1
|
Lian Q, Liu H, Li J, Luo C, Liu C, Zhao H, Dai P, Wang B, Zhou H, Jiang X, Wang Z, Qiao S. Enhancing radiosensitivity of osteosarcoma by ITGB3 knockdown: a mechanism linked to enhanced osteogenic differentiation status through JNK/c-JUN/RUNX2 pathway activation. J Exp Clin Cancer Res 2025; 44:159. [PMID: 40410897 DOI: 10.1186/s13046-025-03417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 05/11/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND The prognosis of osteosarcoma has improved little over the past few decades, with radioresistance being a contributing factor. Effective radiosensitizing targets and novel mechanisms for treating osteosarcoma are urgently needed. Research on the impact of regulating differentiation levels on the radiosensitivity of malignant tumors is limited. This study aimed to explore the efficacy of ITGB3 as a novel radiosensitizing target in osteosarcoma and to explore whether the modulation of osteogenic differentiation plays a role in mediating the radiosensitizing effect. METHODS RNA sequencing was utilized to screen for potential targets that affect the radiosensitivity of osteosarcoma. In vitro assays examining cell viability, apoptosis, proliferation, migration, and invasion were conducted to verify the radiosensitizing effect of ITGB3-knockdown (KD). Furthermore, in vivo validation was performed by constructing mouse models with subcutaneous and orthotopic tibial tumors. Rescue experiments involving siRNAs and molecular inhibitors were performed to explore and validate the mechanisms through which ITGB3-KD exerts a radiosensitizing effect in vitro and in vivo. Additionally, osteogenic differentiation cultures of osteosarcoma cells were conducted as auxiliary validation for the radiosensitizing mechanism. RESULTS ITGB3-KD had a radiosensitizing effect on osteosarcoma in vitro by inhibiting cell viability, proliferation, migration, and invasion and promoting apoptosis. ITGB3-KD radiosensitized osteosarcoma in vivo in subcutaneous and orthotopic tibial tumor models. ITGB3-KD upregulated the JNK/c-JUN pathway, and rescue experiments with a JNK inhibitor revealed that the activation of this pathway was crucial for the upregulation of osteogenic markers such as RUNX2, OCN, and OPN, as well as for promoting apoptotic pathways. siRNA-based rescue experiments indicated that the upregulation of RUNX2 mediated the proapoptotic radiosensitizing effects of ITGB3-KD. Culture in osteogenic differentiation medium promoted osteosarcoma radiosensitization by enhancing the osteogenic differentiation status, working synergistically with ITGB3-KD. CONCLUSIONS Our findings indicate that ITGB3-KD enhances radiosensitivity in osteosarcoma by promoting osteogenic differentiation and apoptosis through activation of the JNK/c-JUN/RUNX2 pathway, identifying ITGB3 as a candidate therapeutic target and implicating JNK/c-JUN/RUNX2 signaling as a modulatory axis for improving the response to radiation of osteosarcoma.
Collapse
Affiliation(s)
- Qiujian Lian
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, Fujian, 350007, China
- Department of Orthopedics, The Third Affiliated Hospital of Naval Medical University, Shanghai, 201805, China
| | - Hu Liu
- Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jingyan Li
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Cheng Luo
- Department of Orthopedics, The Third Affiliated Hospital of Naval Medical University, Shanghai, 201805, China
| | - Chang Liu
- Department of Orthopedics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, Fujian, 350025, China
| | - Haonan Zhao
- Department of Orthopedics, The Third Affiliated Hospital of Naval Medical University, Shanghai, 201805, China
| | - Peijun Dai
- Department of Orthopedics, The Third Affiliated Hospital of Naval Medical University, Shanghai, 201805, China
| | - Bingxuan Wang
- Department of Orthopedics, The Third Affiliated Hospital of Naval Medical University, Shanghai, 201805, China
| | - Huipeng Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Naval Medical University, Shanghai, 201805, China
| | - Xin Jiang
- Department of Anesthesiology, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zhiwei Wang
- Department of Orthopedics, The Third Affiliated Hospital of Naval Medical University, Shanghai, 201805, China.
| | - Suchi Qiao
- Department of Orthopedics, The Third Affiliated Hospital of Naval Medical University, Shanghai, 201805, China.
| |
Collapse
|
2
|
Kim H, Williams SJ, Colombo JS. Characterization of Fibronectin-Adherent, Non-Fibronectin-Adherent, and Explant-Derived Human Dental Pulp Stem Cell Populations. Dent J (Basel) 2025; 13:159. [PMID: 40277489 PMCID: PMC12026221 DOI: 10.3390/dj13040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Dental pulp stem cells (DPSCs) are of significant interest due to their mesenchymal lineage and relative availability from extracted teeth. This study aims to examine the relationship between fibronectin-adherent, non-fibronectin-adherent, and explant-derived DPSC populations in terms of the population doubling rate in culture and the expression of mesenchymal cell surface markers and their capacity for osteodifferentiation. Methods: Human pulp tissue was removed from healthy extracted human teeth, enzymatically digested prior to seeding onto fibronectin-coated plates, and left to adhere for 20 min, yielding a fibronectin-adherent population. The remaining non-adherent cells were transferred and designated 'non-fibronectin-adherent.' Intact pulp was placed on uncoated plastic for 5 days, with the migrated cells designated 'explant-derived'. DPSCs from these populations were examined in terms of population doubling rates, the expression of CD90, CD44, CD105, and CD73, and the expression of RUNX2, SPP1, and BGLAP after 7 days in osteoinductive media. Results: The fibronectin-adherent cells had the greatest population doubling over time. All populations demonstrated comparable percentages of cells positive for mesenchymal markers, though individual marker expression varied slightly. The explant-derived cells showed increased expression of RUNX2 after 7 days in osteoinductive media, while the treated single-cell-suspension-derived populations showed increased expression of SPP1 mRNA. Conclusions: Fibronectin enrichment resulted in a population with the greatest rate of population doubling over extended culture compared to the other two populations. The proportion of cells positive for all four mesenchymal surface markers was the same between populations. The fibronectin-adherent and non-adherent cultures may have responded more rapidly to osteoinductive media than the explant-derived cells.
Collapse
Affiliation(s)
| | | | - John S. Colombo
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV 89106, USA; (H.K.); (S.J.W.)
| |
Collapse
|
3
|
Tan S, Luo X, Wang Y, Chen S, Jiang T, Yang X, Peng X, Zhang X, Zhang S, Zhang C, Liu Z, Ma D. Biomimetic non-collagenous proteins-calcium phosphate complex with superior osteogenesis via regulating macrophage IL-27 secretion. Biomaterials 2025; 315:122917. [PMID: 39490058 DOI: 10.1016/j.biomaterials.2024.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Traumatic defects or non-union fractures presents a substantial challenge in the fields of tissue engineering and regenerative medicine. Although synthetic calcium phosphate-based biomaterials (CaPs) such as dibasic calcium phosphate anhydrate (DCPA) are commonly employed for bone repair, their inadequate cellular immune responses significantly impede sustained degradation and optimal osteogenesis. In this study, drawing inspiration from the key structure of an acidic non-collagenous protein-CaP complex (ANCPs-CaP) essential for natural bone formation, we prepared biomimetic mineralized dibasic calcium phosphate (MDCPA). This preparation utilized plant-derived non-collagenous protein Zein as the organic template and acidic artificial saliva as the mineralization medium. Physicochemical property analysis revealed that MDCPA is a complex of Zein and DCPA, which mimics the composite of the natural ANCP-CaP. Moreover, MDCPA exhibited enhanced biodegradability and osteogenic potential. Mechanistic insight revealed that MDCPA can be phagocytized and degraded by macrophages via the FCγRIII receptor, leading to the release of interleukin 27 (IL-27), which promotes osteogenic differentiation by osteoimmunomodulation. The critical role of IL-27 in osteogenesis is further confirmed using IL-27 gene knockout mice. Additionally, MDCPA demonstrates effective healing of critical-sized defects in rat cranial bones within only 4 w, providing a promising basis and valuable insights for critical-sized bone defects regeneration.
Collapse
Affiliation(s)
- Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xinghong Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yifan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangsi Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Jiang
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Xiaoshan Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xinyi Peng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xinyao Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sheng Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chengfei Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Zhenzhen Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Sodré LI, Gall MEC, Elias MDB, de Oliveira LO, Lobo FATF, Carias RBV, Teodoro AJ. Osteogenic Effects of Bioactive Compounds Found in Fruits on Mesenchymal Stem Cells: A Review. Nutr Rev 2025; 83:675-691. [PMID: 39862385 DOI: 10.1093/nutrit/nuae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025] Open
Abstract
Phytochemicals, which are bioactive compounds contained in fruits, vegetables, and teas, have a positive effect on human health by having anti-inflammatory, antioxidant, and anticarcinogenic effects. Several studies have highlighted the ability of bioactive compounds to activate key cellular enzymes associated with important signaling pathways related to cell division and proliferation, as well as their role in inflammatory and immunological responses. Some phytochemicals are associated with increased proliferation, differentiation, and expression of markers related to osteogenesis, bone formation, and mineralization by activating various signaling pathways. The objective of this study was to clarify which bioactive compounds present in fruits have osteogenic effects on mesenchymal stem cells and the possible associated mechanisms. A literature search was conducted in the LILACS, MEDLINE, and PubMed databases for pertinent articles published between 2014 and 2024. This review included 34 articles that report the osteogenic effects of various bioactive compounds found in different fruits. All the articles reported that phytochemicals play a role in enhancing the regenerative properties of mesenchymal cells, such as proliferation, osteogenic differentiation, secretion of angiogenic factors, and extracellular matrix formation. This review highlights the potential of these phytochemicals in the prevention and treatment of bone diseases. However, more studies are recommended to identify and quantify the therapeutic dose of phytochemicals, investigate their mechanisms in humans, and ensure their safety and effectiveness for health, particularly for bone health.
Collapse
Affiliation(s)
- Lia Igel Sodré
- Graduate Program in Science of Nutrition, Fluminense Federal University, Niterói, RJ 24020-140, Brazil
| | - Maria Eduarda Cordebello Gall
- Graduate Program in Biotechnology, National Institute of Metrology Standardization and Industrial Quality, Xerém, RJ 25250-020, Brazil
| | - Monique de Barros Elias
- Graduate Program in Food and Nutrition Security, Fluminense Federal University/Faculty of Nutrition, Niterói, RJ 24020-140, Brazil
| | - Luana Oeby de Oliveira
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde (PPG-CAPS)/Fluminense Federal University, Faculty of Nutrition, Niteroi, RJ 24020-140, Brazil
| | | | - Rosana Bizon Vieira Carias
- Regenerative Medicine Laboratory, Centro Universitário Arthur Sá Earp Neto, Petrópolis Medical School, Petrópolis, RJ 25680-120, Brazil
| | - Anderson Junger Teodoro
- Universidade Federal Fluminense (Fluminense Federal University), Nutrition and Dietetics Department, Food and Nutrition Integrated Center, Niterói, RJ CEP 24020-140, Brazil
| |
Collapse
|
5
|
Fiolita SV, Aini Rasyid FQ, Nurhalifah L, Joelijanto R, Devi LS, Ramadhani V, Harmono H, Kusumawardani B, Fadiyah SN, Martin M. Forastero cacao bean extract gel decreases IL-6 positive osteoblasts, osteoclasts, and osteocytes on OIRR model: A primitive study. J Taibah Univ Med Sci 2025; 20:129-138. [PMID: 40125534 PMCID: PMC11925084 DOI: 10.1016/j.jtumed.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/12/2024] [Accepted: 02/16/2025] [Indexed: 03/25/2025] Open
Abstract
Background Malocclusion can be corrected with orthodontic treatment to improve function and aesthetics. Orthodontic treatment patients have the potential to produce greater Reactive Oxygen Species (ROS), as evidenced by an increase in the Oxidative Status Index (OSI) a week after treatment. As a result, oxidative stress may induce an imbalance of bone remodeling through intensifying osteoclastogenesis by expressing pro-inflammatory cytokine, namely Interleukin-6 (IL-6). The worst pathological condition that can occur is Orthodontic-Induced Root Resorption (OIRR), a resorptive area on the root that is unwanted from orthodontic treatment. OIRR incidence is reported to be more than 90 % asymptomatic. Using Forastero cacao bean (Theobroma cacao L.) extract gel as a natural antioxidant and anti-inflammatory compound is expected to be able to prevent excess ROS, which triggers an increase in various pro-inflammatory cytokines, especially IL-6, which plays a role in the bone resorption pathway, thus reducing the incidence of OIRR and making orthodontic treatment successful through balanced bone remodeling. Aim This study aimed to investigate the effect of Forastero cacao bean (Theobroma cacao L.) extract gel on the decrease of IL-6 cytokine expressed by osteoblasts, osteoclasts, and osteocytes in the OIRR model of male Wistar rats. Results IL-6 positive osteoblasts, osteoclasts, and osteocytes decreased significantly after 8 % Forastero cacao bean extract gel-treated, as seen in T7 and T14 groups compared to C-7 and C-14 groups (p < 0.05). Conclusions 8 % Forastero cacao bean extract gel decreased IL-6-positive osteoblasts, osteoclasts, and osteocytes in the tension side of the alveolar bone.
