1
|
Caliendo A, Camorani S, Ibarra LE, Pinto G, Agnello L, Albanese S, Caianiello A, Illiano A, Festa R, Ambrosio V, Scognamiglio G, Cantile M, Amoresano A, Fedele M, Zannetti A, Cerchia L. A novel CD44-targeting aptamer recognizes chemoresistant mesenchymal stem-like TNBC cells and inhibits tumor growth. Bioact Mater 2025; 50:443-460. [PMID: 40342488 PMCID: PMC12059597 DOI: 10.1016/j.bioactmat.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/20/2025] [Indexed: 05/11/2025] Open
Abstract
Triple-negative breast cancer (TNBC) represents a significant therapeutic challenge owing to the scarcity of targeted medicines and elevated recurrence rates. We previously reported the development of the nuclease-resistant RNA sTN58 aptamer, which selectively targets TNBC cells. Here, sTN58 aptamer was employed to capture and purify its binding target from the membrane protein fraction of cisplatin-resistant mesenchymal stem-like TNBC cells. Mass spectrometry in conjunction with aptamer binding assays across various cancer cell lines identified CD44 as the cellular target of sTN58. By binding to CD44, sTN58 inhibits the invasive growth and hyaluronic acid-dependent tube formation in chemoresistant TNBC cells, where CD44 serves as a key driver of tumor cell aggressiveness and stem-like plasticity. Moreover, in vivo studies demonstrated the aptamer's high tumor targeting efficacy and its capacity to significantly inhibit tumor growth and lung metastases following intravenous administration in mice with orthotopic TNBC. Overall, our findings reveal the striking potential of sTN58 as a targeting reagent for the recognition and therapy of cancers overexpressing CD44.
Collapse
Affiliation(s)
- Alessandra Caliendo
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Simona Camorani
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Luis Exequiel Ibarra
- Institute of Environmental Biotechnology and Health (INBIAS), National University of Rio Cuarto (UNRC), National Council for Scientific and Technological Research (CONICET), Río Cuarto, X5800BIA, Argentina
| | - Gabriella Pinto
- Dipartimento di Scienze Chimiche Università di Napoli Federico II, Consorzio Interuniversitario Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Lisa Agnello
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Sandra Albanese
- Institute of Biostructures and Bioimaging, National Research Council, 80145, Naples, Italy
| | - Antonietta Caianiello
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Anna Illiano
- Dipartimento di Scienze Chimiche Università di Napoli Federico II, Consorzio Interuniversitario Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Rosaria Festa
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Vincenzo Ambrosio
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Giosuè Scognamiglio
- Institutional Biobank-Scientific Directorate, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Monica Cantile
- Institutional Biobank-Scientific Directorate, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Angela Amoresano
- Dipartimento di Scienze Chimiche Università di Napoli Federico II, Consorzio Interuniversitario Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Monica Fedele
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, 80145, Naples, Italy
| | - Laura Cerchia
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| |
Collapse
|
2
|
Lin N, Lin L, Huang X, Huang C, Gong J. Label-free quantitative proteomics of gastric high-grade intraepithelial neoplasia. Exp Ther Med 2025; 30:133. [PMID: 40432843 PMCID: PMC12107227 DOI: 10.3892/etm.2025.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
Early detection and diagnosis are key to improving the survival rate and reducing the fatality rate linked to gastric cancer. The precancerous lesion of gastric cancer is referred to as gastric high-grade intraepithelial neoplasia (HGIN). Both the sensitivity and specificity of current biomarkers that aid in the diagnosis of gastric HGIN are still relatively low. Furthermore, proteomic data on gastric HGIN are still scarce. The present study aimed to explore candidate protein biomarkers for gastric HGIN screening with proteomics and bioinformatics technology. A total of 10 serum samples were collected and categorized into two groups, i.e., the gastric HGIN and the healthy control groups. Label-free quantification in conjunction with liquid chromatography with tandem mass spectrometry was employed to identify the probable biomarkers for gastric HGIN. Furthermore, differentially expressed proteins (DEPs) were quantified by proteomics analysis. In total, 1,192 distinct serum proteins were discovered between the gastric HGIN group and the healthy control group. DEPs were identified in the further analyses, utilizing a threshold of a 1.5-fold difference in expression level (P<0.05) in comparison with the control group. There were 18 upregulated and 12 downregulated proteins in the gastric HGIN group in comparison with the control group. Bioinformatics analyses were performed using Gene Ontology and KEGG pathway enrichment analyses. The GO analysis revealed that the DEPs were enriched in biological processes such as 'cellular', 'biological regulation', 'multicellular organismal', 'developmental' and 'reaction to stimulus processes', localized to 'cell', 'intracellular' and 'protein-containing complex', and involved in molecular functions such as 'molecular function modulator', 'binding' and 'catalytic activity'. The KEGG pathway enrichment analysis manifested that the DEPs were predominantly enriched in 'antigen processing and presentation', 'diabetic cardiomyopathy', 'Epstein-Barr virus infection', 'herpes simplex virus 1 infection', 'human immunodeficiency virus 1 infection' and 'human cytomegalovirus infection'. In conclusion, the present data provide more biological information for the formation of gastric HGIN and clues for further research on the pathogenesis of early gastric cancer.
Collapse
Affiliation(s)
- Nan Lin
- Department of Gastroenterology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Liping Lin
- Department of Gastroenterology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Xinxiang Huang
- Department of Gastroenterology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Chaozhong Huang
- Department of Gastroenterology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Jinrong Gong
- Department of Gastroenterology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| |
Collapse
|
3
|
Palanisamy B, Mandal AKA. Unlocking the potential: Receptor-mediated targeted drug delivery in cancer therapy. Pathol Res Pract 2025; 270:155955. [PMID: 40209568 DOI: 10.1016/j.prp.2025.155955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/29/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Receptor-mediated targeted drug delivery has emerged as a pivotal strategy in cancer therapy, offering precision and specificity in combating malignant diseases while minimizing systemic toxicity. This review explores the multifaceted role of receptors in cancer biology, emphasizing their contributions to cancer progression, metastasis, and their potential as therapeutic targets. Ligand-based targeting approaches highlight the utility of small molecules, peptides, and antibodies, as well as the development of novel targeting ligands. A critical focus is placed on engineering receptor-targeted nanoparticles and advanced drug delivery systems. Innovations in dual-targeting strategies and the targeted delivery to the tumour microenvironment (TME) and metastatic niches are discussed, underscoring their potential to enhance therapeutic efficacy. Additionally, receptor-targeted imaging is reviewed for its dual role in diagnosis and real-time treatment monitoring. To address the challenges of side effects and off-target toxicity, strategies that minimize these risks while targeting overexpressed receptors in solid tumours are explored. Finally, the review outlines future directions in receptor-targeted cancer therapy, emphasizing the need for interdisciplinary research to refine these strategies further. This comprehensive analysis aims to provide a roadmap for advancing receptor-based therapeutic approaches, ultimately improving outcomes for cancer patients.
Collapse
Affiliation(s)
- Balaji Palanisamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Thomas M, Brabenec R, Gregor L, Andreu-Sanz D, Carlini E, Müller PJ, Gottschlich A, Simnica D, Kobold S, Marr C. The role of single cell transcriptomics for efficacy and toxicity profiling of chimeric antigen receptor (CAR) T cell therapies. Comput Biol Med 2025; 192:110332. [PMID: 40375426 DOI: 10.1016/j.compbiomed.2025.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
CAR T cells are genetically modified T cells that target specific epitopes. CAR T cell therapy has proven effective in difficult-to-treat B cell cancers and is now expanding into hematology and solid tumors. To date, approved CAR therapies target only two specific epitopes on cancer cells. Identifying more suitable targets is challenged by the lack of truly cancer-specific structures and the potential for on-target off-tumor toxicity. We analyzed gene expression of potential targets in single-cell data from cancer and healthy tissues. Because safety and efficacy can ultimately only be defined clinically, we selected approved and investigational targets for which clinical trail data are available. We generated atlases using >300,000 cells from 48 patients with follicular lymphoma, multiple myeloma, and B-cell acute lymphoblastic leukemia, and integrated over 3 million cells from 35 healthy tissues, harmonizing datasets from over 300 donors. To contextualize findings, we compared target expression patterns with outcome data from clinical trials, linking target profiles to efficacy and toxicity, and ranked 15 investigational targets based on their similarity to approved ones. Target expression did not significantly correlate with reported clinical toxicities in patients undergoing therapy. This may be attributed to the intricate interplay of patient-specific variables, the limited amount of metadata, and the complexity underlying toxicity. Nevertheless, our study serves as a resource for retrospective and prospective target evaluation to improve the safety and efficacy of CAR therapies.
Collapse
Affiliation(s)
- Moritz Thomas
- Institute of AI for Health, Computational Health Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ruben Brabenec
- Institute of AI for Health, Computational Health Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Gregor
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - David Andreu-Sanz
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Emanuele Carlini
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philipp Jie Müller
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Donjete Simnica
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Carsten Marr
- Institute of AI for Health, Computational Health Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
5
|
Naz Z, Fareed M, Chaudhary ARH, Snigdha NT, Zafar A, Alsaidan OA, Mangu K, Ahmad S, Aslam M, Rizwanullah M. Exploring the therapeutic potential of ligand-decorated nanostructured lipid carriers for targeted solid tumor therapy. Int J Pharm 2025; 678:125687. [PMID: 40348302 DOI: 10.1016/j.ijpharm.2025.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/19/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Solid tumors present significant therapeutic challenges due to their complex pathophysiology, including poor vascularization, dense extracellular matrix, multidrug resistance, and immune evasion. Conventional treatment strategies, such as chemotherapy, radiotherapy, and surgical interventions, are often associated with systemic toxicity, suboptimal drug accumulation at the tumor site, and chemoresistance. Nanostructured lipid carriers (NLCs) have emerged as a promising approach to enhance anticancer therapy. NLCs offer several advantages, including high drug loading capacity, improved bioavailability, controlled release, and enhanced stability. Recent advancements in active targeting strategies have led to the development of ligand-decorated NLCs, which exhibit selective tumor targeting, improved cellular uptake, and reduced systemic toxicity. By functionalizing NLCs with different targeting ligands, site-specific drug delivery can be achieved for better therapeutic efficacy. This review comprehensively explores the potential of ligand-decorated NLCs in solid tumor therapy, highlights their design principles, and mechanisms of tumor targeting. Furthermore, it discusses various receptor-targeted NLCs for the effective treatment of solid tumors. The potential of ligand-decorated NLCs in combination therapy, gene therapy, photothermal therapy, and photodynamic therapy is also explored. Overall, ligand-decorated NLCs represent a versatile and effective strategy to achieve better therapeutic outcomes in solid tumor therapy.
