1
|
Aldali F, Deng C, Nie M, Chen H. Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury: state of the art and future perspectives. Neural Regen Res 2025; 20:3151-3171. [PMID: 39435603 PMCID: PMC11881730 DOI: 10.4103/nrr.nrr-d-24-00235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
"Peripheral nerve injury" refers to damage or trauma affecting nerves outside the brain and spinal cord. Peripheral nerve injury results in movements or sensation impairments, and represents a serious public health problem. Although severed peripheral nerves have been effectively joined and various therapies have been offered, recovery of sensory or motor functions remains limited, and efficacious therapies for complete repair of a nerve injury remain elusive. The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function. Mesenchymal stem cells, as large living cells responsive to the environment, secrete various factors and exosomes. The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins, microRNA, and messenger RNA derived from parent mesenchymal stem cells. Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function, offering solutions to changes associated with cell-based therapies. Despite ongoing investigations, mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage. A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation. This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury, exploring the underlying mechanisms. Subsequently, it provides an overview of the current status of mesenchymal stem cell and exosome-based therapies in clinical trials, followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes. Finally, the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes, offering potential solutions and guiding future directions.
Collapse
Affiliation(s)
- Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingbo Nie
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Ahmad P, Estrin N, Farshidfar N, Zhang Y, Miron RJ. Mechanistic insights into periodontal ligament stem cell-derived exosomes in tissue regeneration. Clin Oral Investig 2025; 29:357. [PMID: 40562987 DOI: 10.1007/s00784-025-06422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 06/10/2025] [Indexed: 06/28/2025]
Abstract
OBJECTIVE This review comprehensively examined the emerging role of exosomes derived from periodontal ligament stem cells (PDLSC-Exos) in regenerative medicine and dentistry, with a particular focus on their therapeutic potential in periodontitis-a prevalent inflammatory disease characterized by the progressive destruction of periodontal tissues. METHODS An initial search on Scopus, Web of Science, and PubMed using terms associated with exosomes (i.e., exosomes, exosomal, extracellular vesicles, and EVs) and periodontal ligament stem cells without any limitation of publication year and field of study was performed on October 31st, 2024. RESULTS PDLSC-Exos demonstrated significant therapeutic efficacy in both bone and periodontal regeneration as well as various medical conditions through the enhancement of cellular proliferation, osteoblast differentiation, and the modulation of inflammatory responses. These exosomes function by regulating miRNA and activating essential signaling pathways, thereby facilitating periodontal/bone regeneration, angiogenesis, and tissue repair in disorders such as periodontitis, OTM, and skeletal bony defects. Furthermore, they exhibited anti-inflammatory properties, leading to improved outcomes under inflammatory conditions such as periodontitis, IBD, and MS. Moreover, PDLSC-Exos played a role in anti-microbial and anti-cancer interventions, demonstrating their diverse applicability. CONCLUSION The cell-free nature of these therapeutic agents makes PDLSC-Exos a versatile and promising tool for regenerative medicine and immune system regulation. The cell-free nature of these therapeutic agents positions PDLSC-Exos as a promising and adaptable instrument for regenerative medicine and immune system modulation. CLINICAL RELEVANCE PDLSC-Exos offer a promising acellular therapy for periodontal regeneration, overcoming limitations of cell-based approaches by enhancing tissue repair, modulating inflammation, and improving clinical translation in regenerative medicine and dentistry.
Collapse
Affiliation(s)
- Paras Ahmad
- Department of Research, Advanced PRF Education, Jupiter, Florida, USA
| | - Nathan Estrin
- Lake Erie College of Osteopathic Medicine School of Dental Medicine, Bradenton, Florida, USA
| | - Nima Farshidfar
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Mirzaahmadi B, Ahmadian S, Haddadi P, Nezhad-Mokhtari P, Nezamdoust FV, Yalameha B, Chegeni SA, Rashidi S, Mousakhani A, Sokullu E, Shafaei H, Rahbarghazi R, Karimipour M. Neuroangiogenesis potential of mesenchymal stem cell extracellular vesicles in ischemic stroke conditions. Cell Commun Signal 2025; 23:272. [PMID: 40483532 PMCID: PMC12145630 DOI: 10.1186/s12964-025-02286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 06/01/2025] [Indexed: 06/11/2025] Open
Abstract
Ischemic stroke (IS) is a life-threatening condition in humans with high morbidity and mortality rates in developing and industrialized countries. The occlusion of blood-supporting vessels by thrombus or emboli can contribute to massive brain cell damage, neurological deficits, and long-term disability, and in more severe conditions, results in sudden death. Current therapeutic strategies, along with rehabilitation, in part, but not completely, can restore the integrity and function of the brain. These features necessitate the advent of novel therapeutic protocols for yielding better regenerative outcomes in IS patients. In past decades, the discovery of stem cells and byproducts has led to promising results in in vitro settings and pre-clinical studies. Extracellular vesicles (EVs) are nano-sized particles released from various cell types, for instance, mesenchymal stem cells (MSCs), with certain signaling biomolecules, growth factors, and cytokines involved in cell-to-cell communication. A great plethora of studies have pointed to the fact that EVs with specific cargo can distribute easily in different parts of the body, making them appropriate therapeutics under different pathological conditions. The current review articles aimed to highlight the neuroangiogenesis properties of MSC EVs in IS conditions. How and by which mechanisms MSC EVs can orchestrate the process of nervous system regeneration is at the center of debate. We think that the current article can help us better understand MSC EVs' function in the restoration of brain function under IS conditions in terms of neurogenesis and angiogenesis.
Collapse
Affiliation(s)
- Behnaz Mirzaahmadi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Ahmadian
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Haddadi
- Department of Biochemistry, Faculty of Basic Sciences, University of Tabriz, Tabriz, Iran
| | - Parinaz Nezhad-Mokhtari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Banafsheh Yalameha
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somayyeh Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akbar Mousakhani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, Istanbul, Sariyer, Turkey
| | - Hajar Shafaei
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Karimipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Tabriz University of Medical Sciences, Daneshghah St., Tabriz, Iran.
| |
Collapse
|
4
|
Morimoto K, Nakashima A, Ishiuchi N, Miyasako K, Tanaka Y, Sasaki K, Matsuda G, Maeda S, Miyaki S, Masaki T. Renal protective effects of extracellular vesicle-encapsulated tumor necrosis factor-α-induced protein 6 derived from mesenchymal stem cells. Stem Cells 2025; 43:sxaf022. [PMID: 40249362 DOI: 10.1093/stmcls/sxaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
Acute kidney injury (AKI) is involved in subsequent chronic kidney disease (CKD) development, and effective treatments to prevent AKI to CKD progression are lacking. Mesenchymal stem cells (MSCs) are emerging as a promising cellular therapy to impede such progression through the secretion of various humoral factors. Among these factors, tumor necrosis factor-α-induced protein 6 (TSG-6) has a central role in the anti-inflammatory effects of MSCs. However, the mechanisms by which MSCs secrete TSG-6 and exert anti-inflammatory effects are not fully clarified. Here, we investigated these mechanisms using TSG-6-overexpressing MSCs (TSG-6 MSCs) with an adeno-associated virus. Extracellular vesicles (EVs) were isolated from MSC culture supernatants by ultracentrifugation. MSCs were injected through the abdominal aorta into rats with ischemia-reperfusion injury (IRI) to evaluate their anti-inflammatory and anti-fibrotic effects. Additionally, we explored natural compounds that increased TSG-6 expression in MSCs. Most TSG-6 was immediately secreted in EVs and was not stored intracellularly. Administration of TSG-6 MSCs strongly suppressed renal fibrosis and inflammation in IRI rats. Although EVs and conditioned medium from TSG-6 MSCs (TSG-6 MSC-CM) strongly promoted polarization of M2 macrophages, TSG-6 MSC-CM after EV depletion promoted it only slightly. Moreover, TSG-6 MSC-CM enhanced regulatory T-cell induction. MSCs treated with indole-3-carbinol had enhanced TSG-6 expression and markedly suppressed IRI-induced renal fibrosis. Taken together, TSG-6 is secreted in EVs from MSCs and exerts potent anti-inflammatory effects by promoting M2 macrophage polarization and regulatory T-cell induction. Administration of MSCs with enhanced TSG-6 secretion is a promising therapeutic strategy to impede AKI to CKD progression.
