1
|
Gou R, Chen S, Lei Y, Wu P, Chen X, Zhang Q. Hypoxia Inhibitor Improves Iodine Uptake Disorder in Thyroid Cancer Through the hsa_circ_0023990/miR-448/DNMT1/NIS Axis. Cancer Sci 2025. [PMID: 40386902 DOI: 10.1111/cas.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025] Open
Abstract
This research seeks to investigate how hypoxia inhibitors enhance iodine uptake in thyroid cancer cells. Clinical samples were gathered and assessed for hsa_circ_0023990, DNMT1, NIS, and their promoter methylation levels using RT-PCR, western blot, and methylation-specific PCR (MSP) techniques. The study involved examining the impact and mechanism of hsa_circ_0023990 on iodine uptake in differentiated thyroid carcinoma (DTC) cells through genetic manipulation. Luciferase reporter gene experiments were conducted to validate the interaction between hsa_circ_0023990, DNMT1, and miR-448. Xenograft tumors were established in nude mice for in vivo validation. The results showed that hsa_circ_0023990 was notably elevated in DTC and RAIR-DTC tissues. It was found that hsa_circ_0023990 could modulate NIS promoter methylation via the miR-448/DNMT1 signaling pathway, thereby influencing NIS expression. Hypoxia inhibitors effectively suppressed hsa_circ_0023990 expression in DTC cells, leading to increased NIS expression and enhanced iodine uptake. Subcutaneous transplantation experiments in animals further confirmed that hypoxia inhibitors could boost iodine absorption in tumor tissue and inhibit tumor growth through the hsa_circ_0023990/miR-448/DNMT1/NIS signaling axis. In conclusion, hypoxia inhibitors ameliorate iodine uptake dysfunction in thyroid cancer by acting on the hsa_circ_0023990/miR-448/DNMT1/NIS signaling pathway.
Collapse
Affiliation(s)
- Ruiqin Gou
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shiqi Chen
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yangyang Lei
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengqing Wu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuezhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Zeng Y, Tao Y, Du G, Huang T, Chen S, Fan L, Zhang N. Advances in the mechanisms of HIF-1α-enhanced tumor glycolysis and its relation to dedifferentiation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 197:1-10. [PMID: 40373959 DOI: 10.1016/j.pbiomolbio.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Metabolic reprogramming, a hallmark of malignancy, enables tumor cells to adapt to the harsh and dynamic tumor microenvironment (TME) by altering metabolic pathways. Hypoxia, prevalent in solid tumors, activates hypoxia inducible factor 1α (HIF-1α). HIF-1α drives metabolic reprogramming, enhancing glycolysis primarily through the Warburg effect to reduce oxygen dependence and facilitate tumor cell growth/proliferation. The above process is associated with accelerated tumor cell dedifferentiation and enhanced stemness, generating cancer stem cells (CSCs) which possesses the potential for self-renewal and differentiation that can differentiate into a wide range of subtypes of tumor cells and fuel tumor heterogeneity, metastasis, and recurrence, complicating therapy. This review examines the HIF-1α-glycolysis-dedifferentiation crosstalk mechanisms, expecting that indirect inhibition of HIF-1α by targeting metabolic enzymes, metabolites, or their signaling pathways will offer an effective therapeutic strategy to improve the cancer treatment outcomes.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yonggang Tao
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guotu Du
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tianyu Huang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Longmei Fan
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Neng Zhang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Mustafa M, Rashed M, Winum JY. Novel anticancer drug discovery strategies targeting hypoxia-inducible factors. Expert Opin Drug Discov 2025; 20:103-121. [PMID: 39670847 DOI: 10.1080/17460441.2024.2442739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Hypoxia is a key feature of solid tumors, associated with aggressive behaviors such as radiation and chemotherapy resistance, increased metastasis, and poor prognosis. Hypoxia-inducible factors (HIFs) are essential transcription factors that help tumor cells adapt to hypoxic environments by promoting the expression of pro-oncogenic genes. Reducing HIF activity presents a promising strategy for advancing cancer treatment. AREA COVERED In this paper, the authors present an overview of recent studies on the development of HIF-1/2 inhibitors as potential anticancer drugs. The article offers a comprehensive analysis of the structural characteristics of these inhibitors and explores their relationship with anticancer activity, focusing on research conducted over the past decade, from 2015 to 2024. EXPERT OPINION Because they play a big role in medicinal chemistry and the discovery of anticancer drugs, HIF inhibitors have always gotten a lot of attention and have been used to make a lot of important molecules with different biological effects, especially in the field of cancer research. Several techniques and chemical scaffolds have successfully targeted HIF-1α. However, additional research is required to sustain HIF-1α inhibition while maintaining anticancer activity. The FDA approval of Belzutifan provided researchers with an opportunity to conduct broader HIF-2 studies.
Collapse
Affiliation(s)
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
5
|
Mitrović-Ajtić O, Živković E, Subotički T, Diklić M, Đikić D, Vukotić M, Dragojević T, Vuković V, Antić D, Čokić VP. Inflammation mediated angiogenesis in chronic lymphocytic leukemia. Ann Hematol 2024; 103:2865-2875. [PMID: 38713255 DOI: 10.1007/s00277-024-05781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Chronic inflammation has been identified in leukemias as an essential regulator of angiogenesis. B-chronic lymphocytic leukemia (CLL) cells secrete high levels of vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1 alpha (HIF1α). The aim was to assess the role of inflammation in activation of angiogenic factors: endothelial nitric oxide synthase (eNOS), HIF1α and VEGF via proliferation related signaling pathways and VEGF autocrine control. We isolated mononuclear cells (MNC) and CD19+ cells from peripheral blood of 60 patients with CLL. MNC were treated with pro-inflammatory interleukin-6 (IL-6) and VEGF, in combination with inhibitors of JAK1/2 (Ruxolitinib), mTOR (Rapamycin), NF-κB (JSH23), SMAD (LDN-193189) and PI3K/AKT (Ly294002) signaling pathways, to evaluate eNOS, VEGF and HIF1α expression by immunoblotting, immunocytochemistry and RT-qPCR. Also, we investigated IL-6 dependent neovascularization in human microvascular endothelial cells (HMEC-1) in co-culture with MNC of CLL. The angiogenic factors eNOS, VEGF and HIF1α had significantly higher frequencies in MNC of CLL in comparison to healthy controls (p < 0.001) and CD19+ cells of CLL. IL-6 increased the quantity of HIF1α (p < 0.05) and VEGF positive cells in the presence of JSH23 (p < 0.01). VEGF increased HIF1α (p < 0.05), and decreased eNOS gene expression (p < 0.01) in MNC of CLL. VEGF significantly (p < 0.001) increased the number of HIF1α positive MNC of CLL, prevented by inhibitors of JAK1/2, PI3K and mTOR signaling pathways. VEGF stimulation of SMAD (p < 0.05) and STAT5 (p < 0.01) signaling has been prevented by inhibitors of JAK1/2, mTOR, PI3K and SMAD signaling, individually (p < 0.01) or mutually (p < 0.001). Also, we showed that MNC of CLL and IL-6 individually stimulate neovascularization in co-culture with HMEC-1, without a cumulative effect. We demonstrated elevated angiogenic factors in CLL, while VEGF and IL-6 independently stimulated HIF1α. VEGF stimulation of HIF1α was mostly mTOR dependent, while IL-6 stimulation was NF-κB dependent.
