1
|
Monk R, Connor B. Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells 2021; 10:cells10071565. [PMID: 34206228 PMCID: PMC8306243 DOI: 10.3390/cells10071565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by the progressive decline of motor, cognitive, and psychiatric functions. HD results from an autosomal dominant mutation that causes a trinucleotide CAG repeat expansion and the production of mutant Huntingtin protein (mHTT). This results in the initial selective and progressive loss of medium spiny neurons (MSNs) in the striatum before progressing to involve the whole brain. There are currently no effective treatments to prevent or delay the progression of HD as knowledge into the mechanisms driving the selective degeneration of MSNs has been hindered by a lack of access to live neurons from individuals with HD. The invention of cell reprogramming provides a revolutionary technique for the study, and potential treatment, of neurological conditions. Cell reprogramming technologies allow for the generation of live disease-affected neurons from patients with neurological conditions, becoming a primary technique for modelling these conditions in vitro. The ability to generate HD-affected neurons has widespread applications for investigating the pathogenesis of HD, the identification of new therapeutic targets, and for high-throughput drug screening. Cell reprogramming also offers a potential autologous source of cells for HD cell replacement therapy. This review provides a comprehensive analysis of the use of cell reprogramming to model HD and a discussion on recent advancements in cell reprogramming technologies that will benefit the HD field.
Collapse
|
2
|
Beatriz M, Lopes C, Ribeiro ACS, Rego ACC. Revisiting cell and gene therapies in Huntington's disease. J Neurosci Res 2021; 99:1744-1762. [PMID: 33881180 DOI: 10.1002/jnr.24845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Neurodegenerative movement disorders, such as Huntington's disease (HD), share a progressive and relentless course with increasing motor disability, linked with neuropsychiatric impairment. These diseases exhibit diverse pathophysiological processes and are a topic of intense experimental and clinical research due to the lack of therapeutic options. Restorative therapies are promising approaches with the potential to restore brain circuits. However, there were less compelling results in the few clinical trials. In this review, we discuss cell replacement therapies applied to animal models and HD patients. We thoroughly describe the initial trials using fetal neural tissue transplantation and recent approaches based on alternative cell sources tested in several animal models. Stem cells were shown to generate the desired neuron phenotype and/or provide growth factors to the degenerating host cells. Besides, genetic approaches such as RNA interference and the CRISPR/Cas9 system have been studied in animal models and human-derived cells. New genetic manipulations have revealed the capability to control or counteract the effect of human gene mutations as described by the use of antisense oligonucleotides in a clinical trial. In HD, innovative strategies are at forefront of human testing and thus other brain genetic diseases may follow similar therapeutic strategies.
Collapse
Affiliation(s)
- Margarida Beatriz
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra - Polo I, Coimbra, Portugal
| | - Carla Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra - Polo I, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra - Polo II, Coimbra, Portugal
| | | | - Ana Cristina Carvalho Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra - Polo I, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra - Polo III, Coimbra, Portugal
| |
Collapse
|
3
|
He L, Chen Z, Peng L, Tang B, Jiang H. Human stem cell models of polyglutamine diseases: Sources for disease models and cell therapy. Exp Neurol 2020; 337:113573. [PMID: 33347831 DOI: 10.1016/j.expneurol.2020.113573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Polyglutamine (polyQ) diseases are a group of neurodegenerative disorders involving expanded CAG repeats in pathogenic genes that are translated into extended polyQ tracts and lead to progressive neuronal degeneration in the affected brain. To date, there is no effective therapy for these diseases. Due to the complex pathologic mechanisms of these diseases, intensive research on the pathogenesis of their progression and potential treatment strategies is being conducted. However, animal models cannot recapitulate all aspects of neuronal degeneration. Pluripotent stem cells (PSCs), such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), can be used to study the pathological mechanisms of polyQ diseases, and the ability of autologous stem cell transplantation to treat these diseases. Differentiated PSCs, neuronal precursor cells/neural progenitor cells (NPCs) and mesenchymal stem cells (MSCs) are valuable resources for preclinical and clinical cell transplantation therapies. Here, we discuss diverse stem cell models and their ability to generate neurons involved in polyQ diseases, such as medium spiny neurons (MSNs), cortical neurons, cerebellar Purkinje cells (PCs) and motor neurons. In addition, we discuss potential therapeutic approaches, including stem cell replacement therapy and gene therapy.