Collapse
Affiliation(s)
- Zrien Naz
- Department of Pharmaceutics, College of Pharmacy, Al Asmarya University, Zliten 218521, Libya
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | | | - Niher Tabassum Snigdha
- Department of Dental Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105 Tamil Nadu, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka-72341, Al-Jouf, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka-72341, Al-Jouf, Saudi Arabia
| | - Karthik Mangu
- Kogniverse Education and Research, Bionest, Avishkaran (NIPER), Hyderabad-500037, Telangana, India
| | - Shahnawaz Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001 Kurdistan Region, Iraq
| | - Md Rizwanullah
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401 Punjab, India.
| |
Collapse
|
6
|
Pereira-Silva M, Veiga F, Paiva-Santos AC, Concheiro A, Alvarez-Lorenzo C. Biomimetic nanosystems for pancreatic cancer therapy: A review. J Control Release 2025; 383:113824. [PMID: 40348133 DOI: 10.1016/j.jconrel.2025.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Pancreatic cancer (PC) is a highly lethal and aggressive malignancy, currently one of the leading causes of cancer-related deaths worldwide, in both women and men. PC is highly resistant to standard chemotherapy (CT) because its immunosuppressive and hypoxic tumor microenvironment and a dense desmoplastic stroma compartment extensively limit drug accessibility and perfusion. Although CT is one of the main therapeutic strategies for PC management contributing to tumor eradication through a cytotoxic effect, CT is associated with a poor pharmacokinetic profile and provokes deleterious systemic toxicity. This low efficacy-poor safety scenario urgently calls for innovative and highly specific therapeutic strategies to counteract this urgent clinical challenge. Nanotechnology-based precision materials for cancer may help improve drug stability and minimize the systemic cytotoxic effects by increasing drug tumor accumulation and also enabling controlled release, but several drawbacks still persist, such as the poor targeting efficiency. In the last few years increased attention has been paid to bioinspired nanosystems that can mimic either partially or totally biological systems, including lipid layers as suitable stealth coatings resembling the composition of cell membranes, lipoprotein- and blood protein-based nanosystems, and cell membrane-derived systems, such as extracellular vesicles, cell membrane nanovesicles and cell membrane-coated nanosystems, which display intrinsic cancer-targeting abilities, enhanced biocompatibility, decreased immunogenicity, and prolonged blood circulation profile. This review covers the recent breakthroughs on advanced biomimetic PC-targeted nanosystems, focusing on their design, properties and applications as innovative, multifunctional and versatile tools paving the way to improved PC diagnosis and treatment.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Puri N, Sahane P, Phatale V, Khairnar P, Shukla S, Priyadarshinee A, Jain A, Srivastava S. Nano-chameleons: A review on cluster of differentiation-driven immune cell-engineered nanoarchitectonics for non-small cell lung cancer. Int J Biol Macromol 2025; 310:143440. [PMID: 40280523 DOI: 10.1016/j.ijbiomac.2025.143440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/26/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Cancer, being one of the most outrageous diseases, contributed to 48 % of the mortality in 2022, with lung cancer leading the race with a 12.4 % incidence rate. Conventional treatment modalities like radio-, chemo-, photo-, and immunotherapy employing nanocarriers often face several setbacks, such as non-specific delivery, off-site toxicity, rapid opsonization via the host immune system, and greater tumor recurrence rates. Moreover, the heterogeneous variability in the tumor microenvironment is responsible for existing therapy failure. With the advent of biomimetic nanoparticles as a novel and intriguing platform, researchers have exploited the inherent functionalities of the Cluster of Differentiation proteins (CD) as cell surface biomarkers and imparted the nanocarriers with enhanced homologous tumor targetability, immune evasion capability, and stealth properties, paving the way for improved therapy and diagnosis. This article explores pathogenesis and the multifaceted role of immune cells in non-small cell lung cancer. Moreover, the agenda of this article is to shed light on biomimetic nanoarchitectonics with respect to their fabrication, evaluation, and applications unraveling their synergistic effect with conventional therapies. Further discussion mentions the hurdles in clinical translation with viable solutions. The regulatory bottlenecks underscore the need for a regulatory roadmap with respect to commercialization. We believe that biomimetic nanoarchitectonics will be a beacon of hope in warfare against lung cancer.
Collapse
Affiliation(s)
- Niharika Puri
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Prajakta Sahane
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Abhipsa Priyadarshinee
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Akshita Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India.
| |
Collapse
|
8
|
Xie Z, Zheng G, Niu L, Du K, Li R, Dan H, Duan L, Wu H, Ren G, Dou X, Dai S, Feng F, Zhang J, Zheng J. SPP1 + macrophages in colorectal cancer: Markers of malignancy and promising therapeutic targets. Genes Dis 2025; 12:101340. [PMID: 40092488 PMCID: PMC11907465 DOI: 10.1016/j.gendis.2024.101340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 03/19/2025] Open
Abstract
SPP1+ macrophages have been identified as key players in the colorectal cancer (CRC) tumor microenvironment, but their function remains unclear. This study integrated single-cell and spatial transcriptomics with bulk sequencing to investigate the roles and mechanisms of SPP1 + macrophages in CRC. Our findings revealed a pronounced elevation of SPP1 + macrophages in CRC, especially within tumor territories. These macrophages served as markers for CRC initiation, progression, metastasis, and potential prognosis. Furthermore, they showed heightened transcriptional activity in genes linked to angiogenesis, epithelial-mesenchymal transition, glycolysis, hypoxia, and immunosuppression. SPP1 protein amplified CRC cell migration and invasion, potentially mediating cellular crosstalk via the SPP1-CD44, SPP1-PTGER4, and SPP1-a4b1 complex axes. Patients with a high proportion of SPP1 + macrophages could benefit more from immune checkpoint blockade therapy. Interestingly, CSF1R expression was significantly enriched in C1QC + macrophages versus SPP1 + macrophages, possibly explaining limited anti-CSF1R monotherapy effects. In conclusion, we propose an SPP1 + macrophage model in CRC, highlighting such macrophages as a promising therapeutic target due to their malignancy markers.
Collapse
Affiliation(s)
- Zhenyu Xie
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Gaozan Zheng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Kunli Du
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Ruikai Li
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Hanjun Dan
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Hongze Wu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Guangming Ren
- Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Xinyu Dou
- Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Songchen Dai
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110016, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning 110016, China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Jianyong Zheng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
9
|
Pfeffer K, Ho TH, Ruiz Y, Lake DF. A method for screening functional anti-Treg antibodies using a Treg-like cell line. J Leukoc Biol 2025; 117:qiae257. [PMID: 39739859 DOI: 10.1093/jleuko/qiae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/15/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025] Open
Abstract
Regulatory T cells can suppress activated T-cell proliferation by direct cell contact, although the exact mechanism is poorly understood. Identification of a Treg-specific cell surface molecule that mediates suppression would offer a unique target for cancer immunotherapy to inhibit Treg immunosuppressive function or deplete Tregs in the tumor microenvironment. In this study, we explored a method of whole-cell immunization using a Treg-like cell line (MoT cells) to generate and screen monoclonal antibodies that bound cell surface proteins in their native conformations and functionally reversed Treg-mediated suppression. From the 105 hybridomas that bound to the MoT cell surface, a functional screen utilizing conventional Treg suppression assays revealed 32 candidate antibodies that exhibited functional activity (reversed or enhanced suppressive activity). As an example, we characterized 1 anti-MoT mAb, 12E7, that exhibited strong binding to MoT cells and conventional Treg cell surfaces. This candidate antibody was subsequently found to bind to a potential suppressive target, CD44, and demonstrated the ability to partially reverse MoT and conventional human Treg-mediated suppression.
Collapse
Affiliation(s)
- Kirsten Pfeffer
- School of Life Sciences, Arizona State University, 6161 E. Mayo Blvd, Phoenix, AZ 85054, United States
| | - Thai H Ho
- Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, United States
| | - Yvette Ruiz
- School of Life Sciences, Arizona State University, 6161 E. Mayo Blvd, Phoenix, AZ 85054, United States
| | - Douglas F Lake
- School of Life Sciences, Arizona State University, 6161 E. Mayo Blvd, Phoenix, AZ 85054, United States
| |
Collapse
|
10
|
Wang N, Yan X, Ji C, Hu J, Chen X, Zhang C, Quan Y, He T, Sun T, Yu Y. In situ thermal-responsive hydrogels for combined photothermal therapy and chemotherapy of pancreatic cancer. RSC Adv 2025; 15:13119-13126. [PMID: 40275869 PMCID: PMC12019213 DOI: 10.1039/d5ra00371g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/14/2025] [Indexed: 04/26/2025] Open
Abstract
Pancreatic cancer is a malignancy with a poor prognosis and high mortality. Survival outcomes remain very poor despite significant advances in molecular diagnostics and therapeutics in clinical practice. Surgical resection is the only potentially curative treatment, but the tumor is often diagnosed at an advanced stage, and most cancers recur after surgery. Treatments other than surgery, including chemotherapy and immunotherapy, still offer disappointing results. Multidisciplinary treatment approaches through appropriate carriers have provided new solutions for improving the prognosis of pancreatic cancer. Herein, we reported an in situ formed thermo-responsive hybrid hydrogel loaded with gemcitabine and manganese dioxide nanoparticles, which exhibited good injectability, high photothermal hyperthermia, and biocompatibility, leading to efficient multidisciplinary treatment of pancreatic cancer in combination with chemotherapy and photothermal therapy (PTT). The hybrid hydrogel could be heated to 51 °C under 808 nm laser irradiation in five minutes. In situ intratumoral injection results suggested that the hybrid hydrogel exhibited high photothermal efficiency in killing rabbit pancreatic tumors. In vivo results indicated that the multidisciplinary treatment almost completely eliminated subcutaneous tumors in mice within 14 days. This development offers an efficient multidisciplinary treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Ningwei Wang
- Department of Gastroenterology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei 230001 China
| | - Xu Yan
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 230001 China
| | - Chaofei Ji
- Department of Radiology, Anhui No. 2 Provincial People's Hospital Hefei 230001 China
| | - Jinlong Hu
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital Hefei 230001 China
| | - Xiangshun Chen
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 230001 China
| | - Cong Zhang
- Department of Gastroenterology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei 230001 China
| | - Yuzhu Quan
- Changchun GeneScience Pharmaceutical Co., Ltd. Xuhui District Shanghai 200030 China
| | - Tao He
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 230001 China
| | - Tianci Sun
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 230001 China
| | - Yue Yu
- Department of Gastroenterology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei 230001 China
| |
Collapse
|
11
|
Pervez A, Khan B, Khan GN, Khattak S, Ali M, Mujeeb K, Nasib B, Kim HG, Qureshi IZ, Arshad M. Evaluation of hepatic cancer stem cells (CD 73+, CD 44+, and CD 90+) induced by diethylnitrosamine in male rats and treatment with biologically synthesized silver nanoparticles. Mol Biol Rep 2025; 52:393. [PMID: 40232523 DOI: 10.1007/s11033-025-10495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Cancer stem cells (CSCs) play a critical role in the initiation and heterogeneity of a variety of cancers due to their pluripotent nature and capacity for asymmetric cell division. Therefore, uncovering the carcinogens that increase the CSC population in target tissues is crucial for understanding the genesis of cancer. The therapeutic potential of Operculina turpethum (OT) derived silver nanoparticles (AgNPs) was assessed in diethylnitrosamine (DEN)-induced CSC populations; CD73+, CD44+, and CD90 + of hepatic tissues in male rats. METHODS Histopathology, fluorescence-activated cell sorting (FACS), and RT-qPCR were performed on the control, DEN, DEN + AgNPs, and AgNPs-treated groups. AgNPs were characterized by FTIR, EDX, XRD, and SEM. RESULTS AgNPs were confirmed by intense surface plasmon resonance at 425 nm. Antioxidants, the reducing sugars responsible for Ag+ 1 reduction and subsequent conjugate formation with nanoparticles, were confirmed by vibrational spectra. The spherical morphology, composition, and conjugation of silver nanoparticles to phytoconstituents with partially crystalline, face-centered cubic structure were established through SEM, EDX spectrum, and XRD, respectively. Disrupted tissue architecture, cell enlargement, mild pleomorphism, and expanded central veins were observed in hepatic tissues of DEN-treated animals. However, a moderate inflammatory response was observed in the DEN + AgNPs-treated group. CSC populations were significantly increased in the DEN-treated group, but decreased with AgNPs-treatment. The mRNA expression levels of CD90, CD44, and CD73 genes were significantly up-regulated in the DEN-treated group compared to control group however, in DEN + AgNPs and AgNPs groups it were similar to control group. CONCLUSION All together, DEN-induced the hepatic CSC cell populations and the OT mediated AgNPs have therapeutic potential to attenuate the harmful effects of DEN. This study provides evidenced that OT-synthesised AgNPs may be considered as a therapeutic agent for liver related malignancies.
