography features that fit together in a lock-and-key configuration. The waffle-inspired grid-like micropattern of the "lock" component effectively entraps insulin-secreting microtissues in controlled locations while the interlocking design places them in a co-planar spatial arrangement with close proximity to vascular-inductive cells. The WIM device co-laden with INS-1E microtissues and human umbilical vascular endothelial cells (HUVECs) maintains desirable cellular viability in vitro with the encapsulated microtissues retaining their glucose-responsive insulin secretion while embedded HUVECs express pro-angiogenic markers. Furthermore, a subcutaneously implanted alginate-coated WIM device encapsulating primary rat islets achieves blood glucose control for 2 weeks in chemically induced diabetic mice. Overall, this macrodevice design lays foundation for a cell delivery platform, which has the potential to facilitate nutrients and oxygen transport to therapeutic grafts and thereby might lead to improved disease management outcome.
Collapse
Affiliation(s)
- Chi H. L. Pham
- School of Chemical and Biomedical EngineeringNanyang Technological University (NTU)SingaporeSingapore
| | - Yicong Zuo
- School of Chemical and Biomedical EngineeringNanyang Technological University (NTU)SingaporeSingapore
| | - Yang Chen
- School of Chemical and Biomedical EngineeringNanyang Technological University (NTU)SingaporeSingapore
| | - Nam M. Tran
- School of Chemical and Biomedical EngineeringNanyang Technological University (NTU)SingaporeSingapore
| | - Dang T. Nguyen
- School of Chemical and Biomedical EngineeringNanyang Technological University (NTU)SingaporeSingapore
| | - Tram T. Dang
- School of Chemical and Biomedical EngineeringNanyang Technological University (NTU)SingaporeSingapore
| |
Collapse
|
18
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
19
|
Mohandas S, Gayatri V, Kumaran K, Gopinath V, Paulmurugan R, Ramkumar KM. New Frontiers in Three-Dimensional Culture Platforms to Improve Diabetes Research. Pharmaceutics 2023; 15:pharmaceutics15030725. [PMID: 36986591 PMCID: PMC10056755 DOI: 10.3390/pharmaceutics15030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is associated with defects in islet β-cell functioning and consequent hyperglycemia resulting in multi-organ damage. Physiologically relevant models that mimic human diabetic progression are urgently needed to identify new drug targets. Three-dimensional (3D) cell-culture systems are gaining a considerable interest in diabetic disease modelling and are being utilized as platforms for diabetic drug discovery and pancreatic tissue engineering. Three-dimensional models offer a marked advantage in obtaining physiologically relevant information and improve drug selectivity over conventional 2D (two-dimensional) cultures and rodent models. Indeed, recent evidence persuasively supports the adoption of appropriate 3D cell technology in β-cell cultivation. This review article provides a considerably updated view of the benefits of employing 3D models in the experimental workflow compared to conventional animal and 2D models. We compile the latest innovations in this field and discuss the various strategies used to generate 3D culture models in diabetic research. We also critically review the advantages and the limitations of each 3D technology, with particular attention to the maintenance of β-cell morphology, functionality, and intercellular crosstalk. Furthermore, we emphasize the scope of improvement needed in the 3D culture systems employed in diabetes research and the promises they hold as excellent research platforms in managing diabetes.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vipin Gopinath
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Molecular Oncology Division, Malabar Cancer Centre, Moozhikkara P.O, Thalassery 670103, Kerala, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| |
Collapse
|
20
|
Luo Z, Dong Y, Yu M, Fu X, Qiu Y, Sun X, Chu X. A novel insulin delivery system by β cells encapsulated in microcapsules. Front Chem 2023; 10:1104979. [PMID: 36688040 PMCID: PMC9849738 DOI: 10.3389/fchem.2022.1104979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction: Diabetes is a growing epidemic worldwide and requires effective clinical therapies. In recent years, β-cell transplantation has emerged as a promising treatment for diabetes, and an encapsulation approach has been proposed to ameliorate this treatment. Methods: Microfluidic technology had been used to generate microcapsules using a porous sodium alginate shell and a core containing β cells. The microcapsules were transplanted into diabetic mice and the therapeutic effect was measured. Results: Porous hydrogel shell allows exchange of small molecules of nutrients while protecting beta cells from immune rejection, while the core ensures high activity of the encapsulated cells. The glucose control effect of the microcapsules were more durable and better than conventional methods. Discussion: We believe that this system, which is composed of biocompatible porous hydrogel shell and enables highly activity of encapsulated β cells, can enhance therapeutic efficacy and has promising clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xitai Sun
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuehui Chu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Maji K, Pramanik K. Future of encapsulation in regenerative medicine. PRINCIPLES OF BIOMATERIALS ENCAPSULATION : VOLUME TWO 2023:749-772. [DOI: 10.1016/b978-0-12-824345-9.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Khazaei M, Khazaei F, Niromand E, Ghanbari E. Tissue engineering approaches and generation of insulin-producing cells to treat type 1 diabetes. J Drug Target 2023; 31:14-31. [PMID: 35896313 DOI: 10.1080/1061186x.2022.2107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tissue engineering (TE) has become a new effective solution to a variety of medical problems, including diabetes. Mesenchymal stem cells (MSCs), which have the ability to differentiate into endodermal and mesodermal cells, appear to be appropriate for this function. The purpose of this review was to evaluate the outcomes of various researches on the insulin-producing cells (IPCs) generation from MSCs with TE approaches to increase efficacy of type 1 diabetes treatments. The search was performed in PubMed/Medline, Scopus and Embase databases until 2021. Studies revealed that MSCs could also differentiate into IPCs under certain conditions. Therefore, a wide range of protocols have been used for this differentiation, but their effectiveness is very different. Scaffolds can provide a microenvironment that enhances the MSCs to IPCs differentiation, improves their metabolic activity and up-regulate pancreatic-specific transcription factors. They also preserve IPCs architecture and enhance insulin production as well as protect against cell death. This systematic review offers a framework for prospective research based on data. In vitro and in vivo evidence suggests that scaffold-based TE can improve the viability and function of IPCs.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
23
|
Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep 2022; 19:601-624. [PMID: 36434300 DOI: 10.1007/s12015-022-10482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.