Collapse
Affiliation(s)
- Shierin V. Fiolita
- Department of Dentistry, Faculty of Dentistry, University of Jember, Jember, Indonesia
| | - Firda Q. Aini Rasyid
- Department of Dentistry, Faculty of Dentistry, University of Jember, Jember, Indonesia
| | - Lilis Nurhalifah
- Department of Dentistry, Faculty of Dentistry, University of Jember, Jember, Indonesia
| | - Rudy Joelijanto
- Department of Orthodontics, Faculty of Dentistry, University of Jember, Jember, Indonesia
| | - Leliana S. Devi
- Department of Orthodontics, Faculty of Dentistry, University of Jember, Jember, Indonesia
| | - Vanda Ramadhani
- Department of Orthodontics, Faculty of Dentistry, University of Jember, Jember, Indonesia
| | - Happy Harmono
- Department of Biomedical Sciences, Faculty of Dentistry, University of Jember, Jember, Indonesia
| | - Banun Kusumawardani
- Department of Biomedical Sciences, Faculty of Dentistry, University of Jember, Jember, Indonesia
| | - Syafika N. Fadiyah
- Department of Dentistry, Faculty of Dentistry, University of Jember, Jember, Indonesia
| | - Millenieo Martin
- Department of Dentistry, Faculty of Dentistry, University of Jember, Jember, Indonesia
| |
Collapse
|
6
|
Kong CH, Steffi C, Cai Y, Wang W. E-jet printed polycaprolactone with strontium-substituted mesoporous bioactive glass nanoparticles for bone tissue engineering. BIOMATERIALS ADVANCES 2025; 169:214173. [PMID: 39754870 DOI: 10.1016/j.bioadv.2024.214173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Osteoporosis, characterized by reduced bone mineral density and increased fracture risk, poses a significant health challenge, particularly for aging populations. Systemic treatments often lead to adverse side effects, emphasizing the need for localized solutions. This study introduces a 3D-printed polycaprolactone (PCL) scaffold embedded with strontium-substituted mesoporous bioactive glass nanoparticles (Sr-MBGNPs) and icariin (ICN) for the targeted regeneration of osteoporotic bone. The scaffold was characterized using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), ion release studies, and cellular assays, which confirmed its dual functionality in both enhancing osteoblast proliferation and differentiation and inhibiting osteoclastogenesis. The optimized Sr-MBGNP concentration ensured sustained ion release, superior hydrophilicity, and bioactivity without compromising scaffold integrity. Additionally, e-jet printing provided high precision and uniform pore sizes conducive to cellular activity. This novel scaffold platform demonstrates a promising localized treatment strategy, reducing systemic side effects while improving fixation stability. The innovative integration of Sr-MBGNPs and ICN highlights its potential to revolutionize osteoporosis therapy by promoting bone regeneration and mitigating bone resorption.
Collapse
Affiliation(s)
- Chee Hoe Kong
- Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore.
| | - Chris Steffi
- Institut für Biomechanik, ETH Zürich, GLC H 20.2, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Yanli Cai
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Wilson Wang
- Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore
| |
Collapse
|
7
|
Zhang Z, Gong N, Wang Y, Xu L, Zhao S, Liu Y, Tan F. Impact of Strontium, Magnesium, and Zinc Ions on the In Vitro Osteogenesis of Maxillary Sinus Membrane Stem Cells. Biol Trace Elem Res 2025; 203:1922-1933. [PMID: 39150638 DOI: 10.1007/s12011-024-04303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024]
Abstract
Human Maxillary Sinus Membrane Stem Cells (hMSMSCs) contribute significantly to bone formation following maxillary sinus floor augmentation (MSFA). The biological behavior of mesenchymal stem cells is notably influenced by varying concentrations of magnesium (Mg2+), strontium (Sr2+), and zinc (Zn2+) ions; however, their specific effects on hMSMSCs have not been comprehensively studied. We isolated hMSMSCs and identified their mesenchymal stem cell characteristics by flow cytometry and multilineage differentiation experiments. Subsequently, the hMSMSCs were cultured in media containing different concentrations of these metal ions. The proliferation and viability of hMSMSCs were assessed using CCK-8 and Calcein AM/PI staining. After osteogenic induction, cells were evaluated for alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red staining. Additionally, qRT-PCR was used to detect differences in osteogenic gene expression, and immunofluorescence staining was used to observe variations in OCN protein levels. The results indicated that 1 mM Mg2+, 0.01 mM Sr2+, and 0.001 mM Zn2+ significantly improved the proliferation and activity of hMSMSCs. These concentrations also notably enhanced ALP secretion, increased bone-related gene expression, and augmented osteocalcin expression and formation of extracellular calcium nodules, thereby improving osteogenic differentiation. However, higher concentrations of Mg2+, Sr2+, and Zn2+ decreased cell viability and osteogenic differentiation. Mg2+, Sr2+, and Zn2+ promote osteogenic differentiation and proliferation of hMSMSCs in a concentration-dependent manner, indicating that the type and concentration of ions in the extracellular environment can significantly alter hMSMSCs behavior, which is a crucial consideration for material design in maxillary sinus elevation applications.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ning Gong
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ying Wang
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Lei Xu
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Sinan Zhao
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yanshan Liu
- School of Stomatology, Qingdao University, Qingdao, 266023, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fei Tan
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266023, China.
| |
Collapse
|
8
|
Hu X, Tan Q, Zhu G, Xi H. Investigating the Role of Shikonin in Enhancing Osteogenesis and Angiogenesis for the Treatment of Osteoporosis. ACS OMEGA 2025; 10:9718-9727. [PMID: 40092755 PMCID: PMC11904651 DOI: 10.1021/acsomega.4c11161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Osteoporosis, characterized by an increased risk of fractures, represents a significant global public health issue. Natural compounds have emerged as promising candidates for addressing this condition. Shikonin, derived from Lithospermum erythrorhizon as a purple-red naphthoquinone pigment, exhibits a diverse array of biological activities, including antibacterial, anti-inflammatory, and anticancer properties. Despite the well-documented bone-protective properties of shikonin, the precise molecular mechanisms underlying its role in the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into osteoblasts, along with its implications on angiogenesis, are not fully elucidated. Our study showcases shikonin's ability to stimulate the differentiation of BMSCs into osteoblasts, leading to an upregulation of osteoblast-specific marker genes such as OC, Runx2, BMP2, and ALP. Furthermore, shikonin intervention triggers the upregulation of phosphorylation of p38, ERK, and JNK in the MAPK signaling pathway. Furthermore, shikonin has been shown to enhance the migration and angiogenic capabilities of human umbilical vein endothelial cells (HUVECs). Notably, the augmentation of HUVEC migration by shikonin can be counteracted by the addition of a JNK inhibitor. Furthermore, our findings indicate that shikonin effectively improves osteoporosis in aged mice by promoting osteoblast differentiation. In summary, our study elucidates the molecular mechanisms through which shikonin exerts its beneficial effects in the treatment of osteoporosis, highlighting its potential as a novel therapeutic option for both the prevention and management of this condition.
Collapse
Affiliation(s)
- Xiongke Hu
- Department
of Pediatric Orthopedics, Children’s
Hospital Affiliated to Xiangya Medical College of Central South University
(Hunan Children’s Hospital), Changsha, 86 Ziyuan Road, Hunan 410000, P. R. China
| | - Qian Tan
- Department
of Pediatric Orthopedics, Children’s
Hospital Affiliated to Xiangya Medical College of Central South University
(Hunan Children’s Hospital), Changsha, 86 Ziyuan Road, Hunan 410000, P. R. China
| | - Guanghui Zhu
- Department
of Pediatric Orthopedics, Children’s
Hospital Affiliated to Xiangya Medical College of Central South University
(Hunan Children’s Hospital), Changsha, 86 Ziyuan Road, Hunan 410000, P. R. China
| | - Haipeng Xi
- The
First Affiliated Hospital, Department of Neurosurgery, Hengyang Medical
School, University of South China, Hengyang, 69 Chuanshan
Road, Hunan 421001, P. R. China
| |
Collapse
|
9
|
Mahadeo CO, Shahin-Shamsabadi A, Khodamoradi M, Fahnestock M, Selvaganapathy PR. The Effects of Electrical Stimulation on a 3D Osteoblast Cell Model. Cells 2025; 14:396. [PMID: 40136645 PMCID: PMC11941504 DOI: 10.3390/cells14060396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Electrical stimulation has been used with tissue engineering-based models to develop three-dimensional (3D), dynamic, research models that are more physiologically relevant than static two-dimensional (2D) cultures. For bone tissue, the effect of electrical stimulation has focused on promoting healing and regeneration of tissue to prevent bone loss. However, electrical stimulation can also potentially affect mature bone parenchymal cells such as osteoblasts to guide bone formation and the secretion of paracrine or endocrine factors. Due to a lack of physiologically relevant models, these phenomena have not been studied in detail. In vitro electrical stimulation models can be useful for gaining an understanding of bone physiology and its effects on paracrine tissues under different physiological and pathological conditions. Here, we use a 3D, dynamic, in vitro model of bone to study the effects of electrical stimulation conditions on protein and gene expression of SaOS-2 human osteosarcoma osteoblast-like cells. We show that different stimulation regimens, including different frequencies, exposure times, and stimulation patterns, can have different effects on the expression and secretion of the osteoblastic markers alkaline phosphatase and osteocalcin. These results reveal that electrical stimulation can potentially be used to guide osteoblast gene and protein expression.
Collapse
Affiliation(s)
- Crystal O. Mahadeo
- Neuroscience Graduate Program, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Alireza Shahin-Shamsabadi
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.S.-S.); (M.K.)
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Maedeh Khodamoradi
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.S.-S.); (M.K.)
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ponnambalam Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.S.-S.); (M.K.)
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
10
|
Bighetti-Trevisan RL, Almeida LO, Ramos JIR, Freitas GP, Oliveira FS, Gordon JAR, Tye CE, Stein GS, Lian JB, Stein JL, Rosa AL, Beloti MM. The effect of osteoclasts on epigenetic regulation by long non-coding RNAs in osteoblasts grown on titanium with nanotopography. BIOMATERIALS ADVANCES 2025; 168:214128. [PMID: 39622096 DOI: 10.1016/j.bioadv.2024.214128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Titanium (Ti) implant osseointegration is regulated by the crosstalk among bone cells that are affected by epigenetic machinery, including the regulation of long non-coding RNAs (lncRNAs). Nanotopography Ti (Ti Nano) induces the differentiation of osteoblasts that are inhibited by osteoclasts through epigenetic mechanisms. Thus, we hypothesize that osteoclasts affect lncRNA expression in Ti Nano-cultivated osteoblasts. Osteoblasts were grown on Ti Nano and Ti Control that were then co-cultured with osteoclasts for 48 h. Using RNAseq, we identified 252 modulated lncRNAs in osteoblasts regulated by both surfaces of Ti, but mainly in Ti Nano-cultivated osteoblasts. A negative correlation was observed between Kcnq1ot1 and the mRNAs of Alpl, Bglap, Bmp8a, Col1a1, and Vim in Ti Nano-cultivated osteoblasts with osteoclasts. The pull-down indicated that Bglap mRNA is a direct target of Kcnq1ot1, with enhanced physical interaction in Ti Nano-cultivated osteoblasts, and greater osteoclast inhibition than the Ti Control. The bone marker expression at the levels of mRNA and protein were downregulated by the Kcnq1ot1 silencing, indicating its pivotal role in osteoblast differentiation. These results showed that nanostructured Ti surface modulates the osteoblast-osteoclast crosstalk, at least in part, through the regulation of lncRNA expression in osteoblasts. We demonstrate that the lncRNA Kcnq1ot1 directly interacts with Bglap mRNA, and this interaction is enhanced by nanotopography and reduced by osteoclasts with greater intensity in Ti Nano-cultivated osteoblasts. These findings confirm the molecular mechanisms associated with the high osteogenic potential of nanotopography and can potentially support osteointegration of dental and skeletal prostheses.