Collapse
Affiliation(s)
- Amber Pervez
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Behramand Khan
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Gul Nabi Khan
- Department of Zoology, Islamia College University, Peshawar, Pakistan.
| | - Sumayya Khattak
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Mazhar Ali
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Komal Mujeeb
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Bushra Nasib
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Hyung Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, The State University of New Jersey, Rutgers, USA
| | | | - Muhammad Arshad
- Biochemistry Section, Jhang Campus, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
12
|
Zhao G, Zeng Y, Cheng W, Karkampouna S, Papadopoulou P, Hu B, Zang S, Wezenberg E, Forn-Cuní G, Lopes-Bastos B, Julio MKD, Kros A, Snaar-Jagalska BE. Peptide-Modified Lipid Nanoparticles Boost the Antitumor Efficacy of RNA Therapeutics. ACS NANO 2025; 19:13685-13704. [PMID: 40176316 PMCID: PMC12004924 DOI: 10.1021/acsnano.4c14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
RNA therapeutics offer a promising approach to cancer treatment by precisely regulating cancer-related genes. While lipid nanoparticles (LNPs) are currently the most advanced nonviral clinically approved vectors for RNA therapeutics, their antitumor efficacy is limited by their unspecific hepatic accumulation after systemic administration. Thus, there is an urgent need to enhance the delivery efficiency of LNPs to target tumor-residing tissues. Here, we conjugated the cluster of differentiation 44 (CD44)-specific targeting peptide A6 (KPSSPPEE) to the cholesterol of LNPs via PEG, named AKPC-LNP, enabling specific tumor delivery. This modification significantly improved delivery to breast cancer cells both in vitro and in vivo, as shown by flow cytometry and confocal microscopy. We further used AKPC-siYT to codeliver siRNAs targeting the transcriptional coactivators YAP and TAZ, achieving potent gene silencing and increased cell death in both 2D cultures and 3D tumor spheroids, outperforming unmodified LNPs. In a breast tumor cell xenografted zebrafish model, systemically administered AKPC-siYT induced robust silencing of YAP/TAZ and downstream genes and significantly enhanced tumor suppression compared to unmodified LNPs. Additionally, AKPC-siYT effectively reduced proliferation in prostate cancer organoids and tumor growth in a patient-derived xenograft (PDX) model. Overall, we developed highly efficient AKPC-LNPs carrying RNA therapeutics for targeted cancer therapy.
Collapse
Affiliation(s)
- Gangyin Zhao
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
- Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 51800, China
| | - Ye Zeng
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Wanli Cheng
- Urology
Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
| | - Sofia Karkampouna
- Urology
Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
- Department
of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Panagiota Papadopoulou
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bochuan Hu
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Shuya Zang
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Emma Wezenberg
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Gabriel Forn-Cuní
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bruno Lopes-Bastos
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Marianna Kruithof-de Julio
- Department
of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Alexander Kros
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - B. Ewa Snaar-Jagalska
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| |
Collapse
|
13
|
Dai X, Xi M, Li J. Cancer metastasis: molecular mechanisms and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:20. [PMID: 40192949 PMCID: PMC11977077 DOI: 10.1186/s43556-025-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
The metastatic cascade is a complicated process where cancer cells travel across multiple organs distant from their primary site of onset. Despite the wide acceptance of the 'seed and soil' theory, mechanisms driving metastasis organotropism remain mystery. Using breast cancer of different subtypes as the disease model, we characterized the 'metastatic profile of cancer cells' and the 'redox status of the organ microenvironment' as the primary determinants of cancer metastasis organotropism. Mechanically, we identified a positive correlation between cancer metabolic plasticity and stemness, and proposed oxidative stress as the selection power of cancer cells succeeding the metastasis cascade. Therapeutically, we proposed the use of pro-oxidative therapeutics in ablating cancer cells taking advantages of this fragile moment during metastasis. We comprehensively reviewed current pro-oxidative strategies for treating cancers that cover the first line chemo- and radio-therapies, approaches relying on naturally existing power including magnetic field, electric field, light and sound, nanoparticle-based anti-cancer composites obtained through artificial design, as well as cold atmospheric plasma as an innovative pro-oxidative multi-modal modality. We discussed possible combinations of pro-oxidative approaches with existing therapeutics in oncology prior to the forecast of future research directions. This paper identified the fundamental mechanics driving metastasis organotropism and proposed intervention strategies accordingly. Insights provided here may offer clues for the design of innovative solutions that may open a new paradigm for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Ming Xi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jitian Li
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Province, Zhengzhou, 450000, China
| |
Collapse
|
14
|
Awuah WA, Ben-Jaafar A, Karkhanis S, Nkrumah-Boateng PA, Kong JSH, Mannan KM, Shet V, Imran S, Bone M, Boye ANA, Ranganathan S, Shah MH, Abdul-Rahman T, Atallah O. Cancer stem cells in meningiomas: novel insights and therapeutic implications. Clin Transl Oncol 2025; 27:1438-1459. [PMID: 39316249 PMCID: PMC12000263 DOI: 10.1007/s12094-024-03728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Meningiomas (MGs), which arise from meningothelial cells of the dura mater, represent a significant proportion of primary tumours of the central nervous system (CNS). Despite advances in treatment, the management of malignant meningioma (MMG) remains challenging due to diagnostic, surgical, and resection limitations. Cancer stem cells (CSCs), a subpopulation within tumours capable of self-renewal and differentiation, are highlighted as key markers of tumour growth, metastasis, and treatment resistance. Identifying additional CSC-related markers enhances the precision of malignancy evaluations, enabling advancements in personalised medicine. The review discusses key CSC biomarkers that are associated with high levels of expression, aggressive tumour behaviour, and poor outcomes. Recent molecular research has identified CSC-related biomarkers, including Oct-4, Sox2, NANOG, and CD133, which help maintain cellular renewal, proliferation, and drug resistance in MGs. This study highlights new therapeutic strategies that could improve patient prognosis with more durable tumour regression. The use of combination therapies, such as hydroxyurea alongside diltiazem, suggests more efficient and effective MG management compared to monotherapy. Signalling pathways such as NOTCH and hedgehog also offer additional avenues for therapeutic development. CRISPR/Cas9 technology has also been employed to create meningioma models, uncovering pathways related to cell growth and proliferation. Since the efficacy of traditional therapies is limited in most cases due to resistance mechanisms in CSCs, further studies on the biology of CSCs are warranted to develop therapeutic interventions that are likely to be effective in MG. Consequently, improved diagnostic approaches may lead to personalised treatment plans tailored to the specific needs of each patient.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Vallabh Shet
- University of Connecticut New Britain Program, New Britain, Connecticut, USA
| | - Shahzeb Imran
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Matan Bone
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | | | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
15
|
León-Flores DB, Siañez-Estada LI, Iglesias-Figueroa BF, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Varela-Ramírez A, Aguilera RJ, Rascón-Cruz Q. Anticancer potential of lactoferrin: effects, drug synergy and molecular interactions. Biometals 2025; 38:465-484. [PMID: 40117096 DOI: 10.1007/s10534-025-00672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Cancer treatment is among today's most active and challenging research fields. In recent years, significant progress has been made in developing new cancer therapies, including nutraceuticals and natural compounds with anticancer properties. Lactoferrin, a glycoprotein present in mammals, is of significant interest due to its pleiotropic behavior, demonstrating a broad spectrum of biological activities such as antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, and anticancer effects. In this review, we examine the current knowledge of Lf's role in cancer. In addition, it exhibits a synergistic effect along with conventional drugs, potentially enhancing their efficacy and, at the same time, reducing the side effects associated with most traditional therapies. However, it is essential to consider the precise molecular mechanism by which Lf exerts its antitumor activity. Searching interactions with several molecules can provide insight into this mechanism. Additionally, finding lactoferrin receptors can improve the strategies for the specific release of the conjugates. For all these reasons, Lactoferrin becomes a potential therapeutic agent that should be examined in depth.
Collapse
Affiliation(s)
- D B León-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - L I Siañez-Estada
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - B F Iglesias-Figueroa
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - T S Siqueiros-Cendón
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - E A Espinoza-Sánchez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - A Varela-Ramírez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - R J Aguilera
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Q Rascón-Cruz
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México.
| |
Collapse
|
16
|
Wang H, Huang N, Tan M, Zhang X, Chen J, Wei Q. Characteristics of cell adhesion molecules expression and environmental adaptation in yak lung tissue. Sci Rep 2025; 15:10914. [PMID: 40158021 PMCID: PMC11954989 DOI: 10.1038/s41598-025-95882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Cell Adhesion Molecules (CAMs) play a crucial role in regulating immune responses and repairing damage caused by hypoxia. However, the relationship between the expression characteristics of CAMs in yak lung tissues and their adaptation to the plateau environment remains unclear. To address this question, we compared lung tissues from yaks and cattle at the same altitude. After digesting the lung tissues with trypsin or Type I collagenase for varying durations, we observed that fewer cells were isolated from yak tissues compared to cattle. RNA sequencing (RNA-seq) analysis revealed that the Differentially Expressed Genes (DEGs) in lung tissues of yaks and cattle were significantly enriched in cell adhesion-related pathways. Quantitative real-time PCR (qRT-PCR) further identified changes in the expression levels of five distinct types of CAMs. Among these, the cadherin family (CDH1, CDH2, CDH11, PCDH12, CD34) exhibited significantly higher expression in yaks than in cattle. These cadherins play a critical role in regulating lung inflammation and maintaining the alveolar-capillary barrier, thereby ensuring the structural stability of the lungs. Immunohistochemical staining demonstrated that the expression patterns of cell adhesion-related proteins (CDH1, CDH11, ITGB6, SELP, CD44) were largely consistent with the qRT-PCR results. In conclusion, compared to cattle, the enhanced cell adhesion capacity of yak lung tissues contributes to their superior adaptation to the harsh plateau environment.
Collapse
Affiliation(s)
- Huizhen Wang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Nating Huang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Minglu Tan
- Livestock and Veterinary Station of Huangyuan County, Xining, Qinghai, China
| | - Xun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jiarui Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Qing Wei
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
17
|
Florea MA, Becheanu G, Niculae A, Dobre M, Costache M. Immunohistochemical insights into the pathogenesis of colonic sessile serrated lesions. Arch Clin Cases 2025; 12:22-28. [PMID: 40135194 PMCID: PMC11934239 DOI: 10.22551/2025.46.1201.10307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Sessile serrated lesions (SSLs) are recognized as precursor lesions in the pathogenesis of colorectal cancer, particularly in the context of microsatellite instability (MSI). This study evaluates the role of immunohistochemical (IHC) markers in understanding the molecular and immunologic characteristics of SSLs. MATERIALS AND METHODS A retrospective analysis was performed on 45 colonic neoplastic lesions diagnosed as SSLs. An IHC staining panel was conducted, including MLH1, p53, CD44, CD3, CD8, MUC2, MUC5AC, MUC6, chromogranin and Ki67 antibodies. RESULTS MLH1 and p53 expressions showed correlations with dysplastic changes. Immunological markers CD3 and CD8 indicated a variable immune response, potentially reflecting the tumor's ability to evade immune surveillance in certain situations. CD44 was overexpressed in all SSLs. The number of neuroendocrine cells was overall reduced. CONCLUSIONS SSLs are heterogeneous lesions, exhibiting a wide range of histological and molecular features. Using IHC might enhance diagnostic accuracy, particularly in lesions with ambiguous histological features, when dysplasia develops. Accurate identification of SSLs and understanding their molecular characteristics are crucial for assessing their malignant potential.