Collapse
|
24
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
25
|
Jing Z, Li Y, Ma Y, Zhang X, Liang X, Zhang X. Leverage biomaterials to modulate immunity for type 1 diabetes. Front Immunol 2022; 13:997287. [PMID: 36405706 PMCID: PMC9667795 DOI: 10.3389/fimmu.2022.997287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 09/08/2024] Open
Abstract
The pathogeny of type 1 diabetes (T1D) is mainly provoked by the β-cell loss due to the autoimmune attack. Critically, autoreactive T cells firsthand attack β-cell in islet, that results in the deficiency of insulin in bloodstream and ultimately leads to hyperglycemia. Hence, modulating immunity to conserve residual β-cell is a desirable way to treat new-onset T1D. However, systemic immunosuppression makes patients at risk of organ damage, infection, even cancers. Biomaterials can be leveraged to achieve targeted immunomodulation, which can reduce the toxic side effects of immunosuppressants. In this review, we discuss the recent advances in harness of biomaterials to immunomodulate immunity for T1D. We investigate nanotechnology in targeting delivery of immunosuppressant, biological macromolecule for β-cell specific autoreactive T cell regulation. We also explore the biomaterials for developing vaccines and facilitate immunosuppressive cells to restore immune tolerance in pancreas.
Collapse
Affiliation(s)
- Zhangyan Jing
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuan Li
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumeng Ma
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaozhou Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xudong Zhang
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
26
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
27
|
Xue Z, Mei D, Zhang L. Advances in single-cell nanoencapsulation and applications in diseases. J Microencapsul 2022; 39:481-494. [PMID: 35998209 DOI: 10.1080/02652048.2022.2111472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Single-cell nanoencapsulation is a method of coating the surface of single cell with nanomaterials. In the early 20th century, with the introduction of various types of organic or inorganic nano-polymer materials, the selection of cell types, and the functional modification of the outer coating, this technology has gradually matured. Typical preparation methods include interfacial polycondensation, complex condensation, spray drying, microdroplet ejection, and layer-by-layer (LbL) self-assembly. The LbL assembly technology utilises nanomaterials with opposite charges deposited on cells by strong interaction (electrostatic interaction) or weak interaction (hydrogen bonding, hydrophobic interaction), which drives compounds to spontaneously form films with complete structure, stable performance and unique functions on cells. According to the needs of the disease, choosing appropriate cell types and biocompatible and biodegradable nanomaterials could achieve the purpose of promoting cell proliferation, immune isolation, reducing phagocytosis of the reticuloendothelial system, prolonging the circulation time in vivo, and avoiding repeated administration. Therefore, encapsulated cells could be utilised in various biomedical fields, such as cell catalysis, biotherapy, vaccine manufacturing and antitumor therapy. This article reviews cell nanoencapsulation therapies for diseases, including the various cell sources used, nanoencapsulation technology and the latest advances in preclinical and clinical research.
Collapse
Affiliation(s)
- Ziyang Xue
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, Yao Q. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol 2022; 13:923241. [PMID: 35903090 PMCID: PMC9315421 DOI: 10.3389/fimmu.2022.923241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing β cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.
Collapse
Affiliation(s)
- Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| |
Collapse
|
29
|
Accolla RP, Simmons AM, Stabler CL. Integrating Additive Manufacturing Techniques to Improve Cell-Based Implants for the Treatment of Type 1 Diabetes. Adv Healthc Mater 2022; 11:e2200243. [PMID: 35412030 PMCID: PMC9262806 DOI: 10.1002/adhm.202200243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Indexed: 12/12/2022]
Abstract
The increasing global prevalence of endocrine diseases like type 1 diabetes mellitus (T1DM) elevates the need for cellular replacement approaches, which can potentially enhance therapeutic durability and outcomes. Central to any cell therapy is the design of delivery systems that support cell survival and integration. In T1DM, well-established fabrication methods have created a wide range of implants, ranging from 3D macro-scale scaffolds to nano-scale coatings. These traditional methods, however, are often challenged by their inherent limitations in reproducible and discrete fabrication, particularly when scaling to the clinic. Additive manufacturing (AM) techniques provide a means to address these challenges by delivering improved control over construct geometry and microscale component placement. While still early in development in the context of T1DM cellular transplantation, the integration of AM approaches serves to improve nutrient material transport, vascularization efficiency, and the accuracy of cell, matrix, and local therapeutic placement. This review highlights current methods in T1DM cellular transplantation and the potential of AM approaches to overcome these limitations. In addition, emerging AM technologies and their broader application to cell-based therapy are discussed.