Collapse
Affiliation(s)
- Rayana Longo Bighetti-Trevisan
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil; Faculty of Dentistry, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| | - Luciana Oliveira Almeida
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | - Gileade Pereira Freitas
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Oral and Maxillofacial Surgery, School of Dentistry, Federal University of Goiás, Goiânia, GO, Brazil..
| | | | - Jonathan Alexander Robert Gordon
- Department of Biochemistry and Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States of America.
| | - Coralee Elizabeth Tye
- Department of Biochemistry and Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States of America.
| | - Gary Stephen Stein
- Department of Biochemistry and Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States of America.
| | - Jane Barbara Lian
- Department of Biochemistry and Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States of America.
| | - Janet Lee Stein
- Department of Biochemistry and Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States of America.
| | - Adalberto Luiz Rosa
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Marcio Mateus Beloti
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Berthelot R, Variola F. Investigating the interplay between environmental conditioning and nanotopographical cueing on the response of human MG63 osteoblastic cells to titanium nanotubes. Biomater Sci 2025; 13:946-968. [PMID: 39404078 DOI: 10.1039/d4bm00792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Titanium nanotubular surfaces have been extensively studied for their potential use in biomedical implants due to their ability to promote relevant phenomena associated with osseointegration, among other functions. However, despite the large body of literature on the subject, potential synergistic/antagonistic effects resulting from the combined influence of environmental variables and nanotopographical cues remain poorly investigated. Specifically, it is still unclear whether the nanotube-induced variations in cellular activity are preserved across different biochemical contexts. To bridge this gap, this study systematically evaluates the combined influence of nanotopographical cues and environmental factors on human MG63 osteoblastic cells. To this end, we capitalized on a triphasic anodization protocol to create nanostructured surfaces characterized by an average nanotube inner diameter of 25 nm (NT1) and 82 nm (NT2), as well as a two-tiered honeycomb (HC) architecture. A variable glucose content was chosen as the environmental modifier due to its well-known ability to affect specific functions of MG63 cells. Alkaline phosphatase (ALP), viability/metabolic activity and proliferation were quantified to identify the suitable preconditioning window required for dictating a change in behaviour without significantly damaging cells. Successively, a combination of immunofluorescence, colorimetric assays, live cell imaging and western blots quantified viability/metabolic activity and cell proliferation, migration and differentiation as a function of the combined effects exerted by the nanostructured substrates and the glucose content. To achieve a thorough understanding of MG63 cell adaptation and response, a comparative analysis table that includes and systematically cross-analyzes all variables from this study was used for interpretation and discussion of the results. Taken together, we have demonstrated that all surfaces mitigate the negative effects of high glucose. However, nanotubular topographies, particularly NT2, elicit a more beneficial outcome in high glucose in respect to untreated titanium. In addition, while NT1 surfaces are associated with the most stable cellular response across varying glucose levels, the NT2 and HC substrates exhibit the strongest enhancement of cell migration, viability/metabolism and differentiation. Moreover, shorter-term processes such as adhesion and proliferation are favored on untreated titanium, while anodized samples support later-term events. Lastly, the role of anodized surfaces is dominant over the effects of environmental glucose, underscoring the importance of carefully considering nanoscale surface features in the design and development of cell-instructive titanium surfaces.
Collapse
Affiliation(s)
- Ryan Berthelot
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Canada.
- Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Canada.
- Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
- Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
12
|
Khazaeel K, Sadeghi A, Khademi Moghaddam F, Mohammadi T. The impact of graphene quantum dots on osteogenesis potential of Wharton's jelly mesenchymal stem cells in fibrin hydrogel scaffolds. Cytotechnology 2025; 77:14. [PMID: 39665046 PMCID: PMC11628478 DOI: 10.1007/s10616-024-00672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Bone tissue engineering is a promising approach to overcome the limitations of traditional autograft bone transplantation. Graphene quantum dots (GQDs) have been suggested as an enhancement for osteogenic differentiation. This study aimed to investigate the ability of the fibrin hydrogel scaffold in the presence of graphene quantum dots to promote osteogenic differentiation of human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). The hWJ-MSCs were isolated from the Wharton's jelly of the human umbilical cord using a mechanical method. Fibrin hydrogel scaffolds were prepared by mixing 15 µl of thrombin solution with fibrinogen solution. GQDs were incorporated into the scaffolds at concentrations of 0, 5, and 10 µg/ml. Cell viability was determined through DAPI staining and the MTT assay. Osteogenic differentiation was assessed by measuring alkaline phosphatase (ALP) activity, quantifying calcium deposition using Alizarin Red S staining, and analyzing the gene expression of BGLAP, COL1A1, Runx-2 and ALP via qPCR. Scanning electron microscopy (SEM) was employed to analyze the scaffold architecture. SEM analysis revealed that the fibrin hydrogel exhibited a suitable architecture for tissue engineering, and DAPI staining confirmed cell viability. The MTT results indicated that the GQDs and fibrin hydrogel scaffold exhibited no cytotoxic effects. Furthermore, the incorporation of GQDs at a concentration of 10 µg/ml significantly enhanced ALP activity, calcium deposition, and the expression of osteogenesis-related genes compared to the control. The findings suggest that the combination of fibrin hydrogel and GQDs can effectively promote the osteogenic differentiation of hWJ-MSCs, contributing to the advancement of bone tissue engineering.
Collapse
Affiliation(s)
- Kaveh Khazaeel
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Abbas Sadeghi
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Tayebeh Mohammadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
13
|
Monteiro NG, de Oliveira-Filho ON, Gandolfo MIL, Ervolino da Silva AC, Pitol-Palin L, Botacin PR, Mulinari-Santos G, de Souza Batista FR, Okamoto R. Rubus coreanus Enhances Peri-Implant Bone Healing and Biomineralization in Ovariectomized and Healthy Rats. BIOLOGY 2025; 14:139. [PMID: 40001907 PMCID: PMC11852002 DOI: 10.3390/biology14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Estrogen deficiency contributes to osteoporosis and can therefore compromise the peri-implant bone. Hence, this study evaluated peri-implant bone healing when Rubus coreanus (RC) was administered orally in ovariectomized and healthy rats. Forty 4-month-old female rats were divided into four groups: SHAM (healthy rats), SHAM/RC (healthy rats treated with RC), OVX (ovariectomized rats), and OVX/RC (ovariectomized rats treated with RC). The oral administration of RC started thirty days after ovariectomy, and implant placement into the rat tibia occurred ninety days after the ovariectomy. Euthanasia occurred sixty days after implantation. The analyses performed included removal torque, RT-PCR, confocal microscopy, and immunolabeling. A significance level of p < 0.05 was considered for all tests. The highest reverse torque values were observed in the SHAM/RC group, followed by the OVX/RC group. Confocal microscopy showed the greatest bone biomineralization in the SHAM/RC group, followed by the OVX/RC group. RT-PCR data indicated that RC decreased the RANKL/OPG ratio in both conditions. Immunohistochemistry demonstrated a balance between bone formation and resorption in all groups, especially stimulating osteoblastogenesis in both treated groups. In conclusion, RC enhanced peri-implant bone healing and biomineralization in both healthy and ovariectomized rats, with stronger effects in healthy rats, suggesting that estrogen may enhance its efficacy. These findings support RC's potential as a prophylactic and therapeutic agent.
Collapse
Affiliation(s)
- Naara Gabriela Monteiro
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, Araçatuba 16015-050, Brazil; (N.G.M.); (O.N.d.O.-F.); (M.I.L.G.); (A.C.E.d.S.); (L.P.-P.); (F.R.d.S.B.)
| | - Odir Nunes de Oliveira-Filho
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, Araçatuba 16015-050, Brazil; (N.G.M.); (O.N.d.O.-F.); (M.I.L.G.); (A.C.E.d.S.); (L.P.-P.); (F.R.d.S.B.)
| | - Maria Isabela Lopes Gandolfo
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, Araçatuba 16015-050, Brazil; (N.G.M.); (O.N.d.O.-F.); (M.I.L.G.); (A.C.E.d.S.); (L.P.-P.); (F.R.d.S.B.)
| | - Ana Cláudia Ervolino da Silva
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, Araçatuba 16015-050, Brazil; (N.G.M.); (O.N.d.O.-F.); (M.I.L.G.); (A.C.E.d.S.); (L.P.-P.); (F.R.d.S.B.)
| | - Letícia Pitol-Palin
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, Araçatuba 16015-050, Brazil; (N.G.M.); (O.N.d.O.-F.); (M.I.L.G.); (A.C.E.d.S.); (L.P.-P.); (F.R.d.S.B.)
| | - Paulo Roberto Botacin
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, Araçatuba 16066-840, Brazil;
| | - Gabriel Mulinari-Santos
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, Araçatuba 16066-840, Brazil;
| | - Fábio Roberto de Souza Batista
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, Araçatuba 16015-050, Brazil; (N.G.M.); (O.N.d.O.-F.); (M.I.L.G.); (A.C.E.d.S.); (L.P.-P.); (F.R.d.S.B.)
| | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, Araçatuba 16066-840, Brazil;
| |
Collapse
|
14
|
Campione P, Rizzo MG, Bauso LV, Ielo I, Messina GML, Calabrese G. Osteoblastic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells on P3HT Thin Polymer Film. J Funct Biomater 2025; 16:10. [PMID: 39852566 PMCID: PMC11765816 DOI: 10.3390/jfb16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment. Based on this evidence, in this study, we evaluated the biological response of human adipose-derived mesenchymal stem cells cultured on P3HT thin polymer film for 14 days. Our results suggest that P3HT represents a good substrate to induce osteogenic differentiation of osteoprogenitor cells, even in the absence of specific inductive growth factors, thus representing a promising strategy for bone regenerative medicine. Therefore, the system provided may offer an innovative platform for next-generation biocompatible materials for regenerative medicine.
Collapse
Affiliation(s)
- Paola Campione
- Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy;
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Ileana Ielo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Grazia Maria Lucia Messina
- Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy;
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| |
Collapse
|
15
|
Chathoth BM, Helmholz H, Angrisani N, Wiese B, Reifenrath J, Willumeit-Römer R. Investigating the Potential of Magnesium Microparticles on Cartilage and Bone Regeneration Utilizing an In Vitro Osteoarthritis Model. J Biomed Mater Res A 2025; 113:e37862. [PMID: 39719870 DOI: 10.1002/jbm.a.37862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Osteoarthritis (OA) is a significant condition that profoundly impacts synovial joints, including cartilage and subchondral bone plate. Biomaterials that can impede OA progression are a promising alternative or supplement to anti-inflammatory and surgical interventions. Magnesium (Mg) alloys known for bone regeneration potential were assessed in the form of Mg microparticles regarding their impact on tissue regeneration and prevention of OA progression. In vitro assays based on mesenchymal stem cells (SCP-1) were applied to evaluate the Mg microparticle's compatibility and function. Biocompatibility documented through live-dead staining and lactate dehydrogenase assay revealed a 90% cell viability at a concentration below 10 mM after 3 days of exposure. An in vitro OA model based on the supplementation of the cytokines IL-1β, and TNF-α was established and disclosed the effect of Mg degradation products in differentiating SCP-1 cells. Sustained differentiation was confirmed through extracellular matrix staining and increased gene marker expression. The Mg supplementation reduced the release of inflammatory cytokines (IL-6 and IL-8) while promoting the expression of proteins such as collagen X, collagen I, and osteopontin in a time-dependent manner. The in vitro study suggests that Mg microparticles hold a therapeutic potential for OA treatment with their ability to support bone and cartilage repair mechanisms even under inflammatory conditions.
Collapse
Affiliation(s)
| | - Heike Helmholz
- Helmholtz Zentrum Hereon, Institute of Metallic Biomaterials, Geesthacht, Germany
| | - Nina Angrisani
- Hannover Medical School, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover, Germany
| | - Björn Wiese
- Helmholtz Zentrum Hereon, Institute of Metallic Biomaterials, Geesthacht, Germany
| | - Janin Reifenrath
- Hannover Medical School, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover, Germany
| | | |
Collapse
|
16
|
Pv S, Mathew AM, Vignesh K, Swathi CM, Venkatesan K, Charan BS, Kadalmani B, Pattanayak DK. Synergistic effects of calcium and zinc on bio-functionalized 3D Ti cancellous bone scaffold with enhanced osseointegration capacity in rabbit model. BIOMATERIALS ADVANCES 2025; 166:214070. [PMID: 39454416 DOI: 10.1016/j.bioadv.2024.214070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
The present research aims to develop a Ca-Zn ion-incorporated surface functionalized 3D Ti cancellous bone scaffold for bone defect repair. The scaffold is designed to mimic human cancellous bone architecture through selective laser melting-based additive manufacturing. The chemical-based surface modification approach employed here created a Ca and Zn ions incorporated nano-porous surface layer with enhanced surface roughness and hydrophilicity. The modified biomimetic scaffold improved the corrosion resistance behaviour with ICORR and ECORR values of 0.174 mA and 0.0097 V respectively. It is learned that incorporating Zn as ZnO over the scaffold has antibacterial activity against Staphylococcus aureus and Escherichia coli. The cellular response of MG-63 to the modified scaffold was evaluated through in-vitro studies which focus on the cytocompatible properties. The intra-osseous biomimetic Ti-Na-Ca:Zn 3D scaffold revealed significant improvement in the osseointegration capabilities in terms of bone mineral density (BMD) and bone volume/total volume (BV/TV) in the rabbit model. The osseointegration potential at the Ti-Na-Ca:Zn interface was evidenced by histological analysis and micro-CT imaging. In addition to this, the remarkable upregulation of osteogenic genes such as OCN, COL1A1, OPN, ALP, RUNX2, and OSX evidences the dynamics of the osseointegration process at each surgical period. This Ca and Zn surface functionalised porous architecture of the 3D Ti cancellous bone scaffold with enhanced biological response and bone integration can potentially give insights into implant customisation along with improved clinical outcomes.