Collapse
Affiliation(s)
- Lang He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China; Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China; Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Ndyabawe K, Cipriano M, Zhao W, Haidekker M, Yao K, Mao L, Kisaalita WS. Brain-on-a-Chip Device for Modeling Multiregional Networks. ACS Biomater Sci Eng 2020; 7:350-359. [PMID: 33320530 DOI: 10.1021/acsbiomaterials.0c00895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Animal models are frequently used in drug discovery because they represent a mammalian in vivo model system, they are the closest approximation to the human brain, and experimentation in humans is not ethical. Working with postmortem human brain samples is challenging and developing human in vitro systems, which mimic the in vivo human brain, has been challenging. However, the use of animal models in drug discovery for human neurological diseases is currently under scrutiny because data from animal models has come with variations due to genetic differences. Evidence from the literature suggests that techniques to reconstruct multiple neurotransmission projections, which characterize neurological disease circuits in humans, in vitro, have not been demonstrated. This paper presents a multicompartment microdevice for patterning neurospheres and specification of neural stem cell fate toward networks of multiple neuronal phenotypes. We validated our design by specification of human neural stem cells to dopaminergic and GABAergic neurons in different compartments of the device, simultaneously. The neurospheres formed unrestricted robust neuronal circuits between arrays of neurospheres in all compartments of the device. Such a device design may provide a basis for formation of multineurotransmission circuits to model functional connectivity between specific human brain regions, in vitro, using human-derived neural stem cells. This work finds relevance in neurological disease modeling and drug screening using human cell-based assays and may provide the impetus for shifting from animal-based models.
Collapse
|
5
|
Schaffert LN, Carter WG. Do Post-Translational Modifications Influence Protein Aggregation in Neurodegenerative Diseases: A Systematic Review. Brain Sci 2020; 10:232. [PMID: 32290481 PMCID: PMC7226274 DOI: 10.3390/brainsci10040232] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The accumulation of abnormal protein aggregates represents a universal hallmark of neurodegenerative diseases (NDDs). Post-translational modifications (PTMs) regulate protein structure and function. Dysregulated PTMs may influence the propensity for protein aggregation in NDD-proteinopathies. To investigate this, we systematically reviewed the literature to evaluate effects of PTMs on aggregation propensity for major proteins linked to the pathogenesis and/or progression of NDDs. A search of PubMed, MEDLINE, EMBASE, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between PTMs and protein aggregation in seven NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxias, transmissible spongiform encephalopathy, and multiple sclerosis. Together, 1222 studies were identified, of which 69 met eligibility criteria. We identified that the following PTMs, in isolation or combination, potentially act as modulators of proteinopathy in NDDs: isoaspartate formation in Aβ, phosphorylation of Aβ or tau in AD; acetylation, 4-hydroxy-2-neonal modification, O-GlcNAcylation or phosphorylation of α-synuclein in PD; acetylation or phosphorylation of TAR DNA-binding protein-43 in ALS, and SUMOylation of superoxide dismutase-1 in ALS; and phosphorylation of huntingtin in HD. The potential pharmacological manipulation of these aggregation-modulating PTMs represents an as-yet untapped source of therapy to treat NDDs.
Collapse
Affiliation(s)
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK;
| |
Collapse
|
6
|
Naphade S, Tshilenge KT, Ellerby LM. Modeling Polyglutamine Expansion Diseases with Induced Pluripotent Stem Cells. Neurotherapeutics 2019; 16:979-998. [PMID: 31792895 PMCID: PMC6985408 DOI: 10.1007/s13311-019-00810-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polyglutamine expansion disorders, which include Huntington's disease, have expanded CAG repeats that result in polyglutamine expansions in affected proteins. How this specific feature leads to distinct neuropathies in 11 different diseases is a fascinating area of investigation. Most proteins affected by polyglutamine expansions are ubiquitously expressed, yet their mechanisms of selective neurotoxicity are unknown. Induced pluripotent stem cells have emerged as a valuable tool to model diseases, understand molecular mechanisms, and generate relevant human neural and glia subtypes, cocultures, and organoids. Ideally, this tool will generate specific neuronal populations that faithfully recapitulate specific polyglutamine expansion disorder phenotypes and mimic the selective vulnerability of a given disease. Here, we review how induced pluripotent technology is used to understand the effects of the disease-causing polyglutamine protein on cell function, identify new therapeutic targets, and determine how polyglutamine expansion affects human neurodevelopment and disease. We will discuss ongoing challenges and limitations in our use of induced pluripotent stem cells to model polyglutamine expansion diseases.