Collapse
Affiliation(s)
- Robert P. Accolla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Amberlyn M. Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Immunology and Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
30
|
Clua‐Ferré L, De Chiara F, Rodríguez‐Comas J, Comelles J, Martinez E, Godeau AL, García‐Alamán A, Gasa R, Ramón‐Azcón J. Collagen-Tannic Acid Spheroids for β-Cell Encapsulation Fabricated Using a 3D Bioprinter. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101696. [PMID: 37182094 PMCID: PMC10170414 DOI: 10.1002/admt.202101696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Indexed: 05/16/2023]
Abstract
Type 1 Diabetes results from autoimmune response elicited against β-cell antigens. Nowadays, insulin injections remain the leading therapeutic option. However, injection treatment fails to emulate the highly dynamic insulin release that β-cells provide. 3D cell-laden microspheres have been proposed during the last years as a major platform for bioengineering insulin-secreting constructs for tissue graft implantation and a model for in vitro drug screening platforms. Current microsphere fabrication technologies have several drawbacks: the need for an oil phase containing surfactants, diameter inconsistency of the microspheres, and high time-consuming processes. These technologies have widely used alginate for its rapid gelation, high processability, and low cost. However, its low biocompatible properties do not provide effective cell attachment. This study proposes a high-throughput methodology using a 3D bioprinter that employs an ECM-like microenvironment for effective cell-laden microsphere production to overcome these limitations. Crosslinking the resulting microspheres with tannic acid prevents collagenase degradation and enhances spherical structural consistency while allowing the diffusion of nutrients and oxygen. The approach allows customization of microsphere diameter with extremely low variability. In conclusion, a novel bio-printing procedure is developed to fabricate large amounts of reproducible microspheres capable of secreting insulin in response to extracellular glucose stimuli.
Collapse
Affiliation(s)
- Laura Clua‐Ferré
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology (BIST)Baldiri I Reixac, 10–12Barcelona08028Spain
| | - Francesco De Chiara
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology (BIST)Baldiri I Reixac, 10–12Barcelona08028Spain
| | - Júlia Rodríguez‐Comas
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology (BIST)Baldiri I Reixac, 10–12Barcelona08028Spain
| | - Jordi Comelles
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology (BIST)Baldiri I Reixac, 10–12Barcelona08028Spain
- Department of Electronics and Biomedical EngineeringUniversity of Barcelona (UB)c/Martí i Franquès 1–11BarcelonaE08028Spain
| | - Elena Martinez
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology (BIST)Baldiri I Reixac, 10–12Barcelona08028Spain
- Department of Electronics and Biomedical EngineeringUniversity of Barcelona (UB)c/Martí i Franquès 1–11BarcelonaE08028Spain
- Centro de Investigación Biomédica en Red (CIBER)Av. Monforte de Lemos 3–5, Pabellón 11, Planta 0MadridE28029Spain
| | - Amelie Luise Godeau
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology (BIST)Baldiri I Reixac, 10–12Barcelona08028Spain
| | - Ainhoa García‐Alamán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Madrid28029Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
| | - Rosa Gasa
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Madrid28029Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
| | - Javier Ramón‐Azcón
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology (BIST)Baldiri I Reixac, 10–12Barcelona08028Spain
- Institució Catalana de Reserca I Estudis Avançats (ICREA)Passeig de Lluís Companys, 23BarcelonaE08010Spain
| |
Collapse
|
31
|
Lee GM, Kim SJ, Kim EM, Kim E, Lee S, Lee E, Park HH, Shin H. Free radical-scavenging composite gelatin methacryloyl hydrogels for cell encapsulation. Acta Biomater 2022; 149:96-110. [PMID: 35779769 DOI: 10.1016/j.actbio.2022.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have been widely used for cell encapsulation in tissue engineering due to their cell adhesiveness and biocompatibility. However, free radicals generated during gelation decrease the viability of the encapsulated cells by increasing intracellular oxidative stress, so appropriate strategies for scavenging free radicals need to be developed. To meet that need, we developed composite GelMA hydrogels incorporating nanofiber particles (EF) coated with epigallocatechin-gallate (EGCG). The GelMA composite hydrogels were successfully fabricated and had a storage modulus of about 5 kPa, which is similar to that of pristine GelMA hydrogel, and the drastic free radical scavenging activity of EGCG was highly preserved after gelation. In addition, human adipose-derived stem cells encapsulated within our composite hydrogels had better viability (about 1.5 times) and decreased intracellular oxidative stress (about 0.3 times) compared with cells within the pristine GelMA hydrogel. We obtained similar results with human dermal fibroblasts and human umbilical vein endothelial cells, indicating that our composite hydrogels are suitable for various cell types. Furthermore, we found that the ability of the encapsulated cells to spread and migrate increased by 5 times within the composite hydrogels. Collectively, our results demonstrate that incorporating EF into GelMA hydrogels is a promising way to enhance cell viability by reducing free-radical-derived cellular damage when fabricating 3D tissue ex vivo. STATEMENT OF SIGNIFICANCE: Gelatin methacryloyl (GelMA) hydrogels have been widely applied to various tissue engineering applications because of their biocompatibility and cell interactivity. However, free radicals generated during the GelMA hydrogel fabrication decrease the viability of encapsulated cells by elevating intracellular oxidative stress. Here, we demonstrate radical scavenging GelMA hydrogels incorporating epigallocatechin-gallate (EGCG)-coated nanofiber particles (EF). The composite GelMA hydrogels are successfully fabricated, maintaining their mechanical properties, and the viability of encapsulated human adipose-derived stem cells is greatly improved after the gelation, indicating that our composite GelMA hydrogel alleviates damages from free radicals. Collectively, the incorporation of EF within GelMA hydrogels may be a promising way to enhance the viability of encapsulated cells, which could be applied to 3D tissue fabrication.