Collapse
Affiliation(s)
- Sreya Pv
- Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu-630003, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ann Mary Mathew
- Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu-630003, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kalimuthu Vignesh
- Department of Animal Science, Bharathidasan University, Thiruchirappalli, Tamilnadu-620024, India
| | | | - K Venkatesan
- Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu-630003, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - B Sai Charan
- Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu-630003, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Balamuthu Kadalmani
- Department of Animal Science, Bharathidasan University, Thiruchirappalli, Tamilnadu-620024, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Thiruchirappalli, Tamilnadu-620024, India
| | - Deepak K Pattanayak
- Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu-630003, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
17
|
Lee JE, Hwa S, Lee HR, Kim JH, Lee HJ, Park JB. Impact of Vascular Endothelial Growth Factor on the Shape, Survival, and Osteogenic Transformation of Gingiva-Derived Stem Cell Spheroids. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2108. [PMID: 39768988 PMCID: PMC11677937 DOI: 10.3390/medicina60122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Vascular endothelial growth factor (VEGF) is a protein which stimulates the formation of new blood vessels, playing a crucial role in processes such as wound healing and tumor growth. Methods: This study investigated the effects of VEGF on cell viability and osteogenic differentiation in mesenchymal stem cell (MSC) spheroids. Stem cell spheroids were fabricated using concave microwells and cultured with VEGF at concentrations of 0, 0.01, 0.1, 1, and 10 ng/mL. Morphological assessments were conducted on days 1, 3, 5, and 7, while cell viability was evaluated using the LIVE/DEAD assay and Cell Counting Kit-8. Alkaline phosphatase activity (ALP) and calcium deposition were measured to assess osteogenic differentiation, and qPCR was used to analyze osteogenic marker expression. Results: The spheroids maintained their shape across all VEGF concentrations, with the largest diameter being at 0.01 ng/mL on day 1, which decreased over time. Cell viability was highest at 0.01 ng/mL VEGF, while calcium deposition peaked at 0.1 ng/mL. Osteogenic markers, including RUNX2, osteocalcin, and COL1A1, showed significant upregulation at 1 ng/mL VEGF. Conclusions: These results suggest that VEGF enhances early osteogenic differentiation in MSC spheroids, indicating its potential for bone repair and tissue regeneration. VEGF could be applied in clinical settings for bone healing, fracture repair, and regenerative dentistry treatments.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-E.L.); (S.H.); (H.-R.L.); (J.-H.K.); (H.-J.L.)
- Department of Periodontics, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Somyeong Hwa
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-E.L.); (S.H.); (H.-R.L.); (J.-H.K.); (H.-J.L.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hee-Ra Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-E.L.); (S.H.); (H.-R.L.); (J.-H.K.); (H.-J.L.)
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ju-Hwan Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-E.L.); (S.H.); (H.-R.L.); (J.-H.K.); (H.-J.L.)
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-E.L.); (S.H.); (H.-R.L.); (J.-H.K.); (H.-J.L.)
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-E.L.); (S.H.); (H.-R.L.); (J.-H.K.); (H.-J.L.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
18
|
Ouzin M, Wesselborg S, Fritz G, Kogler G. Evaluation of Genotoxic Effects of N-Methyl-N-Nitroso-Urea and Etoposide on the Differentiation Potential of MSCs from Umbilical Cord Blood and Bone Marrow. Cells 2024; 13:2134. [PMID: 39768222 PMCID: PMC11675027 DOI: 10.3390/cells13242134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The present study investigates the influence of nitrosamines and etoposide on mesenchymal stromal cells (MSCs) in a differentiation state- and biological age-dependent manner. The genotoxic effects of the agents on both neonatal and adult stem cell populations after treatment, before, or during the course of differentiation, and the sensitivity of the different MSC types to different concentrations of MNU or etoposide were assessed. Hereby, the multipotent differentiation capacity of MSCs into osteoblasts, adipocytes, and chondrocytes was analyzed. Our findings reveal that while all cell types exhibit DNA damage upon exposure, neonatal CB-USSCs demonstrate enhanced resistance to genotoxic damage compared with their adult counterparts. Moreover, the osteogenic differentiation of MSCs was more susceptible to genotoxic damage, whereas the adipogenic and chondrogenic differentiation potentials did not show any significant changes upon treatment with genotoxin. Furthermore, we emphasize the cell-specific variability in responses to genotoxic damage and the differences in sensitivity and reaction across different cell types, thus advocating the consideration of these variabilities during drug testing and developmental biological research.
Collapse
Affiliation(s)
- Meryem Ouzin
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany;
| | - Sebastian Wesselborg
- Institute for Molecular Medicine I, University Hospital, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany;
| | - Gerhard Fritz
- Institute of Toxicology, University Hospital, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany;
| | - Gesine Kogler
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany;
| |
Collapse
|
19
|
Da Silva D, Crous A, Abrahamse H. Synergistic Effects of Photobiomodulation and Differentiation Inducers on Osteogenic Differentiation of Adipose-Derived Stem Cells in Three-Dimensional Culture. Int J Mol Sci 2024; 25:13350. [PMID: 39769115 PMCID: PMC11678880 DOI: 10.3390/ijms252413350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis, a common metabolic bone disorder, leads to increased fracture risk and significant morbidity, particularly in postmenopausal women and the elderly. Traditional treatments often fail to fully restore bone health and may cause side effects, prompting the exploration of regenerative therapies. Adipose-derived stem cells (ADSCs) offer potential for osteoporosis treatment, but their natural inclination toward adipogenic rather than osteogenic differentiation poses a challenge. This study investigates a novel approach combining differentiation inducers (DIs), three-dimensional (3D) hydrogel scaffolds, and photobiomodulation (PBM) to promote osteogenic differentiation of immortalised ADSCs. A dextran-based 3D hydrogel matrix, supplemented with a DI cocktail of dexamethasone, β-glycerophosphate disodium, and ascorbic acid, was used to foster osteogenesis. PBM was applied using near-infrared (825 nm), green (525 nm), and combined wavelengths at fluences of 3 J/cm2, 5 J/cm2, and 7 J/cm2 to enhance osteogenic potential. Flow cytometry identified osteoblast-specific markers, while inverted light microscopy evaluated cellular morphology. Reactive oxygen species assays measured oxidative stress, and quantitative polymerase chain reaction (qPCR) revealed upregulated gene expression linked to osteogenesis. The findings demonstrate that integrating DIs, 3D hydrogels, and PBM effectively drives osteogenic differentiation in immortalised ADSCs. The PBM enhanced osteogenic marker expression, induced morphological changes, and upregulated gene activity, presenting a promising framework for bone regeneration. Future research should assess the stability and functionality of these differentiated cells and explore their applicability in preclinical models of bone injury or degeneration. This integrative approach demonstrated specific efficacy in promoting the osteogenic differentiation of ADSCs, highlighting its potential application in developing targeted treatments for osteoporosis.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
20
|
De Vos B, Kasonga AE, Joubert AM, Nyakudya TT. Exploring the In Vitro Effects of Zingerone on Differentiation and Signalling Pathways in Bone Cell Lines. Metabolites 2024; 14:693. [PMID: 39728474 DOI: 10.3390/metabo14120693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE Ensuring adequate bone health is crucial for preventing conditions such as osteoporosis and fractures. Zingerone, a phytonutrient isolated from cooked ginger, has gained attention for its potential benefits in bone health. This study evaluated the osteoprotective potential of zingerone and its effects on differentiation and signalling pathways in vitro using SAOS-2 osteosarcoma and RAW264.7 macrophage cell lines, aiming to elucidate its mechanism of action in bone remodelling. METHODS SAOS-2 osteosarcoma and RAW264.7 macrophage cells were treated with zingerone at concentrations of 200 µM. Osteoblast differentiation was assessed by alkaline phosphatase (ALP) activity, bone mineralisation via Alizarin Red S stain, and gene expression markers (ALP, runt-related transcription factor 2 (Runx2), and osteocalcin) via quantitative polymerase chain reaction (q-PCR). Osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase (TRAP) staining, TRAP activity, and mitogen-activated protein kinase (MAPK) pathways. RESULTS Treatment with zingerone was non-toxic at 200 µM. Zingerone (200 µM) significantly stimulated the gene expression of ALP and Runx2 in SAOS-2 cells (p < 0.05) without statistically significantly enhancing SAOS-2 mineralisation via calcium deposits. Moreover, zingerone significantly inhibited osteoclast differentiation in RAW264.7 cells as evidenced by reduced TRAP staining and activity (p < 0.05). CONCLUSIONS Zingerone shows promise in reducing osteoclast activity and supporting early osteoblast differentiation, suggesting its potential as a dietary supplement for bone health. Further in vivo and clinical studies are needed to confirm its role in managing osteoporosis.
Collapse
Affiliation(s)
- Brunhildé De Vos
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Abe E Kasonga
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Anna M Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Trevor T Nyakudya
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| |
Collapse
|
21
|
Deng L, Liu Y, Wu Q, Lai S, Yang Q, Mu Y, Dong M. Exosomes to exosome-functionalized scaffolds: a novel approach to stimulate bone regeneration. Stem Cell Res Ther 2024; 15:407. [PMID: 39521993 PMCID: PMC11550564 DOI: 10.1186/s13287-024-04024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bone regeneration is a complex biological process that relies on the orchestrated interplay of various cellular and molecular events. Bone tissue engineering is currently the most promising method for treating bone regeneration. However, the immunogenicity, stable and cell quantity of seed cells limited their application. Recently, exosomes, which are small extracellular vesicles released by cells, have been found to effectively address these problems and better induce bone regeneration. Meanwhile, a growing line of research has shown the cargos of exosomes may provide effective therapeutic and biomarker tools for bone repair, including miRNA, lncRNA, and proteins. Moreover, engineered scaffolds loaded with exosomes can offer a cell-free bone repair strategy, addressing immunogenicity concerns and providing a more stable functional performance. Herein, we provide a comprehensive summary of the role played by scaffolds loaded with exosomes in bone regeneration, drawing on a systematic analysis of relevant literature available on PubMed, Scopus, and Google Scholar database.
Collapse
Affiliation(s)
- Li Deng
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yang Liu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Qian Wu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China.
| |
Collapse
|
22
|
Ami D, Santambrogio C, Vertemara J, Bovio F, Santisteban-Veiga A, Sabín J, Zampella G, Grandori R, Cipolla L, Natalello A. The Landscape of Osteocalcin Proteoforms Reveals Distinct Structural and Functional Roles of Its Carboxylation Sites. J Am Chem Soc 2024; 146:27755-27769. [PMID: 39348444 DOI: 10.1021/jacs.4c09732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Human osteocalcin (OC) undergoes reversible, vitamin K-dependent γ-carboxylation at three glutamic acid residues, modulating its release from bones and its hormonal roles. A complete understanding of OC roles and structure-activity relationships is still lacking, as only uncarboxylated and few differently carboxylated variants have been considered so far. To fill this lack of knowledge, a comprehensive experimental and computational investigation of the structural properties and calcium-binding activity of all the OC variants is reported here. Such a comparative study indicates that the carboxylation sites are not equivalent and differently affect the OC structure and interaction with calcium, properties that are relevant for the modulation of OC functions. This study also discloses cooperative effects and provides structural and mechanistic interpretation. The disclosed peculiar features of each carboxylated proteoform strongly suggest that considering all eight possible OC variants in future studies may help rationalize some of the conflicting hypotheses observed in the literature.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Federica Bovio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Andrea Santisteban-Veiga
- AFFINImeter Scientific & Development team, Software 4 Science Developments, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Juan Sabín
- AFFINImeter Scientific & Development team, Software 4 Science Developments, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
- Institute for Advanced Simulations, Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| |
Collapse
|
23
|
De Pellegrin M, Reck A, Morsczeck C. Sclerostin inhibits Protein kinase C inhibitor GÖ6976 induced osteogenic differentiation of dental follicle cells. Tissue Cell 2024; 90:102522. [PMID: 39173455 DOI: 10.1016/j.tice.2024.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Human dental follicle cells (DFCs) as multipotent stem cells are currently investigated within the field of regenerative medicine considering their potential for the regeneration of dental tissues, bone defects caused by periodontal or degenerative diseases and the treatment of craniofacial disorders. However, molecular mechanisms of the differentiation into mineralizing cells are still inadequately understood. Previous studies have shown that GÖ6976, an inhibitor of classical isoforms of protein kinase C (PKC), enhanced ostogenic differentiation of DFCs. A possible mechanism for increased osteogenic differentiation could be the regulation of ossification inhibitors. This study therefore investigated whether the osteogenic differentiation inhibitor sclerostin (SOST) is regulated by GÖ6976 and whether the addition of sclerostin attenuates the stimulating effect of the PKC inhibitor. We demonstrated that the expression of the sclerostin gene decreased after PKC inhibition by GÖ6976 and that its gene expression is likely maintained by PKC via the BMP signaling pathway. Furthermore, supplementation of osteogenic differentiation medium with sclerostin impairs GÖ6976-induced differentiation of DFCs. Our data suggest that regulation of sclerostin mediates PKC inhibition-induced mineralization of DFCs.