Collapse
Affiliation(s)
- Olivera Mitrović-Ajtić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia.
| | - Emilija Živković
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Tijana Subotički
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Miloš Diklić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Dragoslava Đikić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Milica Vukotić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Teodora Dragojević
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Vojin Vuković
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Darko Antić
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladan P Čokić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| |
Collapse
|
6
|
Golovina E, Heizer T, Daumova L, Bajecny M, Fontana S, Griggio V, Jones R, Coscia M, Riganti C, Savvulidi Vargova K. MiR-155 deficiency and hypoxia results in metabolism switch in the leukemic B-cells. Cancer Cell Int 2024; 24:251. [PMID: 39020347 PMCID: PMC11256420 DOI: 10.1186/s12935-024-03437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Hypoxia represents one of the key factors that stimulates the growth of leukemic cells in their niche. Leukemic cells in hypoxic conditions are forced to reprogram their original transcriptome, miRNome, and metabolome. How the coupling of microRNAs (miRNAs)/mRNAs helps to maintain or progress the leukemic status is still not fully described. MiRNAs regulate practically all biological processes within cells and play a crucial role in the development/progression of leukemia. In the present study, we aimed to uncover the impact of hsa-miR-155-5p (miR-155, MIR155HG) on the metabolism, proliferation, and mRNA/miRNA network of human chronic lymphocytic leukemia cells (CLL) in hypoxic conditions. As a model of CLL, we used the human MEC-1 cell line where we deleted mature miR-155 with CRISPR/Cas9. We determined that miR-155 deficiency in leukemic MEC-1 cells results in lower proliferation even in hypoxic conditions in comparison to MEC-1 control cells. Additionally, in MEC-1 miR-155 deficient cells we observed decreased number of populations of cells in S phase. The miR-155 deficiency under hypoxic conditions was accompanied by an increased apoptosis. We detected a stimulatory effect of miR-155 deficiency and hypoxia at the level of gene expression, seen in significant overexpression of EGLN1, GLUT1, GLUT3 in MEC-1 miR-155 deficient cells. MiR-155 deficiency and hypoxia resulted in increase of glucose and lactate uptake. Pyruvate, ETC and ATP were reduced. To conclude, miR-155 deficiency and hypoxia affects glucose and lactate metabolism by stimulating the expression of glucose transporters as GLUT1, GLUT3, and EGLN1 [Hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PH2)] genes in the MEC-1 cells.
Collapse
Affiliation(s)
- Elena Golovina
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Heizer
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Daumova
- Institute Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Martin Bajecny
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Simona Fontana
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Torino, Italy
| | - Valentina Griggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Rebecca Jones
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Marta Coscia
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Chiara Riganti
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Torino, Italy
| | - Karina Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
7
|
Feng Y, Qian R, Cui D, Luan J, Xu M, Wang L, Li R, Wu X, Chang C. Mutant TP53 promotes invasion of lung cancer cells by regulating desmoglein 3. J Cancer Res Clin Oncol 2024; 150:312. [PMID: 38900156 PMCID: PMC11189974 DOI: 10.1007/s00432-024-05778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE Targeted therapies have markedly improved the prognosis of lung cancer patients; nevertheless, challenges persist, including limited beneficiary populations and the emergence of drug resistance. This study investigates the molecular mechanisms of mutant TP53 in lung cancer, aiming to contribute to novel strategies for targeted therapy. METHODS The TCGA database was employed to delineate the mutational landscape of TP53 in lung cancer patients. Differential gene expression between TP53-mutant and wild-type patients was analyzed, followed by functional enrichment. DSG3 protein expression in lung cancer patients was assessed using IHC, and its impact on prognosis was analyzed in the TCGA database. The influence of TP53 on the downstream gene DSG3 was investigated using qPCR, ChIP-qPCR, and luciferase reporter gene assays. Protein enrichment in the DSG3 promoter region was examined through IP-MS, and the regulatory role of the HIF1-α/TP53 complex on DSG3 was explored using Co-IP, luciferase assays, and ChIP-qPCR. Molecular interactions between TP53 (R273H) and HIF1-α were detected through immunoprecipitation and molecular docking. The effects and mechanisms of DSG3 on lung cancer phenotypes were assessed through WB, transwell, and wound healing assays. RESULTS TP53 mutations were present in 47.44% of patients, predominantly as missense mutations. DSG3 exhibited high expression in TP53-mutant lung cancer patients, and this elevated expression correlated with a poorer prognosis. TP53 interference led to a reduction in DSG3 mRNA expression, with TP53 mutant P53 enriching at the P2 site of the DSG3 promoter region, a recruitment facilitated by HIF1-α. The DBD region of TP53 (R273H) demonstrated interaction with HIF1-α. DSG3, activated through Ezrin phosphorylation, played a role in promoting invasion and metastasis. CONCLUSIONS Mutant TP53 facilitates lung cancer cell invasion by modulating desmoglein 3.
Collapse
Affiliation(s)
- Yu Feng
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Rulin Qian
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Dong Cui
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China.
| | - Jiaqiang Luan
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Mingxing Xu
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Ling Wang
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Ruijie Li
- Department of Medical Oncology, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Xiao Wu
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Chaoying Chang
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| |
Collapse
|
8
|
Vom Stein AF, Hallek M, Nguyen PH. Role of the tumor microenvironment in CLL pathogenesis. Semin Hematol 2024; 61:142-154. [PMID: 38220499 DOI: 10.1053/j.seminhematol.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells extensively interact with and depend on their surrounding tumor microenvironment (TME). The TME encompasses a heterogeneous array of cell types, soluble signals, and extracellular vesicles, which contribute significantly to CLL pathogenesis. CLL cells and the TME cooperatively generate a chronic inflammatory milieu, which reciprocally reprograms the TME and activates a signaling network within CLL cells, promoting their survival and proliferation. Additionally, the inflammatory milieu exerts chemotactic effects, attracting CLL cells and other immune cells to the lymphoid tissues. The intricate CLL-TME interactions also facilitate immune evasion and compromise leukemic cell surveillance. We also review recent advances that have shed light on additional aspects that are substantially influenced by the CLL-TME interplay.
Collapse
Affiliation(s)
- Alexander F Vom Stein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany.
| |
Collapse
|
9
|
Pandey S, Singh R, Habib N, Tripathi RM, Kushwaha R, Mahdi AA. Regulation of Hypoxia Dependent Reprogramming of Cancer Metabolism: Role of HIF-1 and Its Potential Therapeutic Implications in Leukemia. Asian Pac J Cancer Prev 2024; 25:1121-1134. [PMID: 38679971 PMCID: PMC11162727 DOI: 10.31557/apjcp.2024.25.4.1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/20/2024] [Indexed: 05/01/2024] Open
Abstract
Metabolic reprogramming occurs to meet cancer cells' high energy demand. Its function is essential to the survival of malignancies. Comparing cancer cells to non-malignant cells has revealed that cancer cells have altered metabolism. Several pathways, particularly mTOR, Akt, PI3K, and HIF-1 (hypoxia-inducible factor-1) modulate the metabolism of cancer. Among other aspects of cancer biology, gene expression in metabolism, survival, invasion, proliferation, and angiogenesis of cells are controlled by HIF-1, a vital controller of cellular responsiveness to hypoxia. This article examines various cancer cell metabolisms, metabolic alterations that can take place in cancer cells, metabolic pathways, and molecular aspects of metabolic alteration in cancer cells placing special attention on the consequences of hypoxia-inducible factor and summarising some of their novel targets in the treatment of cancer including leukemia. A brief description of HIF-1α's role and target in a few common types of hematological malignancies (leukemia) is also elucidated in the present article.
Collapse
Affiliation(s)
- Sandeep Pandey
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Ranjana Singh
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Nimra Habib
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Ramesh Mani Tripathi
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Rashmi Kushwaha
- Department of Pathology, King George’s Medical University, Lucknow, U.P., India.
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| |
Collapse
|
10
|
Velasco‐Hernandez T, Trincado JL, Vinyoles M, Closa A, Martínez‐Moreno A, Gutiérrez‐Agüera F, Molina O, Rodríguez‐Cortez VC, Ximeno‐Parpal P, Fernández‐Fuentes N, Petazzi P, Beneyto‐Calabuig S, Velten L, Romecin P, Casquero R, Abollo‐Jiménez F, de la Guardia RD, Lorden P, Bataller A, Lapillonne H, Stam RW, Vives S, Torrebadell M, Fuster JL, Bueno C, Sarry J, Eyras E, Heyn H, Menéndez P. Integrative single-cell expression and functional studies unravels a sensitization to cytarabine-based chemotherapy through HIF pathway inhibition in AML leukemia stem cells. Hemasphere 2024; 8:e45. [PMID: 38435427 PMCID: PMC10895904 DOI: 10.1002/hem3.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 03/05/2024] Open
Abstract
Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy. Here, we identify HIFhigh and HIFlow specific AML subgroups (inv(16)/t(8;21) and MLLr, respectively) and provide a comprehensive single-cell expression atlas of 119,000 AML cells and AML-LSCs in paired diagnostic-relapse samples from these molecular subgroups. The HIF/hypoxia pathway signature is attenuated in AML-LSCs compared with more differentiated AML cells but is more expressed than in healthy hematopoietic cells. Importantly, chemical inhibition of HIF cooperates with standard-of-care chemotherapy to impair AML growth and to substantially eliminate AML-LSCs in vitro and in vivo. These findings support the HIF pathway in the stem cell-driven drug resistance of AML and unravel avenues for combinatorial targeted and chemotherapy-based approaches to specifically eliminate AML-LSCs.
