1
|
Borisch C, Thum T, Bär C, Hoepfner J. Human in vitro models for Fabry disease: new paths for unravelling disease mechanisms and therapies. J Transl Med 2024; 22:965. [PMID: 39449071 PMCID: PMC11515389 DOI: 10.1186/s12967-024-05756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Fabry disease is a multi-organ disease, caused by mutations in the GLA gene and leading to a progressive accumulation of glycosphingolipids due to enzymatic absence or malfunction of the encoded alpha-galactosidase A. Since pathomechanisms are not yet fully understood and available treatments are not efficient for all mutation types and tissues, further research is highly needed. This research involves many different model types, with significant effort towards the establishment of an in vivo model. However, these models did not replicate the variety of symptoms observed in patients. As an alternative strategy, patient-derived somatic cells as well as patient-independent cell lines were used to model specific aspects of the disease in vitro. Fabry disease patients present different phenotypes according to the mutation and the level of residual enzyme activity, pointing to the necessity of personalized disease modeling. With the advent of induced pluripotent stem cells, the derivation of a multitude of disease-affected cell types became possible, even in a patient-specific and mutation-specific manner. Only recently, three-dimensional Fabry disease models were established that even more closely resemble the native tissue of investigated organs and will bring research closer to the in vivo situation. This review provides an overview of human in vitro models and their achievements in unravelling the Fabry disease pathomechanism as well as in elucidating current and future treatment strategies.
Collapse
Affiliation(s)
- Carla Borisch
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Jeannine Hoepfner
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Peng SY, Chen CY, Chen H, Yang YP, Wang ML, Tsai FT, Chien CS, Weng PY, Tsai ET, Wang IC, Hsu CC, Lin TC, Hwang DK, Chen SJ, Chiou SH, Chiao CC, Chien Y. Inhibition of angiogenesis by the secretome from iPSC-derived retinal ganglion cells with Leber's hereditary optic neuropathy-like phenotypes. Biomed Pharmacother 2024; 178:117270. [PMID: 39126773 DOI: 10.1016/j.biopha.2024.117270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The blood supply in the retina ensures photoreceptor function and maintains regular vision. Leber's hereditary optic neuropathy (LHON), caused by the mitochondrial DNA mutations that deteriorate complex I activity, is characterized by progressive vision loss. Although some reports indicated retinal vasculature abnormalities as one of the comorbidities in LHON, the paracrine influence of LHON-affected retinal ganglion cells (RGCs) on vascular endothelial cell physiology remains unclear. To address this, we established an in vitro model of mitochondrial complex I deficiency using induced pluripotent stem cell-derived RGCs (iPSC-RGCs) treated with a mitochondrial complex I inhibitor rotenone (Rot) to recapitulate LHON pathologies. The secretomes from Rot-treated iPSC-RGCs (Rot-iPSC-RGCs) were collected, and their treatment effect on human umbilical vein endothelial cells (HUVECs) was studied. Rot induced LHON-like characteristics in iPSC-RGCs, including decreased mitochondrial complex I activity and membrane potential, and increased mitochondrial reactive oxygen species (ROS) and apoptosis, leading to mitochondrial dysfunction. When HUVECs were exposed to conditioned media (CM) from Rot-iPSC-RGCs, the angiogenesis of HUVECs was suppressed compared to those treated with CM from control iPSC-RGCs (Ctrl-iPSC-RGCs). Angiogenesis-related proteins were altered in the secretomes from Rot-iPSC-RGC-derived CM, particularly angiopoietin, MMP-9, uPA, collagen XVIII, and VEGF were reduced. Notably, GeneMANIA analysis indicated that VEGFA emerged as the pivotal angiogenesis-related protein among the identified proteins secreted by health iPSC-RGCs but reduced in the secretomes from Rot-iPSC-RGCs. Quantitative real-time PCR and western blots confirmed the reduction of VEGFA at both transcription and translation levels, respectively. Our study reveals that Rot-iPSC-RGCs establish a microenvironment to diminish the angiogenic potential of vascular cells nearby, shedding light on the paracrine regulation of LHON-affected RGCs on retinal vasculature.
Collapse
Affiliation(s)
- Shih-Yuan Peng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Hsin Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan, ROC
| | - Fu-Ting Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chian-Shiu Chien
- Institute of Physiology, National Yang Ming Chiao Tung University, Taiwan, ROC
| | - Pei-Yu Weng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - En-Tung Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - I-Chieh Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Tai-Chi Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, ROC; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC; Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, ROC.
| | - Chuan-Chin Chiao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC.
