1
|
Weng X, Gonzalez M, Angelia J, Piroozmand S, Jamehdor S, Behrooz AB, Latifi-Navid H, Ahmadi M, Pecic S. Lipidomics-driven drug discovery and delivery strategies in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167637. [PMID: 39722408 DOI: 10.1016/j.bbadis.2024.167637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
With few viable treatment options, glioblastoma (GBM) is still one of the most aggressive and deadly types of brain cancer. Recent developments in lipidomics have demonstrated the potential of lipid metabolism as a therapeutic target in GBM. The thorough examination of lipids in biological systems, or lipidomics, is essential to comprehending the changed lipid profiles found in GBM, which are linked to the tumor's ability to grow, survive, and resist treatment. The use of lipidomics in drug delivery and discovery is examined in this study, focusing on how it may be used to find new biomarkers, create multi-target directed ligands, and improve drug delivery systems. We also cover the use of FDA-approved medications, clinical trials that use lipid-targeted medicines, and the integration of lipidomics with other omics technologies. This study emphasizes lipidomics as a possible tool in developing more effective treatment methods for GBM by exploring various lipid-centric techniques.
Collapse
Affiliation(s)
- Xiaohui Weng
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Michael Gonzalez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Jeannes Angelia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
2
|
Caro C, Paez-Muñoz JM, Pernía Leal M, Carayol M, Feijoo-Cuaresma M, García-Martín ML. Metabolically-Driven Active Targeting of Magnetic Nanoparticles Functionalized with Glucuronic Acid to Glioblastoma: Application to MRI-Tracked Magnetic Hyperthermia Therapy. Adv Healthc Mater 2025; 14:e2404391. [PMID: 39578332 DOI: 10.1002/adhm.202404391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Glioblastoma continues to pose a major global health challenge due to its incurable nature. The need for new strategies to combat this devastating tumor is therefore paramount. Nanotechnology offers unique opportunities to develop innovative and more effective therapeutic approaches. However, most nanosystems developed to treat glioblastomas, especially those based on metallic nanoparticles (NPs), have proven unsuccessful due to their inability to efficiently target these tumors, which are particularly inaccessible due to the restrictions imposed by the blood-brain tumor barrier (BBTB). Here, an innovative strategy is presented to efficiently target metallic NPs to glioblastomas through glucose transporters (GLUT) overexpressed on the endothelial cells of glioblastoma microvasculature, particularly GLUT1. Specifically, Iron Oxide Nanoparticles (IONPs) are functionalized with glucuronic acid to promote GLUT-mediated transcytosis which is drastically boosted by inducing mild hypoglycemia. This metabolically-driven active targeting strategy has yielded unprecedented efficacy in targeting metallic NPs to glioblastomas. Moreover, these IONPs, designed to act as magnetic hyperthermia (MH) mediators, are used to conduct a proof-of-concept preclinical study on MRI-tracked MH therapy following intravenous administration, resulting in significant tumor growth delay. These findings demonstrate unparalleled efficiency in glioblastoma targeting and lay the ground for developing alternative therapeutic strategies to combat glioblastoma.