Collapse
Affiliation(s)
- Maria-Alexandra Florea
- Victor Babeş National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gabriel Becheanu
- Victor Babeş National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andrei Niculae
- Victor Babeş National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Maria Dobre
- Victor Babeş National Institute of Pathology, Bucharest, Romania
| | - Mariana Costache
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Pathology Department, Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
18
|
Narayanan A, Saurty-Seerunghen MS, Michieletto J, Delaunay V, Bruneel A, Dupré T, Ottolenghi C, Pontoizeau C, Ciccone L, De La Vara A, Idbaih A, Turchi L, Virolle T, Chneiweiss H, Junier MP, El-Habr EA. Nicotinamide metabolism reprogramming drives reversible senescence of glioblastoma cells. Cell Mol Life Sci 2025; 82:126. [PMID: 40116940 PMCID: PMC11928343 DOI: 10.1007/s00018-025-05641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/12/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025]
Abstract
Recent studies show that metabolites, beyond their metabolic roles, can induce significant changes in cell behavior. Herein, we investigate the non-canonical role of nicotinamide (vitamin B3) on glioblastoma (GB) cell behavior. Nicotinamide induced senescence in GB cells, characterized by reduced proliferation, chromatin reorganization, increased DNA damage, enhanced beta-galactosidase activity, and decreased Lamin B1 expression. Nicotinamide-induced senescence was accompanied by an unexpected reprogramming of its metabolism, marked by simultaneous downregulated transcription of NNMT (nicotinamide N-methyltransferase) and NAMPT (nicotinamide phosphoribosyl-transferase). Nicotinamide effects on GB cells were mediated by decreased levels of SOX2. Consistently, analyses of patients' single cell transcriptome datasets showed that GB cells with low NNMT and NAMPT expression levels were enriched in gene modules related to senescence. Remarkably, senescent GB cells retained tumor-forming ability in vivo, albeit to a lesser extent compared to control cells. Further experiments at the single-cell level and transcriptomic analyses demonstrated that nicotinamide-induced senescence in GB cells is fully reversible. Overall, our findings identify a novel reversible senescent state in GB tumors and highlight the non-canonical role of nicotinamide as a key driver of cancer cell plasticity.
Collapse
Affiliation(s)
- Ashwin Narayanan
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
- QV Bioelectronics Ltd., 21LGA, Alderley Park, Nether Alderley, Cheshire, SK10 4TG, UK
| | - Mirca S Saurty-Seerunghen
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Jessica Michieletto
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Virgile Delaunay
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Arnaud Bruneel
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude-Bernard, Paris, France
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, 91400, Orsay, France
| | - Thierry Dupré
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Chris Ottolenghi
- France Paris Cité University, Imagine Institute -Inserm U1163, Metabolic Biochemistry Laboratory, Necker Hospital (APHP), Paris, France
| | - Clément Pontoizeau
- France Paris Cité University, Imagine Institute -Inserm U1163, Metabolic Biochemistry Laboratory, Necker Hospital (APHP), Paris, France
| | - Lucrezia Ciccone
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Andreas De La Vara
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau -Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, F-75013, Paris, France
| | - Laurent Turchi
- Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", 06108, Nice, France
| | - Thierry Virolle
- Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", 06108, Nice, France
| | - Hervé Chneiweiss
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Marie-Pierre Junier
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Elias A El-Habr
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France.
| |
Collapse
|
19
|
Gama JM, Oliveira RC. CD44 and Its Role in Solid Cancers - A Review: From Tumor Progression to Prognosis and Targeted Therapy. FRONT BIOSCI-LANDMRK 2025; 30:24821. [PMID: 40152366 DOI: 10.31083/fbl24821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 03/29/2025]
Abstract
Cluster of differentiation 44 (CD44) is a transmembrane protein expressed in normal cells but overexpressed in several types of cancer. CD44 plays a major role in tumor progression, both locally and systemically, by direct interaction with the extracellular matrix, inducing tissue remodeling, activation of different cellular pathways, such as Akt or mechanistic target of rapamycin (mTOR), and stimulation of angiogenesis. As a prognostic marker, CD44 has been identified as a major player in cancer stem cells (CSCs). CSCs with a CD44 phenotype are associated with chemoresistance, alone or in combination with other CSC markers, such as CD24 or aldehyde dehydrogenase 1 (ALDH1), and may be used for patient stratification. In the therapy setting, CD44 has been explored as a viable target, directly or indirectly. It has revealed promising potential, paving the way for its future use in the clinical setting. Immunohistochemistry effectively detects CD44 overexpression, enabling patients to be accurately selected for surgery and targeted anti-CD44 therapies. In this review, we highlight the properties of CD44, its expression in normal and tumoral tissues through immunohistochemistry and potential treatment options. We also discuss the clinical significance of this marker and its added value in therapeutic decision-making.
Collapse
Affiliation(s)
- João Martins Gama
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Rui Caetano Oliveira
- Centro de Investigação em Meio Ambiente, Genética e Oncobiologia-CIMAGO, Faculdade de Medicina, Universidade de Coimbra, 3004-535 Coimbra, Portugal
- Centro de Anatomia Patológica Germano de Sousa, 3000-377 Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
20
|
Matasariu DR, Condac C, Bîrluțiu V, Lozneanu L, Bujor IE, Boiculese VL, Sava M, Ursache A. Placental Molecular Expression of Different Pathogenic Vaginal Infections. Int J Mol Sci 2025; 26:2863. [PMID: 40243431 PMCID: PMC11988318 DOI: 10.3390/ijms26072863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
This study evaluated the differential expression of four placental markers-vitamin D receptor (VDR), Cluster of Differentiation 44 (CD44), osteopontin (OPN), and cyclooxygenase-2 (COX-2)-in response to pathogens, which may contribute to our understanding of pathogen-specific impacts on pregnancy outcomes. We immunohistochemically (IHC) analyzed placental tissues obtained from 70 healthy-term pregnant women in the control group and compared them to tissues obtained from 78 women with pregnancy above 24 weeks of gestation, single-pathogen vaginal infection, and premature rupture of membranes/preterm premature rupture of membranes (PROM/PPROM). We detected high expression of these four molecules in cases of Group B Streptococcus (GBS) and Ureaplasma urealyticum vaginal infections, and moderate expression in cases of Enterobacteriaceae infections, except for Klebsiella; the cases with Klebsiella and Candida species (spp.) vaginitis exhibited a lower expression compared to the healthy control group. VDR, CD44, and OPN had increased placental expression in GBS and Ureaplasma urealyticum vaginal infections; the opportunistic pathogenicity of both Escherichia coli and Candida spp. explains their low IHC positivity, and the tremendous ability of Gram-negative bacteria to elude the host immunity is revealed by the negative IHC staining in cases of Klebsiella vaginitis. These findings suggest that pathogen-specific alterations in the expression of these markers may contribute to the differential risk stratification of pregnancy complications and may mitigate the risks of adverse maternal and fetal outcomes. Interventions aiming to modulate these pathways might improve pregnancy outcomes.
Collapse
Affiliation(s)
- Daniela Roxana Matasariu
- Department of Obstetrics and Gynecology, “Cuza Voda” Hospital, 700038 Iasi, Romania;
- Department of Mother and Child, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.E.B.); (A.U.)
| | - Constantin Condac
- Department of Anesthesia and Intensive Care, “Cuza Voda” Hospital, 700038 Iasi, Romania;
- Department of Infectious Diseases, University of Medicine and Pharmacy “Lucian Blaga”, 550169 Sibiu, Romania;
| | - Victoria Bîrluțiu
- Department of Infectious Diseases, University of Medicine and Pharmacy “Lucian Blaga”, 550169 Sibiu, Romania;
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I—Histology, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
| | - Iuliana Elena Bujor
- Department of Mother and Child, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.E.B.); (A.U.)
| | - Vasile Lucian Boiculese
- Biostatistics, Department of Preventive Medicine and Interdisciplinarity, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Mihai Sava
- Department of Anesthesia and Intensive Care, University of Medicine and Pharmacy “Lucian Blaga”, 550169 Sibiu, Romania;
| | - Alexandra Ursache
- Department of Mother and Child, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.E.B.); (A.U.)
| |
Collapse
|
21
|
Stukan I, Żuk A, Pukacka K, Mierzejewska J, Pawłowski J, Kowalski B, Dąbkowska M. Wolf in Sheep's Clothing: Taming Cancer's Resistance with Human Serum Albumin? Int J Nanomedicine 2025; 20:3493-3525. [PMID: 40125439 PMCID: PMC11930253 DOI: 10.2147/ijn.s500997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Human serum albumin (HSA) has emerged as a promising carrier for nanodrug delivery, offering unique structural properties that can be engineered to overcome key challenges in cancer treatment, especially resistance to chemotherapy. This review focuses on the cellular uptake of albumin-based nanoparticles and the modifications that enhance their ability to bypass resistance mechanisms, particularly multidrug resistance type 1 (MDR1), by improving targeting to cancer cells. In our unique approach, we integrate the chemical properties of albumin, its interactions with cancer cells, and surface modifications of albumin-based delivery systems that enable to bypass resistance mechanisms, particularly those related to MDR1, and precisely target receptors on cancer cells to improve treatment efficacy. We discuss that while well-established albumin receptors such as gp60 and gp18/30 are crucial for cellular uptake and transcytosis, their biology remains underexplored, limiting their translational potential. Additionally, we explore the potential of emerging targets, such as cluster of differentiation 44 (CD44), cluster of differentiation (CD36) and transferrin receptor TfR1, as well as the advantages of using dimeric forms of albumin (dHSA) to further enhance delivery to resistant cancer cells. Drawing from clinical examples, including the success of albumin-bound paclitaxel (Abraxane) and new formulations like Pazenir and Fyarro (for Sirolimus), we identify gaps in current knowledge and propose strategies to optimize albumin-based systems. In conclusion, albumin-based nanoparticles, when tailored with appropriate modifications, have the potential to bypass multidrug resistance and improve the targeting of cancer cells. By enhancing albumin's ability to efficiently deliver therapeutic agents, these carriers represent a promising approach to addressing one of oncology's most persistent challenges, with substantial potential to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Iga Stukan
- Department of General Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Żuk
- Independent Laboratory of Community Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kamila Pukacka
- Department of Pharmaceutical Technology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Julia Mierzejewska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jakub Pawłowski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bogusław Kowalski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
22
|
Yanova M, Stepanova E, Maltseva D, Tonevitsky A. CD44 variant exons induce chemoresistance by modulating cell death pathways. Front Cell Dev Biol 2025; 13:1508577. [PMID: 40114966 PMCID: PMC11924683 DOI: 10.3389/fcell.2025.1508577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Cancer chemoresistance presents a challenge in oncology, often leading to treatment failure and disease progression. CD44, a multifunctional cell surface glycoprotein, has garnered attention for its involvement in various aspects of cancer biology. Through alternative splicing, CD44 can form isoforms with the inclusion of only standard exons, typical for normal tissue, or with the addition of variant exons, frequently expressed in cancer tissue and associated with chemoresistance. The functions of CD44 involved in regulation of cancer signaling pathways are being actively studied, and the significance of specific variant exons in modulating cell death pathways, central to the response of cancer cells to chemotherapy, begins to become apparent. This review provides a comprehensive analysis of the association of CD44 variant exons/total CD44 with clinical outcomes of patients undergoing chemotherapy. The role of CD44 variant exons v6, v9 and others with a significant effect on patient chemotherapy outcomes by means of key cellular death pathways such as apoptosis, ferroptosis and autophagy modulation is further identified, and their impact on drug resistance is highlighted. An overview of clinical trials aimed at targeting variant exon-containing isoforms is provided, and possible directions for further development of CD44-targeted therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Maria Yanova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Evgeniya Stepanova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Chen C, Zhang H, Han J, Yang L, Li S, Jia Q, Fang J, Ling P, Wang S. Synthesis and antitumor activity of ultra-low molecular weight hyaluronic acid-decorated camptothecin conjugates. Carbohydr Polym 2025; 351:123144. [PMID: 39778985 DOI: 10.1016/j.carbpol.2024.123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Camptothecin (CPT) exhibits potent anticancer activity, but its clinical application is limited by poor solubility and severe side effects. Hyaluronic acid (HA) is gaining attention in drug delivery systems due to its excellent biocompatibility and tumor-targeting properties. In this study, we conjugated CPT to the reducing end of ultra-low molecular weight HA to create a series of HA-decorated CPT conjugates. These novel conjugates offer significant advantages over traditional HA-drug formulations, including well-defined structures and consistent drug-loading rates. In vitro studies demonstrated that these HA-decorated conjugates exhibited enhanced anti-proliferative and targeting effects towards various tumor cells. Furthermore, in vivo studies showed that HA-CPT nanoparticles significantly inhibited tumor growth with minimal side effects, as evidenced by stable body weight and histological analyses in treated mice. The approach of using structurally well-defined HA as a carrier for site-specific drug modification expands the potential applications of HA and enhances the therapeutic efficacy of conventional drugs.