Collapse
Affiliation(s)
- Michela De Pellegrin
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany
| | - Anja Reck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| |
Collapse
|
24
|
Jeong C, Lee CH, Seo J, Park JHY, Lee KW. Catechin and flavonoid glycosides from the Ulmus genus: Exploring their nutritional pharmacology and therapeutic potential in osteoporosis and inflammatory conditions. Fitoterapia 2024; 178:106188. [PMID: 39153558 DOI: 10.1016/j.fitote.2024.106188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This review investigates the therapeutic effects of Ulmus species extracts, traditionally used as tea ingredients in East Asia, on bone health and inflammatory conditions. Through the analysis of 9757 studies, narrowing down to 56 pertinent ones, we evaluated the safety and efficacy of Ulmus extracts. The focus was on catechin glycosides (CG) and flavonoid glycosides (FG), key compounds identified for their potential benefits. The research highlights the extracts' role in enhancing bone mineral density (BMD) by stimulating osteoblast activity and suppressing osteoclast differentiation, suggesting a protective effect against osteoporosis. Furthermore, the extracts demonstrated significant anti-inflammatory properties by modulating inflammatory markers and pathways. The findings confirm the historical use of Ulmus extracts in East Asia for health benefits and recommend further exploration into functional foods and nutraceuticals. The review calls for more rigorous research, including clinical trials, to establish optimal use and integration into modern health solutions. It underscores the potential of Ulmus extracts in promoting bone health and managing inflammation, advocating for a bridge between traditional practices and contemporary scientific validation. In conclusion, Ulmus extracts, a material long consumed as tea ingredients in East Asia, exhibit significant potential for improving bone health and reducing inflammation. This review calls for additional research to explore their full therapeutic capabilities, emphasizing the need for optimized extraction methods and clinical trials. It reinforces the importance of bridging traditional knowledge with contemporary scientific approaches to health and dietary solutions, promoting overall wellness.
Collapse
Affiliation(s)
- Chanhyeok Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Jiwon Seo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Department of Agricultural Biotechnology and Center for Food and Bio convergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
25
|
Waletzko-Hellwig J, Sass JO, Bader R, Frerich B, Dau M. Evaluation of Integrity of Allogeneic Bone Processed with High Hydrostatic Pressure: A Pilot Animal Study. Biomater Res 2024; 28:0067. [PMID: 39148817 PMCID: PMC11325089 DOI: 10.34133/bmr.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Processing of bone allografts with strong acids and γ-sterilization results in decreased biomechanical properties and reduction in osteogenecity and osteoconductivity. High hydrostatic pressure (HHP) treatment could be a gentle alternative to processing techniques usually applied. HHP is known to induce devitalization of cancellous bone while preserving biomechanical stability and molecules that induce cell differentiation. Here, a specific HHP protocol for devitalization of cancellous bone was applied to rabbit femoral bone. Allogeneic bone cylinders were subsequently implanted into a defect in the lateral condyles of rabbit femora and were compared to autologous bone grafts. Analysis of bone integration 4 and 12 weeks postoperatively revealed no differences between autografts and HHP-treated allografts regarding the expression of genes characteristic for bone remodeling, showing expression niveous comparable to original bone cylinder. Furthermore, biomechanical properties were evaluated 12 weeks postoperatively. Autografts and HHP-treated allografts both showed a yield strength ranging between 2 and 2.5 MPa and an average bone mass density of 250 mg/cm2. Furthermore, histological analysis of the region of interest revealed a rate of 5 to 10% BPM-2 and approximately 40% osteocalcin-positive staining, with no marked differences between allografts and autografts demonstrating comparable matrix deposition in the graft region. A suitable graft integrity was pointed out by μCT imaging in both groups, supporting the biomechanical data. In summary, the integrity of HHP-treated cancellous bone allografts showed similar results to untreated autografts. Hence, HHP treatment may represent a gentle and effective alternative to existing processing techniques for bone allografts.
Collapse
Affiliation(s)
- Janine Waletzko-Hellwig
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jan-Oliver Sass
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany
| | - Bernhard Frerich
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Dau
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
26
|
Re F, Sartore L, Pasini C, Ferroni M, Borsani E, Pandini S, Bianchetti A, Almici C, Giugno L, Bresciani R, Mutti S, Trenta F, Bernardi S, Farina M, Russo D. In Vitro Biocompatibility Assessment of Bioengineered PLA-Hydrogel Core-Shell Scaffolds with Mesenchymal Stromal Cells for Bone Regeneration. J Funct Biomater 2024; 15:217. [PMID: 39194655 DOI: 10.3390/jfb15080217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Human mesenchymal stromal cells (hMSCs), whether used alone or together with three-dimensional scaffolds, are the best-studied postnatal stem cells in regenerative medicine. In this study, innovative composite scaffolds consisting of a core-shell architecture were seeded with bone-marrow-derived hMSCs (BM-hMSCs) and tested for their biocompatibility and remarkable capacity to promote and support bone regeneration and mineralization. The scaffolds were prepared by grafting three different amounts of gelatin-chitosan (CH) hydrogel into a 3D-printed polylactic acid (PLA) core (PLA-CH), and the mechanical and degradation properties were analyzed. The BM-hMSCs were cultured in the scaffolds with the presence of growth medium (GM) or osteogenic medium (OM) with differentiation stimuli in combination with fetal bovine serum (FBS) or human platelet lysate (hPL). The primary objective was to determine the viability, proliferation, morphology, and spreading capacity of BM-hMSCs within the scaffolds, thereby confirming their biocompatibility. Secondly, the BM-hMSCs were shown to differentiate into osteoblasts and to facilitate scaffold mineralization. This was evinced by a positive Von Kossa result, the modulation of differentiation markers (osteocalcin and osteopontin), an expression of a marker of extracellular matrix remodeling (bone morphogenetic protein-2), and collagen I. The results of the energy-dispersive X-ray analysis (EDS) clearly demonstrate the presence of calcium and phosphorus in the samples that were incubated in OM, in the presence of FBS and hPL, but not in GM. The chemical distribution maps of calcium and phosphorus indicate that these elements are co-localized in the same areas of the sections, demonstrating the formation of hydroxyapatite. In conclusion, our findings show that the combination of BM-hMSCs and PLA-CH, regardless of the amount of hydrogel content, in the presence of differentiation stimuli, can provide a construct with enhanced osteogenicity for clinically relevant bone regeneration.
Collapse
Affiliation(s)
- Federica Re
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Luciana Sartore
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Chiara Pasini
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Matteo Ferroni
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Via Valotti 9, 25123 Brescia, Italy
- National Research Council (CNR)-Institute for Microelectronics and Microsystems, Via Gobetti 101, 40129 Bologna, Italy
| | - Elisa Borsani
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy
| | - Stefano Pandini
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Andrea Bianchetti
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Camillo Almici
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Lorena Giugno
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Highly Specialized Laboratory, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Silvia Mutti
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Federica Trenta
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- National Center for Gene Therapy and Drugs based on RNA Technology-CN3, 35122 Padua, Italy
| | - Mirko Farina
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
| | - Domenico Russo
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
27
|
Dixon D, Landree EN, Gomillion CT. 3D-Printed Demineralized Bone Matrix-Based Conductive Scaffolds Combined with Electrical Stimulation for Bone Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2024; 7:4366-4378. [PMID: 38905196 PMCID: PMC11253088 DOI: 10.1021/acsabm.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Bone is remodeled through a dynamic process facilitated by biophysical cues that support cellular signaling. In healthy bone, signaling pathways are regulated by cells and the extracellular matrix and transmitted via electrical synapses. To this end, combining electrical stimulation (ES) with conductive scaffolding is a promising approach for repairing damaged bone tissue. Therefore, "smart" biomaterials that can provide multifunctionality and facilitate the transfer of electrical cues directly to cells have become increasingly more studied in bone tissue engineering. Herein, 3D-printed electrically conductive composite scaffolds consisting of demineralized bone matrix (DBM) and polycaprolactone (PCL), in combination with ES, for bone regeneration were evaluated for the first time. The conductive composite scaffolds were fabricated and characterized by evaluating mechanical, surface, and electrical properties. The DBM/PCL composites exhibited a higher compressive modulus (107.2 MPa) than that of pristine PCL (62.02 MPa), as well as improved surface properties (i.e., roughness). Scaffold electrical properties were also tuned, with sheet resistance values as low as 4.77 × 105 Ω/sq for our experimental coating of the highest dilution (i.e., 20%). Furthermore, the biocompatibility and osteogenic potential of the conductive composite scaffolds were tested using human mesenchymal stromal cells (hMSCs) both with and without exogenous ES (100 mV/mm for 5 min/day four times/week). In conjunction with ES, the osteogenic differentiation of hMSCs grown on conductive DBM/PCL composite scaffolds was significantly enhanced when compared to those cultured on PCL-only and nonconductive DBM/PCL control scaffolds, as determined through xylenol orange mineral staining and osteogenic protein analysis. Overall, these promising results suggest the potential of this approach for the development of biomimetic hybrid scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Damion
T. Dixon
- School
of Environmental, Civil, Agricultural and Mechanical Engineering,
College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Erika N. Landree
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Cheryl T. Gomillion
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
28
|
Yao C, Pripatnanont P, Zhang J, Suttapreyasri S. Performance of a multiphase bioactive socket plug with a barrier function for alveolar ridge preservation. Biomed Mater 2024; 19:055009. [PMID: 38917815 DOI: 10.1088/1748-605x/ad5ba7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
The natural healing process of extraction socket and traditional socket plug material could not prevent buccal bone wall resorption and down growth of epithelium from the socket orifice. A multiphase bioactive socket plug (BP) is designed to overcome the natural healing process by maintaining the three-dimensional (3D) volume of extraction sockets, particularly in sockets with wall defects, and later provide sufficient alveolar bone volume for implant placement. The study aimed to fabricate and evaluate the physical, chemical, and biological performance of BPin vitro. The BP was fabricated through freeze-drying and layer-by-layer assembly, comprised of a base serving as a scaffold, a central portion for promoting bone regeneration, an upper buccal portion for maintaining alveolar socket dimension with a covering collagen membrane (Memb) on the top and upper buccal surface to prevent soft tissue infiltration. The BP as the experimental group and a pure collagen plug (CP) as the control group were investigated and compared. Radiograph, scanning electron microscopy, and energy-dispersive spectroscopy mapping confirmed that the four-part BP was successfully assembled and fabricated. Swelling rate analysis indicated that BP, CP, and Memb reached swelling equilibrium within 1 hour. BP exhibited a high remaining weight percentage in collagenase solution (68.81 ± 2.21% on day 90) and sustained calcium ion release, reaching the maximum 0.13 ± 0.04 mmol l-1on day 14. In biological assays, BP exhibited excellent cell proliferation (The OD value increased from 0.02 on day 1 to 0.23 on day 21.). The BP group exhibited higher alkaline phosphatase activity and osteocalcin content than the CP group within 21 days. Memb and BP exhibited outstanding barrier function, as evidenced by Hematoxylin and eosin staining. In summary, the multiphase bioactive socket plug represents a promising scaffold for alveolar ridge preservation application.
Collapse
Affiliation(s)
- Chao Yao
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Prisana Pripatnanont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Junbiao Zhang
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Guiyang Hospital of Stomatology, Guiyang, 550002, People's Republic of China
| | - Srisurang Suttapreyasri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| |
Collapse
|
29
|
Szeliga A, Grymowicz M, Kostrzak A, Smolarczyk R, Bala G, Smolarczyk K, Meczekalski B, Suchta K. Bone: A Neglected Endocrine Organ? J Clin Med 2024; 13:3889. [PMID: 38999458 PMCID: PMC11242793 DOI: 10.3390/jcm13133889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Bone has traditionally been viewed in the context of its structural contribution to the human body. Foremost providing necessary support for mobility, its roles in supporting calcium homeostasis and blood cell production are often afterthoughts. Recent research has further shed light on the ever-multifaceted role of bone and its importance not only for structure, but also as a complex endocrine organ producing hormones responsible for the autoregulation of bone metabolism. Osteocalcin is one of the most important substances produced in bone tissue. Osteocalcin in circulation increases insulin secretion and sensitivity, lowers blood glucose, and decreases visceral adipose tissue. In males, it has also been shown to enhance testosterone production by the testes. Neuropeptide Y is produced by various cell types including osteocytes and osteoblasts, and there is evidence suggesting that peripheral NPY is important for regulation of bone formation. Hormonal disorders are often associated with abnormal levels of bone turnover markers. These include commonly used bone formation markers (bone alkaline phosphatase, osteocalcin, and procollagen I N-propeptide) and commonly used resorption markers (serum C-telopeptides of type I collagen, urinary N-telopeptides of type I collagen, and tartrate-resistant acid phosphatase type 5b). Bone, however, is not exclusively comprised of osseous tissue. Bone marrow adipose tissue, an endocrine organ often compared to visceral adipose tissue, is found between trabecula in the bone cortex. It secretes a diverse range of hormones, lipid species, cytokines, and other factors to exert diverse local and systemic effects.