Collapse
Affiliation(s)
- Gyeong Min Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eun Mi Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eunjin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
32
|
Carvalho AM, Nunes R, Sarmento B. From pluripotent stem cells to bioengineered islets: A challenging journey to diabetes treatment. Eur J Pharm Sci 2022; 172:106148. [DOI: 10.1016/j.ejps.2022.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
|
33
|
Holdcraft RW, Graham MJ, Bemrose MA, Mutch LA, Martis PC, Janecek JL, Hall RD, Smith BH, Gazda LS. Long-term efficacy and safety of porcine islet macrobeads in nonimmunosuppressed diabetic cynomolgus macaques. Xenotransplantation 2022; 29:e12747. [PMID: 35384085 DOI: 10.1111/xen.12747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Although human islet transplantation has proven to provide clinical benefits, especially the near complete amelioration of hypoglycemia, the supply of human islets is limited and insufficient to meet the needs of all people that could benefit from islet transplantation. Porcine islets, secreting insulin nearly identical to that of human insulin, have been proposed as a viable supply of unlimited islets. Further, encapsulation of the porcine islets has been shown to reduce or eliminate the use of immunosuppressive therapy that would be required to prevent rejection of the foreign islet tissue. The goal of the current study was to determine the long-term safety and efficacy of agarose encapsulated porcine islets (macrobeads) in diabetic cynomolgus macaques, in a study emulating a proposed IND trial in which daily exogenous insulin therapy would be reduced by 50% with no loss of glucose regulation. Four of six animals implanted with macrobeads demonstrated ≥ 30% reduction in insulin requirements in year 1 of follow-up. Animals were followed for 2, 3.5, and 7.4 years with no serious adverse events, mortality or evidence of pathogen transmission. This study supports the continued pursuit of encapsulated porcine islet therapy as a promising treatment option for diabetes mellitus.
Collapse
Affiliation(s)
| | - Melanie J Graham
- Preclinical Research Center, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Lucas A Mutch
- Preclinical Research Center, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Jody L Janecek
- Preclinical Research Center, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | |
Collapse
|
34
|
Ghandforoushan P, Hanaee J, Aghazadeh Z, Samiei M, Navali AM, Khatibi A, Davaran S. Novel nanocomposite scaffold based on gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro. Int J Biol Macromol 2022; 201:270-287. [PMID: 34998887 DOI: 10.1016/j.ijbiomac.2021.12.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
In the current study, a novel nanocomposite hydrogel scaffold comprising of natural-based gelatin and synthetic-based (poly D, L (lactide-co-glycolide) -b- poly (ethylene glycol)-b- poly D, L (lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymer was developed and loaded with transforming growth factor- β1 (TGF-β1). Synthesized scaffolds' chemical structure was examined by 1H NMR and ATR-FTIR. Scanning electron microscopy (SEM) confirmed particle size and morphology of the prepared nanoparticles as well as the scaffolds. The morphology analysis revealed a porous interconnected structure throughout the scaffold with a pore size dimension of about 202.05 µm. The swelling behavior, in vitro degradation, mechanical properties, density, and porosity were also evaluated. Phalloidin/DAPI staining was utilized for confirming the extended cytoskeleton of the chondrocytes. Alcian blue staining was conducted to determine cartilaginous matrix sulfated glycosaminoglycan (sGAG) synthesis. Eventually, over a period of 21 days, a real-time RT-PCR analysis was applied to measure the mRNA expression of chondrogenic marker genes, type-II collagen, SOX 9, and aggrecan, in hDPSCs cultured for up to 21 days to study the influence of gelatin/PLGA-PEG-PLGA-TGF-β1 hydrogels on hDPSCs. The findings of the cell-encapsulating hydrogels analysis suggested that the adhesion, viability, and chondrogenic differentiation of hDPSCs improved by gelatin/PLGA-PEG-PLGA-TGF-β1 nanocomposite hydrogels. These data supported the conclusion that gelatin/PLGA-PEG-PLGA-TGF-β1 nanocomposite hydrogels render the features that allow thein vitrofunctionality of encapsulated hDPSCs and hence can contribute the basis for new effective strategies for the treatment of cartilage injuries.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medicinal Science, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center, Oral Medicine department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Khatibi
- Department of biotechnology, Alzahra University, Tehran, Iran