Collapse
Affiliation(s)
- Changsheng Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Henan Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Jingjun Han
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Lin Yang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Shuang Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Qingwen Jia
- Shandong Freda Pharmaceutical Group Co. Ltd, Jinan, Shandong 250101, China
| | - Junqiang Fang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Peixue Ling
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shuaishuai Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
24
|
Zhivkov AM, Hristova SH, Popov TT. Anticancer Nanoparticle Carriers of the Proapoptotic Protein Cytochrome c. Pharmaceutics 2025; 17:305. [PMID: 40142969 PMCID: PMC11945056 DOI: 10.3390/pharmaceutics17030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
This review discusses the literature data on the synthesis, physicochemical properties, and cytotoxicity of composite nanoparticles bearing the mitochondrial protein cytochrome c (cytC), which can act as a proapoptotic mediator in addition to its main function as an electron carrier in the electron transport chain. The introduction of exogenous cytC via absorption of carrier particles, the phagocytosis of colloid particles of submicrometric size, or the receptor-mediated endocytosis of nanoparticles in cancer cells, initiates the process of apoptosis-a multistage cascade of biochemical reactions leading to complete destruction of the cells. CytC-carrier composite particles have the potential for use in the treatment of neoplasms with superficial localization: skin, mouth, stomach, colon, etc. This approach can solve the two main problems of anticancer therapy: selectivity and non-toxicity. Selectivity is based on the incapability of the normal cell to absorb (nano)particles, except for the cells of the immune system. The use of cytC as a protein that normally functions in mitochondria is harmless for the macroorganism. In this review, the factors limiting cytotoxicity and the ways to increase it are discussed from the point of view of the physicochemical properties of the cytC-carrier particles. The different techniques used for the preparation of cytC-bearing colloids and nanoparticles are discussed. Articles reporting the achievement of high cytotoxicity with each of the techniques are critically analyzed.
Collapse
Affiliation(s)
- Alexandar M. Zhivkov
- Scientific Research Center, “St. Kliment Ohridski” Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Svetlana H. Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University—Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
- Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Trifon T. Popov
- Medical Faculty, Medical University—Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
25
|
Aryanfar E, Ghoncheh M, Afshar M, Chahkandi M, Allahyari E, Shadi M. Enhancing wound healing with synthetic hyaluronic acid injection in sutured incisions on BALB/c mice. Folia Med (Plovdiv) 2025; 67. [PMID: 40270163 DOI: 10.3897/folmed.67.e130272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/19/2025] [Indexed: 04/25/2025] Open
Abstract
INTRODUCTION Hyaluronic acid has been shown to possess notable properties in wound healing, skin regeneration, and anti-inflammatory effects. The formation of scar tissue is a common and unintended phenomenon during the wound-healing process, potentially leading to diverse consequences for individuals.
Collapse
Affiliation(s)
- Elham Aryanfar
- Birjand University of Medical Sciences, Birjand, Islamic Republic of Iran
| | - Mahdi Ghoncheh
- Birjand University of Medical Sciences, Birjand, Islamic Republic of Iran
| | - Mohammad Afshar
- Birjand University of Medical Sciences, Birjand, Islamic Republic of Iran
| | - Mahboobe Chahkandi
- Birjand University of Medical Sciences, Birjand, Islamic Republic of Iran
| | - Elahe Allahyari
- Birjand University of Medical Sciences, Birjand, Islamic Republic of Iran
| | - Mehri Shadi
- Birjand University of Medical Sciences, Birjand, Islamic Republic of Iran
| |
Collapse
|
26
|
Ressnerova A, Heger Z, Pumera M. Translational nanorobotics breaking through biological membranes. Chem Soc Rev 2025; 54:1924-1956. [PMID: 39807638 DOI: 10.1039/d4cs00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the dynamic realm of translational nanorobotics, the endeavor to develop nanorobots carrying therapeutics in rational in vivo applications necessitates a profound understanding of the biological landscape of the human body and its complexity. Within this landscape, biological membranes stand as critical barriers to the successful delivery of therapeutic cargo to the target site. Their crossing is not only a challenge for nanorobotics but also a pivotal criterion for the clinical success of therapeutic-carrying nanorobots. Nevertheless, despite their urgency, strategies for membrane crossing in translational nanorobotics remain relatively underrepresented in the scientific literature, signaling an opportunity for further research and innovation. This review focuses on nanorobots with various propulsion mechanisms from chemical and physical to hybrid mechanisms, and it identifies and describes four essential biological membranes that represent the barriers needed to be crossed in the therapeutic journey of nanorobots in in vivo applications. First is the entry point into the blood stream, which is the skin or mucosa or intravenous injection; next is the exit from the bloodstream across the endothelium to the target site; further is the entry to the cell through the plasma membrane and, finally, the escape from the lysosome, which otherwise destroys the cargo. The review also discusses design challenges inherent in translating nanorobot technologies to real-world applications and provides a critical overview of documented membrane crossings. The aim is to underscore the need for further interdisciplinary collaborations between chemists, materials scientists and chemical biologists in this vital domain of translational nanorobotics that has the potential to revolutionize the field of precision medicine.
Collapse
Affiliation(s)
- Alzbeta Ressnerova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Zbynek Heger
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Center of Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava, Czech Republic
| | - Martin Pumera
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
27
|
Hosseinpouri A, Sadegh K, Zarei-Behjani Z, Dehghan Z, Karbalaei R. Identification of critical genes and drug repurposing targets in entorhinal cortex of Alzheimer's disease. Neurogenetics 2025; 26:27. [PMID: 39928227 DOI: 10.1007/s10048-025-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Alzheimer's disease (AD) is a slow brain degeneration disorder in which the accumulation of beta-amyloid precursor plaque and an intracellular neurofibrillary tangle of hyper-phosphorylated tau proteins in the brain have been implicated in neurodegeneration. In this study, we identified the most important genes that are unique and sensitive in the entorhinal region of the brain to target AD effectively. At first, microarrays data are selected and constructed protein-protein interaction network (PPIN) and gene regulatory network (GRN) from differentially expressed genes (DEGs) using Cytoscape software. Then, networks analysis was performed to determine hubs, bottlenecks, clusters, and signaling pathways in AD. Finally, critical genes were selected as targets for repurposing drugs. Analyzing the constructed PPIN and GRN identified CD44, ELF1, HSP90AB1, NOC4L, BYSL, RRP7A, SLC17A6, and RUVBL2 as critical genes that are dysregulated in the entorhinal region of AD suffering patients. The functional enrichment analysis revealed that DEG nodes are involved in the synaptic vesicle cycle, glutamatergic synapse, PI3K-Akt signaling pathway, retrograde endocannabinoid signaling, endocrine and other factor-regulated calcium reabsorption, ribosome biogenesis in eukaryotes, and nicotine addiction. Gentamicin, isoproterenol, and tumor necrosis factor are repurposing new drugs that target CD44, which plays an important role in the development of AD. Following our model validation using the existing experimental data, our model based on previous experimental reports suggested critical molecules and candidate drugs involved in AD for further investigations in vitro and in vivo.
Collapse
Affiliation(s)
- Arghavan Hosseinpouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Sadegh
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Karbalaei
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
28
|
Kapare H, Bhosale M, Bhole R. Navigating the future: Advancements in monoclonal antibody nanoparticle therapy for cancer. J Drug Deliv Sci Technol 2025; 104:106495. [DOI: 10.1016/j.jddst.2024.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Wang H, He W, Elizondo-Riojas MA, Zhou X, Lee TJ, Gorenstein DG. Development and Characterization of CD44-Targeted X-Aptamers with Enhanced Binding Affinity for Cancer Therapeutics. Bioengineering (Basel) 2025; 12:113. [PMID: 40001633 PMCID: PMC11852163 DOI: 10.3390/bioengineering12020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
CD44, a pivotal cell surface molecule, plays a crucial role in many cellular functions, including cell-cell interactions, adhesion, and migration. It serves as a receptor for hyaluronic acid and is involved in lymphocyte activation, recirculation, homing, and hematopoiesis. Moreover, CD44 is a commonly used cancer stem cell marker associated with tumor progression and metastasis. The development of CD44 aptamers that specifically target CD44 can be utilized to target CD44-positive cells, including cancer stem cells, and for drug delivery. Building on the primary sequences of our previously selected thioaptamers (TAs) and observed variations, we developed a bead-based X-aptamer (XA) library by conjugating drug-like ligands (X) to the 5-positions of certain uridines on a complete monothioate backbone. From this, we selected an XA with high affinity to the CD44 hyaluronic acid binding domain (HABD) from a large combinatorial X-aptamer library modified with N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (ADDA). This XA demonstrated an enhanced binding affinity for the CD44 protein up to 23-fold. The selected CD44 X-aptamers (both amine form and ADDA form) also showed enhanced binding affinity to CD44-overexpressing human ovarian cancer IGROV cells. Secondary structure predictions of CD44 using MFold identified several binding motifs and smaller constructs of various stem-loop regions. Among our identified binding motifs, X-aptamer motif 3 and motif 5 showed enhanced binding affinity to CD44-overexpressing human ovarian cancer IGROV cells with ADDA form, compared to the binding affinities with amine form and scrambled sequence. The effect of ADDA as a binding affinity enhancer was not uniform within the aptamer, highlighting the importance of optimal ligand positioning. The incorporation of ADDA not only broadened the XA's chemical diversity but also increased the binding surface area, offering enhanced specificity. Therefore, the strategic use of site-directed modifications allows for fine-tuning aptamer properties and offers a flexible, generalizable framework for developing high-performance aptamers that target a wide range of molecules.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Weiguo He
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Miguel-Angel Elizondo-Riojas
- Centro Universitario Contra el Cáncer, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autonoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - David G. Gorenstein
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| |
Collapse
|
30
|
Galla R, Mulè S, Ferrari S, Molinari C, Uberti F. Non-Animal Hyaluronic Acid and Probiotics Enhance Skin Health via the Gut-Skin Axis: An In Vitro Study on Bioavailability and Cellular Impact. Int J Mol Sci 2025; 26:897. [PMID: 39940667 PMCID: PMC11817077 DOI: 10.3390/ijms26030897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Hyaluronic acid (HA) represents a pivotal component of the extracellular matrix, particularly within the context of the skin. The absorption and metabolism of orally ingested HA have been extensively investigated due to the prevalence of HA-based supplements. The objective of this study was to evaluate the impact of a combination of non-animal HA and Bifidobacterium longum novaBLG1 on dermal health following intestinal transit. The bioavailability of the compound was evaluated using a model that reproduced the human intestinal barrier in vitro, and its biological effects were investigated on skin cells via the gut-skin axis. The results demonstrated that probiotics augmented the absorption of non-animal HA by approximately 30% in comparison to non-animal HA alone and by 82% in comparison to sodium hyaluronate. Furthermore, the combination demonstrated a notable enhancement in skin cell proliferation, with increases of 16%, 8%, and 29.7% over 144 h in comparison to non-animal hyaluronan, Bifidobacterium longum novaBLG1, and sodium hyaluronate, respectively. The combination was observed to positively affect all markers of skin health and well-being, achieving its goals without any adverse effects on the gut. This approach offers a novel method for enhancing skin health.