Collapse
Affiliation(s)
- Swati Naphade
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | | | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
7
|
Energy Metabolism and Mitochondrial Superoxide Anion Production in Pre-symptomatic Striatal Neurons Derived from Human-Induced Pluripotent Stem Cells Expressing Mutant Huntingtin. Mol Neurobiol 2019; 57:668-684. [PMID: 31435904 DOI: 10.1007/s12035-019-01734-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022]
Abstract
In the present study, we investigated whether mutant huntingtin (mHTT) impairs mitochondrial functions in human striatal neurons derived from induced pluripotent stem cells (iPSCs). Striatal neurons and astrocytes derived from iPSCs from unaffected individuals (Ctrl) and Huntington's disease (HD) patients with HTT gene containing increased number of CAG repeats were used to assess the effect of mHTT on bioenergetics and mitochondrial superoxide anion production. The human neurons were thoroughly characterized and shown to express MAP2, DARPP32, GABA, synapsin, and PSD95. In human neurons and astrocytes expressing mHTT, the ratio of mHTT to wild-type huntingtin (HTT) was 1:1. The human neurons were excitable and could generate action potentials, confirming successful conversion of iPSCs into functional neurons. The neurons and astrocytes from Ctrl individuals and HD patients had similar levels of ADP and ATP and comparable respiratory and glycolytic activities. The mitochondrial mass, mitochondrial membrane potential, and superoxide anion production in human neurons appeared to be similar regardless of mHTT presence. The present results are in line with the results obtained in our previous studies with isolated brain mitochondria and cultured striatal neurons from YAC128 and R6/2 mice, in which we demonstrated that mutant huntingtin at early stages of HD pathology does not deteriorate mitochondrial functions. Overall, our results argue against bioenergetic deficits as a factor in HD pathogenesis and suggest that other detrimental processes might be more relevant to the development of HD pathology.
Collapse
|
8
|
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded polyglutamine (polyQ)-encoding repeats in the Huntingtin (HTT) gene. Traditionally, HD cellular models consisted of either patient cells not affected by disease or rodent neurons expressing expanded polyQ repeats in HTT. As these models can be limited in their disease manifestation or proper genetic context, respectively, human HD pluripotent stem cells (PSCs) are currently under investigation as a way to model disease in patient-derived neurons and other neural cell types. This chapter reviews embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) models of disease, including published differentiation paradigms for neurons and their associated phenotypes, as well as current challenges to the field such as validation of the PSCs and PSC-derived cells. Highlighted are potential future technical advances to HD PSC modeling, including transdifferentiation, complex in vitro multiorgan/system reconstruction, and personalized medicine. Using a human HD patient model of the central nervous system, hopefully one day researchers can tease out the consequences of mutant HTT (mHTT) expression on specific cell types within the brain in order to identify and test novel therapies for disease.
Collapse
|
9
|
Kaindl J, Winner B. Disease Modeling of Neuropsychiatric Brain Disorders Using Human Stem Cell-Based Neural Models. Curr Top Behav Neurosci 2019; 42:159-183. [PMID: 31407242 DOI: 10.1007/7854_2019_111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human pluripotent stem (PS) cells are a relevant platform to model human-specific neurological disorders. In this chapter, we focus on human stem cell models for neuropsychiatric disorders including induced pluripotent stem (iPS) cell-derived neural precursor cells (NPCs), neurons and cerebral organoids. We discuss crucial steps for planning human disease modeling experiments. We introduce the different strategies of human disease modeling including transdifferentiation, human embryonic stem (ES) cell-based models, iPS cell-based models and genome editing options. Analysis of disease-relevant phenotypes is discussed. In more detail, we provide exemplary insight into modeling of the neurodevelopmental defects in autism spectrum disorder (ASD) and the process of neurodegeneration in Alzheimer's disease (AD). Besides monogenic diseases, iPS cell-derived models also generated data from idiopathic and sporadic cases.