| | - Soodabeh Davaran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Jiang L, Shen Y, Liu Y, Zhang L, Jiang W. Making human pancreatic islet organoids: Progresses on the cell origins, biomaterials and three-dimensional technologies. Theranostics 2022; 12:1537-1556. [PMID: 35198056 PMCID: PMC8825586 DOI: 10.7150/thno.66670] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/27/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetes is one of the most socially challenging health concerns. Even though islet transplantation has shown promise for insulin-dependent diabetes, there is still no effective method for curing diabetes due to the severe shortage of transplantable donors. In recent years, organoid technology has attracted lots of attention as organoid can mirror the human organ in vivo to the maximum extent in vitro, thus bridging the gap between cellular- and tissue/organ-level biological models. Concurrently, human pancreatic islet organoids are expected to be a considerable source of islet transplantation. To construct human islet-like organoids, the seeding cells, biomaterials and three-dimensional structure are three key elements. Herein, this review summarizes current progresses about the cell origins, biomaterials and advanced technology being applied to make human islet organoids, and discusses the advantages, shortcomings, and future challenges of them as well. We hope this review can offer a cross-disciplinary perspective to build human islet organoids and provide insights for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lai Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yiru Shen
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Yajing Liu
- Asia Regenerative Medicine Ltd., Shenzhen 518110, China
| | - Lei Zhang
- Asia Regenerative Medicine Ltd., Shenzhen 518110, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
36
|
Hwang DG, Jo Y, Kim M, Yong U, Cho S, Choi YM, Kim J, Jang J. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication 2021; 14. [PMID: 34479233 DOI: 10.1088/1758-5090/ac23ac] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/03/2021] [Indexed: 11/12/2022]
Abstract
Islet transplantation is a promising treatment for type 1 diabetes. However, treatment failure can result from loss of functional cells associated with cell dispersion, low viability, and severe immune response. To overcome these limitations, various islet encapsulation approaches have been introduced. Among them, macroencapsulation offers the advantages of delivering and retrieving a large volume of islets in one system. In this study, we developed a hybrid encapsulation system composed of a macroporous polymer capsule with stagger-type membrane and assemblable structure, and a nanoporous decellularized extracellular matrix (dECM) hydrogel containing pancreatic islet-like aggregates using 3D bioprinting technique. The outer part (macroporous polymer capsule) was designed to have an interconnected porous architecture, which allows insulin-producingβ-cells encapsulated in the hybrid encapsulation system to maintain their cellular behaviors, including viability, cell proliferation, and insulin-producing function. The inner part (nanoporous dECM hydrogel), composed of the 3D biofabricated pancreatic islet-like aggregates, was simultaneously placed into the macroporous polymer capsule in one step. The developed hybrid encapsulation system exhibited biocompatibilityin vitroandin vivoin terms of M1 macrophage polarization. Furthermore, by controlling the printing parameters, we generated islet-like aggregates, improving cell viability and functionality. Moreover, the 3D bioprinted pancreatic islet-like aggregates exhibited structural maturation and functional enhancement associated with intercellular interaction occurring at theβ-cell edges. In addition, we also investigated the therapeutic potential of a hybrid encapsulation system by integrating human pluripotent stem cell-derived insulin-producing cells, which are promising to overcome the donor shortage problem. In summary, these results demonstrated that the 3D bioprinting approach facilitates the fabrication of a hybrid islet encapsulation system with multiple materials and potentially improves the clinical outcomes by driving structural maturation and functional improvement of cells.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Yeonggwon Jo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Myungji Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Uijung Yong
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Seungyeon Cho
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Yoo-Mi Choi
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jaewook Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Wu S, Wang L, Fang Y, Huang H, You X, Wu J. Advances in Encapsulation and Delivery Strategies for Islet Transplantation. Adv Healthc Mater 2021; 10:e2100965. [PMID: 34480420 DOI: 10.1002/adhm.202100965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease caused by the destruction of pancreatic β-cells in response to autoimmune reactions. Shapiro et al. conducted novel islet transplantation with a glucocorticoid-free immunosuppressive agent in 2000 and achieved great success; since then, islet transplantation has been increasingly regarded as a promising strategy for the curative treatment of T1DM. However, many unavoidable challenges, such as a lack of donors, poor revascularization, blood-mediated inflammatory reactions, hypoxia, and side effects caused by immunosuppression have severely hindered the widespread application of islet transplantation in clinics. Biomaterial-based encapsulation and delivery strategies are proposed for overcoming these obstacles, and have demonstrated remarkable improvements in islet transplantation outcomes. Herein, the major problems faced by islet transplantation are summarized and updated biomaterial-based strategies for islet transplantation, including islet encapsulation across different scales, delivery of stem cell-derived beta cells, co-delivery of islets with accessory cells and immunomodulatory molecules are highlighted.