Collapse
Affiliation(s)
- Rebecca Galla
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
- Noivita S.r.l.s., Spin Off of University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
| | - Sara Ferrari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
| | - Claudio Molinari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
| |
Collapse
|
31
|
Barbieri A, Pitzurra L, Loos B, Jansen IDC. Effects of Hyaluronic Acid on Three Different Cell Types of the Periodontium in a Novel Multi-Culture Cell Plate: An Exploratory Study. Biomolecules 2025; 15:152. [PMID: 39858546 PMCID: PMC11764015 DOI: 10.3390/biom15010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Hyaluronic acid (HA) has received considerable attention in the reconstruction of lost periodontal tissues. HA has been proposed to play a role in cell proliferation, differentiation, migration, and cell-matrix as well as cell-cell interactions. Although various studies have been conducted, further research is needed to expand our knowledge based on HA such as its effects on cell proliferation and osteogenic differentiation. The aim of this study is to assess, in single- and multi-culture plate models, the effect of HA on the proliferation, viability, and function of periodontal ligament fibroblasts, osteoblasts, and gingival epithelial cells. A novel multi-culture cell plate was chosen to simulate a cell-cell communication as close as possible to a real clinical condition in an in vitro setting. We found that HA exclusively enhanced epithelial cell proliferation, while intercellular communication stimulated the proliferation and osteogenic potential of the osteoblasts, independently from HA use. The proliferation and function of the periodontal ligament fibroblasts were not changed by HA or the cellular interplay. The use of multi-culture plates could represent a promising method to investigate and compare dental biomaterials in experiments mimicking an in vivo environment.
Collapse
Affiliation(s)
- Alessio Barbieri
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (L.P.); (B.L.)
| | | | | | - Ineke D. C. Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (L.P.); (B.L.)
| |
Collapse
|
32
|
Mohammadi T, Gheybalizadeh H, Rahimpour E, Soleymani J, Shafiei-Irannejad V. Advanced photoluminescent nanomaterials for targeted bioimaging of cancer cells. Heliyon 2025; 11:e41566. [PMID: 39850435 PMCID: PMC11754178 DOI: 10.1016/j.heliyon.2024.e41566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025] Open
Abstract
The investigation of changes in the membrane of cancer cells holds great potential for biomedical applications. Malignant cells exhibit overexpression of receptors, which can be used for targeted drug delivery, therapy, and bioimaging. Targeted bioimaging is one the most accurate imaging methods with a non-invasive nature, allowing for localization of the malignant cell without disrupting cellular integrity. Also, bioimaging has the potential to enhance the quality of established imaging techniques like magnetic resonance imaging (MRI). The utilization of nanoparticles in targeted bioimaging enhances the imaging quality and efficiency. Biocompatible nanoparticles can easily penetrate cell membranes, while they can be readily functionalized on their surfaces toward cell receptors. This study reviews reports on the application of new advanced photoluminescent materials for targeted bioimaging using the cell membrane receptors. Also, the limitations and advantages of the application of nanoparticles have been reviewed along with the clinical consideration of their uses in bioimaging.
Collapse
Affiliation(s)
- Tooba Mohammadi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Gheybalizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
33
|
Pashkina E, Bykova M, Berishvili M, Lazarev Y, Kozlov V. Hyaluronic Acid-Based Drug Delivery Systems for Cancer Therapy. Cells 2025; 14:61. [PMID: 39851489 PMCID: PMC11764402 DOI: 10.3390/cells14020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
In recent years, hyaluronic acid (HA) has attracted increasing attention as a promising biomaterial for the development of drug delivery systems. Due to its unique properties, such as high biocompatibility, low toxicity, and modifiability, HA is becoming a basis for the creation of targeted drug delivery systems, especially in the field of oncology. Receptors for HA overexpressed in subpopulations of cancer cells, and one of them, CD44, is recognized as a molecular marker for cancer stem cells. This review examines the role of HA and its receptors in health and tumors and analyzes existing HA-based delivery systems and their use in various types of cancer. The development of new HA-based drug delivery systems will bring new opportunities and challenges to anti-cancer therapy.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Maria Bykova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
| | - Maria Berishvili
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
| | - Yaroslav Lazarev
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk, Russia
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk, Russia
| |
Collapse
|
34
|
Ladikou EE, Sharp K, Simoes FA, Jones JR, Burley T, Stott L, Vareli A, Kennedy E, Vause S, Chevassut T, Devi A, Ashworth I, Ross DM, Hartmann TN, Mitchell SA, Pepper CJ, Best G, Pepper AGS. A Novel In Vitro Model of the Bone Marrow Microenvironment in Acute Myeloid Leukemia Identifies CD44 and Focal Adhesion Kinase as Therapeutic Targets to Reverse Cell Adhesion-Mediated Drug Resistance. Cancers (Basel) 2025; 17:135. [PMID: 39796762 PMCID: PMC11719579 DOI: 10.3390/cancers17010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential. METHODS Using both primary donor AML cells and cell lines, we developed an in vitro co-culture model of the AML BMME. We used this model to identify the most effective agent(s) to block AML cell adherence and reverse adhesion-mediated treatment resistance. RESULTS We identified that anti-CD44 treatment significantly increased the efficacy of cytarabine. However, some AML cells remained adhered, and transcriptional analysis identified focal adhesion kinase (FAK) signaling as a contributing factor; the adhered cells showed elevated FAK phosphorylation that was reduced by the FAK inhibitor, defactinib. Importantly, we demonstrated that anti-CD44 and defactinib were highly synergistic at diminishing the adhesion of the most primitive CD34high AML cells in primary autologous co-cultures. CONCLUSIONS Taken together, we identified anti-CD44 and defactinib as a promising therapeutic combination to release AML cells from the chemoprotective AML BMME. As anti-CD44 is already available as a recombinant humanized monoclonal antibody, the combination of this agent with defactinib could be rapidly tested in AML clinical trials.
Collapse
Affiliation(s)
- Eleni E. Ladikou
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Kim Sharp
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Fabio A. Simoes
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - John R. Jones
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Thomas Burley
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Lauren Stott
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Aimilia Vareli
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Emma Kennedy
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Sophie Vause
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Timothy Chevassut
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Amarpreet Devi
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Iona Ashworth
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - David M. Ross
- Department of Haematology, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (D.M.R.); (G.B.)
| | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany;
| | - Simon A. Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Chris J. Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Giles Best
- Department of Haematology, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (D.M.R.); (G.B.)
| | - Andrea G. S. Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| |
Collapse
|
35
|
Hindes MT, McElligott AM, Best OG, Ward MP, Selemidis S, Miles MA, Nturubika BD, Gregory PA, Anderson PH, Logan JM, Butler LM, Waugh DJ, O'Leary JJ, Hickey SM, Thurgood LA, Brooks DA. Metabolic reprogramming, malignant transformation and metastasis: Lessons from chronic lymphocytic leukaemia and prostate cancer. Cancer Lett 2025; 611:217441. [PMID: 39755364 DOI: 10.1016/j.canlet.2025.217441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis. This review considers glucose and lipid metabolism in CLL and prostate cancer, exploring their roles in healthy and malignant states and during disease progression. In CLL, lipid metabolism supports cell survival and migration, with aggressive disease characterised by increased fatty acid oxidation and altered sphingolipids. Richter's transformation and aggressive lymphoma, however, exhibit a metabolic shift towards increased glycolysis. Similarly, prostate cell metabolism is unique, relying on citrate production in the healthy state and undergoing metabolic reprogramming during malignant transformation. Early-stage prostate cancer cells increase lipid synthesis and uptake, and decrease glycolysis, whereas metastatic cells re-adopt glucose metabolism, likely driven by interactions with the tumour microenvironment. Genetic drivers including TP53 and ATM mutations connect metabolic alterations to disease severity in these two malignancies. The bone microenvironment supports the metabolic demands of these malignancies, serving as an initiation niche for CLL and a homing site for prostate cancer metastases. By comparing these malignancies, this review underscores the importance of metabolic plasticity in cancer progression and highlights how CLL and prostate cancer may be models of circulating and solid tumours more broadly. The metabolic phenotypes throughout cancer cell transformation and metastasis, and the microenvironment in which these processes occur, present opportunities for interventions that could disrupt metastatic processes and improve patient outcomes.