Collapse
Affiliation(s)
- Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
10
|
Al-Gharaibeh A, Culver R, Stewart AN, Srinageshwar B, Spelde K, Frollo L, Kolli N, Story D, Paladugu L, Anwar S, Crane A, Wyse R, Maiti P, Dunbar GL, Rossignol J. Induced Pluripotent Stem Cell-Derived Neural Stem Cell Transplantations Reduced Behavioral Deficits and Ameliorated Neuropathological Changes in YAC128 Mouse Model of Huntington's Disease. Front Neurosci 2017; 11:628. [PMID: 29209158 PMCID: PMC5701605 DOI: 10.3389/fnins.2017.00628] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by neuronal loss and motor dysfunction. Although there is no effective treatment, stem cell transplantation offers a promising therapeutic strategy, but the safety and efficacy of this approach needs to be optimized. The purpose of this study was to test the potential of intra-striatal transplantation of induced pluripotent stem cell-derived neural stem cells (iPS-NSCs) for treating HD. For this purpose, we developed mouse adenovirus-generated iPSCs, differentiated them into neural stem cells in vitro, labeled them with Hoechst, and transplanted them bilaterally into striata of 10-month old wild type (WT) and HD YAC128 mice. We assessed the efficiency of these transplanted iPS-NSCs to reduce motor deficits in YAC128 mice by testing them on an accelerating rotarod task at 1 day prior to transplantation, and then weekly for 10 weeks. Our results showed an amelioration of locomotor deficits in YAC128 mice that received iPS-NSC transplantations. Following testing, the mice were sacrificed, and their brains were analyzed using immunohistochemistry and Western blot (WB). The results from our histological examinations revealed no signs of tumors and evidence that many iPS-NSCs survived and differentiated into region-specific neurons (medium spiny neurons) in both WT and HD mice, as confirmed by co-labeling of Hoechst-labeled transplanted cells with NeuN and DARPP-32. Also, counts of Hoechst-labeled cells revealed that a higher proportion were co-labeled with DARPP-32 and NeuN in HD-, compared to WT- mice, suggesting a dissimilar differentiation pattern in HD mice. Whereas significant decreases were found in counts of NeuN- and DARPP-32-labeled cells, and for neuronal density measures in striata of HD vehicle controls, such decrements were not observed in the iPS-NSCs-transplanted-HD mice. WB analysis showed increase of BDNF and TrkB levels in striata of transplanted HD mice compared to HD vehicle controls. Collectively, our data suggest that iPS-NSCs may provide an effective option for neuronal replacement therapy in HD.
Collapse
Affiliation(s)
- Abeer Al-Gharaibeh
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Rebecca Culver
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Andrew N Stewart
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Bhairavi Srinageshwar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Kristin Spelde
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Laura Frollo
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Nivya Kolli
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Darren Story
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
| | - Leela Paladugu
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Sarah Anwar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Andrew Crane
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Robert Wyse
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, United States
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, United States
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,College of Medicine, Central Michigan University, Mt Pleasant, MI, United States
| |
Collapse
|
11
|
Tousley A, Kegel-Gleason KB. Induced Pluripotent Stem Cells in Huntington's Disease Research: Progress and Opportunity. J Huntingtons Dis 2017; 5:99-131. [PMID: 27372054 PMCID: PMC4942721 DOI: 10.3233/jhd-160199] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced pluripotent stem cells (iPSCs) derived from controls and patients can act as a starting point for in vitro differentiation into human brain cells for discovery of novel targets and treatments for human disease without the same ethical limitations posed by embryonic stem cells. Numerous groups have successfully produced and characterized Huntington’s disease (HD) iPSCs with different CAG repeat lengths, including cells from patients with one or two HD alleles. HD iPSCs and the neural cell types derived from them recapitulate some disease phenotypes found in both human patients and animal models. Although these discoveries are encouraging, the use of iPSCs for cutting edge and reproducible research has been limited due to some of the inherent problems with cell lines and the technological differences in the way laboratories use them. The goal of this review is to summarize the current state of the HD iPSC field, and to highlight some of the issues that need to be addressed to maximize their potential as research tools.
Collapse
Affiliation(s)
| | - Kimberly B. Kegel-Gleason
- Correspondence to: Kimberly Kegel-Gleason, Assistant Professor in Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Room 2001, Charlestown, MA 02129, USA. Tel.: +1 617 724 8754; E-mail:
| |
Collapse
|
12
|
Characterising the developmental profile of human embryonic stem cell-derived medium spiny neuron progenitors and assessing mature neuron function using a CRISPR-generated human DARPP-32 WT/eGFP-AMP reporter line. Neurochem Int 2017; 106:3-13. [DOI: 10.1016/j.neuint.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
|
13
|
Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Mol Neurobiol 2017; 55:3351-3371. [PMID: 28497201 PMCID: PMC5842500 DOI: 10.1007/s12035-017-0477-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.