Collapse
Affiliation(s)
- Siying Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Hai Huang
- Department of Urology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou 510120 P. R. China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
38
|
Cui L, Yao Y, Yim EKF. The effects of surface topography modification on hydrogel properties. APL Bioeng 2021; 5:031509. [PMID: 34368603 PMCID: PMC8318605 DOI: 10.1063/5.0046076] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrogel has been an attractive biomaterial for tissue engineering, drug delivery, wound healing, and contact lens materials, due to its outstanding properties, including high water content, transparency, biocompatibility, tissue mechanical matching, and low toxicity. As hydrogel commonly possesses high surface hydrophilicity, chemical modifications have been applied to achieve the optimal surface properties to improve the performance of hydrogels for specific applications. Ideally, the effects of surface modifications would be stable, and the modification would not affect the inherent hydrogel properties. In recent years, a new type of surface modification has been discovered to be able to alter hydrogel properties by physically patterning the hydrogel surfaces with topographies. Such physical patterning methods can also affect hydrogel surface chemical properties, such as protein adsorption, microbial adhesion, and cell response. This review will first summarize the works on developing hydrogel surface patterning methods. The influence of surface topography on interfacial energy and the subsequent effects on protein adsorption, microbial, and cell interactions with patterned hydrogel, with specific examples in biomedical applications, will be discussed. Finally, current problems and future challenges on topographical modification of hydrogels will also be discussed.
Collapse
Affiliation(s)
- Linan Cui
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
39
|
Boscari F, Avogaro A. Current treatment options and challenges in patients with Type 1 diabetes: Pharmacological, technical advances and future perspectives. Rev Endocr Metab Disord 2021; 22:217-240. [PMID: 33755854 PMCID: PMC7985920 DOI: 10.1007/s11154-021-09635-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus imposes a significant burden of complications and mortality, despite important advances in treatment: subjects affected by this disease have also a worse quality of life-related to disease management. To overcome these challenges, different new approaches have been proposed, such as new insulin formulations or innovative devices. The introduction of insulin pumps allows a more physiological insulin administration with a reduction of HbA1c level and hypoglycemic risk. New continuous glucose monitoring systems with better accuracy have allowed, not only better glucose control, but also the improvement of the quality of life. Integration of these devices with control algorithms brought to the creation of the first artificial pancreas, able to independently gain metabolic control without the risk of hypo- and hyperglycemic crisis. This approach has revolutionized the management of diabetes both in terms of quality of life and glucose control. However, complete independence from exogenous insulin will be obtained only by biological approaches that foresee the replacement of functional beta cells obtained from stem cells: this will be a major challenge but the biggest hope for the subjects with type 1 diabetes. In this review, we will outline the current scenario of innovative diabetes management both from a technological and biological point of view, and we will also forecast some cutting-edge approaches to reduce the challenges that hamper the definitive cure of diabetes.
Collapse
Affiliation(s)
- Federico Boscari
- Department of Medicine, Unit of Metabolic Diseases, University of Padova, Padova, Italy.
| | - Angelo Avogaro
- Department of Medicine, Unit of Metabolic Diseases, University of Padova, Padova, Italy
| |
Collapse
|
40
|
Encapsulation Strategies for Pancreatic Islet Transplantation without Immune Suppression. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 PMCID: PMC8006013 DOI: 10.4252/wjsc.v13.i3.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
42
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 DOI: 10.4252/wjsc.v13.i3.193] [cited] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 01/26/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
43
|
Huang L, Xiang J, Cheng Y, Xiao L, Wang Q, Zhang Y, Xu T, Chen Q, Xin H, Wang X. Regulation of Blood Glucose Using Islets Encapsulated in a Melanin-Modified Immune-Shielding Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12877-12887. [PMID: 33689267 DOI: 10.1021/acsami.0c23010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Islet transplantation is currently a promising treatment for type 1 diabetes mellitus. However, the foreign body reaction and retrieval difficulty often lead to transplantation failure and hinder the clinical application. To address these two challenges, we propose a balanced charged sodium alginate-polyethyleneimine-melanin (SA-PEI-Melanin) threadlike hydrogel with immune shielding and retrievable properties. The attractiveness of this study lies in that the introduction of melanin can stimulate insulin secretion, especially under near-infrared (NIR) irradiation. After demonstrating a good immune-shielding effect, we performed an in vivo transplantation experiment. The results showed that the blood glucose level in the SA-PEI-Melanin group was stably controlled below the diabetic blood glucose criterion, and this blood glucose level could be further adjusted after NIR irradiation. In addition, the evaluation after retrieving the SA-PEI-Melanin hydrogel indicated that the islets still maintained a normal physiological function, further proving its excellent immunological protection. This study provides a new approach for the accurate regulation of blood glucose in patients with type 1 diabetes mellitus and contributes to developing a promising transplant system to reconcile real-time and precise light-defined insulin secretion regulation.