Collapse
Affiliation(s)
- Carlos Caro
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - José M Paez-Muñoz
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Manuel Pernía Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, Seville, 41012, Spain
| | - Marta Carayol
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Mónica Feijoo-Cuaresma
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - María L García-Martín
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
3
|
Alberti G, Sánchez-López CM, Marcilla A, Barone R, Caruso Bavisotto C, Graziano F, Conway de Macario E, Macario AJL, Bucchieri F, Cappello F, Campanella C, Rappa F. Hsp70 and Calcitonin Receptor Protein in Extracellular Vesicles from Glioblastoma Multiforme: Biomarkers with Putative Roles in Carcinogenesis and Potential for Differentiating Tumor Types. Int J Mol Sci 2024; 25:3415. [PMID: 38542389 PMCID: PMC10969952 DOI: 10.3390/ijms25063415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a malignancy of bad prognosis, and advances in early detection and treatment are needed. GBM is heterogenous, with varieties differing in malignancy within a tumor of a patient and between patients. Means are needed to distinguish these GMB forms, so that specific strategies can be deployed for patient management. We study the participation of the chaperone system (CS) in carcinogenesis. The CS is dynamic, with its members moving around the body in extracellular vesicles (EVs) and interacting with components of other physiological systems in health and disease, including GBM. Here, we describe the finding of high amounts of Hsp70 (HSPA1A) and the calcitonin receptor protein (CTR) in EVs in patients with GBM. We present a standardized protocol for collecting, purifying, and characterizing EVs carrying Hsp70 and CTR in plasma-derived EVs from patients with GBM. EVs from GBM patients were obtained just before tumor ablative surgery (T0) and 7 days afterwards (T1); Hsp70 was highly elevated at T0 and less so at T1, and CTR was greatly increased at T0 and reduced to below normal values at T1. Our results encourage further research to assess Hsp70 and CTR as biomarkers for differentiating tumor forms and to determine their roles in GBM carcinogenesis.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Christian M. Sánchez-López
- Área de Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, 46100 Burjassot, Spain; (C.M.S.-L.); (A.M.)
- Joint Unit of Endocrinology, Nutrition and Clinical Dietetics, Instituto de Investigación Sanitaria-La Fe, 46026 Valencia, Spain
| | - Antonio Marcilla
- Área de Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, 46100 Burjassot, Spain; (C.M.S.-L.); (A.M.)
- Joint Unit of Endocrinology, Nutrition and Clinical Dietetics, Instituto de Investigación Sanitaria-La Fe, 46026 Valencia, Spain
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Francesca Graziano
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, 95122 Catania, Italy;
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Claudia Campanella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| |
Collapse
|
4
|
Li HY, Feng YH, Lin CL, Hsu TI. Mitochondrial Mechanisms in Temozolomide Resistance: Unraveling the Complex Interplay and Therapeutic Strategies in Glioblastoma. Mitochondrion 2024; 75:101836. [PMID: 38158149 DOI: 10.1016/j.mito.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor, with temozolomide (TMZ) being the standard chemotherapeutic agent for its treatment. However, TMZ resistance often develops, limiting its therapeutic efficacy and contributing to poor patient outcomes. Recent evidence highlights the crucial role of mitochondria in the development of TMZ resistance through various mechanisms, including alterations in reactive oxygen species (ROS) production, metabolic reprogramming, apoptosis regulation, biogenesis, dynamics, stress response, and mtDNA mutations. This review article aims to provide a comprehensive overview of the mitochondrial mechanisms involved in TMZ resistance and discuss potential therapeutic strategies targeting these mechanisms to overcome resistance in GBM. We explore the current state of clinical trials targeting mitochondria or related pathways in primary GBM or recurrent GBM, as well as the challenges and future perspectives in this field. Understanding the complex interplay between mitochondria and TMZ resistance will facilitate the development of more effective therapeutic strategies and ultimately improve the prognosis for GBM patients.
Collapse
Affiliation(s)
- Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, Munich 81377, Germany; Gene Center, Ludwig-Maximilians-University, Munich 81377, Germany
| | | | | | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan.
| |
Collapse
|
5
|
Ballestín A, Armocida D, Ribecco V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features. Front Immunol 2024; 15:1347877. [PMID: 38487525 PMCID: PMC10937439 DOI: 10.3389/fimmu.2024.1347877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma is a highly aggressive and invasive tumor that affects the central nervous system (CNS). With a five-year survival rate of only 6.9% and a median survival time of eight months, it has the lowest survival rate among CNS tumors. Its treatment consists of surgical resection, subsequent fractionated radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Despite the implementation of clinical interventions, recurrence is a common occurrence, with over 80% of cases arising at the edge of the resection cavity a few months after treatment. The high recurrence rate and location of glioblastoma indicate the need for a better understanding of the peritumor brain zone (PBZ). In this review, we first describe the main radiological, cellular, molecular and biomechanical tissue features of PBZ; and subsequently, we discuss its current clinical management, potential local therapeutic approaches and future prospects.