Collapse
Affiliation(s)
- Keisuke Morimoto
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Department of Nephrology, Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Kisho Miyasako
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Yoshiki Tanaka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Go Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Department of Research and Development, TWOCELLS Company, Limited, Hiroshima, 732-0816, Japan
| | - Satoshi Maeda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Department of Research and Development, TWOCELLS Company, Limited, Hiroshima, 732-0816, Japan
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| |
Collapse
|
5
|
Ramalingam M, Jang S, Hwang J, Cho HH, Kim BC, Jeong HS. Neural-induced human adipose tissue-derived stem cell secretome exerts neuroprotection against rotenone-induced Parkinson's disease in rats. Stem Cell Res Ther 2025; 16:193. [PMID: 40254594 PMCID: PMC12010609 DOI: 10.1186/s13287-025-04306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a multifactorial disease that involves genetic and environmental factors, which play an essential role in the pathogenesis of PD. Mesenchymal stem cells release a set of bioactive molecules called "secretome" that regulates intercellular communication and cargo transfer in signaling pathways for PD treatment. Thus, this study aimed to evaluate the neuroprotective effects of neural-induced human adipose tissue-derived stem cell (NI-hADSC)-conditioned medium (NI-hADSC-CM) and its exosomes (NI-hADSC-Exo) in a rotenone (ROT)-induced model of PD in rats. METHODS The NI-hADSC-CM was collected from NI-hADSC after 14 days of neural differentiation, and its NI-hADSC-Exo were isolated using a tangential flow filtration system. ROT (1 mg/kg) was subcutaneously administered for 28 days to establish a model of PD in rats. The treatment of NI-hADSC-CM or NI-hADSC-Exo was intravenously injected on days 15, 18, 21, 24, and 27. Animal behavioral effects were explored via a rotarod test. After 28 days, histological and western blot analyses were performed to investigate the tyrosine hydroxylase (TH), α-synuclein (α-syn) aggregation, and downstream signaling pathways for experimental validation. RESULTS NI-hADSC-Exo improved the motor balance and coordination skills against ROT toxicity. ROT reproduced the pathological features of PD, such as a decrease in TH-positive dopaminergic neurons and an increase in α-syn aggregation and glial fibrillary acidic protein (GFAP)-positive cells. NI-hADSC-CM and NI-hADSC-Exo improved the TH expression, decreased the Triton X-100 soluble and insoluble oligomeric p-S129 α-syn, and influenced the differential reactivity to astrocytes and microglia. Secretome treatment could reverse the ROT-induced damages in the neuronal structural and functional proteins, mitochondrial apoptosis, and caspase cascade. The treatment of NI-hADSC-CM and NI-hADSC-Exo ameliorated the ROT toxicity-induced serine-threonine protein kinase dysregulation and autophagy impairment to clear the aggregated α-syn. CONCLUSIONS NI-hADSC-CM and NI-hADSC-Exo significantly exerted neuroprotection by decreasing α-syn toxicity, inhibiting neuroinflammation and apoptosis, restoring autophagic flux properties, and promoting the neuronal function in ROT-injected rats; however, the influence of these treatments on signaling pathways differed slightly between the midbrain and striatum regions. Targeting α-syn degradation pathways provides a novel strategy to elucidate the beneficial effects of MSC secretome and future safe cell-free treatments for PD.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
6
|
Tiwari PK, Chaudhary AA, Gupta S, Chouhan M, Singh HN, Rustagi S, Khan SUD, Kumar S. Extracellular vesicles in triple-negative breast cancer: current updates, challenges and future prospects. Front Mol Biosci 2025; 12:1561464. [PMID: 40297849 PMCID: PMC12034555 DOI: 10.3389/fmolb.2025.1561464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 04/30/2025] Open
Abstract
Breast cancer (BC) remains a complex and widespread problem, affecting millions of women worldwide, Among the various subtypes of BC, triple-negative breast cancer (TNBC) is particularly challenging, representing approximately 20% of all BC cases, and the survival rate of TNBC patients is generally worse than other subtypes of BC. TNBC is a heterogeneous disease characterized by lack of expression of three receptors: estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2), resulting conventional hormonal therapies are ineffective for its management. Despite various therapeutic approaches have been explored, but no definitive solution has been found yet for TNBC. Current treatments options are chemotherapy, immunotherapy, radiotherapy and surgery, although, these therapies have some limitations, such as the development of resistance to anti-cancer drugs, and off-target toxicity, which remain primary obstacles and significant challenges for TNBC. Several findings have shown that EVs exhibit significant therapeutic promise in many diseases, and a similar important role has been observed in various types of tumor. Studies suggest that EVs may offer a potential solution for the management of TNBC. This review highlights the multifaceted roles of EVs in TNBC, emphasizing their involvement in disease progression, diagnosis and therapeutic approach, as well as their potential as biomarkers and drug delivery.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life science, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Lei R, Ren S, Ye H, Cui Z. Purification of mesenchymal stromal cell-derived small extracellular vesicles using ultrafiltration. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70030. [PMID: 39830832 PMCID: PMC11739894 DOI: 10.1002/jex2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/03/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) are pivotal for the curative effects of mesenchymal stromal cells, but their translation into clinical products is hindered by the technical challenges of scaled production and purification. Ultrafiltration, a pressure-driven membrane separation method, is well known as an efficient, scalable, and cost-effective approach for bioseparation. However, there has been little study so far that comprehensively evaluates the potential application of ultrafiltration for scaled sEV isolation and purification. In this study, the feasibility and effectiveness of ultrafiltration for MSC-sEV isolation and purification are studied, and the effects of key process design and operational parameters, including the membrane pore size, transmembrane pressure (TMP), stirring speed (shear rate), feed concentration, are quantified using a stirred cell setup. Results revealed that 500 kDa molecular weight cut-off (MWCO) polyethersulfone membrane demonstrated superior suitability for MSC-sEV separation, yielding higher purity and productivity compared to 100 and 300 kDa MWCO membranes of the same material. The MSC-sEV productivity and purity could also be improved by applying a moderate stirring speed and lower operational pressure, respectively. Isovolumetric diafiltration was incorporated to enhance the purity of MSC-sEVs, successfully removing about 99% of protein contaminants by six diafiltration volumes (DVs). Subsequently, a fed-batch ultra-diafiltration (UF/DF) process with optimised filtration parameters was developed and compared with the currently most used ultracentrifugation (UC) method, showing exceptional effectiveness and performance in the isolation of MSC-sEVs: it increased the recovery of MSC-sEV from 20.59% to 60.88% (about three folds increase) and nearly doubled the purity, while also reducing processing time from over 4 h to 3.5 h, with a potential further reduction to less than 2.5 h through automation. The study concludes that ultrafiltration could be a promising method for both lab-scale preparation and industrial-scale manufacture of MSC-sEVs, offering advantages of high recovery, scalability, fast, and cost-effectiveness.
Collapse
Affiliation(s)
- Rui Lei
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Shuai Ren
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Hu C, Wang L. Advances in the treatment of liver injury based on mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 2024; 15:474. [PMID: 39696473 DOI: 10.1186/s13287-024-04087-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown a great potential role in treating liver injury. MSCs can promote liver regeneration by differentiating into hepatocytes, and can also secrete exosomes to participate in the repair of liver injury. Increasing evidence has shown that mesenchymal stem cell-derived exosomes (MSC-EXOs) play an important role in treating liver injury. In this review, the biogenesis and function of exosomes and the characteristics of MSC-EXOs were analyzed based on recent research results. MSC-EXOs are significant in liver injuries such as liver fibrosis, liver failure, hepatocellular carcinoma, oxidative stress, and lipid steatosis, and participate in the process of liver regeneration.
Collapse
Affiliation(s)
- Changlong Hu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
9
|
Klyucherev TO, Peshkova MA, Revokatova DP, Serejnikova NB, Fayzullina NM, Fayzullin AL, Ershov BP, Khristidis YI, Vlasova II, Kosheleva NV, Svistunov AA, Timashev PS. The Therapeutic Potential of Exosomes vs. Matrix-Bound Nanovesicles from Human Umbilical Cord Mesenchymal Stromal Cells in Osteoarthritis Treatment. Int J Mol Sci 2024; 25:11564. [PMID: 39519121 PMCID: PMC11545893 DOI: 10.3390/ijms252111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with limited therapeutic options, where inflammation plays a critical role in disease progression. Extracellular vesicles (EV) derived from mesenchymal stromal cells (MSC) have shown potential as a therapeutic approach for OA by modulating inflammation and alleviating degenerative processes in the joint. This study evaluated the therapeutic effects for the treatment of OA of two types of EV-exosomes and matrix-bound nanovesicles (MBV)-both derived from the human umbilical cord MSC (UC-MSC) via differential ultracentrifugation. Different phenotypes of human monocyte-derived macrophages (MDM) were used to study the anti-inflammatory properties of EV in vitro, and the medial meniscectomy-induced rat model of knee osteoarthritis (MMx) was used in vivo. The study found that both EV reduced pro-inflammatory cytokines IL-6 and TNF-α in MDM. However, exosomes showed superior results, preserving the extracellular matrix (ECM) of hyaline cartilage, and reducing synovitis more effectively than MBVs. Additionally, exosomes downregulated inflammatory markers (TNF-α, iNOS) and increased Arg-1 expression in macrophages and synovial fibroblasts, indicating a stronger anti-inflammatory effect. These results suggest UC-MSC exosomes as a promising therapeutic option for OA, with the potential for modulating inflammation and promoting joint tissue regeneration.
Collapse
Affiliation(s)
- Timofey O. Klyucherev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria P. Revokatova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Natalia B. Serejnikova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Nafisa M. Fayzullina
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alexey L. Fayzullin
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Boris P. Ershov
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yana I. Khristidis
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Irina I. Vlasova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | | | - Peter S. Timashev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
11
|
Kumar N, Bidkhori HR, Yawno T, Lim R, Inocencio IM. Therapeutic potential of extracellular vesicles derived from human amniotic epithelial cells for perinatal cerebral and pulmonary injury. Stem Cells Transl Med 2024; 13:711-723. [PMID: 38895873 PMCID: PMC11328935 DOI: 10.1093/stcltm/szae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024] Open
Abstract
Lung and brain injury that occurs during the perinatal period leads to lifelong disability and is often driven and/or exacerbated by inflammation. Human amniotic epithelial cells (hAEC), which demonstrate immunomodulatory, anti-fibrotic, and regenerative capabilities, are being explored as a therapeutic candidate for perinatal injury. However, limitations regarding scalable manufacturing, storage, transport, and dose-related toxicity have impeded clinical translation. Isolated therapeutic extracellular vesicles (EVs) from stem and stem-like cells are thought to be key paracrine mediators of therapeutic efficacy. The unique characteristics of EVs suggest that they potentially circumvent the limitations of traditional cell-based therapies. However, given the novelty of EVs as a therapeutic, recommendations around ideal methods of production, isolation, storage, and delivery have not yet been created by regulatory agencies. In this concise review, we discuss the pertinence and limitations of cell-based therapeutics in perinatal medicine. We also review the preclinical evidence supporting the use of therapeutic EVs for perinatal therapy. Further, we summarize the arising considerations regarding adequate cell source, biodistribution, isolation and storage methods, and regulatory roadblocks for the development of therapeutic EVs.