Collapse
Affiliation(s)
- Talia Velasco‐Hernandez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Juan L. Trincado
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Meritxell Vinyoles
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Adria Closa
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network at the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | | | - Oscar Molina
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Virginia C. Rodríguez‐Cortez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | | | | | - Paolo Petazzi
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Sergi Beneyto‐Calabuig
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Lars Velten
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Paola Romecin
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | | | | | - Rafael D. de la Guardia
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- GENYO, Center for Genomics and Oncological ResearchPfizer/Universidad de Granada/Junta de AndalucíaGranadaSpain
| | - Patricia Lorden
- CNAG‐CRG, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Alex Bataller
- Department of HematologyHospital Clínic de BarcelonaBarcelonaSpain
| | - Hélène Lapillonne
- Centre de Recherce Saint‐AntoineArmand‐Trousseau Childrens HospitalParisFrance
| | - Ronald W. Stam
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Susana Vives
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Hematology DepartmentICO‐Hospital Germans Trias i PujolBarcelonaSpain
| | - Montserrat Torrebadell
- Hematology LaboratoryHospital Sant Joan de DéuBarcelonaSpain
- Leukemia and Other Pediatric Hemopathies. Developmental Tumors Biology Group. Institut de Recerca Hospital Sant Joan de DéuBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIIIMadridSpain
| | - Jose L. Fuster
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
- Sección de Oncohematología PediátricaHospital Clínico Universitario Virgen de la Arrixaca and Instituto Murciano de Investigación Biosanitaria (IMIB)MurciaSpain
| | - Clara Bueno
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
- CIBER‐ONCBarcelonaSpain
| | - Jean‐Emmanuel Sarry
- Centre de Recherches en Cancérologie de ToulouseUniversité de ToulouseInserm U1037, CNRS U5077ToulouseFrance
- LabEx ToucanToulouseFrance
- Équipe Labellisée Ligue Nationale Contre le CancerToulouseFrance
| | - Eduardo Eyras
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network at the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Holger Heyn
- CNAG‐CRG, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
- CIBER‐ONCBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Department of Biomedicine, School of MedicineUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
11
|
Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis 2024; 11:234-251. [PMID: 37588219 PMCID: PMC10425810 DOI: 10.1016/j.gendis.2023.02.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic microenvironment is an essential characteristic of most malignant tumors. Notably, hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulatory factor of cellular adaptation to hypoxia, and many critical pathways are correlated with the biological activity of organisms via HIF-1α. In the intra-tumoral hypoxic environment, HIF-1α is highly expressed and contributes to the malignant progression of tumors, which in turn results in a poor prognosis in patients. Recently, it has been indicated that HIF-1α involves in various critical processes of life events and tumor development via regulating the expression of HIF-1α target genes, such as cell proliferation and apoptosis, angiogenesis, glucose metabolism, immune response, therapeutic resistance, etc. Apart from solid tumors, accumulating evidence has revealed that HIF-1α is also closely associated with the development and progression of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma. Targeted inhibition of HIF-1α can facilitate an increased sensitivity of patients with malignancies to relevant therapeutic agents. In the review, we elaborated on the basic structure and biological functions of HIF-1α and summarized their current role in various malignancies. It is expected that they will have future potential for targeted therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yating Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
12
|
Yu L, Ran H, Lu Y, Ma Q, Huang H, Liu W. Targeting HIF-1α alleviates the inflammatory responses and rebuilds the CD4 + T cell subsets balance in the experimental autoimmune myasthenia gravis inflammation model via regulating cellular and humoral immunity. Life Sci 2024; 336:122287. [PMID: 37995933 DOI: 10.1016/j.lfs.2023.122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cells and tissues in an inflammatory state are usually hypoxic. The hypoxic environment can affect the differentiation of immune cells and produce Hypoxia-inducible Factor-1α (HIF-1α). Inflammation is also a major contributor to the development and deterioration of Myasthenia Gravis (MG). There are limited studies on the immunopathological mechanism and targeted therapy associated with MG exacerbated with inflammation. This research aimed to explore whether BAY 87-2243 (HIF-1α inhibitor) ameliorates the symptoms of the Experimental Autoimmune Myasthenia Gravis (EAMG) inflammation model and study its regulatory mechanism on cellular immunity and humoral immunity. METHODS We first establish the EAMG inflammation model using Lipopolysaccharide (LPS), BAY 87-2243 was applied to the EAMG inflammation model and its therapeutic effects were evaluated in vivo and in vitro experiments. RESULTS The proportion of Treg cells was increased whereas Th1, Th17, and Th1/17 cells were decreased in BAY 87-2243-treated EAMG inflammation model. BAY 87-2243 ameliorated the acetylcholine receptors (AChRs) loss and the complement deposited at the neuromuscular junction of the EAMG inflammation model, declined the levels of IFN-γ, IL-17, and IL-6 in serum, and further attenuated responses in the germinal center and reduced the antibody levels by inhibiting the IL-6-dependent STAT3 axis. CONCLUSION BAY 87-2243 restored the balance of CD4+T cell subsets and reduced the production of the pro-inflammatory cytokines, thus acting as both an immune imbalance regulator and anti-inflammatory. The current study suggests that HIF-1α might be a potential target for the treatment of MG exacerbated with inflammation.
Collapse
Affiliation(s)
- Lu Yu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hao Ran
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaru Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Huan Huang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
13
|
Vitale C, Griggio V, Todaro M, Riganti C, Jones R, Boccellato E, Perutelli F, Arruga F, Vaisitti T, Efremov DG, Deaglio S, Landesman Y, Bruno B, Coscia M. Anti-tumor activity of selinexor in combination with antineoplastic agents in chronic lymphocytic leukemia. Sci Rep 2023; 13:16950. [PMID: 37805613 PMCID: PMC10560255 DOI: 10.1038/s41598-023-44039-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Despite recent relevant therapeutic progresses, chronic lymphocytic leukemia (CLL) remains an incurable disease. Selinexor, an oral inhibitor of the nuclear export protein XPO1, is active as single agent in different hematologic malignancies, including CLL. The purpose of this study was to evaluate the anti-tumor effects of selinexor, used in combination with chemotherapy drugs (i.e. fludarabine and bendamustine) or with the PI3Kδ inhibitor idelalisib in CLL. Our results showed a significant decrease in CLL cell viability after treatment with selinexor-containing drug combinations compared to each single compound, with demonstration of synergistic cytotoxic effects. Interestingly, this drug synergism was exerted also in the presence of the protective effect of stromal cells. From the molecular standpoint, the synergistic cytotoxic activity of selinexor plus idelalisib was associated with increased regulatory effects of this drug combination on the tumor suppressors FOXO3A and IkBα compared to each single compound. Finally, selinexor was also effective in potentiating the in vivo anti-tumor effects of the PI3Kδ inhibitor in mice treated with the drug combination compared to single agents. Our data provide preclinical evidence of the synergism and potential efficacy of a combination treatment targeting XPO1 and PI3Kδ in CLL.
Collapse
Affiliation(s)
- Candida Vitale
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, 10126, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Turin, Italy
| | - Valentina Griggio
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, 10126, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Turin, Italy
| | - Maria Todaro
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, 10126, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126, Turin, Italy
| | - Rebecca Jones
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, 10126, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Turin, Italy
| | - Elia Boccellato
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, 10126, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Turin, Italy
| | - Francesca Perutelli
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, 10126, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Turin, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Torino, 10126, Turin, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, 10126, Turin, Italy
| | - Dimitar G Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, 34149, Trieste, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, 10126, Turin, Italy
| | | | - Benedetto Bruno
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, 10126, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Turin, Italy
| | - Marta Coscia
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, 10126, Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Turin, Italy.