Collapse
Affiliation(s)
- Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | | | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Suchta
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| |
Collapse
|
30
|
Krakowian D, Lesiak M, Auguściak-Duma A, Witecka J, Kusz D, Sieroń AL, Gawron K. Analysis of the TID-I and TID-L Splice Variants' Expression Profile under In Vitro Differentiation of Human Mesenchymal Bone Marrow Cells into Osteoblasts. Cells 2024; 13:1021. [PMID: 38920651 PMCID: PMC11201664 DOI: 10.3390/cells13121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Bone formation is a complex process regulated by a variety of pathways that are not yet fully understood. One of the proteins involved in multiple osteogenic pathways is TID (DNAJA3). The aim of this work was to study the association of TID with osteogenesis. Therefore, the expression profiles of the TID splice variants (TID-L, TID-I) and their protein products were analyzed during the proliferation and differentiation of bone marrow mesenchymal stromal cells (B-MSCs) into osteoblasts. As the reference, the hFOB1.19 cell line was used. The phenotype of B-MSCs was confirmed by the presence of CD73, CD90, and CD105 surface antigens on ~97% of cells. The osteoblast phenotype was confirmed by increased alkaline phosphatase activity, calcium deposition, and expression of ALPL and SPP1. The effect of silencing the TID gene on the expression of ALPL and SPP1 was also investigated. The TID proteins and the expression of TID splice variants were detected. After differentiation, the expression of TID-L and TID-I increased 5-fold and 3.7-fold, respectively, while their silencing resulted in increased expression of SPP1. Three days after transfection, the expression of SPP1 increased 7.6-fold and 5.6-fold in B-MSCs and differentiating cells, respectively. Our preliminary study demonstrated that the expression of TID-L and TID-I changes under differentiation of B-MSCs into osteoblasts and may influence the expression of SPP1. However, for better understanding the functional association of these results with the relevant osteogenic pathways, further studies are needed.
Collapse
Affiliation(s)
- Daniel Krakowian
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
- Toxicology Research Group, Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, 43-200 Pszczyna, Poland
| | - Marta Lesiak
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Auguściak-Duma
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Witecka
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| | - Damian Kusz
- Department of Orthopaedics and Traumatology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksander L. Sieroń
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
31
|
Wang R, He X, Chen Z, Su S, Bai J, Liu H, Zhou F. A nanoparticle reinforced microporous methacrylated silk fibroin hydrogel to promote bone regeneration. Biomater Sci 2024; 12:2121-2135. [PMID: 38456326 DOI: 10.1039/d3bm01901b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Natural polymer-based hydrogels have been widely applied in bone tissue engineering due to their excellent biocompatibility and outstanding ability of drug encapsulation. However, they have relatively weak mechanical properties and lack bioactivity. Hence, we developed a bioactive nanoparticle composite hydrogel by incorporating LAPONITE®, which is an osteo-inductive inorganic nanoparticle. The incorporation of the nanoparticle significantly enhanced its mechanical properties. In vitro evaluation indicated that the nanocomposite hydrogel could exhibit good biocompatibility. Besides, the nanocomposite hydrogel was proved to have excellent osteogenic ability with up-regulated expression of osteogenic markers such as type I collagen (COL-I), runt-related transcription factor-2 (Runx-2) and osteocalcin (OCN). Furthermore, the in vivo study confirmed that the composite nanocomposite hydrogel could significantly promote new bone formation, providing a prospective strategy for bone tissue regeneration.
Collapse
Affiliation(s)
- Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
32
|
Sanyal S, Rajput S, Sadhukhan S, Rajender S, Mithal A, Chattopadhyay N. Polymorphisms in the Runx2 and osteocalcin genes affect BMD in postmenopausal women: a systematic review and meta-analysis. Endocrine 2024; 84:63-75. [PMID: 38055125 DOI: 10.1007/s12020-023-03621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Runx2 and osteocalcin have pivotal roles in bone homeostasis. Polymorphism of these two genes could alter the function of osteoblasts and consequently bone mineral density (BMD). Attempts to understand the relationship between these polymorphisms and BMD in postmenopausal women across a variety of populations have yielded inconsistent results. This meta-analysis seeks to define the relationship between these polymorphisms with BMD in postmenopausal women. METHODS Eligible studies were identified from three electronic databases. Data were extracted from the eligible studies (4 studies on Runx2 and 6 studies on osteocalcin), and associations of Runx2 T > C and osteocalcin HindIII polymorphisms with BMD in postmenopausal women were assessed using standard difference in means (SDM) and 95% confidence intervals (CI) as statistical measures. RESULTS A significant difference in the lumbar spine (LS) BMD in postmenopausal women was observed between the TT and CC homozygotes for the Runx2 T > C (SDM = -0.445, p-value = 0.034). The mutant genotypes (CC) showed significantly lower LS BMD in comparison to wild type genotypes under recessive model of genetic analysis (TC + TT vs. CC: SDM = -0.451, p-value = 0.032). For osteocalcin, HindIII polymorphism, the mutant genotypes (HH) was associated with significantly higher BMD for both LS and femoral neck (FN) than the wild type (hh) homozygotes (SDM = 0.152, p-value = 0.008 and SDM = 0.139, p-value = 0.016 for LS and FN, respectively). There was no association between total hip (TH) BMD and the osteocalcin HindIII polymorphism. CONCLUSIONS Runx2 T > C and osteocalcin HindIII polymorphisms influence the level of BMD in postmenopausal women and may be used as predictive markers of osteoporosis.
Collapse
Affiliation(s)
- Somali Sanyal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, 226018, India.
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | - Ambrish Mithal
- Institute of Endocrinology and Diabetes, Max Healthcare, Institutional Area, Press Enclave Road, Saket, New Delhi, India.
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
33
|
Doyle SE, Pannella M, Onofrillo C, Bellotti C, Di Bella C, O’Connell CD, Pirogova E, Lucarelli E, Duchi S. NEST3D printed bone-mimicking scaffolds: assessment of the effect of geometrical design on stiffness and angiogenic potential. Front Cell Dev Biol 2024; 12:1353154. [PMID: 38516128 PMCID: PMC10955058 DOI: 10.3389/fcell.2024.1353154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Tissue-engineered implants for bone regeneration require consideration regarding their mineralization and vascularization capacity. Different geometries, such as biomimetic designs and lattices, can influence the mechanical properties and the vascularization capacity of bone-mimicking implants. Negative Embodied Sacrificial Template 3D (NEST3D) printing is a versatile technique across a wide range of materials that enables the production of bone-mimicking scaffolds. In this study, different scaffold motifs (logpile, Voronoi, and trabecular bone) were fabricated via NEST3D printing in polycaprolactone to determine the effect of geometrical design on stiffness (10.44 ± 6.71, 12.61 ± 5.71, and 25.93 ± 4.16 MPa, respectively) and vascularization. The same designs, in a polycaprolactone scaffold only, or when combined with gelatin methacryloyl, were then assessed for their ability to allow the infiltration of blood vessels in a chick chorioallantoic membrane (CAM) assay, a cost-effective and time-efficient in ovo assay to assess vascularization. Our findings showed that gelatin methacrylolyl alone did not allow new chorioallantoic membrane tissue or blood vessels to infiltrate within its structure. However, polycaprolactone on its own or when combined with gelatin methacrylolyl allowed tissue and vessel infiltration in all scaffold designs. The trabecular bone design showed the greatest mineralized matrix production over the three designs tested. This reinforces our hypothesis that both biomaterial choice and scaffold motifs are crucial components for a bone-mimicking scaffold.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
34
|
de Almeida GS, Ferreira MR, da Costa Fernandes CJ, Suter LC, Carra MGJ, Correa DRN, Rangel EC, Saeki MJ, Zambuzzi WF. Development of cobalt (Co)-doped monetites for bone regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35319. [PMID: 37610175 DOI: 10.1002/jbm.b.35319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
Cobalt-doped monetite powders were synthesized by coprecipitation method under a cobalt nominal content between 2 and 20 mol % of total cation. Structural characterization of samples was performed by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. XRD results indicated that the Co-doped samples exhibited a monetite single-phase with the cell parameters and crystallite size dependent on the amount of substitutional element incorporated into the triclinic crystalline structure. Cell viability and adhesion assays using pre-osteoblastic cells showed there is no toxicity and the RTqPCR analysis showed significant differences in the expression for osteoblastic phenotype genes, showing a potential material for the bone regeneration.
Collapse
Affiliation(s)
- Gerson Santos de Almeida
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Marcel Rodrigues Ferreira
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Célio Junior da Costa Fernandes
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Luísa Camilo Suter
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Maria Gabriela Jacheto Carra
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Diego Rafael Nespeque Correa
- Laboratory of Anelasticity and Biomaterials, Department of Physics and Meteorology, School of Sciences, São Paulo State University-UNESP, Bauru, São Paulo, Brazil
| | - Elidiane Cipriano Rangel
- Laboratory of Technological Plasmas (LaPTec), Institute of Science and Technology, Sao Paulo State University (UNESP), Sorocaba, São Paulo, Brazil
| | - Margarida Juri Saeki
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
35
|
da Silva Sasso GR, Florencio-Silva R, de Pizzol-Júnior JP, Gil CD, Simões MDJ, Sasso-Cerri E, Cerri PS. Additional Insights Into the Role of Osteocalcin in Osteoblast Differentiation and in the Early Steps of Developing Alveolar Process of Rat Molars. J Histochem Cytochem 2023; 71:689-708. [PMID: 37953508 PMCID: PMC10691409 DOI: 10.1369/00221554231211630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
This study investigated whether osteocalcin (OCN) is present in osteoblast precursors and its relationship with initial phases of alveolar process formation. Samples of maxillae of 16-, 18-, and 20-day-old rat embryos (E16, E18, and E20, respectively), and 05-, 10-, and 15-day-old postnatal rats (P05, P10, and P15, respectively) were fixed and embedded in paraffin or araldite. Immunohistochemistry for osterix (Osx), alkaline phosphatase (ALP), and OCN detection was performed and the number of immunolabelled cells was computed. Non-decalcified sections were subjected to the von Kossa method combined with immunohistochemistry for Osx or OCN detection. For OCN immunolocalization, samples were fixed in 0.5% glutaraldehyde/2% formaldehyde and embedded in LR White resin. The highest number of ALP- and OCN-immunolabelled cells was observed in dental follicle of E16 specimens, mainly in basal portions of dental alveolus. In corresponding regions, osteoblasts in differentiation adjacent to von Kossa-positive bone matrix exhibited Osx and OCN immunoreactivity. Ultrastructural analysis revealed OCN immunoreactive particles inside osteoblast in differentiation, and in bone matrix associated with collagen fibrils and within matrix vesicles, at early stages of alveolar process formation. Our results indicate that OCN plays a role in osteoblast differentiation and may regulate calcium/phosphate precipitation during early mineralization of the alveolar process.
Collapse
Affiliation(s)
- Gisela Rodrigues da Silva Sasso
- Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
| | - Rinaldo Florencio-Silva
- Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
- Departamento de Ginecologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
| | - José Paulo de Pizzol-Júnior
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Cristiane Damas Gil
- Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
| | - Manuel de Jesus Simões
- Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
| | - Estela Sasso-Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Paulo Sérgio Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
36
|
Sandra Sari D, Martin M, Maduratna E, Basuki Notobroto H, Mahyudin F, Sudiana K, Ertanti N, Dinaryanti A, Abdul Rantam F. Combination adipose-derived mesenchymal stem cells-demineralized dentin matrix increase bone marker expression in periodontitis rats. Saudi Dent J 2023; 35:960-968. [PMID: 38107047 PMCID: PMC10724358 DOI: 10.1016/j.sdentj.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 12/19/2023] Open
Abstract
Background Periodontal disease is common in both developed and developing countries and affects around 20-50% of the global population, especially in adolescents, adults and the elderly is a public health problem. ADMSCs have the advantage of regenerating damaged tissue with high quality. DDM in the form of slices can improve healing in the mandibular sockets of molar teeth. The combination of ADMSC-DDM is expected to accelerate bone regeneration. Objectives To analyze the combination of ADMSCs-DDM at increasing bone marker expression in periodontitis rats. Methods This research is experimental with a randomized control group post-test-only design. A total of 50 male Wistar rats were divided into four groups: 1) normal group (K); 2) CP model (K + ); 3) CP model and treated with DDM scaffold therapy (K(s)); 4) CP model and treated with ADMSCs-DDM combination therapy (K(sc)). Making a CP model with injected LPS P. gingivalis into interproximal gingiva of the right first and second lower molars. The in vivo research stage was the implantation of the DDM scaffold and the ADMSCs-DDM combination in the rat periodontal pocket. Rats were euthanized on days 7, 14, and 28, and immunohistochemistry of STRO-1, RUNX-2, OSX, COL-I, and OCN was performed. DDM scaffolds are made in 10%, 50% and 100% concentrations for MTT testing. Statistical results were analyzed with Kruskal-Wallis and Mann-Whitney tests. Results The results of the MTT scaffold DDM were significant in the 10%, 50%, and 100% dilution groups (p < 0.05). The results showed there was a substantial difference in the expression of STRO-1 between the study groups (p < 0.05). The (K(sc)) was significantly higher than the (K) in RUNX-2 expression (p < 0.05). OSX expression showed significant results between study groups (p < 0.05). The expression of OCN and COL-I showed a significant difference in all study groups on day 28, where the (K(sc)) was higher than the (K) (p < 0.05). Conclusions Administration of the ADMSCs-DDM combination can accelerate alveolar bone regeneration on day 28. There is a mechanism of alveolar bone regeneration through the STRO-1, RUNX-2, OSX, and the COL-I pathway in periodontitis models.