Collapse
Affiliation(s)
- Naveen Kumar
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| | - Hamid Reza Bidkhori
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| | - Tamara Yawno
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
- Department of Paediatrics, Monash University, Clayton 3168, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| | - Ishmael Miguel Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| |
Collapse
|
12
|
Wang Q, Guo W, Niu L, Zhou Y, Wang Z, Chen J, Chen J, Ma J, Zhang J, Jiang Z, Wang B, Zhang Z, Li C, Jian Z. 3D-hUMSCs Exosomes Ameliorate Vitiligo by Simultaneously Potentiating Treg Cells-Mediated Immunosuppression and Suppressing Oxidative Stress-Induced Melanocyte Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404064. [PMID: 38887870 PMCID: PMC11336971 DOI: 10.1002/advs.202404064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Vitiligo is an autoimmune disease characterized by epidermal melanocyte destruction, with abnormal autoimmune responses and excessive oxidative stress as two cardinal mechanisms. Human umbilical mesenchymal stem cells-derived exosomes (hUMSCs-Exos) are regarded as promising therapeutic choice for autoimmune diseases due to potent immunosuppressive and anti-oxidative properties, which can be potentiated under 3D cell culture condition. Nevertheless, whether exosomes derived from 3D spheroids of hUMSCs (3D-Exos) exhibit considerable therapeutic effect on vitiligo and the underlying mechanism remain elusive. In this study, systemic administration of 3D-Exos showed a remarkable effect in treating mice with vitiligo, as revealed by ameliorated skin depigmentation, less CD8+T cells infiltration, and expanded Treg cells in skin, and 3D-Exos exerted a better effect than 2D-Exos. Mechanistically, 3D-Exos can prominently facilitate the expansion of Treg cells in vitiligo lesion and suppress H2O2-induced melanocytes apoptosis. Forward miRNA profile analysis and molecular experiments have demonstrated that miR-132-3p and miR-125b-5p enriched in 3D-Exos greatly contributed to these biological effects by targeting Sirt1 and Bak1 respectively. In aggregate, 3D-Exos can efficiently ameliorate vitiligo by simultaneously potentiating Treg cells-mediated immunosuppression and suppressing oxidative stress-induced melanocyte damage via the delivery of miR-132-3p and miR-125b-5p. The employment of 3D-Exos will be a promising treament for vitiligo.
Collapse
Affiliation(s)
- Qi Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Weinan Guo
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Liaoran Niu
- Department of Digestive SurgeryXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Yuqi Zhou
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zeqian Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jianru Chen
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jiaxi Chen
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jingjing Ma
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jia Zhang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhaoting Jiang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Bo Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhe Zhang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Chunying Li
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhe Jian
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
13
|
Chaibakhsh S, Azimi F, Shoae-Hassani A, Niknam P, Ghamari A, Dehghan S, Nilforushan N. Evaluating the impact of mesenchymal stem cell therapy on visual acuity and retinal nerve fiber layer thickness in optic neuropathy patients: a comprehensive systematic review and meta-analysis. BMC Ophthalmol 2024; 24:316. [PMID: 39075477 PMCID: PMC11287858 DOI: 10.1186/s12886-024-03588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Stem cell therapy has emerged as a potential therapeutic avenue for optic neuropathy patients. To assess its safety and efficacy, we conducted a systematic review and meta-analysis, focusing on the latest evidence pertaining to the improvement of visual acuity (VA) through stem cell therapy. METHODS We analyzed Each database from its inception until June 2024. PubMed, Scopus, and Google Scholar were systematically searched to identify the included studies. Data were extracted regarding the year of publication, the name of the first author, sample size, VA (Log Mar), and Retinal Nerve Fiber Layer (RNFL) thickness. PRISMA protocol was used as a guide to perform this meta-analysis. STATA 16 was used for statistical analysis. RESULTS A total of 66 eyes were examined in seven papers. Based on the meta-analysis, the mean VA (Log MAR) of patients with optic neuropathy improved from 0.90 to 0.65 following stem cell therapy intervention (p-value = 0.001). The thickness of the RNFLs did not demonstrate a significant change (p-value was 0.174). CONCLUSION According to this systematic review and meta-analysis, stem cell therapy may improve the visual acuity of patients with optic neuropathy. Aside from the traditional therapy that can be provided to patients with optic neuropathy, stem cell therapy may also be beneficial.
Collapse
Affiliation(s)
- Samira Chaibakhsh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azimi
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Shoae-Hassani
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cells and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Niknam
- Department of Ophthalmology, Mayo clinic, Rochester, MN, USA
| | - Ali Ghamari
- Pediatric Cell and Gene Therapy Research Center, Cell & Tissue Research Institute, Tehran university of Medical Sciences, Gene, Tehran, Iran
| | - Samaneh Dehghan
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
- Stem Cells and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Naveed Nilforushan
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Lanci A, Iacono E, Merlo B. Therapeutic Application of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Domestic Animals. Animals (Basel) 2024; 14:2147. [PMID: 39123673 PMCID: PMC11310970 DOI: 10.3390/ani14152147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, the therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) has been extensively studied in both human and veterinary medicine. EVs are nano-sized particles containing biological components commonly found in other biological materials. For that reason, EV isolation and characterization are critical to draw precise conclusions during their investigation. Research on EVs within veterinary medicine is still considered in its early phases, yet numerous papers were published in recent years. The conventional adult tissues for deriving MSCs include adipose tissue and bone marrow. Nonetheless, alternative sources such as synovial fluid, endometrium, gingiva, and milk have also been intermittently used. Fetal adnexa are amniotic membrane/fluid, umbilical cord and Wharton's jelly. Cells derived from fetal adnexa exhibit an intermediate state between embryonic and adult cells, demonstrating higher proliferative and differentiative potential and longer telomeres compared to cells from adult tissues. Summarized here are the principal and recent preclinical and clinical studies performed in domestic animals such as horse, cattle, dog and cat. To minimize the use of antibiotics and address the serious issue of antibiotic resistance as a public health concern, they will undoubtedly also be utilized in the future to treat infections in domestic animals. A number of concerns, including large-scale production with standardization of EV separation and characterization techniques, must be resolved for clinical application.
Collapse
Affiliation(s)
- Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
15
|
Xiong JL, Wang YX, Luo JY, Wang SM, Sun JJ, Xi QY, Chen T, Zhang YL. Pituitary-derived small extracellular vesicles promote liver repair by its cargo miR-143-3p. Sci Rep 2024; 14:16635. [PMID: 39025906 PMCID: PMC11258314 DOI: 10.1038/s41598-024-67434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The small Extracellular vesicles (sEV) has been recognized to be significant for intercellular communication due to their ability to transfer important cellular cargoes like miRNAs through circulation. The pituitary gland has not been clearly known about the role of its secreted sEV under normal physiological conditions. And Liver disease is a global public health burden. The present study is the first to investigate the effect of pituitary sEV on the liver. Sequencing and qRT-PCR revealed miR-143-3p is one of the richest in the pituitary sEV. MiR-143 Knockout (KO) mice resulted in a remarkable decrease in insulin-like growth factor 1 (IGF-1) levels and a significant increase in insulin-like growth factor binding protein 5 (IGFBP5) levels along with a reduction in liver primary cell growth. More importantly, compared with miR-143-KO-sEV, WT-sEV possesses a more robust capacity to improve miR-143 KO mice liver repair through the Wnt/β-catenin pathway after an acute injury caused by carbon tetrachloride (CCl4). Our results indicate that pituitary-derived sEV promotes hepatocyte proliferation and liver repair by its cargo miR-143-3p and provides new insight into the regulation mechanism of the pituitary-liver axis, and open a new window for endocrine regulation by using sEV.
Collapse
Affiliation(s)
- Jia-Li Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Yu-Xuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun-Yi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Shu-Meng Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jia-Jie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qian-Yun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yong-Liang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
16
|
Sadr S, Ahmadi Simab P, Niazi M, Yousefsani Z, Lotfalizadeh N, Hajjafari A, Borji H. Anti-inflammatory and immunomodulatory effects of mesenchymal stem cell therapy on parasitic drug resistance. Expert Rev Anti Infect Ther 2024; 22:435-451. [PMID: 38804866 DOI: 10.1080/14787210.2024.2360684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION The emergence of antiparasitic drug resistance poses a concerning threat to animals and humans. Mesenchymal Stem Cells (MSCs) have been widely used to treat infections in humans, pets, and livestock. Although this is an emerging field of study, the current review outlines possible mechanisms and examines potential synergism in combination therapies and the possible harmful effects of such an approach. AREAS COVERED The present study delved into the latest pre-clinical research on utilizing MSCs to treat parasitic infections. As per investigations, the introduction of MSCs to patients grappling with parasitic diseases like schistosomiasis, malaria, cystic echinococcosis, toxoplasmosis, leishmaniasis, and trypanosomiasis has shown a reduction in parasite prevalence. This intervention also alters the levels of both pro- and anti-inflammatory cytokines. Furthermore, the combined administration of MSCs and antiparasitic drugs has demonstrated enhanced efficacy in combating parasites and modulating the immune response. EXPERT OPINION Mesenchymal stem cells are a potential solution for addressing parasitic drug resistance. This is mainly because of their remarkable immunomodulatory abilities, which can potentially help combat parasites' resistance to drugs.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pouria Ahmadi Simab
- Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mahta Niazi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Yousefsani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Chen F, Chen Z, Wu HT, Chen XX, Zhan P, Wei ZY, Ouyang Z, Jiang X, Shen A, Luo MH, Liu Q, Zhou YP, Qin A. Mesenchymal Stem Cell-Derived Exosomes Attenuate Murine Cytomegalovirus-Infected Pneumonia via NF-κB/NLRP3 Signaling Pathway. Viruses 2024; 16:619. [PMID: 38675960 PMCID: PMC11054941 DOI: 10.3390/v16040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Reactivation and infection with cytomegalovirus (CMV) are frequently observed in recipients of solid organ transplants, bone marrow transplants, and individuals with HIV infection. This presents an increasing risk of allograft rejection, opportunistic infection, graft failure, and patient mortality. Among immunocompromised hosts, interstitial pneumonia is the most critical clinical manifestation of CMV infection. Recent studies have demonstrated the potential therapeutic benefits of exosomes derived from mesenchymal stem cells (MSC-exos) in preclinical models of acute lung injury, including pneumonia, ARDS, and sepsis. However, the role of MSC-exos in the pathogenesis of infectious viral diseases, such as CMV pneumonia, remains unclear. In a mouse model of murine CMV-induced pneumonia, we observed that intravenous administration of mouse MSC (mMSC)-exos reduced lung damage, decreased the hyperinflammatory response, and shifted macrophage polarization from the M1 to the M2 phenotype. Treatment with mMSC-exos also significantly reduced the infiltration of inflammatory cells and pulmonary fibrosis. Furthermore, in vitro studies revealed that mMSC-exos reversed the hyperinflammatory phenotype of bone marrow-derived macrophages infected with murine CMV. Mechanistically, mMSC-exos treatment decreased activation of the NF-κB/NLRP3 signaling pathway both in vivo and in vitro. In summary, our findings indicate that mMSC-exo treatment is effective in severe CMV pneumonia by reducing lung inflammation and fibrosis through the NF-κB/NLRP3 signaling pathway, thus providing promising therapeutic potential for clinical CMV infection.