Collapse
Affiliation(s)
- Alberto Ballestín
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, Sapienza University, Rome, Italy
| | - Valentino Ribecco
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Giorgio Seano
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| |
Collapse
|
6
|
Gómez-Bra A, Gude L, Arias-Pérez MS. Synthesis, structural study and antitumor activity of novel alditol-based imidazophenanthrolines (aldo-IPs). Bioorg Med Chem 2024; 99:117563. [PMID: 38215623 DOI: 10.1016/j.bmc.2023.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
A series of 1H-imidazo [4,5-f][1,10] phenanthroline derivatives functionalized at 2-position with chiral, and conformationally flexible polyhydroxy alkyl chains derived from carbohydrates (alditol-based imidazophenanthrolines, aldo-IPs) is presented herein. These novel glycomimetics showed relevant and differential cytotoxic activity against several cultured tumor cell lines (PC3, HeLa and HT-29), dependent on the nature and stereochemistry of the polyhydroxy alkyl chain. The mannose-based aldo-IP demonstrated the higher cytotoxicity in the series, substantially better than cisplatin metallo-drug in all cell lines tested, and better than G-quadruplex ligand 360A in HeLa and HT29 cells. Cell cycle experiments and Annexin V-PI assays revealed that aldo-IPs induce apoptosis in HeLa cells. Initial study of DNA interactions by DNA FRET melting assays proved that the aldo-IPs produce only a slight thermal stabilization of DNA secondary structures, more pronounced in the case of quadruplex DNA. Viscosity titrations with CT dsDNA suggest that the compounds behave as DNA groove binders, whereas equilibrium dialysis assays showed that the compounds bind CT with Ka values in the range 104-105 M-1. The aldo-IP derivatives were obtained with synthetically useful yields through a feasible one-pot multistep process, by aerobic oxidative cyclization of 1,10-phenanthroline-5,6-diamine with a selection of unprotected aldoses using (NH4)2SO4 as promoter.
Collapse
Affiliation(s)
- Ana Gómez-Bra
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805-Alcalá de Henares, Madrid, Spain; Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Lourdes Gude
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805-Alcalá de Henares, Madrid, Spain; Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.
| | - María-Selma Arias-Pérez
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805-Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
7
|
Du Y, Pollok KE, Shen J. Unlocking Glioblastoma Secrets: Natural Killer Cell Therapy against Cancer Stem Cells. Cancers (Basel) 2023; 15:5836. [PMID: 38136381 PMCID: PMC10741423 DOI: 10.3390/cancers15245836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) represents a paramount challenge as the most formidable primary brain tumor characterized by its rapid growth, aggressive invasiveness, and remarkable heterogeneity, collectively impeding effective therapeutic interventions. The cancer stem cells within GBM, GBM stem cells (GSCs), hold pivotal significance in fueling tumor advancement, therapeutic refractoriness, and relapse. Given their unique attributes encompassing self-renewal, multipotent differentiation potential, and intricate interplay with the tumor microenvironment, targeting GSCs emerges as a critical strategy for innovative GBM treatments. Natural killer (NK) cells, innate immune effectors recognized for their capacity to selectively detect and eliminate malignancies without the need for prior sensitization, offer substantial therapeutic potential. Harnessing the inherent capabilities of NK cells can not only directly engage tumor cells but also augment broader immune responses. Encouraging outcomes from clinical investigations underscore NK cells as a potentially effective modality for cancer therapy. Consequently, NK cell-based approaches hold promise for effectively targeting GSCs, thereby presenting an avenue to enhance treatment outcomes for GBM patients. This review outlines GBM's intricate landscape, therapeutic challenges, GSC-related dynamics, and elucidates the potential of NK cell as an immunotherapeutic strategy directed towards GSCs.