Collapse
Affiliation(s)
- Ling Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Jiajia Xiang
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Yukai Cheng
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Ling Xiao
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Qingqing Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yini Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Tieling Xu
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Qianrui Chen
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| |
Collapse
|
44
|
Docherty FM, Sussel L. Islet Regeneration: Endogenous and Exogenous Approaches. Int J Mol Sci 2021; 22:ijms22073306. [PMID: 33804882 PMCID: PMC8037662 DOI: 10.3390/ijms22073306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Both type 1 and type 2 diabetes are characterized by a progressive loss of beta cell mass that contributes to impaired glucose homeostasis. Although an optimal treatment option would be to simply replace the lost cells, it is now well established that unlike many other organs, the adult pancreas has limited regenerative potential. For this reason, significant research efforts are focusing on methods to induce beta cell proliferation (replication of existing beta cells), promote beta cell formation from alternative endogenous cell sources (neogenesis), and/or generate beta cells from pluripotent stem cells. In this article, we will review (i) endogenous mechanisms of beta cell regeneration during steady state, stress and disease; (ii) efforts to stimulate endogenous regeneration and transdifferentiation; and (iii) exogenous methods of beta cell generation and transplantation.
Collapse
|
45
|
Kuwabara R, Hu S, Smink AM, Orive G, Lakey JRT, de Vos P. Applying Immunomodulation to Promote Longevity of Immunoisolated Pancreatic Islet Grafts. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:129-140. [PMID: 33397201 DOI: 10.1089/ten.teb.2020.0326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Islet transplantation is a promising therapy for insulin-dependent diabetes, but large-scale application is hampered by the lack of a consistent source of insulin-producing cells and need for lifelong administration of immunosuppressive drugs, which are associated with severe side effects. To avoid chronic immunosuppression, islet grafts can be enveloped in immunoisolating polymeric membranes. These immunoisolating polymeric membranes protect islet grafts from cell-mediated rejection while allowing diffusion of oxygen, nutrients, and insulin. Although clinical trials have shown the safety and feasibility of encapsulated islets to control glucose homeostasis, the strategy does up till now not support long-term graft survival. This partly can be explained by a significant loss of insulin-producing cells in the immediate period after implantation. The loss can be prevented by combining immunoisolation with immunomodulation, such as combined administration of immunomodulating cytokines or coencapsulation of immunomodulating cell types such as regulatory T cells, mesenchymal stem cells, or Sertoli cells. Also, administration of specific antibodies or apoptotic donor leucocytes is considered to create a tolerant microenvironment around immunoisolated grafts. In this review, we describe the outcomes and limitations of these approaches, as well as the recent progress in immunoisolating devices. Impact statement Immunoisolation by enveloping islets in semipermeable membranes allows for successful transplantation of islet grafts in the absence of chronic immunosuppression, but the duration of graft survival is still not permanent. The reasons for long-term final graft failure is not fully understood, but combining immunoisolation with immunomodulation of tissues or host immune system has been proposed to enhance the longevity of grafts. This article reviews the recent progress and challenges of immunoisolation, as well as the benefits and feasibility of combining encapsulation approaches with immunomodulation to promote longevity of encapsulated grafts.
Collapse
Affiliation(s)
- Rei Kuwabara
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuxian Hu
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jonathan R T Lakey
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
46
|
Jeon MJ, Choi YS, Kim ID, Criswell T, Atala A, Yoo JJ, Jackson JD. Engineering Functional Rat Ovarian Spheroids Using Granulosa and Theca Cells. Reprod Sci 2021; 28:1697-1708. [PMID: 33511540 DOI: 10.1007/s43032-020-00445-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/20/2020] [Indexed: 11/25/2022]
Abstract
Although menopausal hormone therapy (MHT) is the most effective approach to managing the loss of ovarian activity, serious side effects have been reported. Cell-based therapy is a promising alternative for MHT. This study constructed engineered ovarian cell spheroids and investigated their endocrine function. Theca and granulosa cells were isolated from ovaries of 10-week-old rats. Two types of engineered ovarian cell spheroids were fabricated through forced aggregation in microwells, multilayered spheroids with centralized granulosa aggregates surrounded by an outer layer of theca cells and mixed ovarian spheroids lacking spatial rearrangement. The ovarian cell spheroids were encapsulated into a collagen gel. Non-aggregated ovarian cells served as controls. The endocrine function of the engineered ovarian spheroids was assessed over 30 days. The structure of the spheroids was well maintained during culture. The secretion of 17β-estradiol from both types of engineered ovarian cell spheroids was higher than in the control group and increased continuously in a time-dependent manner. Secretion of 17β-estradiol in the multi-layered ovarian cell spheroids was higher than in the non-layered constructs. Increased secretion of progesterone was detected in the multi-layered ovarian cell spheroids at day 5 of culture and was sustained during the culture period. The initial secretion level of progesterone in the non-layered ovarian cell spheroids was similar to those from the controls and increased significantly from days 21 to 30. An in vitro rat model of engineered ovarian cell spheroids was developed that was capable of secreting sex steroid hormones, indicating that the hormone secreting function of ovaries can be recapitulated ex vivo and potentially adapted for MHT.