Collapse
Affiliation(s)
- Fei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Center for Cancer Research and Translational Medicine, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhida Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Hui-Ting Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Xin-Xiang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Peiqi Zhan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Zheng-Yi Wei
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Zizhang Ouyang
- Department of Pharmaceutical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China;
| | - Xueyan Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue-Peng Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| |
Collapse
|
18
|
Goldbloom-Helzner L, Bains H, Wang A. Approaches to Characterize and Quantify Extracellular Vesicle Surface Conjugation Efficiency. Life (Basel) 2024; 14:511. [PMID: 38672781 PMCID: PMC11051464 DOI: 10.3390/life14040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-secreted nanovesicles that play an important role in long-range cell-cell communication. Although EVs pose a promising alternative to cell-based therapy, targeted in vivo delivery still falls short. Many studies have explored the surface modification of EVs to enhance their targeting capabilities. However, to our knowledge, there are no standardized practices to confirm the successful surface modification of EVs or calculate the degree of conjugation on EV surfaces (conjugation efficiency). These pieces of information are essential in the reproducibility of targeted EV therapeutics and the determination of optimized conjugation conditions for EVs to see significant therapeutic effects in vitro and in vivo. This review will discuss the vast array of techniques adopted, technologies developed, and efficiency definitions made by studies that have calculated EV/nanoparticle surface conjugation efficiency and how differences between studies may contribute to differently reported conjugation efficiencies.
Collapse
Affiliation(s)
- Leora Goldbloom-Helzner
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817, USA;
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Harjn Bains
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| | - Aijun Wang
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817, USA;
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| |
Collapse
|
19
|
Shaikh SR, Beck MA, Alwarawrah Y, MacIver NJ. Emerging mechanisms of obesity-associated immune dysfunction. Nat Rev Endocrinol 2024; 20:136-148. [PMID: 38129700 DOI: 10.1038/s41574-023-00932-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Obesity is associated with a wide range of complications, including type 2 diabetes mellitus, cardiovascular disease, hypertension and nonalcoholic fatty liver disease. Obesity also increases the incidence and progression of cancers, autoimmunity and infections, as well as lowering vaccine responsiveness. A unifying concept across these differing diseases is dysregulated immunity, particularly inflammation, in response to metabolic overload. Herein, we review emerging mechanisms by which obesity drives inflammation and autoimmunity, as well as impairing tumour immunosurveillance and the response to infections. Among these mechanisms are obesity-associated changes in the hormones that regulate immune cell metabolism and function and drive inflammation. The cargo of extracellular vesicles derived from adipose tissue, which controls cytokine secretion from immune cells, is also dysregulated in obesity, in addition to impairments in fatty acid metabolism related to inflammation. Furthermore, an imbalance exists in obesity in the biosynthesis and levels of polyunsaturated fatty acid-derived oxylipins, which control a range of outcomes related to inflammation, such as immune cell chemotaxis and cytokine production. Finally, there is a need to investigate how obesity influences immunity using innovative model systems that account for the heterogeneous nature of obesity in the human population.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Yazan Alwarawrah
- Department of Paediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancie J MacIver
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Paediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Zhao C, Luo Q, Huang J, Su S, Zhang L, Zheng D, Chen M, Lin X, Zhong J, Li L, Ling K, Zhang S. Extracellular Vesicles Derived from Human Adipose-Derived Mesenchymal Stem Cells Alleviate Sepsis-Induced Acute Lung Injury through a MicroRNA-150-5p-Dependent Mechanism. ACS Biomater Sci Eng 2024; 10:946-959. [PMID: 38154081 DOI: 10.1021/acsbiomaterials.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Extracellular vesicles (EVs) derived from human adipose mesenchymal stem cells (hADSCs) may exert a therapeutic benefit in alleviating sepsis-induced organ dysfunction by delivering cargos that include RNAs and proteins to target cells. The current study aims to explore the protective effect of miR-150-5p delivered by hADSC-EVs on sepsis-induced acute lung injury (ALI). We noted low expression of miR-150-5p in plasma and bronchoalveolar lavage fluid samples from patients with sepsis-induced ALI. The hADSC-EVs were isolated and subsequently cocultured with macrophages. It was established that hADSC-EVs transferred miR-150-5p to macrophages, where miR-150-5p targeted HMGA2 to inhibit its expression and, consequently, inactivated the MAPK pathway. This effect contributed to the promotion of M2 polarization of macrophages and the inhibition of proinflammatory cytokines. Further, mice were made septic by cecal ligation and puncture in vivo and treated with hADSC-EVs to elucidate the effect of hADSC-EVs on sepsis-induced ALI. The in vivo experimental results confirmed a suppressive role of hADSC-EVs in sepsis-induced ALI. Our findings suggest that hADSC-EV-mediated transfer of miR-150-5p may be a novel mechanism underlying the paracrine effects of hADSC-EVs on the M2 polarization of macrophages in sepsis-induced ALI.
Collapse
Affiliation(s)
- Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Qianhua Luo
- Department of Pharmacology, Guangdong Second Provincial General Hospital, Guangzhou 510317, P.R. China
- Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510168, P.R. China
| | - Jianxiang Huang
- College of Pharmacy, Jinan University, Guangzhou 510220, P.R. China
| | - Siman Su
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Lijuan Zhang
- Department of Pharmacy, YueBei People's Hospital (YueBei People's Hospital affiliated to Shantou University Medical College), ShaoGuan 512000, P.R. China
| | - Danling Zheng
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Meini Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Xinyue Lin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Jialin Zhong
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Li Li
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Kai Ling
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| |
Collapse
|
21
|
Miron RJ, Zhang Y. Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontol 2000 2024; 94:231-256. [PMID: 37740431 DOI: 10.1111/prd.12520] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/24/2023]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with a diameter in the range of 30-150 nm. Their use has gained great momentum recently due to their ability to be utilized as diagnostic tools with a vast array of therapeutic applications. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be investigated. This review article first focuses on understanding exosomes, including their cellular origin, biogenesis, function, and characterization. Thereafter, overviews of the quantification methods and isolation techniques are given with discussion over their potential use as novel therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
22
|
Civelek E, Kabatas S, Savrunlu EC, Diren F, Kaplan N, Ofluoğlu D, Karaöz E. Effects of exosomes from mesenchymal stem cells on functional recovery of a patient with total radial nerve injury: A pilot study. World J Stem Cells 2024; 16:19-32. [PMID: 38292440 PMCID: PMC10824039 DOI: 10.4252/wjsc.v16.i1.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses. Currently, there is a lack of effective pharmacological interventions for nerve damage, despite the existence of several small compounds, peptides, hormones, and growth factors that have been suggested as potential enhancers of neuron regeneration. Despite the objective of achieving full functional restoration by surgical intervention, the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries. AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage. METHODS A male individual, aged 24, who is right-hand dominant and an immigrant, arrived with an injury caused by a knife assault. The cut is located on the left arm, specifically below the elbow. The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage. The sural autograft was utilized for repair, followed by the application of 1 mL of mesenchymal stem cell-derived exosome, comprising 5 billion microvesicles. This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway. The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing. RESULTS The duration of the patient's follow-up period was 180 d. An increasing Tinel's sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting. Upon the conclusion of the 6-mo post-treatment period, an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve. This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale. The results indicated that the level of improvement in motor function was classified as M5, denoting an excellent outcome. Additionally, the level of improvement in sensory function was classified as S3+, indicating a good outcome. It is noteworthy that these assessments were conducted in the absence of physical therapy. At the 10th wk post-injury, despite the persistence of substantial axonal damage, the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography (EMG). In contrast to the preceding. EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up, indicating ongoing regeneration. CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage, as well as the experimental and therapy approaches delineated in this investigation, holds the potential to catalyze future clinical progress.