| |
Collapse
|
14
|
Hanafy RM, Demian SR, Abou-Shamaa LA, Ghallab O, Osman EM. In-vitro Modulation of mTOR-HIF-1α Axis by TLR7/8 Agonist (Resiquimod) in B-Chronic Lymphocytic Leukemia. Indian J Hematol Blood Transfus 2023; 39:537-545. [PMID: 37786827 PMCID: PMC10542076 DOI: 10.1007/s12288-023-01649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/20/2023] [Indexed: 10/04/2023] Open
Abstract
Targeting toll-like receptors (TLRs), via TLR agonists, has been implicated in the regulation of immunometabolism. B-chronic lymphocytic leukemia (B-CLL) represents a suitable model for B-cell derived malignancies with shifted metabolic adaptations. Several signaling pathways have been found to be critical in metabolic reprogramming of CLL, including mechanistic target of rapamycin- hypoxia inducible factor-1α (mTOR- HIF-1α) pathway, the main metabolic regulator of glycolysis. Here, we investigated the effect of TLR7/8 agonist (Resiquimod) on the expression of mTOR and HIF-1α in patients with CLL. B cells were purified using Rosettesep Human B cell Enrichment Cocktail (Stem cell Technologies, Vancouver, BC, Canada#15,024) from peripheral venous blood of CLL patients (n = 20) and healthy individuals (n = 15). Isolated B cells were then cultured in both presence and absence of Resiquimod. Gene expression of mTOR and HIF-1α were assessed using qRT-PCR. Resiquimod significantly decreased mTOR and HIF-1α gene expression in both CLL (p < 0.001and p < 0.001, respectively) and Normal B cells (p = 0.004 and p = 0.001, respectively). Resiquimod may reprogram immunometabolism of malignant B-CLL cells via down-regulation of key glycolytic metabolic actors, mTOR and HIF-1α genes. Accordingly, Resiquimod may be an adjuvant as a therapeutic tool for CLL, which needs to be studied further. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01649-y.
Collapse
Affiliation(s)
- Rana M. Hanafy
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Soheir R. Demian
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Lobna A. Abou-Shamaa
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - O. Ghallab
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman M. Osman
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Wang P, Wang XY, Man CF, Gong DD, Fan Y. Advances in hyperbaric oxygen to promote immunotherapy through modulation of the tumor microenvironment. Front Oncol 2023; 13:1200619. [PMID: 37790761 PMCID: PMC10543083 DOI: 10.3389/fonc.2023.1200619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Hyperbaric oxygen therapy is a relatively safe treatment method that has been used for a long time in the clinic. It has been proven that it can enhance the sensitivity of radiotherapy and photodynamic therapy for cancer. However, there are few studies on hyperbaric oxygen and immunotherapy. In this article, we summarize that hyperbaric oxygen therapy regulates the tumor microenvironment through various pathways such as improving tumor hypoxia, targeting hypoxia-inducing factors, and generating reactive oxygen species. The change in the tumor microenvironment ultimately affects the curative effect of immunotherapy. Therefore, hyperbaric oxygen can influence immunotherapy by regulating the tumor microenvironment, providing a direction for the future development of immunotherapy.
Collapse
Affiliation(s)
- Pei Wang
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Chang-Feng Man
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dan-Dan Gong
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Fan
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
16
|
Ostini A, Mourtada-Maarabouni M. Investigation into the Role of Long-Non-Coding RNA MIAT in Leukemia. Noncoding RNA 2023; 9:47. [PMID: 37624039 PMCID: PMC10459085 DOI: 10.3390/ncrna9040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Myocardial Infarction Associated Transcript (MIAT) is a nuclear long non-coding RNA (LncRNA) with four different splicing variants. MIAT dysregulation is associated with carcinogenesis, mainly acting as an oncogene regulating cellular growth, invasion, and metastasis. The aim of the current study is to investigate the role of MIAT in the regulation of T and chronic myeloid leukemic cell survival. To this end, MIAT was silenced using MIAT-specific siRNAs in leukemic cell lines, and functional assays were performed thereafter. This investigation also aims to investigate the effects of MIAT silencing on the expression of core genes involved in cancer. Functional studies and gene expression determination confirm that MIAT knockdown not only affects short- and long-term survival and the apoptosis of leukemic cells but also plays a pivotal role in the alteration of key genes involved in cancer, including c-MYC and HIF-1A. Our observations suggest that MIAT could act as an oncogene and it has the potential to be used not only as a reliable biomarker for leukemia, but also be employed for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
| | - Mirna Mourtada-Maarabouni
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK;
| |
Collapse
|
17
|
Zhao K, Hu M, Yang R, Liu J, Zeng P, Zhao T. Decreasing expression of HIF-1α, VEGF-A, and Ki67 with efficacy of neoadjuvant therapy in locally advanced cervical cancer. Medicine (Baltimore) 2023; 102:e33820. [PMID: 37335690 PMCID: PMC10194672 DOI: 10.1097/md.0000000000033820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/28/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) before radical hysterectomy has been widely used for locally advanced cervical cancer (LACC); However, its efficacy is yet to be determined. METHODS Effective and predictive biomarkers, which may aid in predicting the chemotherapy responses, were explored in this study. Initially, the expression of HIF-1α, VEGF-A, and Ki67 was detected in 42 paired (pre-NACT and post-NACT) LACC tissues, as well as 40 nonneoplastic cervical epithelial tissues by immunohistochemistry. Then, the correlation of the expression of HIF-1α, VEGF-A, Ki67 with the efficacy of NACT, as well as factors that affect the efficacy of NACT was analyzed. RESULTS A clinical response occurred in 66.7% (28/42) of the patients, including 57.1% (16/28) with a complete response and 42.9% (12/28) with a partial response; While 33.33% (14/42) were non-responders, including 42.9% (6/14) with stable disease and 57.1% (8/14) with progressive disease. HIF-1α, VEGF-A, and Ki67 were overexpressed in LACC tissues compared to nonneoplastic tissues (P < .01, respectively); While the expression of HIF-1α, VEGF-A, and Ki67 was significantly decreased after NACT (P < .01, respectively). What's more, in the response group, HIF-1α, VEGF-A, and Ki67 expression were significantly decreased after chemotherapy in the post-chemotherapy cervical cancer tissues compared with the pre-chemotherapy cervical cancer tissues (all P < .05). Additionally, patients with lower histological grade and lower expression of HIF-1α, VEGF-A, and Ki67 were more responsive to NACT (P < .05, respectively); Moreover, the histological grade [P = .025, HR (95% CI): 0.133 (0.023-0.777)], HIF-1α [P = .019, HR (95% CI): 0.599 (0.390-0.918)], and Ki67 [P = .036, HR (95% CI): 0.946 (0898-0.996)] were independent risk factors affecting the efficacy of NACT in LACC. CONCLUSION Expression of HIF-1α, VEGF-A, and Ki67 were significantly decreased after NACT, and decreasing expression of HIF-1α, VEGF-A, and Ki67 were related to good response to NACT, suggesting HIF-1α, VEGF-A, and Ki67 may be implicated in evaluating the efficacy of NACT in LACC.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Hu
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Runfeng Yang
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Liu
- Department of Pathology, Jingzhou Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, Hubei, China
| | - Pingfan Zeng
- Department of Pathology, Jingzhou Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, Hubei, China
| | - Tingkuan Zhao
- Department of Pathology, Jingzhou Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, Hubei, China
| |
Collapse
|
18
|
Mancikova V, Pesova M, Pavlova S, Helma R, Zavacka K, Hejret V, Taus P, Hynst J, Plevova K, Malcikova J, Pospisilova S. Distinct p53 phosphorylation patterns in chronic lymphocytic leukemia patients are reflected in the activation of circumjacent pathways upon DNA damage. Mol Oncol 2022; 17:82-97. [PMID: 36334078 PMCID: PMC9812841 DOI: 10.1002/1878-0261.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022] Open
Abstract
TP53 gene abnormalities represent the most important biomarker in chronic lymphocytic leukemia (CLL). Altered protein modifications could also influence p53 function, even in the wild-type protein. We assessed the impact of p53 protein phosphorylations on p53 functions as an alternative inactivation mechanism. We studied p53 phospho-profiles induced by DNA-damaging agents (fludarabine, doxorubicin) in 71 TP53-intact primary CLL samples. Doxorubicin induced two distinct phospho-profiles: profile I (heavily phosphorylated) and profile II (hypophosphorylated). Profile II samples were less capable of activating p53 target genes upon doxorubicin exposure, resembling TP53-mutant samples at the transcriptomic level, whereas standard p53 signaling was triggered in profile I. ATM locus defects were more common in profile II. The samples also differed in the basal activity of the hypoxia pathway: the highest level was detected in TP53-mutant samples, followed by profile II and profile I. Our study suggests that wild-type TP53 CLL cells with less phosphorylated p53 show TP53-mutant-like behavior after DNA damage. p53 hypophosphorylation and the related lower ability to respond to DNA damage are linked to ATM locus defects and the higher basal activity of the hypoxia pathway.