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC.
| |
Collapse
|
3
|
Walsh C, Jin S. Induced Pluripotent Stem Cells and CRISPR-Cas9 Innovations for Treating Alpha-1 Antitrypsin Deficiency and Glycogen Storage Diseases. Cells 2024; 13:1052. [PMID: 38920680 PMCID: PMC11201389 DOI: 10.3390/cells13121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Human induced pluripotent stem cell (iPSC) and CRISPR-Cas9 gene-editing technologies have become powerful tools in disease modeling and treatment. By harnessing recent biotechnological advancements, this review aims to equip researchers and clinicians with a comprehensive and updated understanding of the evolving treatment landscape for metabolic and genetic disorders, highlighting how iPSCs provide a unique platform for detailed pathological modeling and pharmacological testing, driving forward precision medicine and drug discovery. Concurrently, CRISPR-Cas9 offers unprecedented precision in gene correction, presenting potential curative therapies that move beyond symptomatic treatment. Therefore, this review examines the transformative role of iPSC technology and CRISPR-Cas9 gene editing in addressing metabolic and genetic disorders such as alpha-1 antitrypsin deficiency (A1AD) and glycogen storage disease (GSD), which significantly impact liver and pulmonary health and pose substantial challenges in clinical management. In addition, this review discusses significant achievements alongside persistent challenges such as technical limitations, ethical concerns, and regulatory hurdles. Future directions, including innovations in gene-editing accuracy and therapeutic delivery systems, are emphasized for next-generation therapies that leverage the full potential of iPSC and CRISPR-Cas9 technologies.
Collapse
Affiliation(s)
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
4
|
Jiao YC, Wang YX, Liu WZ, Xu JW, Zhao YY, Yan CZ, Liu FC. Advances in the differentiation of pluripotent stem cells into vascular cells. World J Stem Cells 2024; 16:137-150. [PMID: 38455095 PMCID: PMC10915963 DOI: 10.4252/wjsc.v16.i2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024] Open
Abstract
Blood vessels constitute a closed pipe system distributed throughout the body, transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys. Changes in blood vessels are related to many disorders like stroke, myocardial infarction, aneurysm, and diabetes, which are important causes of death worldwide. Translational research for new approaches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems. Although mice or rats have been widely used, applying data from animal studies to human-specific vascular physiology and pathology is difficult. The rise of induced pluripotent stem cells (iPSCs) provides a reliable in vitro resource for disease modeling, regenerative medicine, and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells. This review summarizes the latest progress from the establishment of iPSCs, the strategies for differentiating iPSCs into vascular cells, and the in vivo transplantation of these vascular derivatives. It also introduces the application of these technologies in disease modeling, drug screening, and regenerative medicine. Additionally, the application of high-tech tools, such as omics analysis and high-throughput sequencing, in this field is reviewed.
Collapse
Affiliation(s)
- Yi-Chang Jiao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ying-Xin Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-Zhu Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jing-Wen Xu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yu-Ying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Chuan-Zhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao) of Shandong University, Qingdao 266103, Shandong Province, China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong Province, China
| | - Fu-Chen Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong Province, China.
| |
Collapse
|
5
|
Rabino M, Sommariva E, Zacchigna S, Pompilio G. From bedside to the bench: patient-specific hiPSC-EC models uncover endothelial dysfunction in genetic cardiomyopathies. Front Physiol 2023; 14:1237101. [PMID: 37538375 PMCID: PMC10394630 DOI: 10.3389/fphys.2023.1237101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
Genetic cardiomyopathies are a group of inherited disorders in which myocardial structure and function are damaged. Many of these pathologies are rare and present with heterogenous phenotypes, thus personalized models are required to completely uncover their pathological mechanisms and develop valuable therapeutic strategies. Both cardiomyocytes and fibroblasts, differentiated from patient-specific human induced pluripotent stem cells, represent the most studied human cardiac cell models in the context of genetic cardiomyopathies. While endothelial dysfunction has been recognized as a possible pathogenetic mechanism, human induced pluripotent stem cell-derived endothelial cells are less studied, despite they constitute a suitable model to specifically dissect the role of the dysfunctional endothelium in the development and progression of these pathologies. In this review, we summarize the main studies in which human induced pluripotent stem cell-derived endothelial cells are used to investigate endothelial dysfunction in genetic-based cardiomyopathies to highlight new potential targets exploitable for therapeutic intervention, and we discuss novel perspectives that encourage research in this direction.