Collapse
Affiliation(s)
- Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey.
| | - Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Gaziosmanpaşa 34255, Istanbul, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Turkey
| | - Furkan Diren
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Çorlu 59860, Tekirdağ, Turkey
| | - Demet Ofluoğlu
- Department of Physical Medicine and Rehabilitation, Ofluoğlu Klinik, Göztepe 34728, Istanbul, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Beşiktaş 34340, Istanbul, Turkey
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Zeytinburnu 34010, Istanbul, Turkey
- Istinye University, Center for Stem Cell and Tissue Engineering Research and Practice, Beşiktaş 34340, Istanbul, Turkey
| |
Collapse
|
23
|
Lou C, Jiang H, Lin Z, Xia T, Wang W, Lin C, Zhang Z, Fu H, Iqbal S, Liu H, Lin J, Wang J, Pan X, Xue X. MiR-146b-5p enriched bioinspired exosomes derived from fucoidan-directed induction mesenchymal stem cells protect chondrocytes in osteoarthritis by targeting TRAF6. J Nanobiotechnology 2023; 21:486. [PMID: 38105181 PMCID: PMC10726686 DOI: 10.1186/s12951-023-02264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by progressive cartilage degradation and inflammation. In recent years, mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) have attracted widespread attention for their potential role in modulating OA pathology. However, the unpredictable therapeutic effects of exosomes have been a significant barrier to their extensive clinical application. In this study, we investigated whether fucoidan-pretreated MSC-derived exosomes (F-MSCs-Exo) could better protect chondrocytes in osteoarthritic joints and elucidate its underlying mechanisms. In order to evaluate the role of F-MSCs-Exo in osteoarthritis, both in vitro and in vivo studies were conducted. MiRNA sequencing was employed to analyze MSCs-Exo and F-MSCs-Exo, enabling the identification of differentially expressed genes and the exploration of the underlying mechanisms behind the protective effects of F-MSCs-Exo in osteoarthritis. Compared to MSCs-Exo, F-MSCs-Exo demonstrated superior effectiveness in inhibiting inflammatory responses and extracellular matrix degradation in rat chondrocytes. Moreover, F-MSCs-Exo exhibited enhanced activation of autophagy in chondrocytes. MiRNA sequencing of both MSCs-Exo and F-MSCs-Exo revealed that miR-146b-5p emerged as a promising candidate mediator for the chondroprotective function of F-MSCs-Exo, with TRAF6 identified as its downstream target. In conclusion, our research results demonstrate that miR-146b-5p encapsulated in F-MSCs-Exo effectively inhibits TRAF6 activation, thereby suppressing inflammatory responses and extracellular matrix degradation, while promoting chondrocyte autophagy for the protection of osteoarthritic cartilage cells. Consequently, the development of a therapeutic approach combining fucoidan with MSC-derived exosomes provides a promising strategy for the clinical treatment of osteoarthritis.
Collapse
Affiliation(s)
- Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tian Xia
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhiguang Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Haonan Fu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Shoaib Iqbal
- Feik School of Pharmacy, University of the Incarnate Word, Broadway, San Antonio, 4301, USA
| | - Haixiao Liu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jian Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jilong Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China.
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
24
|
Li H, Zhu Y, Wang X, Feng Y, Qian Y, Ma Q, Li X, Chen Y, Chen K. Joining Forces: The Combined Application of Therapeutic Viruses and Nanomaterials in Cancer Therapy. Molecules 2023; 28:7679. [PMID: 38005401 PMCID: PMC10674375 DOI: 10.3390/molecules28227679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer, on a global scale, presents a monumental challenge to our healthcare systems, posing a significant threat to human health. Despite the considerable progress we have made in the diagnosis and treatment of cancer, realizing precision cancer therapy, reducing side effects, and enhancing efficacy remain daunting tasks. Fortunately, the emergence of therapeutic viruses and nanomaterials provides new possibilities for tackling these issues. Therapeutic viruses possess the ability to accurately locate and attack tumor cells, while nanomaterials serve as efficient drug carriers, delivering medication precisely to tumor tissues. The synergy of these two elements has led to a novel approach to cancer treatment-the combination of therapeutic viruses and nanomaterials. This advantageous combination has overcome the limitations associated with the side effects of oncolytic viruses and the insufficient tumoricidal capacity of nanomedicines, enabling the oncolytic viruses to more effectively breach the tumor's immune barrier. It focuses on the lesion site and even allows for real-time monitoring of the distribution of therapeutic viruses and drug release, achieving a synergistic effect. This article comprehensively explores the application of therapeutic viruses and nanomaterials in tumor treatment, dissecting their working mechanisms, and integrating the latest scientific advancements to predict future development trends. This approach, which combines viral therapy with the application of nanomaterials, represents an innovative and more effective treatment strategy, offering new perspectives in the field of tumor therapy.
Collapse
Affiliation(s)
- Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
- Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xin Wang
- Center of Infectious Disease Research, School of Life Science, Westlake University, Hangzhou 310024, China;
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Qiman Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xinyuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yihan Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| |
Collapse
|
25
|
Lee CM, Go YY, Song JJ. Inhibition of lipopolysaccharide-induced inflammation by trophoblast-conditioned medium and trophoblast-derived extracellular vesicles in human middle ear epithelial cells. Sci Rep 2023; 13:19822. [PMID: 37963902 PMCID: PMC10645728 DOI: 10.1038/s41598-023-46731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023] Open
Abstract
Otitis media is a common disease but can cause severe inner ear inflammation and hearing loss if it persists for more than two weeks. This study elucidates the inflammation-inhibiting efficacy of conditioned medium (CM) and extracellular vesicles (EVs) derived from human trophoblast (TB) cells in lipopolysaccharide (LPS)-induced human middle ear epithelial cells (HMEECs). TB-conditioned medium (TB-CM) reduced the inflammatory response and regulated mucin and epithelial sodium channel genes in LPS-induced HMEECs. The underlying mechanism of cell migration during inflammatory healing in LPS-induced HMEECs treated with TB-CM was determined by RNA-sequencing analysis. Specifically, the NF-κB pathway related to the copper metabolism MURR1 domain protein was studied and verified through siRNA. This elucidation of the anti-inflammatory effect of TB-CM and TB-derived EVs demonstrates their clinical potential to treat chronic inflammation.
Collapse
Affiliation(s)
- Chan Mi Lee
- Division of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon Young Go
- Division of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
- Center for Health Care Convergence at Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jae-Jun Song
- Division of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea.
- Center for Health Care Convergence at Korea University Guro Hospital, Seoul, Republic of Korea.
| |
Collapse
|
26
|
da Silva TB, Rendra E, David CAW, Bieback K, Cross MJ, Wilm B, Liptrott NJ, Murray P. Umbilical cord mesenchymal stromal cell-derived extracellular vesicles lack the potency to immunomodulate human monocyte-derived macrophages in vitro. Biomed Pharmacother 2023; 167:115624. [PMID: 37783151 DOI: 10.1016/j.biopha.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been reported to display efficacy in a variety of preclinical models, but without long-term engraftment, suggesting a role for secreted factors, such as MSC-derived extracellular vesicles (EVs). MSCs are known to elicit immunomodulatory effects, an important aspect of which is their ability to affect macrophage phenotype. However, it is not clear if these effects are mediated by MSC-derived EVs, or other factors secreted by the MSCs. Here, we use flow cytometry to assess the effects of human umbilical cord (hUC) MSC-derived EVs on the expression of pro-inflammatory (CD80) and anti-inflammatory (CD163) surface markers in human monocyte-derived macrophages (hMDMs). hUC-MSC-derived EVs did not change the surface marker expression of the hMDMs. In contrast, when hMDMs were co-incubated with hUC-MSCs in indirect co-cultures, changes were observed in the expression of CD14, CD80 and CD163, particularly in M1 macrophages, suggesting that soluble factors are necessary to elicit a shift in phenotype. However, even though EVs did not alter the surface marker expression of macrophages, they promoted angiogenesis and phagocytic capacity increased proportionally to increases in EV concentration. Taken together, these results suggest that hUC-MSC-derived EVs are not sufficient to alter macrophage phenotype and that additional MSC-derived factors are needed.
Collapse
Affiliation(s)
- Tamiris Borges da Silva
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Erika Rendra
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Christopher A W David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK.
| |
Collapse
|
27
|
Ortiz GGR, Zaidi NH, Saini RS, Ramirez Coronel AA, Alsandook T, Hadi Lafta M, Arias-Gonzáles JL, Amin AH, Maaliw Iii RR. The developing role of extracellular vesicles in autoimmune diseases: special attention to mesenchymal stem cell-derived extracellular vesicles. Int Immunopharmacol 2023; 122:110531. [PMID: 37437434 DOI: 10.1016/j.intimp.2023.110531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Autoimmune diseases are complex, chronic inflammatory conditions initiated by the loss of immunological tolerance to self-antigens. Nowadays, there is no effective and useful therapy for autoimmune diseases, and the existing medications have some limitations due to their nonspecific targets and side effects. During the last few decades, it has been established that mesenchymal stem cells (MSCs) have immunomodulatory functions. It is proposed that MSCs can exert an important therapeutic effect on autoimmune disorders. In parallel with these findings, several investigations have shown that MSCs alleviate autoimmune diseases. Intriguingly, the results of studies have demonstrated that the effective roles of MSCs in autoimmune diseases do not depend on direct intercellular communication but on their ability to release a wide spectrum of paracrine mediators such as growth factors, cytokines and extracellular vehicles (EVs). EVs that range from 50 to 5,000 nm were produced by almost any cell type, and these nanoparticles participate in homeostasis and intercellular communication via the transfer of a broad range of biomolecules such as modulatory proteins, nucleic acids (DNA and RNA), lipids, cytokines, and metabolites. EVs derived from MSCs display the exact properties of MSCs and can be safer and more beneficial than their parent cells. In this review, we will discuss the features of MSCs and their EVs, EVs biogenesis, and their cargos, and then we will highlight the existing discoveries on the impacts of EVs from MSCs on autoimmune diseases such as multiple sclerosis, arthritis rheumatic, inflammatory bowel disease, Type 1 diabetes mellitus, systemic lupus erythematosus, autoimmune liver diseases, Sjögren syndrome, and osteoarthritis, suggesting a potential alternative for autoimmune conditions therapy.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Neelam Hazoor Zaidi
- Umanand Prasad School of Medicine and Health Science, The University of Fiji, Saweni Campus, Lautoka, Fiji
| | | | | | - Tahani Alsandook
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | | | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Renato R Maaliw Iii
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines.