Collapse
Affiliation(s)
- Madison T Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| | - Anthony M McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College, Dublin, Ireland
| | - Oliver G Best
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Mark A Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Bukuru D Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Paul H Anderson
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia; Solid Tumour Program, Precision Cancer Medicine theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - David J Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Lauren A Thurgood
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
36
|
Hu Y, Luo H, Netala VR, Li H, Zhang Z, Hou T. Comprehensive Review of Biological Functions and Therapeutic Potential of Perilla Seed Meal Proteins and Peptides. Foods 2024; 14:47. [PMID: 39796337 PMCID: PMC11719718 DOI: 10.3390/foods14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
This comprehensive review explores the biological functions of Perilla frutescens seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells. Additionally, they demonstrate antidiabetic activity by inhibiting α-amylase and α-glucosidase. The cardioprotective effects of perilla peptides are underscored by ACE-inhibitory activities and combat oxidative stress through enhanced antioxidant defenses. Further, perilla peptides contribute to improved gut health by enhancing beneficial gut flora and reinforcing intestinal barriers. In liver, kidney, and testicular health, they reduce oxidative stress and apoptotic damage while normalizing electrolyte levels and protecting against cyclophosphamide-induced reproductive and endocrine disruptions by restoring hormone synthesis. Promising anticancer potential is also demonstrated by perilla peptides through the inhibition of key cancer cell lines, alongside their anti-inflammatory and immunomodulating activities. Their anti-fatigue effects enhance exercise performance and muscle function, while perilla seed peptide nanoparticles show potential for targeted drug delivery. The diverse applications of perilla peptides support their potential as functional food additives and therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (Y.H.); (H.L.); (V.R.N.); (H.L.); (Z.Z.)
| |
Collapse
|
37
|
Yamada HY, Rout M, Xu C, O'Neill PH, Afaq F, Morris KT, Sanghera DK, Manne U, Rao CV. Mutational disparities in colorectal cancers of White Americans, Alabama African Americans, And Oklahoma American Indians. NPJ Precis Oncol 2024; 8:288. [PMID: 39715885 DOI: 10.1038/s41698-024-00782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
The high incidence and mortality rates of colorectal cancer (CRC) in Alabama African Americans (AAs) and Oklahoma American Indians (AIs) are recognized as cancer disparities, yet the underlying causes have been poorly demonstrated. By evaluating CRC whole-exome sequencing and mutational profiles, here we report sets of mutated genes whose frequencies differed significantly (p < 0.05) in a race-specific manner. Secondary screening with cancer database identified "survival-critical genes (SCGs)" (i.e., genes whose mutations/alterations are associated with significant differences in the patients' survival rates) among the differentially mutated genes. Notable SCGs with race-pronounced variants were different from DEGs and their involved pathways included nucleotide catabolism and cell cycle checkpoints for AAs, and extracellular matrix organization for AIs. The inclusion of these SCGs with race-pronounced variants in the clinical CRC next-generation sequencing panels and the development of targeting drugs will serve as refinements for precision medicine to overcome racial disparities in health outcomes of CRC.
Collapse
Affiliation(s)
- Hiroshi Y Yamada
- Department of Internal Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA.
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA.
| | - Madhusmita Rout
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, Oklahoma City, OK, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Philip H O'Neill
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Farrukh Afaq
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Katherine T Morris
- Department of Surgery, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Dharambir K Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, Oklahoma City, OK, USA
| | - Upender Manne
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Chinthalapally V Rao
- Department of Internal Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA.
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA.
- VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
38
|
Hanada K, Saito Y, Takagi T, Go M, Nakano Y, Inagawa T, Hirai H, Fruttiger M, Itoh S, Itoh F. Reduced lung metastasis in endothelial cell-specific transforming growth factor β type II receptor-deficient mice with decreased CD44 expression. iScience 2024; 27:111502. [PMID: 39758992 PMCID: PMC11699617 DOI: 10.1016/j.isci.2024.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/20/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Transforming growth factor β (TGF-β) is abundantly present in the tumor microenvironment, contributing to cancer progression. However, the regulatory mechanism by which TGF-β affects vascular endothelial cells (ECs) in the tumor microenvironment is not well understood. Herein, we generated tamoxifen-inducible TGF-β type II receptor (TβRII) knockout mice, specifically targeting ECs (TβRIIiΔEC), by crossbreeding TβRII-floxed mice with Pdgfb-icreER mice. We established tumor-bearing mice by transplanting Lewis lung carcinoma (LLC) cells. TβRIIiΔEC mice exhibited increased tumor angiogenesis with fragile new blood vessels, increased bleeding, and hypoxia compared to control mice. Consequently, the compromised tumor microenvironment precipitated a notable surge in circulating tumor cells. Paradoxically, lung metastasis showed a significant decline. This intriguing discrepancy was explained by a reduction in the engraftment between cancer cells and ECs. Disruption of TGF-β signaling downregulated CD44 on ECs, hindering cancer cell adhesion. These findings highlight TGF-β's role in promoting metastasis by modulating EC function.
Collapse
Affiliation(s)
- Kako Hanada
- Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Saito
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takahiro Takagi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mitsuki Go
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yota Nakano
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshihiko Inagawa
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideyo Hirai
- Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Fumiko Itoh
- Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
39
|
Han Y, Liu C, Yin S, Cui J, Sun Y, Xue B, Jiang C, Gu X, Qin M, Wang W, Xu H, Cao Y. Dynamic Diselenide Hydrogels for Controlled Tumor Organoid Culture and Dendritic Cell Vaccination. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69114-69124. [PMID: 39631374 DOI: 10.1021/acsami.4c18728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Dynamic hydrogels are emerging as advanced materials for engineering tissue-like environments that mimic cellular microenvironments. We introduce a diselenide-cross-linked hydrogel system with light-responsive properties, designed for precise control of tumor organoid growth and light-initiated radical inactivation, particularly for dendritic cell (DC) vaccines. Diselenide exchange enables stress relaxation and hydrogel remodeling, while recombination and quenching of seleno radicals (Se•) reduce cross-linking density, leading to controlled degradation. We demonstrate a 2D to 3D growth strategy, where tumor cells inoculate on the hydrogel surface, expand, and gradually form spherical organoids within the 3D hydrogel. These tumor organoids show significantly higher drug resistance compared to 2D-cultured cells. High-density light irradiation enhances diselenide exchange, inducing hydrogel degradation, tumor cell death, and release of functional antigens. This system serves as a dynamic platform for tumor organoid culture and antigen release, offering significantly advanced approaches for in vitro tumor modeling and immunological research. Our findings position diselenide-cross-linked hydrogels as versatile materials for precision cellular engineering, with broad applications in cancer research and beyond.
Collapse
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Cheng Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yang Sun
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
40
|
Mortoglou M, Lian M, Miralles F, Dart DA, Uysal-Onganer P. miR-210 Mediated Hypoxic Responses in Pancreatic Ductal Adenocarcinoma. ACS OMEGA 2024; 9:47872-47883. [PMID: 39651070 PMCID: PMC11618397 DOI: 10.1021/acsomega.4c08947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one among the most lethal malignancies due to its aggressive behavior and resistance to conventional therapies. Hypoxia significantly contributes to cancer progression and therapeutic resistance of PDAC. microRNAs (miRNAs/miRs) have emerged as critical regulators of various biological processes. miR-210 is known as the "hypoxamir" due to its prominent role in cellular responses to hypoxia. In this study, we investigated the multifaceted role of miR-210 in PDAC using miR-210 knockout (KO) cellular models to elucidate its functions under hypoxic conditions. Hypoxia-inducible factor-1α (HIF1-α), a key transcription factor activated in response to low oxygen levels, upregulates miR-210. miR-210 maintains cancer stem cell (CSC) phenotypes and promotes epithelial-mesenchymal transition (EMT), which is essential for tumor initiation, metastasis, and therapeutic resistance. Our findings demonstrate that miR-210 regulates the expression of CSC markers, such as CD24, CD44, and CD133, and EMT markers, including E-cadherin, Vimentin, and Snail. Specifically, depletion of miR-210 reversed EMT and CSC marker expression levels in hypoxic Panc-1 and MiaPaCa-2 PDAC cells. These regulatory actions facilitate a more invasive and treatment-resistant PDAC phenotype. Understanding the regulatory network involving miR-210 under hypoxic conditions may reveal new therapeutic targets for combating PDAC and improving patient outcomes. Our data suggest that miR-210 is a critical regulator of HIF1-α expression, EMT, and the stemness of PDAC cells in hypoxic environments.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| | - Mutian Lian
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| | - Francesc Miralles
- School
of Health and Medical Sciences, City St
George’s, University of London, Cranmer Terrace, London SW17 0RE, U.K.
| | - D. Alwyn Dart
- UCL
Cancer Institute, University College London, Paul O’Gorman Building, 72
Huntley Street, London WC1E 6DD, U.K.
| | - Pinar Uysal-Onganer
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| |
Collapse
|
41
|
Costa Cerqueira M, Silva A, Martins Sousa S, Pinto-Ribeiro F, Baltazar F, Afonso J, Freitas Costa M. Chromene-based compounds as drug candidates for renal and bladder cancer therapy - A systematic review. Bioorg Chem 2024; 153:107865. [PMID: 39393199 DOI: 10.1016/j.bioorg.2024.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Renal (RC) and bladder cancers (BC) are common urological malignancies prevalent in the male population. Incidence and mortality rates are expected to increase in the near future. Drug toxicity and development of drug resistance in both diseases are major obstacles to achieve successful treatments. Chromenes are heterocyclic compounds constituted by a benzene ring fused to a pyran nucleus. Natural and synthetic chromene-based compounds have proven to be promising anticancer agents. Additionally, re-sensitization of cancer cells to classical treatments has also been demonstrated. Thus, the aim of this systematic review is to assess the potential of chromene-based compounds in the treatment of RC and BC. Study collection was performed in six different databases, to compile existing information on preclinical (in vitro and in vivo) and clinical studies developed to date. Overall, multiple chromene-based compounds showed potent anticancer effects, affecting several biological features such as reduction in cell viability, proliferation, migration and invasion in vitro, and induction of cell cycle arrest and cell death. Tumor volume and weight were generally decreased in vivo upon chromene-based treatment. Modest results have been obtained in two clinical trials, with reports of a partial response and two objective responses in RC patients. Thus, the chromene family can be considered an attractive chemical scaffold, harboring promising drug candidates for RC and BC therapeutics.
Collapse
Affiliation(s)
- Mónica Costa Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sofia Martins Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Marta Freitas Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal.
| |
Collapse
|
42
|
Xia P, Fu Y, Chen Q, Shan L, Zhang C, Feng S. A novel sandwich electrochemical immunosensor utilizing customized template and phosphotungstate catalytic amplification for CD44 detection. Bioelectrochemistry 2024; 160:108787. [PMID: 39098083 DOI: 10.1016/j.bioelechem.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
A sandwich-type electrochemical immunosensor was proposed for the ultra-sensitive detection of CD44, a potential biomarker for breast cancer. In this design, a customized template-based ionic liquid (1-butyl-2,3-dimethylimidazolium tetrafluoroborate) carbon paste electrode (CILE) served as the sensing platform, and thionine/Au nanoparticles/covalent-organic frameworks (THI/Au/COF) were used as the signal label. Moreover, an enzyme-free signal amplification strategy was introduced by involving H2O2 and phosphotungstate (PW12) with peroxidase-like activity. Under optimized conditions, the linear range is as wide as six orders of magnitude, and the detection limit is as low as 0.71 pg mL-1 (estimated based on S/N = 3). Average recoveries range from 98.16 %-100.1 %, with a relative standard deviation (RSD) of 1.42-8.27 % in mouse serum, and from 98.44 %-99.06 %, with an RSD of 1.14-4.84 % (n = 3) in artificial saliva. Furthermore, the immunosensor exhibits excellent specificity toward CD44, good stability, and low cost, indicating great potential for application in clinical trials.