Collapse
Affiliation(s)
- Desi Sandra Sari
- Department of Periodontics, Faculty of Dentistry, Universitas Jember, Jember 68121, Indonesia
| | - Millenieo Martin
- Graduated Student, Faculty of Dentistry, Universitas Jember, Jember 68121, Indonesia
| | - Ernie Maduratna
- Department of Periodontics, Faculty of Dentistry Universitas Airlangga, Surabaya 60132, Indonesia
| | - Hari Basuki Notobroto
- Department of Biostatistics and Demography, Faculty of Public Health, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic & Traumatology, Dr Soetomo General Hospital, Surabaya 60132, Indonesia
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Ketut Sudiana
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Nora Ertanti
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Aristika Dinaryanti
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Fedik Abdul Rantam
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Virology, Microbiology, and Immunology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| |
Collapse
|
37
|
Choi CE, Chakraborty A, Adzija H, Shamiya Y, Hijazi K, Coyle A, Rizkalla A, Holdsworth DW, Paul A. Metal Organic Framework-Incorporated Three-Dimensional (3D) Bio-Printable Hydrogels to Facilitate Bone Repair: Preparation and In Vitro Bioactivity Analysis. Gels 2023; 9:923. [PMID: 38131909 PMCID: PMC10742699 DOI: 10.3390/gels9120923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogels are three-dimensional (3D) water-swellable polymeric matrices that are used extensively in tissue engineering and drug delivery. Hydrogels can be conformed into any desirable shape using 3D bio-printing, making them suitable for personalized treatment. Among the different 3D bio-printing techniques, digital light processing (DLP)-based printing offers the advantage of quickly fabricating high resolution structures, reducing the chances of cell damage during the printing process. Here, we have used DLP to 3D bio-print biocompatible gelatin methacrylate (GelMA) scaffolds intended for bone repair. GelMA is biocompatible, biodegradable, has integrin binding motifs that promote cell adhesion, and can be crosslinked easily to form hydrogels. However, GelMA on its own is incapable of promoting bone repair and must be supplemented with pharmaceutical molecules or growth factors, which can be toxic or expensive. To overcome this limitation, we introduced zinc-based metal-organic framework (MOF) nanoparticles into GelMA that can promote osteogenic differentiation, providing safer and more affordable alternatives to traditional methods. Incorporation of this nanoparticle into GelMA hydrogel has demonstrated significant improvement across multiple aspects, including bio-printability, and favorable mechanical properties (showing a significant increase in the compressive modulus from 52.14 ± 19.42 kPa to 128.13 ± 19.46 kPa with the addition of ZIF-8 nanoparticles). The designed nanocomposite hydrogels can also sustain drug (vancomycin) release (maximum 87.52 ± 1.6% cumulative amount) and exhibit a remarkable ability to differentiate human adipose-derived mesenchymal stem cells toward the osteogenic lineage. Furthermore, the formulated MOF-integrated nanocomposite hydrogel offers the unique capability to coat metallic implants intended for bone healing. Overall, the remarkable printability and coating ability displayed by the nanocomposite hydrogel presents itself as a promising candidate for drug delivery, cell delivery and bone tissue engineering applications.
Collapse
Affiliation(s)
- Cho-E Choi
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hailey Adzija
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Khaled Hijazi
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Amin Rizkalla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON N6A 5B9, Canada
- Dentistry, The University of Western Ontario, London, ON N5A 5B9, Canada
| | - David W. Holdsworth
- Department of Medical Biophysics, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
38
|
Jaber M, Hofbauer LC, Hofbauer C, Duda GN, Checa S. Reduced Bone Regeneration in Rats With Type 2 Diabetes Mellitus as a Result of Impaired Stromal Cell and Osteoblast Function-A Computer Modeling Study. JBMR Plus 2023; 7:e10809. [PMID: 38025037 PMCID: PMC10652174 DOI: 10.1002/jbm4.10809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 12/01/2023] Open
Abstract
Bone has the fascinating ability to self-regenerate. However, under certain conditions, such as type 2 diabetes mellitus (T2DM), this ability is impaired. T2DM is a chronic metabolic disease known by the presence of elevated blood glucose levels that is associated with reduced bone regeneration capability, high fracture risk, and eventual non-union risk after a fracture. Several mechanical and biological factors relevant to bone regeneration have been shown to be affected in a diabetic environment. However, whether impaired bone regeneration in T2DM can be explained due to mechanical or biological alterations remains unknown. To elucidate the relevance of either one, the aim of this study was to investigate the relative contribution of T2DM-related alterations on either cellular activity or mechanical stimuli driving bone regeneration. A previously validated in silico computer modeling approach that was capable of explaining bone regeneration in uneventful conditions of healing was further developed to investigate bone regeneration in T2DM. Aspects analyzed included the presence of mesenchymal stromal cells (MSCs), cellular migration, proliferation, differentiation, apoptosis, and cellular mechanosensitivity. To further verify the computer model findings against in vivo data, an experimental setup was replicated, in which regeneration was compared in healthy and diabetic after a rat femur bone osteotomy stabilized with plate fixation. We found that mechanical alterations had little effect on the reduced bone regeneration in T2DM and that alterations in MSC proliferation, MSC migration, and osteoblast differentiation had the highest effect. In silico predictions of regenerated bone in T2DM matched qualitatively and quantitatively those from ex vivo μCT at 12 weeks post-surgery when reduced cellular activities reported in previous in vitro and in vivo studies were included in the model. The presented findings here could have clinical implications in the treatment of bone fractures in patients with T2DM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mahdi Jaber
- Julius Wolff Institute at Berlin Institute of Health, Charité—Universitätsmedizin BerlinBerlinGermany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy AgingTechnische Universität DresdenDresdenGermany
| | - Christine Hofbauer
- Department of Medicine III and Center for Healthy AgingTechnische Universität DresdenDresdenGermany
| | - Georg N Duda
- Julius Wolff Institute at Berlin Institute of Health, Charité—Universitätsmedizin BerlinBerlinGermany
- BIH Center for Regenerative TherapiesBIH at Charité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Sara Checa
- Julius Wolff Institute at Berlin Institute of Health, Charité—Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
39
|
Ghuloum FI, Stevens LA, Johnson CA, Riobo-Del Galdo NA, Amer MH. Towards modular engineering of cell signalling: Topographically-textured microparticles induce osteogenesis via activation of canonical hedgehog signalling. BIOMATERIALS ADVANCES 2023; 154:213652. [PMID: 37837904 DOI: 10.1016/j.bioadv.2023.213652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Polymer microparticles possess great potential as functional building blocks for advanced bottom-up engineering of complex tissues. Tailoring the three-dimensional architectural features of culture substrates has been shown to induce osteogenesis in mesenchymal stem cells in vitro, but the molecular mechanisms underpinning this remain unclear. This study proposes a mechanism linking the activation of Hedgehog signalling to the osteoinductive effect of surface-engineered, topographically-textured polymeric microparticles. In this study, mesenchymal progenitor C3H10T1/2 cells were cultured on smooth and dimpled poly(D,l-lactide) microparticles to assess differences in viability, cellular morphology, proliferation, and expression of a range of Hedgehog signalling components and osteogenesis-related genes. Dimpled microparticles induced osteogenesis and activated the Hedgehog signalling pathway relative to smooth microparticles and 2D-cultured controls without the addition of exogenous biochemical factors. We observed upregulation of the osteogenesis markers Runt-related transcription factor2 (Runx2) and bone gamma-carboxyglutamate protein 2 (Bglap2), as well as the Hedgehog signalling components, glioma associated oncogene homolog 1 (Gli1), Patched1 (Ptch1), and Smoothened (Smo). Treatment with the Smo antagonist KAAD-cyclopamine confirmed the involvement of Smo in Gli1 target gene activation, with a significant reduction in the expression of Gli1, Runx2 and Bglap2 (p ≤ 0.001) following KAAD-cyclopamine treatment. Overall, our study demonstrates the role of the topographical microenvironment in the modulation of Hedgehog signalling, highlighting the potential for tailoring substrate topographical design to offer cell-instructive 3D microenvironments. Topographically-textured microparticles allow the modulation of Hedgehog signalling in vitro without adding exogenous biochemical agonists, thereby eliminating potential confounding artefacts in high-throughput drug screening applications.
Collapse
Affiliation(s)
- Fatmah I Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Lee A Stevens
- Low Carbon Energy and Resources Technologies Research Group, Faculty of Engineering, University of Nottingham, UK
| | - Colin A Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
40
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
41
|
Kim K, Su Y, Kucine AJ, Cheng K, Zhu D. Guided Bone Regeneration Using Barrier Membrane in Dental Applications. ACS Biomater Sci Eng 2023; 9:5457-5478. [PMID: 37650638 DOI: 10.1021/acsbiomaterials.3c00690] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Guided bone regeneration (GBR) is a widely used technique in preclinical and clinical studies due to its predictability. Its main purpose is to prevent the migration of soft tissue into the osseous wound space, while allowing osseous cells to migrate to the site. GBR is classified into two main categories: resorbable and non-resorbable membranes. Resorbable membranes do not require a second surgery but tend to have a short resorption period. Conversely, non-resorbable membranes maintain their mechanical strength and prevent collapse. However, they require removal and are susceptible to membrane exposure. GBR is often used with bone substitute graft materials to fill the defect space and protect the bone graft. The membrane can also undergo various modifications, such as surface modification and biological factor loading, to improve barrier functions and bone regeneration. In addition, bone regeneration is largely related to osteoimmunology, a new field that focuses on the interactions between bone and the immune system. Understanding these interactions can help in developing new treatments for bone diseases and injuries. Overall, GBR has the potential to be a powerful tool in promoting bone regeneration. Further research in this area could lead to advancements in the field of bone healing. This review will highlight resorbable and non-resorbable membranes with cellular responses during bone regeneration, provide insights into immunological response during bone remodeling, and discuss antibacterial features.
Collapse
Affiliation(s)
- Kakyung Kim
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Allan J Kucine
- Department of Oral and Maxillofacial Surgery, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
42
|
Zhang S, van de Peppel J, Koedam M, van Leeuwen JPTM, van der Eerden BCJ. Tensin-3 is involved in osteogenic versus adipogenic fate of human bone marrow stromal cells. Cell Mol Life Sci 2023; 80:277. [PMID: 37668682 PMCID: PMC10480249 DOI: 10.1007/s00018-023-04930-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND The tightly controlled balance between osteogenic and adipogenic differentiation of human bone marrow-derived stromal cells (BMSCs) is critical to maintain bone homeostasis. Age-related osteoporosis is characterized by low bone mass with excessive infiltration of adipose tissue in the bone marrow compartment. The shift of BMSC differentiation from osteoblasts to adipocytes could result in bone loss and adiposity. METHODS TNS3 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of TNS3 was used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining at multiple time points. The role of TNS3 and its domain function in osteogenic differentiation were evaluated by ALP activity, calcium assay, and Alizarin Red S staining. The expression of Rho-GTP was determined using the RhoA pull-down activation assay. RESULTS Loss of TNS3 impaired osteogenic differentiation of BMSCs but promoted adipogenic differentiation. Conversely, TNS3 overexpression hampered adipogenesis while enhancing osteogenesis. The expression level of TNS3 determined cell shape and cytoskeletal reorganization during osteogenic differentiation. TNS3 truncation experiments revealed that for optimal osteogenesis to occur, all domains proved essential. Pull-down and immunocytochemical experiments suggested that TNS3 mediates osteogenic differentiation through RhoA. CONCLUSIONS Here, we identify TNS3 to be involved in BMSC fate decision. Our study links the domain structure in TNS3 to RhoA activity via actin dynamics and implicates an important role for TNS3 in regulating osteogenesis and adipogenesis from BMSCs. Furthermore, it supports the critical involvement of cytoskeletal reorganization in BMSC differentiation.
Collapse
Affiliation(s)
- Shuang Zhang
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Jeroen van de Peppel
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Johannes P T M van Leeuwen
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Bram C J van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Skubis-Sikora A, Sikora B, Małysiak W, Wieczorek P, Czekaj P. Regulation of Adipose-Derived Stem Cell Activity by Melatonin Receptors in Terms of Viability and Osteogenic Differentiation. Pharmaceuticals (Basel) 2023; 16:1236. [PMID: 37765045 PMCID: PMC10535461 DOI: 10.3390/ph16091236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Melatonin is a hormone secreted mainly by the pineal gland and acts through the Mel1A and Mel1B receptors. Among other actions, melatonin significantly increases osteogenesis during bone regeneration. Human adipose-derived mesenchymal stem cells (ADSCs) are also known to have the potential to differentiate into osteoblast-like cells; however, inefficient culturing due to the loss of properties over time or low cell survival rates on scaffolds is a limitation. Improving the process of ADSC expansion in vitro is crucial for its further successful use in bone regeneration. This study aimed to assess the effect of melatonin on ADSC characteristics, including osteogenicity. We assessed ADSC viability at different melatonin concentrations as well as the effect on its receptor inhibitors (luzindole or 4-P-PDOT). Moreover, we analyzed the ADSC phenotype, apoptosis, cell cycle, and expression of MTNR1A and MTNR1B receptors, and its potential for osteogenic differentiation. We found that ADSCs treated with melatonin at a concentration of 100 µM had a higher viability compared to those treated at higher melatonin concentrations. Melatonin did not change the phenotype of ADSCs or induce apoptosis and it promoted the activity of some osteogenesis-related genes. We concluded that melatonin is safe, non-toxic to normal ADSCs in vitro, and can be used in regenerative medicine at low doses (100 μM) to improve cell viability without negatively affecting the osteogenic potential of these cells.