| |
Collapse
|
28
|
Zhuang X, Jiang Y, Yang X, Fu L, Luo L, Dong Z, Zhao J, Hei F. Advances of mesenchymal stem cells and their derived extracellular vesicles as a promising therapy for acute respiratory distress syndrome: from bench to clinic. Front Immunol 2023; 14:1244930. [PMID: 37711624 PMCID: PMC10497773 DOI: 10.3389/fimmu.2023.1244930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury characterized by diffuse alveolar damage. The period prevalence of ARDS was 10.4% of ICU admissions in 50 countries. Although great progress has been made in supportive care, the hospital mortality rate of severe ARDS is still up to 46.1%. Moreover, up to now, there is no effective pharmacotherapy for ARDS and most clinical trials focusing on consistently effective drugs have met disappointing results. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have spawned intense interest of a wide range of researchers and clinicians due to their robust anti-inflammatory, anti-apoptotic and tissue regeneration properties. A growing body of evidence from preclinical studies confirmed the promising therapeutic potential of MSCs and their EVs in the treatment of ARDS. Based on the inspiring experimental results, clinical trials have been designed to evaluate safety and efficacy of MSCs and their EVs in ARDS patients. Moreover, trials exploring their optimal time window and regimen of drug administration are ongoing. Therefore, this review aims to present an overview of the characteristics of mesenchymal stem cells and their derived EVs, therapeutic mechanisms for ARDS and research progress that has been made over the past 5 years.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feilong Hei
- Department of Cardiopulmonary Bypass, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Cuadrado-Payán E, Ramírez-Bajo MJ, Bañón-Maneus E, Rovira J, Diekmann F, Revuelta I, Cucchiari D. Physiopathological role of extracellular vesicles in alloimmunity and kidney transplantation and their use as biomarkers. Front Immunol 2023; 14:1154650. [PMID: 37662919 PMCID: PMC10469977 DOI: 10.3389/fimmu.2023.1154650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
Antibody-mediated rejection is the leading cause of kidney graft dysfunction. The process of diagnosing it requires the performance of an invasive biopsy and subsequent histological examination. Early and sensitive biomarkers of graft damage and alloimmunity are needed to identify graft injury and eventually limit the need for a kidney biopsy. Moreover, other scenarios such as delayed graft function or interstitial fibrosis and tubular atrophy face the same problem. In recent years, interest has grown around extracellular vesicles, specifically exosomes actively secreted by immune cells, which are intercellular communicators and have shown biological significance. This review presents their potential as biomarkers in kidney transplantation and alloimmunity.
Collapse
Affiliation(s)
- Elena Cuadrado-Payán
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Elisenda Bañón-Maneus
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Fritz Diekmann
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Revuelta
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - David Cucchiari
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| |
Collapse
|
30
|
Zheng D, Ruan H, Chen W, Zhang Y, Cui W, Chen H, Shen H. Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioact Mater 2023; 25:500-526. [PMID: 37056271 PMCID: PMC10087114 DOI: 10.1016/j.bioactmat.2022.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-scale vesicles derived by cell secretion with unique advantages such as promoting cell proliferation, anti-inflammation, promoting blood vessels and regulating cell differentiation, which benefit their wide applications in regenerative medicine. However, the in vivo therapeutic effect of EVs still greatly restricted by several obstacles, including the off-targetability, rapid blood clearance, and undesired release. To address these issues, biomedical engineering techniques are vastly explored. This review summarizes different strategies to enhance EV functions from the perspective of drug loading, modification, and combination of biomaterials, and emphatically introduces the latest developments of functionalized EV-loaded biomaterials in different diseases, including cardio-vascular system diseases, osteochondral disorders, wound healing, nerve injuries. Challenges and future directions of EVs are also discussed.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| |
Collapse
|
31
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal Stem Cells and Exosomes: A Novel Therapeutic Approach for Corneal Diseases. Int J Mol Sci 2023; 24:10917. [PMID: 37446091 DOI: 10.3390/ijms241310917] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cornea, with its delicate structure, is vulnerable to damage from physical, chemical, and genetic factors. Corneal transplantation, including penetrating and lamellar keratoplasties, can restore the functions of the cornea in cases of severe damage. However, the process of corneal transplantation presents considerable obstacles, including a shortage of available donors, the risk of severe graft rejection, and potentially life-threatening complications. Over the past few decades, mesenchymal stem cell (MSC) therapy has become a novel alternative approach to corneal regeneration. Numerous studies have demonstrated the potential of MSCs to differentiate into different corneal cell types, such as keratocytes, epithelial cells, and endothelial cells. MSCs are considered a suitable candidate for corneal regeneration because of their promising therapeutic perspective and beneficial properties. MSCs compromise unique immunomodulation, anti-angiogenesis, and anti-inflammatory properties and secrete various growth factors, thus promoting corneal reconstruction. These effects in corneal engineering are mediated by MSCs differentiating into different lineages and paracrine action via exosomes. Early studies have proven the roles of MSC-derived exosomes in corneal regeneration by reducing inflammation, inhibiting neovascularization, and angiogenesis, and by promoting cell proliferation. This review highlights the contribution of MSCs and MSC-derived exosomes, their current usage status to overcome corneal disease, and their potential to restore different corneal layers as novel therapeutic agents. It also discusses feasible future possibilities, applications, challenges, and opportunities for future research in this field.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Se-Heon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Chang-Min Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ye-Ji Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Young-Jae Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ho-Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Eun-Ah Ye
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Jae-Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| |
Collapse
|
32
|
Kushioka J, Chow SKH, Toya M, Tsubosaka M, Shen H, Gao Q, Li X, Zhang N, Goodman SB. Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflamm Regen 2023; 43:29. [PMID: 37231450 DOI: 10.1186/s41232-023-00279-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Aging of the global population increases the incidence of osteoporosis and associated fragility fractures, significantly impacting patient quality of life and healthcare costs. The acute inflammatory reaction is essential to initiate healing after injury. However, aging is associated with "inflammaging", referring to the presence of systemic low-level chronic inflammation. Chronic inflammation impairs the initiation of bone regeneration in elderly patients. This review examines current knowledge of the bone regeneration process and potential immunomodulatory therapies to facilitate bone healing in inflammaging.Aged macrophages show increased sensitivity and responsiveness to inflammatory signals. While M1 macrophages are activated during the acute inflammatory response, proper resolution of the inflammatory phase involves repolarizing pro-inflammatory M1 macrophages to an anti-inflammatory M2 phenotype associated with tissue regeneration. In aging, persistent chronic inflammation resulting from the failure of M1 to M2 repolarization leads to increased osteoclast activation and decreased osteoblast formation, thus increasing bone resorption and decreasing bone formation during healing.Inflammaging can impair the ability of stem cells to support bone regeneration and contributes to the decline in bone mass and strength that occurs with aging. Therefore, modulating inflammaging is a promising approach for improving bone health in the aging population. Mesenchymal stem cells (MSCs) possess immunomodulatory properties that may benefit bone regeneration in inflammation. Preconditioning MSCs with pro-inflammatory cytokines affects MSCs' secretory profile and osteogenic ability. MSCs cultured under hypoxic conditions show increased proliferation rates and secretion of growth factors. Resolution of inflammation via local delivery of anti-inflammatory cytokines is also a potential therapy for bone regeneration in inflammaging. Scaffolds containing anti-inflammatory cytokines, unaltered MSCs, and genetically modified MSCs can also have therapeutic potential. MSC exosomes can increase the migration of MSCs to the fracture site and enhance osteogenic differentiation and angiogenesis.In conclusion, inflammaging can impair the proper initiation of bone regeneration in the elderly. Modulating inflammaging is a promising approach for improving compromised bone healing in the aging population.
Collapse
Affiliation(s)
- Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
33
|
Alter CL, Detampel P, Schefer RB, Lotter C, Hauswirth P, Puligilla RD, Weibel VJ, Schenk SH, Heusermann W, Schürz M, Meisner-Kober N, Palivan C, Einfalt T, Huwyler J. High efficiency preparation of monodisperse plasma membrane derived extracellular vesicles for therapeutic applications. Commun Biol 2023; 6:478. [PMID: 37137966 PMCID: PMC10156699 DOI: 10.1038/s42003-023-04859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
Extracellular vesicles (EVs) are highly interesting for the design of next-generation therapeutics. However, their preparation methods face challenges in standardization, yield, and reproducibility. Here, we describe a highly efficient and reproducible EV preparation method for monodisperse nano plasma membrane vesicles (nPMVs), which yields 10 to 100 times more particles per cell and hour than conventional EV preparation methods. nPMVs are produced by homogenizing giant plasma membrane vesicles following cell membrane blebbing and apoptotic body secretion induced by chemical stressors. nPMVs showed no significant differences compared to native EVs from the same cell line in cryo-TEM analysis, in vitro cellular interactions, and in vivo biodistribution studies in zebrafish larvae. Proteomics and lipidomics, on the other hand, suggested substantial differences consistent with the divergent origin of these two EV types and indicated that nPMVs primarily derive from apoptotic extracellular vesicles. nPMVs may provide an attractive source for developing EV-based pharmaceutical therapeutics.