Collapse
Affiliation(s)
- Yuanning Du
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA;
| | - Karen E. Pollok
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Jia Shen
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA;
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Pasqualetti F, Miniati M, Gonnelli A, Gadducci G, Giannini N, Palagini L, Mancino M, Fuentes T, Paiar F. Cancer Stem Cells and Glioblastoma: Time for Innovative Biomarkers of Radio-Resistance? BIOLOGY 2023; 12:1295. [PMID: 37887005 PMCID: PMC10604498 DOI: 10.3390/biology12101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Despite countless papers in the field of radioresistance, researchers are still far from clearly understanding the mechanisms triggered in glioblastoma. Cancer stem cells (CSC) are important to the growth and spread of cancer, according to many studies. In addition, more recently, it has been suggested that CSCs have an impact on glioblastoma patients' prognosis, tumor aggressiveness, and treatment outcomes. In reviewing this new area of biology, we will provide a summary of the most recent research on CSCs and their role in the response to radio-chemotherapy in GB. In this review, we will examine the radiosensitivity of stem cells. Moreover, we summarize the current knowledge of the biomarkers of stemness and evaluate their potential function in the study of radiosensitivity.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, University of Pisa, Italy, Via Roma 67, 56100 Pisa, Italy;
| | - Alessandra Gonnelli
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Giovanni Gadducci
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Noemi Giannini
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, University of Pisa, Italy, Via Roma 67, 56100 Pisa, Italy;
| | - Maricia Mancino
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Taiusha Fuentes
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Fabiola Paiar
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| |
Collapse
|
9
|
Garcia-Millan T, Ramos-Soriano J, Ghirardello M, Liu X, Santi CM, Eloi JC, Pridmore N, Harniman RL, Morgan DJ, Hughes S, Davis SA, Oliver TAA, Kurian KM, Galan MC. Multicolor Photoluminescent Carbon Dots à La Carte for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44711-44721. [PMID: 37715711 PMCID: PMC10540137 DOI: 10.1021/acsami.3c08200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
Dual-emission fluorescence probes that provide high sensitivity are key for biomedical diagnostic applications. Nontoxic carbon dots (CDs) are an emerging alternative to traditional fluorescent probes; however, robust and reproducible synthetic strategies are still needed to access materials with controlled emission profiles and improved fluorescence quantum yields (FQYs). Herein, we report a practical and general synthetic strategy to access dual-emission CDs with FQYs as high as 0.67 and green/blue, yellow/blue, or red/blue excitation-dependent emission profiles using common starting materials such as citric acid, cysteine, and co-dopants to bias the synthetic pathway. Structural and physicochemical analysis using nuclear magnetic resonance, absorbance and fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy in addition to transmission electron and atomic force microscopy (TEM and AFM) is used to elucidate the material's composition which is responsible for the unique observed photoluminescence properties. Moreover, the utility of the probes is demonstrated in the clinical setting by the synthesis of green/blue emitting antibody-CD conjugates which are used for the immunohistochemical staining of human brain tissues of glioblastoma patients, showing detection under two different emission channels.
Collapse
Affiliation(s)
| | - Javier Ramos-Soriano
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Mattia Ghirardello
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Xia Liu
- Bristol
Medical School, Public Health Sciences, Southmead Hospital, University of Bristol, Southmead Road, Bristol BS8 NB, U.K.
| | | | - Jean-Charles Eloi
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Natalie Pridmore
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Robert L. Harniman
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - David J. Morgan
- Cardiff
Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
- HarwellXPS—The
EPSRC National Facility for Photoelectron, Spectroscopy, Research Complex at Harwell (RCaH), Didcot OX11 0FA, U.K.
| | - Stephen Hughes
- DST
Innovations Ltd, Unit
6a Bridgend Business Centre, Bennett Street, Bridgend CF31 3SH, U.K.
| | - Sean A. Davis
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Thomas A. A. Oliver
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Kathreena M. Kurian
- Bristol
Medical School, Public Health Sciences, Southmead Hospital, University of Bristol, Southmead Road, Bristol BS8 NB, U.K.