Collapse
Affiliation(s)
- Veronika Mancikova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Michaela Pesova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Sarka Pavlova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Robert Helma
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Kristyna Zavacka
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Vaclav Hejret
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Petr Taus
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Jakub Hynst
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Karla Plevova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic,Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Jitka Malcikova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic,Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| |
Collapse
|
19
|
Magliulo D, Bernardi R. Hypoxic stress and hypoxia-inducible factors in leukemias. Front Oncol 2022; 12:973978. [PMID: 36059690 PMCID: PMC9435438 DOI: 10.3389/fonc.2022.973978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
To cope with hypoxic stress, ancient organisms have developed evolutionally conserved programs centered on hypoxia-inducible transcriptional factors (HIFs). HIFs and their regulatory proteins have evolved as rheostats to adapt cellular metabolism to atmospheric oxygen fluctuations, but the amplitude of their transcriptional programs has tremendously increased along evolution to include a wide spectrum of physiological and pathological processes. The bone marrow represents a notable example of an organ that is physiologically exposed to low oxygen levels and where basal activation of hypoxia signaling appears to be intrinsically wired within normal and neoplastic hematopoietic cells. HIF-mediated responses are mainly piloted by the oxygen-labile α subunits HIF1α and HIF2α, and current literature suggests that these genes have a functional specification that remains to be fully defined. Since their identification in the mid 90s, HIF factors have been extensively studied in solid tumors, while their implication in leukemia has lagged behind. In the last decades however, many laboratories have addressed the function of hypoxia signaling in leukemia and obtained somewhat contradictory results. Suppression of HIFs expression in different types of leukemia has unveiled common leukemia-promoting functions such as stimulation of bone marrow neoangiogenesis, maintenance of leukemia stem cells and chemoresistance. However, genetic studies are revealing that a definition of HIF factors as bona fide tumor promoters is overly simplistic, and, depending on the leukemia subtype, the specific oncogenic event, or the stage of leukemia development, activation of hypoxia-inducible genes may lead to opposite consequences. With this article we will provide an updated summary of the studies describing the regulation and function of HIF1α and HIF2α in blood malignancies, spanning from acute to chronic, lymphoid to myeloid leukemias. In discussing these data, we will attempt to provide plausible explanations to contradictory findings and point at what we believe are areas of weakness in which further investigations are urgently needed. Gaining additional knowledge into the role of hypoxia signaling in leukemia appears especially timely nowadays, as new inhibitors of HIF factors are entering the clinical arena for specific types of solid tumors but their utility for patients with leukemia is yet to be determined.
Collapse
Affiliation(s)
| | - Rosa Bernardi
- Laboratory of Preclinical Models of Cancer, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
20
|
Guo W, Liang D, Wang P, Yin L, Zhang H, Xing C, Huang Z, Wu Y, Li H, Cheng Z, Xiao X, Liu J, Wang Z, Peng H. HIF-PH Encoded by EGLN1 Is a Potential Therapeutic Target for Chronic Lymphocytic Leukemia. Pharmaceuticals (Basel) 2022; 15:734. [PMID: 35745653 PMCID: PMC9229586 DOI: 10.3390/ph15060734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Owing to the recent emergence of drug resistance to Bruton's tyrosine kinase inhibitors (BTK) in chronic lymphocytic leukemia (CLL) treatment, it is crucial to identify alternative therapeutic targets. Therefore, we aimed to identify therapeutic options for CLL besides BTK. We identified that HIF1A expression was higher in CLL patients than in controls, which may suggest good prognosis. We used a lentiviral knockdown of EGLN1 (encoding hypoxia-inducible factor prolyl hydroxylase [HIF-PH]) and found that the growth of MEC-1 cells slowed in the knockdown group. Treatment of CLL cell lines MEC-1 and HG3 with the HIF-PH inhibitor molidustat showed that molidustat could induce apoptosis in a concentration-dependent manner in CLL cells and had low cytotoxicity at this concentration. CXCR4, HIF1A, SLC2AI, and VEGF, the downstream molecules of the HIF pathway, were upregulated after molidustat treatment. Western blotting results indicated that molidustat increased HIF1A expression in CLL cell lines and cells from CLL patients, and sequencing/quantitative PCR analysis demonstrated that the ribosome biogenesis pathway was inhibited in MEC-1 cells after molidustat treatment. We further identified synergistic cytotoxicity of molidustat in combination with ibrutinib on the MEC-1 and HG3 cell lines at certain concentrations. Therefore, molidustat is a potential therapeutic option for CLL.
Collapse
Affiliation(s)
- Wancheng Guo
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha 410011, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China;
| | - Daomiao Liang
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha 410005, China;
| | - Peilong Wang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha 410011, China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha 410011, China
| | - Huifang Zhang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha 410011, China
| | - Zineng Huang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha 410011, China
| | - Yinghua Wu
- Xiangya School of Medicine, Central South University, Changsha 410013, China;
| | - Heng Li
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha 410011, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha 410011, China
| | - Xiaojuan Xiao
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (P.W.); (L.Y.); (H.Z.); (C.X.); (Z.H.); (H.L.); (Z.C.); (X.X.); (J.L.)
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha 410011, China
| |
Collapse
|
21
|
B-cell Receptor Signaling Induced Metabolic Alterations in Chronic Lymphocytic Leukemia Can Be Partially Bypassed by TP53 Abnormalities. Hemasphere 2022; 6:e722. [PMID: 35747847 PMCID: PMC9208879 DOI: 10.1097/hs9.0000000000000722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/14/2022] [Indexed: 11/01/2022] Open
Abstract
It has been unclear what role metabolism is playing in the pathophysiology of chronic lymphocytic leukemia (CLL). One reason is that the study of CLL metabolism is challenging due to the resting nature of circulating CLL cells. Also, it is not clear if any of the genomic aberrations observed in this disease have any impact on metabolism. Here, we demonstrate that CLL cells in proliferation centers exhibit upregulation of several molecules involved in glycolysis and mitochondrial metabolism. Comparison of CXCR4/CD5 intraclonal cell subpopulations showed that these changes are paralleled by increases in the metabolic activity of the CXCR4lowCD5high fraction that have recently egressed from the lymph nodes. Notably, anti-IgM stimulation of CLL cells recapitulates many of these metabolic alterations, including increased glucose uptake, increased lactate production, induction of glycolytic enzymes, and increased respiratory reserve. Treatment of CLL cells with inhibitors of B-cell receptor (BCR) signaling blocked these anti-IgM-induced changes in vitro, which was mirrored by decreases in hexokinase 2 expression in CLL cells from ibrutinib-treated patients in vivo. Interestingly, several samples from patients with 17p-deletion manifested increased spontaneous aerobic glycolysis in the unstimulated state suggestive of a BCR-independent metabolic phenotype. We conclude that the proliferative fraction of CLL cells found in lymphoid tissues or the peripheral blood of CLL patients exhibit increased metabolic activity when compared with the bulk CLL-cell population. Although this is due to microenvironmental stimulatory signals such as BCR-engagement in most cases, increases in resting metabolic activity can be observed in cases with 17p-deletion.
Collapse
|
22
|
Action Sites and Clinical Application of HIF-1α Inhibitors. Molecules 2022; 27:molecules27113426. [PMID: 35684364 PMCID: PMC9182161 DOI: 10.3390/molecules27113426] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 01/02/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is widely distributed in human cells, and it can form different signaling pathways with various upstream and downstream proteins, mediate hypoxia signals, regulate cells to produce a series of compensatory responses to hypoxia, and play an important role in the physiological and pathological processes of the body, so it is a focus of biomedical research. In recent years, various types of HIF-1α inhibitors have been designed and synthesized and are expected to become a new class of drugs for the treatment of diseases such as tumors, leukemia, diabetes, and ischemic diseases. This article mainly reviews the structure and functional regulation of HIF-1α, the modes of action of HIF-1α inhibitors, and the application of HIF-1α inhibitors during the treatment of diseases.