Collapse
Affiliation(s)
- Claudio L Alter
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland
| | - Pascal Detampel
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roman B Schefer
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Claudia Lotter
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Patrick Hauswirth
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Ramya D Puligilla
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Vera J Weibel
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Susanne H Schenk
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Wolf Heusermann
- Imaging Core Facility, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Melanie Schürz
- Department of Biosciences & Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Nicole Meisner-Kober
- Department of Biosciences & Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland
| | - Tomaž Einfalt
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
34
|
Mahindran E, Wan Kamarul Zaman WS, Ahmad Amin Noordin KB, Tan YF, Nordin F. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Hype or Hope for Skeletal Muscle Anti-Frailty. Int J Mol Sci 2023; 24:ijms24097833. [PMID: 37175537 PMCID: PMC10178115 DOI: 10.3390/ijms24097833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Steadily rising population ageing is a global demographic trend due to the advancement of new treatments and technologies in the medical field. This trend also indicates an increasing prevalence of age-associated diseases, such as loss of muscle mass (sarcopenia), which tends to afflict the older population. The deterioration in muscle function can cause severe disability and seriously affects a patient's quality of life. Currently, there is no treatment to prevent and reverse age-related skeletal muscle ageing frailty. Existing interventions mainly slow down and control the signs and symptoms. Mesenchymal stem cell-derived extracellular vesicle (MSC-EV) therapy is a promising approach to attenuate age-related skeletal muscle ageing frailty. However, more studies, especially large-scale randomised clinical trials need to be done in order to determine the adequacy of MSC-EV therapy in treating age-related skeletal muscle ageing frailty. This review compiles the present knowledge of the causes and changes regarding skeletal muscle ageing frailty and the potential of MSC-EV transplantation as a regenerative therapy for age-related skeletal muscle ageing frailty and its clinical trials.
Collapse
Affiliation(s)
- Elancheleyen Mahindran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | | | | | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Kajang 43000, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
35
|
Schiano C, Balbi C, de Nigris F, Napoli C. Basic Pathogenic Mechanisms and Epigenetic Players Promoted by Extracellular Vesicles in Vascular Damage. Int J Mol Sci 2023; 24:ijms24087509. [PMID: 37108672 PMCID: PMC10138986 DOI: 10.3390/ijms24087509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Both progression from the early pathogenic events to clinically manifest cardiovascular diseases (CVD) and cancer impact the integrity of the vascular system. Pathological vascular modifications are affected by interplay between endothelial cells and their microenvironment. Soluble factors, extracellular matrix molecules and extracellular vesicles (EVs) are emerging determinants of this network that trigger specific signals in target cells. EVs have gained attention as package of molecules with epigenetic reversible activity causing functional vascular changes, but their mechanisms are not well understood. Valuable insights have been provided by recent clinical studies, including the investigation of EVs as potential biomarkers of these diseases. In this paper, we review the role and the mechanism of exosomal epigenetic molecules during the vascular remodeling in coronary heart disease as well as in cancer-associated neoangiogenesis.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80138 Naples, Italy
| |
Collapse
|
36
|
Williams T, Salmanian G, Burns M, Maldonado V, Smith E, Porter RM, Song YH, Samsonraj RM. Versatility of mesenchymal stem cell-derived extracellular vesicles in tissue repair and regenerative applications. Biochimie 2023; 207:33-48. [PMID: 36427681 DOI: 10.1016/j.biochi.2022.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent somatic cells that have been widely explored in the field of regenerative medicine. MSCs possess the ability to secrete soluble factors as well as lipid bound extracellular vesicles (EVs). MSCs have gained increased interest and attention as a result of their therapeutic properties, which are thought to be attributed to their secretome. However, while the use of MSCs as whole cells pose heterogeneity concerns and survival issues post-transplantation, such limitations are absent in cell-free EV-based treatments. EVs derived from MSCs are promising therapeutic agents for a range of clinical conditions and disorders owing to their immunomodulatory, pro-regenerative, anti-inflammatory, and antifibrotic activity. Recent successes with preclinical studies using EVs for repair and regeneration of damaged tissues such as cardiac tissue, lung, liver, pancreas, bone, skin, cornea, and blood diseases are discussed in this review. We also discuss delivery strategies of EVs using biomaterials as delivery vehicles through systemic or local administration. Despite its effectiveness in preclinical investigations, the application of MSC-EV in clinical settings will necessitate careful consideration surrounding issues such as: i) scalability and isolation, ii) biodistribution, iii) targeting specific tissues, iv) quantification and characterization, and v) safety and efficacy of dosage. The future of EVs in regenerative medicine is promising yet still needs further investigation on enhancing the efficacy, scalability, and potency for clinical applications.
Collapse
Affiliation(s)
- Taylor Williams
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Ghazaleh Salmanian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Morgan Burns
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Vitali Maldonado
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Emma Smith
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Ryan M Porter
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA; Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Rebekah Margaret Samsonraj
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA; Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
37
|
Richards T, Patel H, Patel K, Schanne F. Endogenous Lipid Carriers-Bench-to-Bedside Roadblocks in Production and Drug Loading of Exosomes. Pharmaceuticals (Basel) 2023; 16:421. [PMID: 36986523 PMCID: PMC10058361 DOI: 10.3390/ph16030421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Exosomes are cell-derived, nano-sized extracellular vesicles comprising a lipid bilayer membrane that encapsulates several biological components, such as nucleic acids, lipids, and proteins. The role of exosomes in cell-cell communication and cargo transport has made them promising candidates in drug delivery for an array of diseases. Despite several research and review papers describing the salient features of exosomes as nanocarriers for drug delivery, there are no FDA-approved commercial therapeutics based on exosomes. Several fundamental challenges, such as the large-scale production and reproducibility of batches, have hindered the bench-to-bedside translation of exosomes. In fact, compatibility and poor drug loading sabotage the possibility of delivering several drug molecules. This review provides an overview of the challenges and summarizes the potential solutions/approaches to facilitate the clinical development of exosomal nanocarriers.
Collapse
Affiliation(s)
| | | | | | - Frank Schanne
- College of Pharmacy & Health Sciences, St. John’s University, Queens, NY 11439, USA
| |
Collapse
|
38
|
Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int Immunopharmacol 2023; 116:109790. [PMID: 36736223 DOI: 10.1016/j.intimp.2023.109790] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic osteoarthropathy characterized by the progressive degeneration of articular cartilage and synovial inflammation. Early OA clinical treatments involve intra-articular injection of glucocorticoids, oral acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), which are used for anti-inflammation and pain relief. However, long-term use of these agents will lead to inevitable side effects, even aggravate cartilage loss. At present, there are no disease-modifying OA drugs (DMOADs) yet approved by regulatory agencies. Polarization regulation of synovial macrophages is a new target for OA treatment. Inhibiting M1 polarization and promoting M2 polarization of synovial macrophages can alleviate synovial inflammation, relieve joint pain and inhibit articular cartilage degradation, which is a promising strategy for OA treatment. In this study, we describe the molecular mechanisms of macrophage polarization and its key role in the development of OA. Subsequently, we summarize the latest progress of strategies for OA treatment through macrophage reprogramming, including small molecule compounds (conventional western medicine and synthetic compounds, monomer compounds of traditional Chinese medicine), biomacromolecules, metal/metal oxides, cells, and cell derivatives, and interprets the molecular mechanisms, hoping to provide some information for DMOADs development.
Collapse
|
39
|
Pordanjani PM, Bolhassani A, Milani A, Pouriayevali MH. Extracellular vesicles in vaccine development and therapeutic approaches for viral diseases. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
40
|
Heydari Z, Peshkova M, Gonen ZB, Coretchi I, Eken A, Yay AH, Dogan ME, Gokce N, Akalin H, Kosheleva N, Galea-Abdusa D, Ulinici M, Vorojbit V, Shpichka A, Groppa S, Vosough M, Todiras M, Butnaru D, Ozkul Y, Timashev P. EVs vs. EVs: MSCs and Tregs as a source of invisible possibilities. J Mol Med (Berl) 2023; 101:51-63. [PMID: 36527475 PMCID: PMC9759062 DOI: 10.1007/s00109-022-02276-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are produced by various cells and exist in most biological fluids. They play an important role in cell-cell signaling, immune response, and tumor metastasis, and also have theranostic potential. They deliver many functional biomolecules, including DNA, microRNAs (miRNA), messenger RNA (mRNA), long non-coding RNA (lncRNA), lipids, and proteins, thus affecting different physiological processes in target cells. Decreased immunogenicity compared to liposomes or viral vectors and the ability to cross through physiological barriers such as the blood-brain barrier make them an attractive and innovative option as diagnostic biomarkers and therapeutic carriers. Here, we highlighted two types of cells that can produce functional EVs, namely, mesenchymal stem/stromal cells (MSCs) and regulatory T cells (Tregs), discussing MSC/Treg-derived EV-based therapies for some specific diseases including acute respiratory distress syndrome (ARDS), autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Zahra Heydari
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | | | - Ianos Coretchi
- Department of Pharmacology and Clinical Pharmacology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Ahmet Eken
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.,Department of Medical Biology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Arzu Hanım Yay
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.,Department of Histology and Embryology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Muhammet Ensar Dogan
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Nuriye Gokce
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Hilal Akalin
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Daniela Galea-Abdusa
- Genetics Laboratory, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Mariana Ulinici
- Department of Microbiology and Immunology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Valentina Vorojbit
- Department of Microbiology and Immunology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Stanislav Groppa
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| | - Mihail Todiras
- Drug Research Center, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Yusuf Ozkul
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey. .,Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey.