Collapse
Affiliation(s)
- Martina Rabino
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
| | - Serena Zacchigna
- Unit of Cardio-Oncology, Centro Cardiologico Monzino—IRCCS, Milan, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Sahasrabudhe SA, Terluk MR, Kartha RV. N-acetylcysteine Pharmacology and Applications in Rare Diseases-Repurposing an Old Antioxidant. Antioxidants (Basel) 2023; 12:1316. [PMID: 37507857 PMCID: PMC10376274 DOI: 10.3390/antiox12071316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
N-acetylcysteine (NAC), a precursor of cysteine and, thereby, glutathione (GSH), acts as an antioxidant through a variety of mechanisms, including oxidant scavenging, GSH replenishment, antioxidant signaling, etc. Owing to the variety of proposed targets, NAC has a long history of use as a prescription product and in wide-ranging applications that are off-label as an over-the-counter (OTC) product. Despite its discovery in the early 1960s and its development for various indications, systematic clinical pharmacology explorations of NAC pharmacokinetics (PK), pharmacodynamic targets, drug interactions, and dose-ranging are sorely limited. Although there are anecdotal instances of NAC benefits in a variety of diseases, a comprehensive review of the use of NAC in rare diseases does not exist. In this review, we attempt to summarize the existing literature focused on NAC explorations in rare diseases targeting mitochondrial dysfunction along with the history of NAC usage, approved indications, mechanisms of action, safety, and PK characterization. Further, we introduce the research currently underway on other structural derivatives of NAC and acknowledge the continuum of efforts through pre-clinical and clinical research to facilitate further therapeutic development of NAC or its derivatives for rare diseases.
Collapse
Affiliation(s)
- Siddhee A Sahasrabudhe
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marcia R Terluk
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Mignani L, Guerra J, Corli M, Capoferri D, Presta M. Zebra-Sphinx: Modeling Sphingolipidoses in Zebrafish. Int J Mol Sci 2023; 24:ijms24054747. [PMID: 36902174 PMCID: PMC10002607 DOI: 10.3390/ijms24054747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Sphingolipidoses are inborn errors of metabolism due to the pathogenic mutation of genes that encode for lysosomal enzymes, transporters, or enzyme cofactors that participate in the sphingolipid catabolism. They represent a subgroup of lysosomal storage diseases characterized by the gradual lysosomal accumulation of the substrate(s) of the defective proteins. The clinical presentation of patients affected by sphingolipid storage disorders ranges from a mild progression for some juvenile- or adult-onset forms to severe/fatal infantile forms. Despite significant therapeutic achievements, novel strategies are required at basic, clinical, and translational levels to improve patient outcomes. On these bases, the development of in vivo models is crucial for a better understanding of the pathogenesis of sphingolipidoses and for the development of efficacious therapeutic strategies. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model several human genetic diseases owing to the high grade of genome conservation between human and zebrafish, combined with precise genome editing and the ease of manipulation. In addition, lipidomic studies have allowed the identification in zebrafish of all of the main classes of lipids present in mammals, supporting the possibility to model diseases of the lipidic metabolism in this animal species with the advantage of using mammalian lipid databases for data processing. This review highlights the use of zebrafish as an innovative model system to gain novel insights into the pathogenesis of sphingolipidoses, with possible implications for the identification of more efficacious therapeutic approaches.
Collapse
|
8
|
Gonzalez EA, Nader H, Siebert M, Suarez DA, Alméciga-Díaz CJ, Baldo G. Genome Editing Tools for Lysosomal Storage Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:127-155. [PMID: 37486520 DOI: 10.1007/978-3-031-33325-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Genome editing has multiple applications in the biomedical field. They can be used to modify genomes at specific locations, being able to either delete, reduce, or even enhance gene transcription and protein expression. Here, we summarize applications of genome editing used in the field of lysosomal disorders. We focus on the development of cell lines for study of disease pathogenesis, drug discovery, and pathogenicity of specific variants. Furthermore, we highlight the main studies that use gene editing as a gene therapy platform for these disorders, both in preclinical and clinical studies. We conclude that gene editing has been able to change quickly the scenario of these disorders, allowing the development of new therapies and improving the knowledge on disease pathogenesis. Should they confirm their hype, the first gene editing-based products for lysosomal disorders could be available in the next years.