Collapse
|
14
|
Baronchelli S, La Spada A, Ntai A, Barbieri A, Conforti P, Jotti GS, Redaelli S, Bentivegna A, De Blasio P, Biunno I. Epigenetic and transcriptional modulation of WDR5, a chromatin remodeling protein, in Huntington's disease human induced pluripotent stem cell (hiPSC) model. Mol Cell Neurosci 2017; 82:46-57. [PMID: 28476540 DOI: 10.1016/j.mcn.2017.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 11/24/2022] Open
Abstract
DNA methylation (DNAm) changes are of increasing relevance to neurodegenerative disorders, including Huntington's disease (HD). We performed genome-wide screening of possible DNAm changes occurring during striatal differentiation in human induced pluripotent stem cells derived from a HD patient (HD-hiPSCs) as cellular model. We identified 240 differentially methylated regions (DMRs) at promoters in fully differentiated HD-hiPSCs. Subsequently, we focused on the methylation differences in a subcluster of genes related to Jumonji Domain Containing 3 (JMJD3), a demethylase that epigenetically regulates neuronal differentiation and activates neuronal progenitor associated genes, which are indispensable for neuronal fate acquisition. Noticeably among these genes, WD repeat-containing protein 5 (WDR5) promoter was found hypermethylated in HD-hiPSCs, resulting in a significant down-modulation in its expression and of the encoded protein. A similar WDR5 expression decrease was seen in a small series of HD-hiPSC lines characterized by different CAG length. The decrease in WDR5 expression was particularly evident in HD-hiPSCs compared to hESCs and control-hiPSCs from healthy subjects. WDR5 is a core component of the MLL/SET1 chromatin remodeling complexes essential for H3K4me3, previously reported to play an important role in stem cells self-renewal and differentiation. These results suggest the existence of epigenetic mechanisms in HD and the identification of genes, which are able to modulate HD phenotype, is important both for biomarker discovery and therapeutic interventions.
Collapse
Affiliation(s)
- Simona Baronchelli
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy
| | - Alberto La Spada
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy
| | - Aikaterini Ntai
- Integrated Systems Engineering Srl, Via Fantoli 16/15, 20138 Milano, Italy
| | - Andrea Barbieri
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan and Istituto Nazionale di Genetica Molecolare Padiglione Invernizzi, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Gloria Saccani Jotti
- Department of Biological Science, Biotechnology and Translational - S.Bi.Bi.T., University of Parma, Via Gramsci 14, 43121 Parma, Italy
| | - Serena Redaelli
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Milan, Italy
| | - Angela Bentivegna
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Milan, Italy; NeuroMI, Milan Center of Neuroscience, via Pergolesi 33, 20900 Monza, Italy
| | - Pasquale De Blasio
- Integrated Systems Engineering Srl, Via Fantoli 16/15, 20138 Milano, Italy
| | - Ida Biunno
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy; IRCCS Multimedica, via Fantoli 16/15, 20138 Milano, Italy.
| |
Collapse
|
15
|
Wright DJ, Renoir T, Gray LJ, Hannan AJ. Huntington’s Disease: Pathogenic Mechanisms and Therapeutic Targets. ADVANCES IN NEUROBIOLOGY 2017; 15:93-128. [DOI: 10.1007/978-3-319-57193-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Niclis JC, Gantner CW, Alsanie WF, McDougall SJ, Bye CR, Elefanty AG, Stanley EG, Haynes JM, Pouton CW, Thompson LH, Parish CL. Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno-Free Conditions Restore Motor Deficits in Parkinsonian Rodents. Stem Cells Transl Med 2016; 6:937-948. [PMID: 28297587 PMCID: PMC5442782 DOI: 10.5966/sctm.2016-0073] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/01/2016] [Indexed: 01/04/2023] Open
Abstract
Recent studies have shown evidence for the functional integration of human pluripotent stem cell (hPSC)‐derived ventral midbrain dopamine (vmDA) neurons in animal models of Parkinson’s disease. Although these cells present a sustainable alternative to fetal mesencephalic grafts, a number of hurdles require attention prior to clinical translation. These include the persistent use of xenogeneic reagents and challenges associated with scalability and storage of differentiated cells. In this study, we describe the first fully defined feeder‐ and xenogeneic‐free protocol for the generation of vmDA neurons from hPSCs and utilize two novel reporter knock‐in lines (LMX1A‐eGFP and PITX3‐eGFP) for in‐depth in vitro and in vivo tracking. Across multiple embryonic and induced hPSC lines, this “next generation” protocol consistently increases both the yield and proportion of vmDA neural progenitors (OTX2/FOXA2/LMX1A) and neurons (FOXA2/TH/PITX3) that display classical vmDA metabolic and electrophysiological properties. We identify the mechanism underlying these improvements and demonstrate clinical applicability with the first report of scalability and cryopreservation of bona fide vmDA progenitors at a time amenable to transplantation. Finally, transplantation of xeno‐free vmDA progenitors from LMX1A‐ and PITX3‐eGFP reporter lines into Parkinsonian rodents demonstrates improved engraftment outcomes and restoration of motor deficits. These findings provide important and necessary advancements for the translation of hPSC‐derived neurons into the clinic. Stem Cells Translational Medicine2017;6:937–948
Collapse
Affiliation(s)
- Jonathan C. Niclis
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Carlos W. Gantner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Walaa F. Alsanie
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart J. McDougall
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Chris R. Bye
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew G. Elefanty
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Edouard G. Stanley
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - John M. Haynes