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
10
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
11
|
Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Delineating the glioblastoma stemness by genes involved in cytoskeletal rearrangements and metabolic alterations. World J Stem Cells 2023; 15:302-322. [PMID: 37342224 PMCID: PMC10277965 DOI: 10.4252/wjsc.v15.i5.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Literature data on glioblastoma ongoingly underline the link between metabolism and cancer stemness, the latter is one responsible for potentiating the resistance to treatment, inter alia due to increased invasiveness. In recent years, glioblastoma stemness research has bashfully introduced a key aspect of cytoskeletal rearrangements, whereas the impact of the cytoskeleton on invasiveness is well known. Although non-stem glioblastoma cells are less invasive than glioblastoma stem cells (GSCs), these cells also acquire stemness with greater ease if characterized as invasive cells and not tumor core cells. This suggests that glioblastoma stemness should be further investigated for any phenomena related to the cytoskeleton and metabolism, as they may provide new invasion-related insights. Previously, we proved that interplay between metabolism and cytoskeleton existed in glioblastoma. Despite searching for cytoskeleton-related processes in which the investigated genes might have been involved, not only did we stumble across the relation to metabolism but also reported genes that were found to be implicated in stemness. Thus, dedicated research on these genes in GSCs seems justifiable and might reveal novel directions and/or biomarkers that could be utilized in the future. Herein, we review the previously identified cytoskeleton/metabolism-related genes through the prism of glioblastoma stemness.
Collapse
Affiliation(s)
- Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland.
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| |
Collapse
|
12
|
Hersh AM, Gaitsch H, Alomari S, Lubelski D, Tyler BM. Molecular Pathways and Genomic Landscape of Glioblastoma Stem Cells: Opportunities for Targeted Therapy. Cancers (Basel) 2022; 14:3743. [PMID: 35954407 PMCID: PMC9367289 DOI: 10.3390/cancers14153743] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. Although tumor regression is often observed initially after treatment, long-term recurrence or progression invariably occurs. Tumor growth, invasion, and recurrence is mediated by a unique population of glioblastoma stem cells (GSCs). Their high mutation rate and dysregulated transcriptional landscape augment their resistance to conventional chemotherapy and radiation therapy, explaining the poor outcomes observed in patients. Consequently, GSCs have emerged as targets of interest in new treatment paradigms. Here, we review the unique properties of GSCs, including their interactions with the hypoxic microenvironment that drives their proliferation. We discuss vital signaling pathways in GSCs that mediate stemness, self-renewal, proliferation, and invasion, including the Notch, epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt, sonic hedgehog, transforming growth factor beta, Wnt, signal transducer and activator of transcription 3, and inhibitors of differentiation pathways. We also review epigenomic changes in GSCs that influence their transcriptional state, including DNA methylation, histone methylation and acetylation, and miRNA expression. The constituent molecular components of the signaling pathways and epigenomic regulators represent potential sites for targeted therapy, and representative examples of inhibitory molecules and pharmaceuticals are discussed. Continued investigation into the molecular pathways of GSCs and candidate therapeutics is needed to discover new effective treatments for GBM and improve survival.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| |
Collapse
|
13
|