Collapse
Affiliation(s)
- Esteban Alberto Gonzalez
- Cell, Tissue and Gene Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helena Nader
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Marina Siebert
- Postgraduate Program in Sciences of Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Basic Research and Advanced Investigations in Neurosciences Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Unit of Laboratorial Research, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Guilherme Baldo
- Cell, Tissue and Gene Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Miyajima T, Saito R, Yanagisawa H, Igarashi M, Wu C, Iwamoto T, Eto Y. Characterization of cellular phenotypes in neurons derived from induced pluripotent stem cells of male patients with Fabry disease. J Inherit Metab Dis 2023; 46:143-152. [PMID: 36220782 DOI: 10.1002/jimd.12567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023]
Abstract
Fabry disease (FD) is an X-linked inherited lysosomal metabolism disorder in which globotriaosylceramide (Gb3) accumulates in various organs resulting from a deficiency in alpha-galactosidase A. The clinical features of FD include progressive impairments of the renal, cardiac, and peripheral nervous systems. In addition, patients with FD often develop neuropsychiatric symptoms, such as depression and dementia, which are believed to be induced by the cellular injury of cerebrovascular and partially neuronal cells due to Gb3 accumulation. Although the analysis of autopsy brain tissue from patients with FD showed no accumulation of Gb3, abnormal deposits of Gb3 were found in the neurons of several brain areas, including the hippocampus. Therefore, in this study, we generated induced pluripotent stem cells (iPSCs) from patients with FD and differentiated them into neuronal cells to investigate pathological and biological changes in the neurons of FD. Neural stem cells (NSCs) and neurons were successfully differentiated from the iPSCs we generated; however, cellular damage and morphological changes were not found in these cells. Immunostaining revealed no Gb3 accumulation in NSCs and neurons. Transmission electron microscopy did not reveal any zebra body-like structures or inclusion bodies, which are characteristic of FD. These results indicated that neuronal cells derived from FD-iPSCs exhibited normal morphology and no Gb3 accumulation. It is likely that more in vivo environment-like cultures are needed for iPSC-derived neurons to reproduce disease-specific features.
Collapse
Affiliation(s)
- Takashi Miyajima
- Advanced Clinical Research Center, Southern Tohoku Research Institute for Neuroscience, Kawasaki, Japan
| | - Ryo Saito
- Advanced Clinical Research Center, Southern Tohoku Research Institute for Neuroscience, Kawasaki, Japan
| | - Hiroko Yanagisawa
- Advanced Clinical Research Center, Southern Tohoku Research Institute for Neuroscience, Kawasaki, Japan
| | - Miki Igarashi
- Advanced Clinical Research Center, Southern Tohoku Research Institute for Neuroscience, Kawasaki, Japan
| | - Chen Wu
- Advanced Clinical Research Center, Southern Tohoku Research Institute for Neuroscience, Kawasaki, Japan
| | - Takeo Iwamoto
- Division of Molecular Cell Biology, Core Research Facilities for Basic Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Southern Tohoku Research Institute for Neuroscience, Kawasaki, Japan
- The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Li X, Ren X, Zhang Y, Ding L, Huo M, Li Q. Fabry disease: Mechanism and therapeutics strategies. Front Pharmacol 2022; 13:1025740. [PMID: 36386210 PMCID: PMC9643830 DOI: 10.3389/fphar.2022.1025740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Fabry disease is a monogenic disease characterized by a deficiency or loss of the α-galactosidase A (GLA). The resulting impairment in lysosomal GLA enzymatic activity leads to the pathogenic accumulation of enzymatic substrate and, consequently, the progressive appearance of clinical symptoms in target organs, including the heart, kidney, and brain. However, the mechanisms involved in Fabry disease-mediated organ damage are largely ambiguous and poorly understood, which hinders the development of therapeutic strategies for the treatment of this disorder. Although currently available clinical approaches have shown some efficiency in the treatment of Fabry disease, they all exhibit limitations that need to be overcome. In this review, we first introduce current mechanistic knowledge of Fabry disease and discuss potential therapeutic strategies for its treatment. We then systemically summarize and discuss advances in research on therapeutic approaches, including enzyme replacement therapy (ERT), gene therapy, and chaperone therapy, as well as strategies targeting subcellular compartments, such as lysosomes, the endoplasmic reticulum, and the nucleus. Finally, the future development of potential therapeutic strategies is discussed based on the results of mechanistic studies and the limitations associated with these therapeutic approaches.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Ding
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Minfeng Huo
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| |
Collapse
|
11
|
Development of vascular disease models to explore disease causation and pathomechanisms of rare vascular diseases. Semin Immunopathol 2022; 44:259-268. [PMID: 35233690 PMCID: PMC8887661 DOI: 10.1007/s00281-022-00925-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
As the field of medicine is striving forward heralded by a new era of next-generation sequencing (NGS) and integrated technologies such as bioprinting and biological material development, the utility of rare monogenetic vascular disease modeling in this landscape is starting to emerge. With their genetic simplicity and broader applicability, these patient-specific models are at the forefront of modern personalized medicine. As a collective, rare diseases are a significant burden on global healthcare systems, and rare vascular diseases make up a significant proportion of this. High costs are due to a lengthy diagnostic process, affecting all ages from infants to adults, as well as the severity and chronic nature of the disease. Their complex nature requires sophisticated disease models and integrated approaches involving multidisciplinary teams. Here, we review these emerging vascular disease models, how they contribute to our understanding of the pathomechanisms in rare vascular diseases and provide useful platforms for therapeutic discovery.