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
| | - Lachlan H. Thompson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Kao T, Labonne T, Niclis JC, Chaurasia R, Lokmic Z, Qian E, Bruveris FF, Howden SE, Motazedian A, Schiesser JV, Costa M, Sourris K, Ng E, Anderson D, Giudice A, Farlie P, Cheung M, Lamande SR, Penington AJ, Parish CL, Thomson LH, Rafii A, Elliott DA, Elefanty AG, Stanley EG. GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives. Stem Cell Reports 2016; 7:518-526. [PMID: 27594589 PMCID: PMC5032031 DOI: 10.1016/j.stemcr.2016.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 01/30/2023] Open
Abstract
The ability to reliably express fluorescent reporters or other genes of interest is important for using human pluripotent stem cells (hPSCs) as a platform for investigating cell fates and gene function. We describe a simple expression system, designated GAPTrap (GT), in which reporter genes, including GFP, mCherry, mTagBFP2, luc2, Gluc, and lacZ are inserted into the GAPDH locus in hPSCs. Independent clones harboring variations of the GT vectors expressed remarkably consistent levels of the reporter gene. Differentiation experiments showed that reporter expression was reliably maintained in hematopoietic cells, cardiac mesoderm, definitive endoderm, and ventral midbrain dopaminergic neurons. Similarly, analysis of teratomas derived from GT-lacZ hPSCs showed that β-galactosidase expression was maintained in a spectrum of cell types representing derivatives of the three germ layers. Thus, the GAPTrap vectors represent a robust and straightforward tagging system that enables indelible labeling of PSCs and their differentiated derivatives.
GAPTrap vector system targets transgenes to the ubiquitously expressed GAPDH locus Targeting transgenes to the GAPDH locus yields reliable transgene expression Transgenes at this locus are robustly expressed in differentiated cells Generation of GAPTrap targeted human PSC lines is simple and efficient
Collapse
Affiliation(s)
- Tim Kao
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Tanya Labonne
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - Jonathan C Niclis
- The Florey Institute of Neuroscience and Mental Health, Melbourne University, Parkville, VIC 3052, Australia
| | - Ritu Chaurasia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Zerina Lokmic
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - Elizabeth Qian
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Freya F Bruveris
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sara E Howden
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Ali Motazedian
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Jacqueline V Schiesser
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Division of Developmental Biology, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH 45229, USA
| | - Magdaline Costa
- Australian Centre for Blood Diseases, Monash University, The Alfred Centre, Melbourne, VIC 3004, Australia
| | - Koula Sourris
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - Elizabeth Ng
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - David Anderson
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - Antonietta Giudice
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Peter Farlie
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Michael Cheung
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia; Department of Cardiology, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Shireen R Lamande
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Anthony J Penington
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, Melbourne University, Parkville, VIC 3052, Australia
| | - Lachlan H Thomson
- The Florey Institute of Neuroscience and Mental Health, Melbourne University, Parkville, VIC 3052, Australia
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha, Qatar; Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065-4896, USA
| | - David A Elliott
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; School of Biosciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Edouard G Stanley
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
18
|
Epigenetic changes in the developing brain: Effects on behavior. Proc Natl Acad Sci U S A 2015; 112:6789-95. [PMID: 26034282 DOI: 10.1073/pnas.1501482112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
19
|
Zhang N, Bailus BJ, Ring KL, Ellerby LM. iPSC-based drug screening for Huntington's disease. Brain Res 2015; 1638:42-56. [PMID: 26428226 DOI: 10.1016/j.brainres.2015.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 01/29/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. The disease generally manifests in middle age with both physical and mental symptoms. There are no effective treatments or cures and death usually occurs 10-20 years after initial symptoms. Since the original identification of the Huntington disease associated gene, in 1993, a variety of models have been created and used to advance our understanding of HD. The most recent advances have utilized stem cell models derived from HD-patient induced pluripotent stem cells (iPSCs) offering a variety of screening and model options that were not previously available. The discovery and advancement of technology to make human iPSCs has allowed for a more thorough characterization of human HD on a cellular and developmental level. The interaction between the genome editing and the stem cell fields promises to further expand the variety of HD cellular models available for researchers. In this review, we will discuss the history of Huntington's disease models, common screening assays, currently available models and future directions for modeling HD using iPSCs-derived from HD patients. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Ningzhe Zhang
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Barbara J Bailus
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Karen L Ring
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States.