Guda MR, Tsung AJ, Asuthkar S, Velpula KK. Galectin-1 activates carbonic anhydrase IX and modulates glioma metabolism. Cell Death Dis 2022; 13:574. [PMID: 35773253 PMCID: PMC9247167 DOI: 10.1038/s41419-022-05024-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Galectins are a family of β-galactose-specific binding proteins residing within the cytosol or nucleus, with a highly conserved carbohydrate recognition domain across many species. Accumulating evidence shows that Galectin 1 (Gal-1) plays an essential role in cancer, and its expression correlates with tumor aggressiveness and progression. Our preliminary data showed Gal-1 promotes glioma stem cell (GSC) growth via increased Warburg effect. mRNA expression and clinical data were obtained from The Cancer Genome Atlas database. The immunoblot analysis conducted using our cohort of human glioblastoma patient specimens (hGBM), confirmed Gal-1 upregulation in GBM. GC/MS analysis to evaluate the effects of Gal-1 depletion showed elevated levels of α-ketoglutaric acid, and citric acid with a concomitant reduction in lactic acid levels. Using Biolog microplate-1 mitochondrial functional assay, we confirmed that the depletion of Gal-1 increases the expression levels of the enzymes from the TCA cycle, suggesting a reversal of the Warburg phenotype. Manipulation of Gal-1 using RNA interference showed reduced ATP, lactate levels, cell viability, colony-forming abilities, and increased expression levels of genes implicated in the induction of apoptosis. Gal-1 exerts its metabolic role via regulating the expression of carbonic anhydrase IX (CA-IX), a surrogate marker for hypoxia. CA-IX functions downstream to Gal-1, and co-immunoprecipitation experiments along with proximity ligation assays confirm that Gal-1 physically associates with CA-IX to regulate its expression. Further, silencing of Gal-1 in mice models showed reduced tumor burden and increased survival compared to the mice implanted with GSC controls. Further investigation of Gal-1 in GSC progression and metabolic reprogramming is warranted.
Collapse
Affiliation(s)
- Maheedhara R. Guda
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| | - Andrew J. Tsung
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,Illinois Neurological Institute, Peoria, IL USA
| | - Swapna Asuthkar
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| | - Kiran K. Velpula
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| |
Collapse
|
14
|
Gratal P, Arias-Pérez MS, Gude L. 1H-imidazo[4,5-f][1,10]phenanthroline carbohydrate conjugates: synthesis, DNA interactions and cytotoxic activity. Bioorg Chem 2022; 125:105851. [DOI: 10.1016/j.bioorg.2022.105851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
|
15
|
Ghirardello M, Shyam R, Liu X, Garcia-Millan T, Sittel I, Ramos-Soriano J, Kurian KM, Galan MC. Carbon dot-based fluorescent antibody nanoprobes as brain tumour glioblastoma diagnostics. NANOSCALE ADVANCES 2022; 4:1770-1778. [PMID: 35434521 PMCID: PMC8962998 DOI: 10.1039/d2na00060a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The development of efficient and sensitive tools for the detection of brain cancer in patients is of the utmost importance particularly because many of these tumours go undiagnosed until the disease has advanced and when treatment is less effective. Current strategies employ antibodies (Abs) to detect Glial Fibrillary Acid Protein (GFAP) in tissue samples, since GFAP is unique to the brain and not present in normal peripheral blood, and it relies on fluorescent reporters. Herein we describe a low cost, practical and general method for the labelling of proteins and antibodies with fluorescent carbon dots (CD) to generate diagnostic probes that are robust, photostable and applicable to the clinical setting. The two-step protocol relies on the conjugation of a dibenzocyclooctyne (DBCO)-functionalised CD with azide functionalised proteins by combining amide conjugation and strain promoted alkyne-azide cycloaddition (SPAAC) ligation chemistry. The new class of Ab-CD conjugates developed using this strategy was successfully used for the immunohistochemical staining of human brain tissues of patients with glioblastoma (GBM) validating the approach. Overall, these novel fluorescent probes offer a promising and versatile strategy in terms of costs, photostability and applicability which can be extended to other Abs and protein systems.
Collapse
Affiliation(s)
| | - Radhe Shyam
- School of Chemistry, University of Bristol Bristol UK
| | - Xia Liu
- Bristol Medical School, Public Health Sciences, Southmead Hospital, University of Bristol Bristol UK
| | | | - Imke Sittel
- School of Chemistry, University of Bristol Bristol UK
| | | | - Kathreena M Kurian
- Bristol Medical School, Public Health Sciences, Southmead Hospital, University of Bristol Bristol UK
| | | |
Collapse
|