Collapse
Affiliation(s)
- Aleksandra Skubis-Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | | | | | | | | |
Collapse
|
44
|
Elkhenany H, Elkodous MA, Mansell JP. Ternary nanocomposite potentiates the lysophosphatidic acid effect on human osteoblast (MG63) maturation. Nanomedicine (Lond) 2023; 18:1459-1475. [PMID: 37815159 DOI: 10.2217/nnm-2023-0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Aim: This study aimed to investigate the potential of ternary nanocomposite (TNC) to support MG63 osteoblast maturation to EB1089-(3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP) cotreatment. Materials & methods: Binary (P25/reduced graphene oxide [rGO]) nanocomposite was prepared, and silver (Ag) nanoparticles were loaded onto the surface to form TNC (P25/rGO/Ag). The influence of TNC on proliferation, alkaline phosphatase activity and osteogenic gene expression was evaluated in a model of osteoblast maturation wherein MG63 were costimulated with EB1089 and FHBP. Results: TNC had no cytotoxic effect on MG63. The addition of TNC to EB1089-FHBP cotreatment enhanced the maturation of MG63, as supported by the greater alkaline phosphatase activity and OPN and OCN gene expression. Conclusion: TNC could serve as a promising carrier for FHBP, opening up possibilities for its application in bone regeneration.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Mohamed Abd Elkodous
- Department of Electrical & Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-Cho, Toyohashi, Aichi, 441-8580, Japan
| | - Jason Peter Mansell
- Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
45
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
46
|
Li S, Siengdee P, Oster M, Reyer H, Wimmers K, Ponsuksili S. Transcriptome changes during osteogenesis of porcine mesenchymal stem cells derived from different types of synovial membranes and genetic background. Sci Rep 2023; 13:10048. [PMID: 37344635 DOI: 10.1038/s41598-023-37260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
Synovial membrane mesenchymal stem cells (SMSCs) often serve as in vitro model for bone disease, but the molecular mechanisms driving osteogenesis in SMSCs from different donor cells of various sources and breeds remain unclear. In this study, porcine SMSCs isolated from adipose synovium (FP) and fibrous synovium (FS) of Angeln Saddleback (AS) and German Landrace (DL) were used to discover the signaling network change after osteogenic induction. During osteogenic differentiation, mineral deposition was first observed at day 14 and further increased until day 21. Transcriptional changes between day 1 and day 21 were enriched in several signaling pathways, including Wnt, PI3K-Akt, and TGF-beta pathway. Certain pathways related to osteogenesis, including osteoblast differentiation, regulation of bone mineralization, and BMP signaling pathway, were enriched at late time points, as confirmed by the osteogenic markers ALPL, COL1A1, and NANOG. A fraction of differentially expressed genes (DEGs) were found between FP and FS, while DEGs between AS and DL increased during the differentiation phase until day 7 and then decreased from day 14 to day 21. These genes are involved in several important signaling pathways, including TGF-beta, Wnt, and lipid-related signaling pathways, suggesting that SMSCs from these two breeds have different osteogenic capabilities.
Collapse
Affiliation(s)
- Shuaichen Li
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Puntita Siengdee
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Chulabhorn Graduate Institute, Program in Applied Biological Sciences, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok, 10210, Thailand
| | - Michael Oster
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henry Reyer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
47
|
Paramasivam S, Perumal SS. Methanolic extract of O.umbellata L. exhibits anti-osteoporotic effect via promoting osteoblast proliferation in MG-63 cells and inhibiting osteoclastogenesis in RANKL-stimulated RAW 264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023:116641. [PMID: 37236379 DOI: 10.1016/j.jep.2023.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oldenlandia umbellataL., belonging to the Rubiaceae family, is an annual plant possessing anti-inflammatory and antipyretic, anti-nociceptive, anti-bacterial, anti-helminthic, antioxidant and hepatoprotective activities and used in traditional medicine to treat inflammation and respiratory diseases. AIM OF THE STUDY The present study aims to evaluate the anti-osteoporotic effect of Methanolic extract of O.umbellata in MG-63 cells and RANKL-stimulated RAW 264.7 cells. MATERIALS AND METHODS The methanolic extract from the aerial parts of O.umbellata was subjected to metabolite profiling. The anti-osteoporotic effect of MOU was assessed in MG-63 cells and RANKL-stimulated RAW 264.7 cells. In MG-63 cells, the proliferative effect of MOU was evaluated using MTT assay, ALP assay, Alizarin red staining, ELISA and western blot. Similarly, the anti-osteoclastogenic effect of MOU was assessed in RANKL-stimulated RAW 264.7 cells via MTT, TRAP staining and western blot. RESULTS LC-MS metabolite profiling showed the presence of 59 phytoconstituents including scandoside, scandoside methyl ester, deacetylasperuloside, asperulosidic acid, and cedrelopsin in MOU. In MG-63 cells, MOU has increased the proliferation of osteoblast cells and ALP activity, thereby increasing bone mineralization. ELISA results showed increased levels of osteogenic markers such as osteocalcin and osteopontin in the culture media. Western blot analysis showed inhibition of GSK3β protein expression and increased the expression levels of β-catenin, Runx-2, col 1 and osterix, promoting osteoblast differentiation. In RANKL-stimulated RAW 264.7 cells, MOU did not elicit any significant cytotoxicity; instead, it suppressed the osteoclastogenesis reducing the osteoclast number. MOU has reduced TRAP activity in a dose-dependent manner. MOU inhibited the TRAF6, NFATc1, c-Jun, C-fos and cathepsin K expression, thereby inhibiting osteoclast formation. CONCLUSION In conclusion, MOU promoted osteoblast differentiation via inhibiting GSK3β and activating Wnt/β catenin signalling and its transcription factors, including β catenin, Runx2 and Osterix. Similarly, MOU inhibited osteoclast formation by inhibiting the expression of TRAF6, NFATc1, c-Jun, C-fos and cathepsin K in RANK-RANKL signalling. Finally, it can be emphasised that O.umbellata is a potential source of therapeutic leads for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sivasakthi Paramasivam
- Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
48
|
Rashid U, Becker SK, Sponder G, Trappe S, Sandhu MA, Aschenbach JR. Low Magnesium Concentration Enforces Bone Calcium Deposition Irrespective of 1,25-Dihydroxyvitamin D 3 Concentration. Int J Mol Sci 2023; 24:ijms24108679. [PMID: 37240030 DOI: 10.3390/ijms24108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Efficient coordination between Mg2+ and vitamin D maintains adequate Ca2+ levels during lactation. This study explored the possible interaction between Mg2+ (0.3, 0.8, and 3 mM) and 1,25-dihydroxyvitamin D3 (1,25D; 0.05 and 5 nM) during osteogenesis using bovine mesenchymal stem cells. After 21 days, differentiated osteocytes were subjected to OsteoImage analysis, alkaline phosphatase (ALP) activity measurements, and immunocytochemistry of NT5E, ENG (endoglin), SP7 (osterix), SPP1 (osteopontin), and the BGLAP gene product osteocalcin. The mRNA expression of NT5E, THY1, ENG, SP7, BGLAP, CYP24A1, VDR, SLC41A1, SLC41A2, SLC41A3, TRPM6, TRPM7, and NIPA1 was also assessed. Reducing the Mg2+ concentration in the medium increased the accumulation of mineral hydroxyapatite and ALP activity. There was no change in the immunocytochemical localization of stem cell markers. Expression of CYP24A1 was higher in all groups receiving 5 nM 1,25D. There were tendencies for higher mRNA abundance of THY1, BGLAP, and NIPA1 in cells receiving 0.3 mM Mg2+ and 5 nM 1,25D. In conclusion, low levels of Mg2+ greatly enhanced the deposition of bone hydroxyapatite matrix. The effect of Mg2+ was not modulated by 1,25D, although the expression of certain genes (including BGLAP) tended to be increased by the combination of low Mg2+ and high 1,25D concentrations.
Collapse
Affiliation(s)
- Usman Rashid
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Sandra K Becker
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Susanne Trappe
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Mansur A Sandhu
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
49
|
Zhao H, Jia Y, Wang F, Chai Y, Zhang C, Xu J, Kang Q. Cobalt-Doped Mesoporous Silica Coated Magnetic Nanoparticles Promoting Accelerated Bone Healing in Distraction Osteogenesis. Int J Nanomedicine 2023; 18:2359-2370. [PMID: 37187997 PMCID: PMC10178404 DOI: 10.2147/ijn.s393878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION Large bone abnormalities are commonly treated using distraction osteogenesis (DO), but it is not suitable for a long-term application; therefore, there is an urgent need for adjuvant therapy that can accelerate bone repair. METHODS We have synthesized mesoporous silica-coated magnetic nanoparticles doped with cobalt ions (Co-MMSNs) and assessed their capacity to quicken bone regrowth in a mouse model of DO. Furthermore, local injection of the Co-MMSNs significantly accelerated bone healing in DO, as demonstrated by X-ray imaging, micro-CT, mechanical tests, histological evaluation, and immunochemical analysis. RESULTS In vitro, the Co-MMSNs exhibited good biocompatibility and induced angiogenic gene expression and osteogenic development in bone mesenchymal stem cells. And the Co-MMSNs can promote bone regeneration in a rat DO model. DISCUSSION This study demonstrated the significant potential of Co-MMSNs to shorten the DO treatment duration and effectively reduce the incidence of complications.
Collapse
Affiliation(s)
- Haoyu Zhao
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Department of Orthopedic Surgery, Shanghai, People’s Republic of China
| | - Yachao Jia
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Department of Orthopedic Surgery, Shanghai, People’s Republic of China
| | - Feng Wang
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Department of Orthopedic Surgery, Shanghai, People’s Republic of China
| | - Yimin Chai
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Department of Orthopedic Surgery, Shanghai, People’s Republic of China
| | - Chunfu Zhang
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, People’s Republic of China
| | - Jia Xu
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Department of Orthopedic Surgery, Shanghai, People’s Republic of China
| | - Qinglin Kang
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Department of Orthopedic Surgery, Shanghai, People’s Republic of China
| |
Collapse
|
50
|
Jo YK, Choi B, Zhou C, Jun SH, Cha HJ. Cell recognitive bioadhesive-based osteogenic barrier coating with localized delivery of bone morphogenetic protein-2 for accelerated guided bone regeneration. Bioeng Transl Med 2023; 8:e10493. [PMID: 37206209 PMCID: PMC10189428 DOI: 10.1002/btm2.10493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Titanium mesh (Ti-mesh) for guided bone regeneration (GBR) approaches has been extensively considered to offer space maintenance in reconstructing the alveolar ridge within bone defects due to its superb mechanical properties and biocompatibility. However, soft tissue invasion across the pores of the Ti-mesh and intrinsically limited bioactivity of the titanium substrates often hinder satisfactory clinical outcomes in GBR treatments. Here, a cell recognitive osteogenic barrier coating was proposed using a bioengineered mussel adhesive protein (MAP) fused with Alg-Gly-Asp (RGD) peptide to achieve highly accelerated bone regeneration. The fusion bioadhesive MAP-RGD exhibited outstanding performance as a bioactive physical barrier that enabled effective cell occlusion and a prolonged, localized delivery of bone morphogenetic protein-2 (BMP-2). The MAP-RGD@BMP-2 coating promoted in vitro cellular behaviors and osteogenic commitments of mesenchymal stem cells (MSCs) via the synergistic crosstalk effects of the RGD peptide and BMP-2 in a surface-bound manner. The facile gluing of MAP-RGD@BMP-2 onto the Ti-mesh led to a distinguishable acceleration of the in vivo formation of new bone in terms of quantity and maturity in a rat calvarial defect. Hence, our protein-based cell recognitive osteogenic barrier coating can be an excellent therapeutic platform to improve the clinical predictability of GBR treatment.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Biomedical Convergence Science and TechnologySchool of Convergence, Kyungpook National UniversityDaeguRepublic of Korea
- Cell and Matrix Research Institute, Kyungpook National UniversityDaeguSouth Korea
| | | | - Cong Zhou
- School of Stomatology, Shandong UniversityJinanChina
| | - Sang Ho Jun
- Department of Oral and Maxillofacial SurgeryKorea University Anam HospitalSeoulRepublic of Korea
| | - Hyung Joon Cha
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangRepublic of Korea
| |
Collapse
|