Collapse
Affiliation(s)
- Ping Xia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuchun Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qian Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lianhai Shan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chungu Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
43
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024; 227:135-151. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/immunology
- Signal Transduction
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/immunology
- Animals
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
44
|
Jia W, Li R, Zou F, Li M, Weng H, Shen Q, Qi G, Zhou R, Shi Y, Gu G, Wang F, Chen Z. Decorating Delivery Vehicles Using Hyaluronic Acid Oligosaccharides Enables Active Targeting Toward Cancer and Minimizes Adverse Effect of Chemotherapeutics. Adv Healthc Mater 2024; 13:e2402158. [PMID: 39221507 DOI: 10.1002/adhm.202402158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The major drawback of conventional chemotherapeutic treatment is the non-specificity or inability to ascertain and target cancerous cells directly. In this study, an active targeting strategy that is poised to carry the anticancer agents to the desired sites for therapeutic action while avoiding toxicity to normal organs is provided. The active targeting of delivery vehicles is achieved by ligand-receptor interactions, in particular the specific binding between hyaluronic acid oligosaccharides (oHAs) and CD44 receptors. This study first prepares oHAs by the size-exclusion chromatography and utilizes them to decorate chitosan (CTS) as basic materials (oHAs-CTS) for drug delivery, then fabricates oHAs-CTS into micro/nanoscale carriers to encapsulate agents for cancer chemotherapy. The oHAs-CTS micro/nanocarriers exhibit high drug encapsulation efficiency (58-87%), and the drug releases present a sustained behavior. Notably, oHAs-CTS delivery vehicles display an enhanced active targeting toward cancers and alleviate the cytotoxic effects on normal cells. Additionally, in vivo results show that drug-laden oHAs-CTS nanocarriers demonstrate a significant inhibitory effect on 4 T1 tumors without any toxicity to the major organs. Taken together, the findings highlight the potential of oHAs-CTS micro/nanospheres as delivery vehicles with enhanced active targeted capability toward cancers and minimized adverse effects of chemotherapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Weibin Jia
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, SAR, 999077, China
| | - Runrun Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Fengjuan Zou
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Min Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Hongjuan Weng
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Qianqian Shen
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Guozhen Qi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Ruipiao Zhou
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Yikang Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Fengshan Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Zonggang Chen
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| |
Collapse
|
45
|
Zhou Z, Li C, Zeng Y, Huang T, Jiang X, Yu DG, Wang K. Natural polymer nanofiber dressings for effective management of chronic diabetic wounds: A comprehensive review. Int J Biol Macromol 2024; 282:136688. [PMID: 39447788 DOI: 10.1016/j.ijbiomac.2024.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Diabetic wounds present a chronic challenge in effective treatment. Natural polymer nanofiber dressings have emerged as a promising solution due to their impressive biocompatibility, biodegradability, safety, high specific surface area, and resemblance to the extracellular matrix. These qualities make them ideal materials with excellent biological properties and cost-effectiveness. Additionally, they can effectively deliver therapeutic agents, enabling diverse treatment effects. This review offers a comprehensive overview of natural polymer-based nanofibers in diabetic wound dressings. It examines the characteristics and challenges associated with diabetic wounds and the role of natural polymers in facilitating wound healing. The review highlights the preparation, mechanism, and applications of various functional dressings composed of natural polymer nanofibers. Furthermore, it addresses the main challenges and future directions in utilizing natural polymer nanofibers for diabetic wound treatment, providing valuable insights into effective wound management for diabetic patients.
Collapse
Affiliation(s)
- Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
46
|
Iaconisi GN, Ahmed A, Lauria G, Gallo N, Fiermonte G, Cowman MK, Capobianco L, Dolce V. Targeting mitochondria in Cancer therapy: Machine learning analysis of hyaluronic acid-based drug delivery systems. Int J Biol Macromol 2024; 283:137840. [PMID: 39566768 DOI: 10.1016/j.ijbiomac.2024.137840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Mitochondrial alterations play a crucial role in the development and progression of cancer. Dysfunctional mitochondria contribute to the acquisition of key hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, and resistance to cell death. Consequently, targeting mitochondrial dysfunction has emerged as a promising therapeutic strategy. Hyaluronic acid (HA), a naturally occurring glycosaminoglycan, has garnered significant attention due to its multifaceted roles in cancer biology. METHODS We employed a Systematic Literature Review (SLR) approach to examine a collection of 90 scientific publications using a text mining technique leveraging the Latent Dirichlet Allocation (LDA) algorithm. RESULTS The result of this activity, performed through the MySLR digital platform, allowed us to identify a set of two distinct topics representing the research domain. Specifically, Topic 1 comprised 41 papers, while Topic 2 comprised 49 papers. CONCLUSIONS The computational analysis highlighted that the integration of HA into drug delivery systems represents a promising approach to enhance the effectiveness and safety of cancer therapies. The discussed clinical trials provided compelling evidence of the potential of HA-based treatments in targeting cancer cells while minimizing adverse effects on healthy tissues.
Collapse
Affiliation(s)
- Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy.
| | - Graziantonio Lauria
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy.
| | - Mary K Cowman
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, NY, New York, USA; Department of Orthopedic Surgery, Grossman School of Medicine, New York University, NY, New York, USA.
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| |
Collapse
|
47
|
Sader D, Zlotver I, Moya S, Calabrese GC, Sosnik A. Doubly self-assembled dermatan sulfate/chitosan nanoparticles for targeted siRNA delivery in cancer therapy. J Colloid Interface Sci 2024; 680:763-775. [PMID: 39580927 DOI: 10.1016/j.jcis.2024.11.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
RNA interference, a naturally occurring regulatory mechanism in which small interfering RNA (siRNA) molecules are responsible for the sequence-specific suppression of gene expression, emerged as one of the most promising gene therapies in cancer. In this work, we investigate a microfluidics double self-assembly method based on micellization and polyelectrolyte complex formation for the encapsulation of siRNA targeting the BIRC5 gene, a member of the inhibitor of apoptosis gene family, that codes for survivin a protein of theinhibitorof apoptosis protein family that is involved in triple-negative breast cancer (TNBC) proliferation and metastasis within nanoparticles of an amphiphilic chitosan-graft-poly(methyl methacrylate) copolymer and low-molecular weight dermatan sulfate, a polysaccharide targeting the CD44 receptor overexpressed in this tumor. Nanoparticles are spherical and display a hydrodynamic diameter of ∼ 200 nm, as measured by dynamic light scattering and scanning electron microscopy. In addition, these colloidal systems exhibit a strongly negative zeta-potential that confers them excellent physical stability for at least four months owing to electrostatic repulsion and evidences the exposure of the polyanionic dermatan sulfate on the surface. The key role of dermatan sulfate in the active targeting and intracellular delivery of the cargo in the murine breast cancer cell line 4T1, a model of TNBC, is confirmed by confocal laser scanning microscopy and imaging flow cytometry. Finally, the silencing efficiency is demonstrated in 4T1 cell viability, migration, proliferation and spheroid formation assays in vitro. Overall results highlight the promise of this simple, reproducible and scalable method for the nanoencapsulation of siRNA and other therapeutic nucleic acids.
Collapse
Affiliation(s)
- Dareen Sader
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Graciela C Calabrese
- Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA) and Instituto de Química Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel.
| |
Collapse
|
48
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
49
|
Har-Zahav A, Tobar A, Fried S, Sivan R, Wilkins BJ, Russo P, Shamir R, Wells RG, Gurevich M, Waisbourd-Zinman O. Oral N-acetylcysteine ameliorates liver fibrosis and enhances regenerative responses in Mdr2 knockout mice. Sci Rep 2024; 14:26513. [PMID: 39489865 PMCID: PMC11532366 DOI: 10.1038/s41598-024-78387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024] Open
Abstract
Cholangiopathies are poorly understood disorders with no effective therapy. The extrahepatic biliary tree phenotype is less studied compared to the intrahepatic biliary injury in both human disease and Mdr2-/- mice, the established cholestatic mouse model. This study aimed to characterize the extra hepatic biliary tree of Mdr2-/- mice at various ages and to determine if injury can be repaired with the antioxidant and glutathione precursor N-acetyl-L-Cysteine treatment (NAC). We characterized extra hepatic bile ducts (EHBD)s at various ages from 2 to 40 weeks old FVB/N and Mdr2-/- mice. We examined the therapeutic potential of local NAC ex vivo using EHBD explants at early and late stages of injury; and systematic therapy by in vivo oral administration for 3 weeks. EHBD and liver sections were assessed by histology and immunofluorescent stains. Serum liver enzyme activities were analyzed, and liver spatial protein expression analysis was performed. Mdr2-/- mice developed progressive EHBD injury, similar to extrahepatic PSC. NAC treatment of ex vivo EHBD explants led to improved duct morphology. In vivo, oral administration of NAC improved liver fibrosis, and decreased liver enzyme activities. Spatial protein analysis revealed cell-type specific differential response to NAC, collectively indicating a transition from pro-apoptotic into proliferative state. NAC treatment should be further investigated as a potential therapeutic option for human cholangiopathies.
Collapse
Affiliation(s)
- Adi Har-Zahav
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Ana Tobar
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
- Department of Pathology, Rabin Medical Center, Petach Tikva, Israel
| | - Sophia Fried
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Sivan
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pierre Russo
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raanan Shamir
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Departments of Medicine, Bioengineering, and Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Gurevich
- The Organ Transplantation Division, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Orith Waisbourd-Zinman
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Ruppert Z, Neuperger P, Rákóczi B, Gémes N, Dukay B, Hajdu P, Péter M, Balogh G, Tiszlavicz L, Vígh L, Török Z, Puskás LG, Szebeni GJ, Tóth ME. Characterization of obesity-related diseases and inflammation using single cell immunophenotyping in two different diet-induced obesity models. Int J Obes (Lond) 2024; 48:1568-1576. [PMID: 39004641 PMCID: PMC11502477 DOI: 10.1038/s41366-024-01584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Obesity is a growing problem worldwide and a major risk factor for many chronic diseases. The accumulation of adipose tissue leads to the release of significant amounts of pro-inflammatory cytokines and adipokines, resulting in a low-grade systemic inflammation. However, the mechanisms behind the development of obesity-related diseases are not fully understood. Therefore, our study aimed to investigate the pathological changes and inflammatory processes at systemic level and in individual organs in two different diet-induced mouse obesity models. METHODS Male C57BL6/J mice were fed by high-fat diet (HFD), high-fat/high-fructose diet (HFD + FR) or normal chow for 21 weeks starting at 3 months of age (n = 15 animals/group). Insulin resistance was tested by oral glucose tolerance test. Pathological changes were investigated on hematoxylin-eosin-stained liver and brown adipose tissue sections. The gene expression levels of adipokines and cytokines were analyzed by qPCR in adipose tissues, whereas serum protein concentrations were determined by multiplex immunoassays. Immunophenotyping of isolated blood, bone marrow and spleen cells was performed by single-cell mass cytometry. RESULTS Weight gain, glucose intolerance and hepatic steatosis were more severe in the HFD + FR group than in the control and HFD groups. This was accompanied by a higher level of systemic inflammation, as indicated by increased expression of pro-inflammatory genes in visceral white adipose tissue and by a higher serum TNFα level. In addition, immunophenotyping revealed the increase of the surface expressions of CD44 and CD69 on various cell types, such as CD8+ and CD4 + T-cells, B-cells and macrophages, in animals with obesity. CONCLUSIONS The combination of HFD with fructose supplementation promotes more properly the symptoms of metabolic syndrome. Therefore, the combined high-fat/high-fructose nutrition can be a more suitable model of the Western diet. However, despite these differences, both models showed immunophenotypic changes that may be associated with increased risk of obesity-related cancer.
Collapse
Affiliation(s)
- Zsófia Ruppert
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- PhD School in Biology, University of Szeged, Szeged, Hungary
| | - Patrícia Neuperger
- PhD School in Biology, University of Szeged, Szeged, Hungary
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Bettina Rákóczi
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- PhD School in Biology, University of Szeged, Szeged, Hungary
| | - Nikolett Gémes
- PhD School in Biology, University of Szeged, Szeged, Hungary
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Brigitta Dukay
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Petra Hajdu
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Mária Péter
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor Balogh
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - László Vígh
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zsolt Török
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor J Szebeni
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary.
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine, University of Szeged, H6725, Szeged, Hungary.
| | - Melinda E Tóth
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary.
| |
Collapse
|