Collapse
|
23
|
Yang B, Zhong W, Gu Y, Li Y. Emerging Mechanisms and Targeted Therapy of Pyroptosis in Central Nervous System Trauma. Front Cell Dev Biol 2022; 10:832114. [PMID: 35399534 PMCID: PMC8990238 DOI: 10.3389/fcell.2022.832114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 01/31/2023] Open
Abstract
Cell death can occur in different modes, ferroptosis, pyroptosis, apoptosis, and necroptosis. Recent studies have shown that pyroptosis can be effectively regulated and that like necroptosis, pyroptosis has been regarded as a type of programmed cell death. The mechanism of its occurrence can be divided into canonical inflammasome-induced pyroptosis and noncanonical inflammasome-induced pyroptosis. In the past research, pyroptosis has been shown to be closely related to various diseases, such as tumors, neurodegenerative diseases, and central nervous system trauma, and studies have pointed out that in central nervous system trauma, pyroptosis is activated. Furthermore, these studies have shown that the inhibition of pyroptosis can play a role in protecting nerve function. In this review, we summarized the mechanisms of pyroptosis, introduce treatment strategies for targeted pyroptosis in central nervous system trauma, and proposed some issues of targeted pyroptosis in the treatment of central nervous system injury.
Collapse
Affiliation(s)
- Biao Yang
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Gu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Li
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yi Li,
| |
Collapse
|
24
|
Li M, Su Y, Gao X, Yu J, Wang Z, Wang X. Transition of autophagy and apoptosis in fibroblasts depends on dominant expression of HIF-1α or p53. J Zhejiang Univ Sci B 2022; 23:204-217. [PMID: 35261216 DOI: 10.1631/jzus.b2100187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been revealed that hypoxia is dynamic in hypertrophic scars; therefore, we considered that it may have different effects on hypoxia-inducible factor-1α (HIF-1α) and p53 expression. Herein, we aimed to confirm the presence of a teeterboard-like conversion between HIF-1α and p53, which is correlated with scar formation and regression. Thus, we obtained samples of normal skin and hypertrophic scars to identify the differences in HIF-1α and autophagy using immunohistochemistry and transmission electron microscopy. In addition, we used moderate hypoxia in vitro to simulate the proliferative scar, and silenced HIF-1α or p53 gene expression or triggered overexpression to investigate the changes of HIF-1α and p53 expression, autophagy, apoptosis, and cell proliferation under this condition. HIF-1α, p53, and autophagy-related proteins were assayed using western blotting and immunofluorescence, whereas apoptosis was detected using flow cytometry analysis, and cell proliferation was detected using cell counting kit-8 (CCK-8) and 5-bromo-2'-deoxyuridine (BrdU) staining. Furthermore, immunoprecipitation was performed to verify the binding of HIF-1α and p53 to transcription cofactor p300. Our results demonstrated that, in scar tissue, HIF-1α expression increased in parallel with autophagosome formation. Under hypoxia, HIF-1α expression and autophagy were upregulated, whereas p53 expression and apoptosis were downregulated in vitro. HIF-1α knockdown downregulated autophagy, proliferation, and p300-bound HIF-1α, and upregulated p53 expression, apoptosis, and p300-bound p53. Meanwhile, p53 knockdown induced the opposite effects and enhanced HIF-1α, whereas p53 overexpression resulted in the same effects and reduced HIF-1α. Our results suggest a teeterboard-like conversion between HIF-1α and p53, which is linked with scar hyperplasia and regression.
Collapse
Affiliation(s)
- Min Li
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yidan Su
- Department of Plastic Surgery, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Xiaoyuan Gao
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiarong Yu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyong Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. ,
| | - Xiqiao Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
25
|
Kimura T, Sakai M, Gojo N, Watanabe M, Uzawa N, Sakai T. The HIF-1α pathway plays a critical role in salivary gland development in ex vivo organ cultures. FEBS Open Bio 2021; 12:460-469. [PMID: 34904400 PMCID: PMC8804608 DOI: 10.1002/2211-5463.13351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/25/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022] Open
Abstract
The transcription factor, hypoxia‐inducible factor‐1α (HIF‐1α), has previously been shown to upregulate the expression of hypoxia‐related genes, including erythropoietin (EPO). However, the role of hypoxia‐inducible factor‐1α in morphogenesis during salivary gland development is unclear. We investigated the function of HIF‐1α in submandibular gland (SMG) organ cultures obtained from embryonic day 13.5 embryos from ICR female mice. Expression of HIF‐1α, glucose transporter 1, and vascular endothelial growth factor was induced under hypoxia (5% O2). We further showed that BAY 87‐2243‐mediated inhibition of HIF‐1α suppressed salivary gland development. Under severe hypoxia (1% O2), HIF‐1α did not promote salivary gland development; this was due to suppression of cell proliferation and inhibition of the cell cycle and not because of autophagy and apoptosis. Additionally, using the inhibitor U0126, we verified that the ERK1/2 pathway is upstream of HIF‐1α. Overall, we found that the HIF‐1α signaling pathway plays a critical role in salivary gland development in ex vivo SMG organ cultures.
Collapse
Affiliation(s)
- Tomomasa Kimura
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Oral and Maxillofacial Surgery 2, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Manabu Sakai
- Department of Clinical Laboratory, Osaka University Dental Hospital, Suita, Japan.,Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nao Gojo
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Surgery 2, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takayoshi Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
26
|
Moreno C, Muñoz C, Terol MJ, Hernández-Rivas JÁ, Villanueva M. Restoration of the immune function as a complementary strategy to treat Chronic Lymphocytic Leukemia effectively. J Exp Clin Cancer Res 2021; 40:321. [PMID: 34654437 PMCID: PMC8517318 DOI: 10.1186/s13046-021-02115-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is a hematological malignancy characterized by uncontrolled proliferation of B-cells and severe immune dysfunction. Chemo(immuno)therapies (CIT) have traditionally aimed to reduce tumor burden without fully understanding their effects on the immune system. As a consequence, CIT are usually associated with higher risk of infections, secondary neoplasms and autoimmune disorders. A better understanding of the biology of the disease has led to the development of therapeutic strategies which not only act against malignant B-cells but also reactivate and enhance the patient's own anti-tumor immune response. Here, we review the current understanding of the underlying interplay between the malignant cells and non-malignant immune cells that may promote tumor survival and proliferation. In addition, we review the available evidence on how different treatment options for CLL including CIT regimens, small molecular inhibitors (i.e, BTK inhibitors, PI3K inhibitors, BCL-2 inhibitors) and T-cell therapies, affect the immune system and their clinical consequences. Finally, we propose that a dual therapeutic approach, acting directly against malignant B-cells and restoring the immune function is clinically relevant and should be considered when developing future strategies to treat patients with CLL.
Collapse
Affiliation(s)
| | - Cecilia Muñoz
- Hospital Universitario de la Princesa, Madrid, Spain
| | | | - José-Ángel Hernández-Rivas
- Hospital Universitario Infanta Leonor, Universidad Complutense de Madrid, Madrid, Spain.
- Servicio de Hematología y Hemoterapia, Hospital Universitario Infanta Leonor, Departamento de Medicina, Universidad Complutense de Madrid, Madrid, España.
- , C/ Gran Vía del Este 80, 28031, Madrid, Spain.
| | | |
Collapse
|
27
|
The Tumor Microenvironment-Dependent Transcription Factors AHR and HIF-1α Are Dispensable for Leukemogenesis in the Eµ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13184518. [PMID: 34572746 PMCID: PMC8466120 DOI: 10.3390/cancers13184518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, mostly affecting the elderly. The survival of leukemic cells depends on multiple soluble factors and on the stimulation of the BCR signaling pathway. Microenvironment-dependent transcription factors also contribute to CLL biology. Here, we generated new transgenic murine conditional knock-out models of CLL to study the role of the two transcription factors HIF-1α and AHR. Unexpectedly, we observed that both factors are dispensable for leukemia development in these models. Abstract Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in the elderly and is characterized by the accumulation of mature B lymphocytes in peripheral blood and primary lymphoid organs. In order to proliferate, leukemic cells are highly dependent on complex interactions with their microenvironment in proliferative niches. Not only soluble factors and BCR stimulation are important for their survival and proliferation, but also the activation of transcription factors through different signaling pathways. The aryl hydrocarbon receptor (AHR) and hypoxia-inducible factor (HIF)-1α are two transcription factors crucial for cancer development, whose activities are dependent on tumor microenvironment conditions, such as the presence of metabolites from the tryptophan pathway and hypoxia, respectively. In this study, we addressed the potential role of AHR and HIF-1α in chronic lymphocytic leukemia (CLL) development in vivo. To this end, we crossed the CLL mouse model Eµ-TCL1 with the corresponding transcription factor-conditional knock-out mice to delete one or both transcription factors in CD19+ B cells only. Despite AHR and HIF-1α being activated in CLL cells, deletion of either or both of them had no impact on CLL progression or survival in vivo, suggesting that these transcription factors are not crucial for leukemogenesis in CLL.