Collapse
|
12
|
Sphingosine-1-Phosphate Levels Are Higher in Male Patients with Non-Classic Fabry Disease. J Clin Med 2022; 11:jcm11051233. [PMID: 35268324 PMCID: PMC8911241 DOI: 10.3390/jcm11051233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Fabry disease is an X-linked lysosomal disease in which defects in the alpha-galactosidase A enzyme activity lead to the ubiquitous accumulation of glycosphingolipids. Whereas the classic disease is characterized by neuropathic pain, progressive renal failure, white matter lesions, cerebral stroke, and hypertrophic cardiomyopathy (HCM), the non-classic phenotype, also known as cardiac variant, is almost exclusively characterized by HCM. Circulating sphingosine-1-phosphate (S1P) has controversially been associated with the Fabry cardiomyopathy. We measured serum S1P levels in 41 patients of the FFABRY cohort. S1P levels were higher in patients with a non-classic phenotype compared to those with a classic phenotype (200.3 [189.6−227.9] vs. 169.4 ng/mL [121.1−203.3], p = 0.02). In a multivariate logistic regression model, elevated S1P concentration remained statistically associated with the non-classic phenotype (OR = 1.03; p < 0.02), and elevated lysoGb3 concentration with the classic phenotype (OR = 0.95; p < 0.03). S1P levels were correlated with interventricular septum thickness (r = 0.46; p = 0.02). In a logistic regression model including S1P serum levels, phenotype, and age, age remained the only variable significantly associated with the risk of HCM (OR = 1.25; p = 0.001). S1P alone was not associated with cardiac hypertrophy but with the cardiac variant. The significantly higher S1P levels in patients with the cardiac variant compared to those with classic Fabry suggest the involvement of distinct pathophysiological pathways in the two phenotypes. S1P dosage could allow the personalization of patient management.
Collapse
|
13
|
Abstract
The possibility of reprogramming human somatic cells to pluripotency has opened unprecedented opportunities for creating genuinely human experimental models of disease. Inborn errors of metabolism (IEMs) constitute a greatly heterogeneous class of diseases that appear, in principle, especially suited to be modeled by iPSC-based technology. Indeed, dozens of IEMs have already been modeled to some extent using patient-specific iPSCs. Here, we review the advantages and disadvantages of iPSC-based disease modeling in the context of IEMs, as well as particular challenges associated to this approach, together with solutions researchers have proposed to tackle them. We have structured this review around six lessons that we have learnt from those previous modeling efforts, and that we believe should be carefully considered by researchers wishing to embark in future iPSC-based models of IEMs.
Collapse
Affiliation(s)
- Rubén Escribá
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raquel Ferrer-Lorente
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ángel Raya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain.
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain.
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
14
|
Application of the Pluripotent Stem Cells and Genomics in Cardiovascular Research-What We Have Learnt and Not Learnt until Now. Cells 2021; 10:cells10113112. [PMID: 34831333 PMCID: PMC8623147 DOI: 10.3390/cells10113112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Personalized regenerative medicine and biomedical research have been galvanized and revolutionized by human pluripotent stem cells in combination with recent advances in genomics, artificial intelligence, and genome engineering. More recently, we have witnessed the unprecedented breakthrough life-saving translation of mRNA-based vaccines for COVID-19 to contain the global pandemic and the investment in billions of US dollars in space exploration projects and the blooming space-tourism industry fueled by the latest reusable space vessels. Now, it is time to examine where the translation of pluripotent stem cell research stands currently, which has been touted for more than the last two decades to cure and treat millions of patients with severe debilitating degenerative diseases and tissue injuries. This review attempts to highlight the accomplishments of pluripotent stem cell research together with cutting-edge genomics and genome editing tools and, also, the promises that have still not been transformed into clinical applications, with cardiovascular research as a case example. This review also brings to our attention the scientific and socioeconomic challenges that need to be effectively addressed to see the full potential of pluripotent stem cells at the clinical bedside.
Collapse
|