| |
Collapse
|
20
|
Meneghello G, Verheyen A, Van Ingen M, Kuijlaars J, Tuefferd M, Van Den Wyngaert I, Nuydens R. Evaluation of established human iPSC-derived neurons to model neurodegenerative diseases. Neuroscience 2015; 301:204-12. [DOI: 10.1016/j.neuroscience.2015.05.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/30/2015] [Accepted: 05/28/2015] [Indexed: 01/21/2023]
|
21
|
Bradford AB, McNutt PM. Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons. World J Stem Cells 2015; 7:899-921. [PMID: 26240679 PMCID: PMC4515435 DOI: 10.4252/wjsc.v7.i6.899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/28/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments.
Collapse
|
22
|
Lagerqvist E, Finnin B, Elliott D, Anderson D, Wu S, Pouton C, Haynes J. Comparing mouse and human pluripotent stem cell derived cardiac cells: Both systems have advantages for pharmacological and toxicological screening. J Pharmacol Toxicol Methods 2015; 74:17-25. [DOI: 10.1016/j.vascn.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/21/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
|
23
|
Jacquet L, Neueder A, Földes G, Karagiannis P, Hobbs C, Jolinon N, Mioulane M, Sakai T, Harding SE, Ilic D. Three Huntington's Disease Specific Mutation-Carrying Human Embryonic Stem Cell Lines Have Stable Number of CAG Repeats upon In Vitro Differentiation into Cardiomyocytes. PLoS One 2015; 10:e0126860. [PMID: 25993131 PMCID: PMC4438866 DOI: 10.1371/journal.pone.0126860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/08/2015] [Indexed: 12/14/2022] Open
Abstract
Huntington disease (HD; OMIM 143100), a progressive neurodegenerative disorder, is caused by an expanded trinucleotide CAG (polyQ) motif in the HTT gene. Cardiovascular symptoms, often present in early stage HD patients, are, in general, ascribed to dysautonomia. However, cardio-specific expression of polyQ peptides caused pathological response in murine models, suggesting the presence of a nervous system-independent heart phenotype in HD patients. A positive correlation between the CAG repeat size and severity of symptoms observed in HD patients has also been observed in in vitro HD cellular models. Here, we test the suitability of human embryonic stem cell (hESC) lines carrying HD-specific mutation as in vitro models for understanding molecular mechanisms of cardiac pathology seen in HD patients. We have differentiated three HD-hESC lines into cardiomyocytes and investigated CAG stability up to 60 days after starting differentiation. To assess CAG stability in other tissues, the lines were also subjected to in vivo differentiation into teratomas for 10 weeks. Neither directed differentiation into cardiomyocytes in vitro nor in vivo differentiation into teratomas, rich in immature neuronal tissue, led to an increase in the number of CAG repeats. Although the CAG stability might be cell line-dependent, induced pluripotent stem cells generated from patients with larger numbers of CAG repeats could have an advantage as a research tool for understanding cardiac symptoms of HD patients.
Collapse
Affiliation(s)
- Laureen Jacquet
- Stem Cell Laboratory, Assisted Conception Unit, Division of Women’s Health, King’s College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Andreas Neueder
- Division of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Gabor Földes
- National Heart and Lung Institute, Imperial College, ICTEM, 4th Floor, Hammersmith Campus, Du Cane Rd, London, W12 0NN, United Kingdom
| | - Panagiotis Karagiannis
- Division of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Carl Hobbs
- Histology Laboratory, Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, United Kingdom
| | - Nelly Jolinon
- Division of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Maxime Mioulane
- National Heart and Lung Institute, Imperial College, ICTEM, 4th Floor, Hammersmith Campus, Du Cane Rd, London, W12 0NN, United Kingdom
| | - Takao Sakai
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, United Kingdom
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College, ICTEM, 4th Floor, Hammersmith Campus, Du Cane Rd, London, W12 0NN, United Kingdom
| | - Dusko Ilic
- Stem Cell Laboratory, Assisted Conception Unit, Division of Women’s Health, King’s College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| |
Collapse
|
24
|
Nityanandam A, Baldwin KK. Advances in reprogramming-based study of neurologic disorders. Stem Cells Dev 2015; 24:1265-83. [PMID: 25749371 DOI: 10.1089/scd.2015.0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing.