Collapse
Affiliation(s)
- Myung Jae Jeon
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101, Daehak-ro, Jong-gu, Seoul, 110-799, Republic of Korea
| | - Young Sik Choi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea
| | - Il Dong Kim
- Department of Obstetrics and Gynecology, Bundang Jeaseng General Hospital, 20, Seohyeon-ro 180beon-gil, Bundang-gu, Seognam-si, Gyeonggi-do, 13590, Republic of Korea
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - John D Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
47
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
48
|
Bai X, Pei Q, Pu C, Chen Y, He S, Wang B. Multifunctional Islet Transplantation Hydrogel Encapsulating A20 High-Expressing Islets. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4021-4027. [PMID: 33061306 PMCID: PMC7532915 DOI: 10.2147/dddt.s273050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
Islet transplantation is regarded as the most promising treatment for type 1 diabetes (T1D). However, the function of grafted islet could be damaged on account of transplant rejection and/or hypoxia several years later after transplantation. We proposed a hypothetical functionalized hydrogel model, which encapsulates sufficient A20 high-expressing islets and supporting cells, and performs as a drug release system releasing immunosuppressants and growth factors, to improve the outcome of pancreatic islet transplantation. Once injected in vivo, the hydrogel can gel and offer a robust mechanical structure for the A20 high-expressing islets and supporting cells. The natural biomaterials (eg, heparin) added into the hydrogel provide adhesive sites for islets to promote islets’ survival. Furthermore, the hydrogel encapsulates various supporting cells, which can facilitate the vascularization and/or prevent the immune system attacking the islet graft. Based on the previous studies that generally applied one or two combined strategies to protect the function of islet graft, we designed this hypothetical multifunctional encapsulation hydrogel model with various functions. We hypothesized that the islet graft could survive and maintain its function for a longer time in vivo compared with naked islets. This hypothetical model has a limitation in terms of clinical application. Future development work will focus on verifying the function and safety of this hypothetical islet transplantation hydrogel model in vitro and in vivo.
Collapse
Affiliation(s)
- Xue Bai
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qilin Pei
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chunyi Pu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yi Chen
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Sirong He
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
49
|
Mochizuki Y, Kogawa R, Takegami R, Nakamura K, Wakabayashi A, Ito T, Yoshioka Y. Co-Microencapsulation of Islets and MSC CellSaics, Mosaic-Like Aggregates of MSCs and Recombinant Peptide Pieces, and Therapeutic Effects of Their Subcutaneous Transplantation on Diabetes. Biomedicines 2020; 8:biomedicines8090318. [PMID: 32878198 PMCID: PMC7554936 DOI: 10.3390/biomedicines8090318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/19/2022] Open
Abstract
The subcutaneous transplantation of microencapsulated islets has been extensively studied as a therapeutic approach for type I diabetes. However, due to the lower vascular density and strong inflammatory response in the subcutaneous area, there have been few reports of successfully normalized blood glucose levels. To address this issue, we developed mosaic-like aggregates comprised of mesenchymal stem cells (MSCs) and recombinant peptide pieces called MSC CellSaics, which provide a continuous release of angiogenic factors and anti-inflammatory cytokines. Our previous report revealed that the diabetes of immunodeficient diabetic model mice was reversed by the subcutaneous co-transplantation of the MSC CellSaics and rat islets. In this study, we focused on the development of immune-isolating microcapsules to co-encapsulate the MSC CellSaics and rat islets, and their therapeutic efficiency via subcutaneous transplantation into immunocompetent diabetic model mice. As blood glucose level was monitored for 28 days following transplantation, the normalization rate of the new immuno-isolating microcapsules was confirmed to be significantly higher than those of the microcapsules without the MSC CellSaics, and the MSC CellSaics transplanted outside the microcapsules (p < 0.01). Furthermore, the number of islets required for the treatment was reduced. In the stained sections, a larger number/area of blood vessels was observed around the new immuno-isolating microcapsules, which suggests that angiogenic factors secreted by the MSC CellSaics through the microcapsules function locally for their enhanced efficacy.
Collapse
|
50
|
Kogawa R, Nakamura K, Mochizuki Y. A New Islet Transplantation Method Combining Mesenchymal Stem Cells with Recombinant Peptide Pieces, Microencapsulated Islets, and Mesh Bags. Biomedicines 2020; 8:biomedicines8090299. [PMID: 32825661 PMCID: PMC7555598 DOI: 10.3390/biomedicines8090299] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Microencapsulated islet transplantation was widely studied as a promising treatment for type 1 diabetes mellitus. However, micro-encapsulated islet transplantation has the following problems—early dysfunction of the islets due to the inflammatory reaction at the transplantation site, and hyponutrition and hypoxia due to a lack of blood vessels around the transplantation site, and difficulty in removal of the islets. On the other hand, we proposed a cell transplantation technique called CellSaic, which was reported to enhance the vascular induction effect of mesenchymal stem cells (MSCs) in CellSaic form, and to enhance the effect of islet transplantation through co-transplantation. Therefore, we performed islet transplantation in diabetic mice by combining three components—microencapsulated islets, MSC-CellSaic, and a mesh bag that encapsulates them and enables their removal. Mesh pockets were implanted in the peritoneal cavity of Balb/c mice as implantation sites. After 4 weeks of implantation, a pocket was opened and transplanted with (1) pancreatic islets, (2) microencapsulated islets, and (3) microencapsulated islets + MSC-CellSaic. Four weeks of observation of blood glucose levels showed that the MSC-CellSaic co-transplant group showed a marked decrease in blood glucose levels, compared to the other groups. A three-component configuration of microcapsules, MSC-CellSaic, and mesh bag was shown to enhance the efficacy of islet transplantation.
Collapse
|