Collapse
|
28
|
Breakthrough Science: Hypoxia-Inducible Factors, Oxygen Sensing, and Disorders of Hematopoiesis. Blood 2021; 139:2441-2449. [PMID: 34411243 DOI: 10.1182/blood.2021011043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Hypoxia-inducible factors (HIF) were discovered as activators of erythropoietin gene transcription in response to reduced O2 availability. O2-dependent hydroxylation of HIFs on proline and asparagine residues regulates protein stability and transcription activity, respectively. Mutations in genes encoding components of the oxygen sensing pathway cause familial erythrocytosis. Several small molecule inhibitors of HIF prolyl hydroxylases are currently in clinical trials as erythropoiesis stimulating agents. HIFs are overexpressed in bone marrow neoplasms, and the development of HIF inhibitors may improve outcome in these disorders.
Collapse
|
29
|
Impact of Immune Parameters and Immune Dysfunctions on the Prognosis of Patients with Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13153856. [PMID: 34359757 PMCID: PMC8345723 DOI: 10.3390/cancers13153856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In chronic lymphocytic leukemia (CLL), immune alterations—affecting both the innate and adaptive immunity—are very common. As a clinical consequence, patients with CLL frequently present with autoimmune phenomena, increased risk of infections and second malignancies. The aim of this review article is to present available data on CLL-associated alterations of immune parameters that correlate with known prognostic markers and with clinical outcome. Also, data on the impact of immune-related clinical manifestations on the prognosis of patients with CLL will be discussed. Abstract Chronic lymphocytic leukemia (CLL) is characterized by a wide spectrum of immune alterations, affecting both the innate and adaptive immunity. These immune dysfunctions strongly impact the immune surveillance, facilitate tumor progression and eventually affect the disease course. Quantitative and functional alterations involving conventional T cells, γδ T cells, regulatory T cells, NK and NKT cells, and myeloid cells, together with hypogammaglobulinemia, aberrations in the complement pathways and altered cytokine signature have been reported in patients with CLL. Some of these immune parameters have been shown to associate with other CLL-related characteristics with a known prognostic relevance or to correlate with disease prognosis. Also, in CLL, the complex immune response dysfunctions eventually translate in clinical manifestations, including autoimmune phenomena, increased risk of infections and second malignancies. These clinical issues are overall the most common complications that affect the course and management of CLL, and they also may impact overall disease prognosis.
Collapse
|
30
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
31
|
Vitale C, Griggio V, Riganti C, Todaro M, Kopecka J, Jones R, Salvetti C, Boccellato E, Perutelli F, Voena C, Godio L, Boccadoro M, Coscia M. Targeting HIF-1α Regulatory Pathways as a Strategy to Hamper Tumor-Microenvironment Interactions in CLL. Cancers (Basel) 2021; 13:cancers13122883. [PMID: 34207596 PMCID: PMC8229189 DOI: 10.3390/cancers13122883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
The hypoxia-inducible factor 1 (HIF-1) and the CXCL12/CXCR4 axis regulate the interaction of chronic lymphocytic leukemia cells and the tumor microenvironment. However, the interconnections occurring between HIF-1 and the CXCL12/CXCR4 axis are not fully elucidated. Here, we demonstrate that the CXCL12/CXCR4 axis plays a pivotal role in the positive regulation of the α subunit of HIF-1 (HIF-1α) that occurs in CLL cells co-cultured with stromal cells (SC). Inhibitors acting at different levels on CXCR4 downstream signalling counteract the SC-induced HIF-1α upregulation in CLL cells, also hindering the SC-mediated pro-survival effect. HIF-1α inhibition also exerts off-tumor effects on the SC component, inducing the downregulation of target genes, including CXCL12. Consistently, our data show that pretreatment of leukemic cells and/or SC with idelalisib effectively abrogates the SC-mediated survival support. A combined on-tumor and off-tumor inhibition of HIF-1α was also observed in idelalisib-treated patients, who showed, along with a downregulation of HIF-1α target genes in leukemic cells, a significant decrease in CXCL12 serum concentration and changes in the bone marrow microenvironment. Our data demonstrate that the targeting of HIF-1α or its regulatory pathways acts at the tumor- and SC-level, and may be an appealing strategy to overcome the microenvironment-mediated protection of CLL cells.
Collapse
Affiliation(s)
- Candida Vitale
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, via Genova 3, 10126 Torino, Italy; (C.V.); (V.G.); (M.T.); (R.J.); (C.S.); (E.B.); (F.P.); (M.B.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy;
| | - Valentina Griggio
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, via Genova 3, 10126 Torino, Italy; (C.V.); (V.G.); (M.T.); (R.J.); (C.S.); (E.B.); (F.P.); (M.B.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy;
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5, 10126 Torino, Italy; (C.R.); (J.K.)
| | - Maria Todaro
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, via Genova 3, 10126 Torino, Italy; (C.V.); (V.G.); (M.T.); (R.J.); (C.S.); (E.B.); (F.P.); (M.B.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy;
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5, 10126 Torino, Italy; (C.R.); (J.K.)
| | - Rebecca Jones
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, via Genova 3, 10126 Torino, Italy; (C.V.); (V.G.); (M.T.); (R.J.); (C.S.); (E.B.); (F.P.); (M.B.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy;
| | - Chiara Salvetti
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, via Genova 3, 10126 Torino, Italy; (C.V.); (V.G.); (M.T.); (R.J.); (C.S.); (E.B.); (F.P.); (M.B.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy;
| | - Elia Boccellato
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, via Genova 3, 10126 Torino, Italy; (C.V.); (V.G.); (M.T.); (R.J.); (C.S.); (E.B.); (F.P.); (M.B.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy;
| | - Francesca Perutelli
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, via Genova 3, 10126 Torino, Italy; (C.V.); (V.G.); (M.T.); (R.J.); (C.S.); (E.B.); (F.P.); (M.B.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy;
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy;
| | - Laura Godio
- Division of Pathology, A.O.U. Città della Salute e della Scienza di Torino, via Santena 5, 10126 Torino, Italy;
| | - Mario Boccadoro
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, via Genova 3, 10126 Torino, Italy; (C.V.); (V.G.); (M.T.); (R.J.); (C.S.); (E.B.); (F.P.); (M.B.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy;
| | - Marta Coscia
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, via Genova 3, 10126 Torino, Italy; (C.V.); (V.G.); (M.T.); (R.J.); (C.S.); (E.B.); (F.P.); (M.B.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy;
- Correspondence: ; Tel.: +39-0116336728; Fax: +39-0116963737
| |
Collapse
|
32
|
Simioni C, Conti I, Varano G, Brenna C, Costanzi E, Neri LM. The Complexity of the Tumor Microenvironment and Its Role in Acute Lymphoblastic Leukemia: Implications for Therapies. Front Oncol 2021; 11:673506. [PMID: 34026651 PMCID: PMC8131840 DOI: 10.3389/fonc.2021.673506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The microenvironment that surrounds a tumor, in addition to the tumor itself, plays an important role in the onset of resistance to molecularly targeted therapies. Cancer cells and their microenvironment interact closely between them by means of a molecular communication that mutually influences their biological characteristics and behavior. Leukemia cells regulate the recruitment, activation and program of the cells of the surrounding microenvironment, including those of the immune system. Studies on the interactions between the bone marrow (BM) microenvironment and Acute Lymphoblastic Leukemia (ALL) cells have opened a scenario of potential therapeutic targets which include cytokines and their receptors, signal transduction networks, and hypoxia-related proteins. Hypoxia also enhances the formation of new blood vessels, and several studies show how angiogenesis could have a key role in the pathogenesis of ALL. Knowledge of the molecular mechanisms underlying tumor-microenvironment communication and angiogenesis could contribute to the early diagnosis of leukemia and to personalized molecular therapies. This article is part of a Special Issue entitled: Innovative Multi-Disciplinary Approaches for Precision Studies in Leukemia edited by Sandra Marmiroli (University of Modena and Reggio Emilia, Modena, Italy) and Xu Huang (University of Glasgow, Glasgow, United Kingdom).