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
41
|
Stem cell-derived small extracellular vesicles containing miR-27b-3p attenuated osteoarthritis through inhibition of leukaemia inhibitory factor. FUNDAMENTAL RESEARCH 2023. [DOI: 10.1016/j.fmre.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
42
|
Hao R, Hu S, Zhang H, Chen X, Yu Z, Ren J, Guo H, Yang H. Mechanical stimulation on a microfluidic device to highly enhance small extracellular vesicle secretion of mesenchymal stem cells. Mater Today Bio 2023; 18:100527. [PMID: 36619203 PMCID: PMC9816961 DOI: 10.1016/j.mtbio.2022.100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022] Open
Abstract
Small extracellular vesicles (sEVs) are recognized as promising detection biomarkers and attractive delivery vehicles, showing great potential in diagnosis and treatment of diseases. However, the applications of sEVs are usually restricted by their poor secretion amount from donor cells under routine cell culture conditions, which is especially true for mesenchymal stem cells (MSCs) due to their limited expansion and early senescence. Here, a microfluidic device is proposed for boosting sEV secretion from MSCs derived from human fetal bone marrow (BM-MSCs). As the cells rapidly pass through a microfluidic channel with a series of narrow squeezing ridges, mechanical stimulation permeabilizes the cell membrane, thus promoting them to secrete more sEVs into extracellular space. In this study, the microfluidic device demonstrates that mechanical-squeezing effect could increase the secretion amount of sEVs from the BM-MSCs by approximately 4-fold, while maintaining cellular growth state of the stem cells. Further, the secreted sEVs are efficiently taken up by immortalized human corneal epithelial cells and accelerate corneal epithelial wound healing in vitro, indicating that this technique wound not affect the functionality of sEVs and demonstrating the application potentials of this technique.
Collapse
Affiliation(s)
- Rui Hao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Shi Hu
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huitao Zhang
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zitong Yu
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingyi Ren
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Guo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
43
|
In vitro treatment of murine splenocytes with extracellular vesicles derived from mesenchymal stem cells altered the mRNA levels of the master regulator genes of T helper cell subsets. Mol Biol Rep 2023; 50:3309-3316. [PMID: 36720794 DOI: 10.1007/s11033-023-08247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/04/2023] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The purpose of the current study was to evaluate the effect of mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) on the production of cytokines and expression of genes, which are corresponded to the subsets of T helper cells. MATERIALS AND METHODS The supernatant of the second passage of MSCs that had been isolated from C57BL/6 mice abdominal adipose tissue was used to collect the MSC-EV. Splenocytes of healthy mice were activated using anti-CD3 and anti-CD28 antibodies and simultaneously were treated using the MSC-EVs. The proliferation rate of lymphocytes and the frequency of regulatory T cells were measured using flow cytometry. In addition, the expressions of T helper cell subset-specific transcription factors were evaluated using a real-time PCR assay. To appraise the effects of MSC-EV on splenocytes, the levels of IFN-γ, IL-17A, IL-10, and TGF-β were measured using ELISA. RESULTS The results showed that the treatment of the CD3/CD28-activated splenocytes with MSC-EV did not statistically change the proliferation of CD3+ splenocytes. However, after the treatment, the mRNA levels of Foxp3 and Elf4 as well as the frequency of regulatory T cells was significantly higher when compared to the control group. The expression levels of Gata3, Rorc, and Tbx21 were down-regulated while, the corresponding cytokines levels did not alter. CONCLUSION The results revealed that the in vitro treatment of MSC-EV was associated with the increase in the frequency of CD4+CD25+FOXP3+ T cells and upregulation of Foxp3 mRNA level.
Collapse
|
44
|
D'Amato M, Morra F, Di Meo I, Tiranti V. Mitochondrial Transplantation in Mitochondrial Medicine: Current Challenges and Future Perspectives. Int J Mol Sci 2023; 24:1969. [PMID: 36768312 PMCID: PMC9916997 DOI: 10.3390/ijms24031969] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial diseases (MDs) are inherited genetic conditions characterized by pathogenic mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Current therapies are still far from being fully effective and from covering the broad spectrum of mutations in mtDNA. For example, unlike heteroplasmic conditions, MDs caused by homoplasmic mtDNA mutations do not yet benefit from advances in molecular approaches. An attractive method of providing dysfunctional cells and/or tissues with healthy mitochondria is mitochondrial transplantation. In this review, we discuss what is known about intercellular transfer of mitochondria and the methods used to transfer mitochondria both in vitro and in vivo, and we provide an outlook on future therapeutic applications. Overall, the transfer of healthy mitochondria containing wild-type mtDNA copies could induce a heteroplasmic shift even when homoplasmic mtDNA variants are present, with the aim of attenuating or preventing the progression of pathological clinical phenotypes. In summary, mitochondrial transplantation is a challenging but potentially ground-breaking option for the treatment of various mitochondrial pathologies, although several questions remain to be addressed before its application in mitochondrial medicine.
Collapse
Affiliation(s)
- Marco D'Amato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Francesca Morra
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| |
Collapse
|
45
|
Ivosevic Z, Ljujic B, Pavlovic D, Matovic V, Gazdic Jankovic M. Mesenchymal Stem Cell-Derived Extracellular Vesicles: New Soldiers in the War on Immune-Mediated Diseases. Cell Transplant 2023; 32:9636897231207194. [PMID: 37882092 PMCID: PMC10605687 DOI: 10.1177/09636897231207194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
Inflammatory diseases are a group of debilitating disorders with varying degrees of long-lasting functional impairment of targeted system. New therapeutic agents that will attenuate on-going inflammation and, at the same time, promote regeneration of injured organ are urgently needed for the treatment of autoimmune and inflammatory disorders. During the last decade numerous studies have demonstrated that crucial therapeutic benefits of mesenchymal stem cells (MSCs) in inflammatory diseases are based on the effects of MSC-produced paracrine mediators and not on the activity of engrafted cells themselves. Thus, to overcome the limitations of stem cell transplantation, MSC-derived extracellular vesicles (MSC-EVs) have been rigorously investigated, as a promising cell-free pharmaceutical component. In this review, we focus on the mechanisms of MSC-EV covering the current knowledge on their potential therapeutic applications for immune-mediated diseases.
Collapse
Affiliation(s)
- Zeljko Ivosevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vesna Matovic
- Cardiology Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
46
|
Miotti G, Parodi PC, Ferrari A, Salati C, Zeppieri M. Stem Cells in Ophthalmology: From the Bench to the Bedside. HANDBOOK OF STEM CELL APPLICATIONS 2023:1-24. [DOI: 10.1007/978-981-99-0846-2_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 09/13/2023]
|
47
|
Miotti G, Parodi PC, Ferrari A, Salati C, Zeppieri M. Stem Cells in Ophthalmology: From the Bench to the Bedside. HANDBOOK OF STEM CELL APPLICATIONS 2023:1-24. [DOI: https:/doi.org/10.1007/978-981-99-0846-2_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 08/28/2023]
|
48
|
Rodríguez-Eguren A, Gómez-Álvarez M, Francés-Herrero E, Romeu M, Ferrero H, Seli E, Cervelló I. Human Umbilical Cord-Based Therapeutics: Stem Cells and Blood Derivatives for Female Reproductive Medicine. Int J Mol Sci 2022; 23:ijms232415942. [PMID: 36555583 PMCID: PMC9785531 DOI: 10.3390/ijms232415942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
There are several conditions that lead to female infertility, where traditional or conventional treatments have limited efficacy. In these challenging scenarios, stem cell (SC) therapies have been investigated as alternative treatment strategies. Human umbilical cord (hUC) mesenchymal stem cells (hUC-MSC), along with their secreted paracrine factors, extracts, and biomolecules, have emerged as promising therapeutic alternatives in regenerative medicine, due to their remarkable potential to promote anti-inflammatory and regenerative processes more efficiently than other autologous treatments. Similarly, hUC blood derivatives, such as platelet-rich plasma (PRP), or isolated plasma elements, such as growth factors, have also demonstrated potential. This literature review aims to summarize the recent therapeutic advances based on hUC-MSCs, hUC blood, and/or other plasma derivatives (e.g., extracellular vesicles, hUC-PRP, and growth factors) in the context of female reproductive medicine. We present an in-depth analysis of the principal molecules mediating tissue regeneration, compiling the application of these therapies in preclinical and clinical studies, within the context of the human reproductive tract. Despite the recent advances in bioengineering strategies that sustain delivery and amplify the scope of the therapeutic benefits, further clinical trials are required prior to the wide implementation of these alternative therapies in reproductive medicine.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 05610, USA
| | | | - Emilio Francés-Herrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Mónica Romeu
- Gynecological Service, Consortium General University Hospital of Valencia, 46014 Valencia, Spain
| | - Hortensia Ferrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 05610, USA
- IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| | - Irene Cervelló
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Correspondence: or
| |
Collapse
|
49
|
Jiang Y, Lin S, Gao Y. Mesenchymal Stromal Cell-Based Therapy for Dry Eye: Current Status and Future Perspectives. Cell Transplant 2022; 31:9636897221133818. [PMID: 36398793 PMCID: PMC9679336 DOI: 10.1177/09636897221133818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dry eye is one of the most common chronic diseases in ophthalmology. It affects quality of life and has become a public health problem that cannot be ignored. The current treatment methods mainly include artificial tear replacement therapy, anti-inflammatory therapy, and local immunosuppressive therapy. These treatments are mainly limited to improvement of ocular surface discomfort and other symptoms. In recent years, regenerative medicine has developed rapidly, and ophthalmologists are working on new methods to treat dry eye. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immune regulatory effects, and have become a promising tool for the treatment of dry eye. These effects can also be produced by MSC-derived exosomes (MSC-Exos). As a cell-free therapy, MSC-Exos are hypoimmunogenic, serve more stable entities, and compared with MSCs, reduce the safety risks associated with the injection of live cells. This article reviews current knowledge about MSCs and MSC-Exos, and highlights the latest progress and future prospects of MSC-based therapy in dry eye treatment.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Yingying Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Yingying Gao, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian, China.
| |
Collapse
|
50
|
MSC-EV therapy for bone/cartilage diseases. Bone Rep 2022; 17:101636. [DOI: 10.1016/j.bonr.2022.101636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|