Collapse
Affiliation(s)
- Anjana Nityanandam
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Kristin K Baldwin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
25
|
McQuade LR, Balachandran A, Scott HA, Khaira S, Baker MS, Schmidt U. Proteomics of Huntington's disease-affected human embryonic stem cells reveals an evolving pathology involving mitochondrial dysfunction and metabolic disturbances. J Proteome Res 2014; 13:5648-59. [PMID: 25316320 DOI: 10.1021/pr500649m] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the Huntingtin gene, where excessive (≥ 36) CAG repeats encode for glutamine expansion in the huntingtin protein. Research using mouse models and human pathological material has indicated dysfunctions in a myriad of systems, including mitochondrial and ubiquitin/proteasome complexes, cytoskeletal transport, signaling, and transcriptional regulation. Here, we examined the earliest biochemical and pathways involved in HD pathology. We conducted a proteomics study combined with immunocytochemical analysis of undifferentiated HD-affected and unaffected human embryonic stem cells (hESC). Analysis of 1883 identifications derived from membrane and cytosolic enriched fractions revealed mitochondria as the primary dysfunctional organ in HD-affected pluripotent cells in the absence of significant differences in huntingtin protein. Furthermore, on the basis of analysis of 645 proteins found in neurodifferentiated hESC, we show a shift to transcriptional dysregulation and cytoskeletal abnormalities as the primary pathologies in HD-affected cells differentiating along neural lineages in vitro. We also show this is concomitant with an up-regulation in expression of huntingtin protein in HD-affected cells. This study demonstrates the utility of a model that recapitulates HD pathology and offers insights into disease initiation, etiology, progression, and potential therapeutic intervention.
Collapse
Affiliation(s)
- Leon R McQuade
- Australian Proteome Analysis Facility, §Australian School of Advanced Medicine, Macquarie University , Sydney, New South Wales 2109, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Sterneckert JL, Reinhardt P, Schöler HR. Investigating human disease using stem cell models. Nat Rev Genet 2014; 15:625-39. [PMID: 25069490 DOI: 10.1038/nrg3764] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tractable and accurate disease models are essential for understanding disease pathogenesis and for developing new therapeutics. As stem cells are capable of self-renewal and differentiation, they are ideally suited both for generating these models and for obtaining the large quantities of cells required for drug development and transplantation therapies. Although proof of principle for the use of adult stem cells and embryonic stem cells in disease modelling has been established, induced pluripotent stem cells (iPSCs) have demonstrated the greatest utility for modelling human diseases. Furthermore, combining gene editing with iPSCs enables the generation of models of genetically complex disorders.
Collapse
Affiliation(s)
- Jared L Sterneckert
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Peter Reinhardt
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| |
Collapse
|
27
|
Hargus G, Ehrlich M, Hallmann AL, Kuhlmann T. Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol 2014; 127:151-73. [PMID: 24306942 DOI: 10.1007/s00401-013-1222-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 02/07/2023]
Abstract
The number of patients with neurodegenerative diseases is increasing significantly worldwide. Thus, intense research is being pursued to uncover mechanisms of disease development in an effort to identify molecular targets for therapeutic intervention. Analysis of postmortem tissue from patients has yielded important histological and biochemical markers of disease progression. However, this approach is inherently limited because it is not possible to study patient neurons prior to degeneration. As such, transgenic and knockout models of neurodegenerative diseases are commonly employed. While these animal models have yielded important insights into some molecular mechanisms of disease development, they do not provide the opportunity to study mechanisms of neurodegeneration in human neurons at risk and thus, it is often difficult or even impossible to replicate human pathogenesis with this approach. The generation of patient-specific induced pluripotent stem (iPS) cells offers a unique opportunity to overcome these obstacles. By expanding and differentiating iPS cells, it is possible to generate large numbers of functional neurons in vitro, which can then be used to study the disease of the donating patient. Here, we provide an overview of human stem cell models of neurodegeneration using iPS cells from patients with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease, spinal muscular atrophy and other neurodegenerative diseases. In addition, we describe how further refinements of reprogramming technology resulted in the generation of patient-specific induced neurons, which have also been used to model neurodegenerative changes in vitro.
Collapse
Affiliation(s)
- Gunnar Hargus
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany,
| | | | | | | |
Collapse
|
28
|
Parish CL, Thompson LH. Developing stem cell-based therapies for neural repair. Front Cell Neurosci 2013; 7:198. [PMID: 24204332 PMCID: PMC3817926 DOI: 10.3389/fncel.2013.00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/10/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Clare L Parish
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | | |
Collapse
|