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy.,Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Zhang Q, Yuan J, Liu Y, Liu X, Lv T, Zhou K, Song Y. KIAA0101 knockdown inhibits cell proliferation and induces cell cycle arrest and cell apoptosis in chronic lymphocytic leukemia cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:487. [PMID: 33850884 PMCID: PMC8039647 DOI: 10.21037/atm-21-626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with intense cytogenetic aberrations. Importantly, our recent report indicated that thyroid hormone receptor interactor 13 (TRIP13) is a potential new therapeutic target in CLL. In this study, we predicted 20 TRIP13-related genes and found that KIAA0101 is a novel gene that regulates cell proliferation and the cell cycle of CLL cells. Methods CD19+ B cells were isolated from the peripheral blood of 26 CLL patients and 6 healthy donors through magnetic cell sorting. Cell proliferation was assessed by the CCK-8 assay. The mRNA and protein levels of genes were examined through RT-qPCR and western blot assays, respectively. Cell cycle and cell apoptosis were measured through Annexin V-based flow cytometry and the caspase 3/7 activity assay. Potential targets of KIAA0101 were identified through microarray analysis. 20 TRIP13 related genes was predicted by Ingenuity Pathway Analysis (IPA). KIAA0101-regulated functions and molecular pathways were predicted through IPA. Results KIAA0101 knockdown had the strongest inhibitory effect on CLL cell proliferation among the 20 TRIP13-related genes. KIAA0101 was highly expressed in CD19+ B cells of CLL patients. KIAA0101 knockdown induced cell cycle arrest and cell apoptosis, and inhibited FOXO1, MYD88, and TLR4 expression in CLL cells. Conclusions Taken together, we demonstrated that KIAA0101 plays a critical role in cell proliferation and the cell cycle of human CLL cells. KIAA0101 knockdown induced cell apoptosis, and reduced FOXO1, MYD88, and TLR4 expression, and may therefore be used as a therapeutic target of CLL.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jingjing Yuan
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yanyan Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xingchen Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Tianxin Lv
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
34
|
Gavriilidis GI, Ntoufa S, Papakonstantinou N, Kotta K, Koletsa T, Chartomatsidou E, Moysiadis T, Stavroyianni N, Anagnostopoulos A, Papadaki E, Tsiftsoglou AS, Stamatopoulos K. Stem cell factor is implicated in microenvironmental interactions and cellular dynamics of chronic lymphocytic leukemia. Haematologica 2021; 106:692-700. [PMID: 32336682 PMCID: PMC7927890 DOI: 10.3324/haematol.2019.236513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 01/03/2023] Open
Abstract
The inflammatory cytokine stem cell factor (SCF, ligand of c-kit receptor)
has been implicated as a pro-oncogenic driver and an adverse
prognosticator in several human cancers. Increased SCF levels have
recently been reported in a small series of patients with chronic lymphocytic
leukemia (CLL), however its precise role in CLL pathophysiology
remains elusive. In this study, CLL cells were found to express predominantly
the membrane isoform of SCF, which is known to elicit a more
robust activation of the c-kit receptor. SCF was significantly overexpressed
in CLL cells compared to healthy tonsillar B cells and it correlated with
adverse prognostic biomarkers, shorter time-to-first treatment and shorter
overall survival. Activation of immune receptors and long-term cell-cell
interactions with the mesenchymal stroma led to an elevation of SCF primarily
in CLL cases with an adverse prognosis. Contrariwise, suppression
of oxidative stress and the BTK inhibitor ibrutinib lowered SCF levels.
Interestingly, SCF significantly correlated with mitochondrial dynamics
and hypoxia-inducible factor-1a which have previously been linked with
clinical aggressiveness in CLL. SCF was able to elicit direct biological
effects in CLL cells, affecting redox homeostasis and cell proliferation.
Overall, the aberrantly expressed SCF in CLL cells emerges as a key
response regulator to microenvironmental stimuli while correlating with
poor prognosis. On these grounds, specific targeting of this inflammatory
molecule could serve as a novel therapeutic approach in CLL.
Collapse
Affiliation(s)
- George I Gavriilidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula Ntoufa
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Nikos Papakonstantinou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Konstantia Kotta
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Triantafyllia Koletsa
- Department of Pathology, Faculty of Medicine, Aristotle University, Thessaloniki, Greece
| | - Elisavet Chartomatsidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Theodoros Moysiadis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Niki Stavroyianni
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Eleni Papadaki
- Department of Medicine, University of Crete, Heraklion, Greece
| | - Asterios S Tsiftsoglou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
35
|
Guo C, Gao YY, Ju QQ, Zhang CX, Gong M, Li ZL. HELQ and EGR3 expression correlate with IGHV mutation status and prognosis in chronic lymphocytic leukemia. J Transl Med 2021; 19:42. [PMID: 33485349 PMCID: PMC7825181 DOI: 10.1186/s12967-021-02708-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background IGHV mutation status is a crucial prognostic biomarker for CLL. In the present study, we investigated the transcriptomic signatures associating with IGHV mutation status and CLL prognosis. Methods The co-expression modules and hub genes correlating with IGHV status, were identified using the GSE28654, by ‘WGCNA’ package and R software (version 4.0.2). The over-representation analysis was performed to reveal enriched cell pathways for genes of correlating modules. Then 9 external cohorts were used to validate the correlation of hub genes expression with IGHV status or clinical features (treatment response, transformation to Richter syndrome, etc.). Moreover, to elucidate the significance of hub genes on disease course and prognosis of CLL patients, the Kaplan–Meier analysis for the OS and TTFT of were performed between subgroups dichotomized by the median expression value of individual hub genes. Results 2 co-expression modules and 9 hub genes ((FCRL1/FCRL2/HELQ/EGR3LPL/LDOC1/ZNF667/SOWAHC/SEPTIN10) correlating with IGHV status were identified by WGCNA, and validated by external datasets. The modules were found to be enriched in NF-kappaB, HIF-1 and other important pathways, involving cell proliferation and apoptosis. The expression of hub genes was revealed to be significantly different, not only between CLL and normal B cell, but also between various types of lymphoid neoplasms. HELQ expression was found to be related with response of immunochemotherapy treatment significantly (p = 0.0413), while HELQ and ZNF667 were expressed differently between stable CLL and Richter syndrome patients (p < 0.0001 and p = 0.0278, respectively). By survival analysis of subgroups, EGR3 expression was indicated to be significantly associated with TTFT by 2 independent cohorts (GSE39671, p = 0.0311; GSE22762, p = 0.0135). While the expression of HELQ and EGR3 was found to be associated with OS (p = 0.0291 and 0.0114 respectively).The Kras, Hedgehog and IL6-JAK-STAT3 pathways were found to be associating with the expression of hub genes, resulting from GSEA. Conclusions The expression of HELQ and EGR3 were correlated with IGHV mutation status in CLL patients. Additionally, the expression of HELQ/EGR3 were prognostic markers for CLL associating with targetable cell signaling pathways.
Collapse
Affiliation(s)
- Chao Guo
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China
| | - Ya-Yue Gao
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China
| | - Qian-Qian Ju
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China
| | - Chun-Xia Zhang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China
| | - Ming Gong
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China
| | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China.
| |
Collapse
|
36
|
Akman M, Belisario DC, Salaroglio IC, Kopecka J, Donadelli M, De Smaele E, Riganti C. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:28. [PMID: 33423689 PMCID: PMC7798239 DOI: 10.1186/s13046-020-01824-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Solid tumors often grow in a micro-environment characterized by < 2% O2 tension. This condition, together with the aberrant activation of specific oncogenic patwhays, increases the amount and activity of the hypoxia-inducible factor-1α (HIF-1α), a transcription factor that controls up to 200 genes involved in neoangiogenesis, metabolic rewiring, invasion and drug resistance. Hypoxia also induces endoplasmic reticulum (ER) stress, a condition that triggers cell death, if cells are irreversibly damaged, or cell survival, if the stress is mild.Hypoxia and chronic ER stress both induce chemoresistance. In this review we discuss the multiple and interconnected circuitries that link hypoxic environment, chronic ER stress and chemoresistance. We suggest that hypoxia and ER stress train and select the cells more adapted to survive in unfavorable conditions, by activating pleiotropic mechanisms including apoptosis inhibition, metabolic rewiring, anti-oxidant defences, drugs efflux. This adaptative process unequivocally expands clones that acquire resistance to chemotherapy.We believe that pharmacological inhibitors of HIF-1α and modulators of ER stress, although characterized by low specificty and anti-cancer efficacy when used as single agents, may be repurposed as chemosensitizers against hypoxic and chemorefractory tumors in the next future.
Collapse
Affiliation(s)
- Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | | | | | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| |
Collapse
|
37
|
Belisario DC, Kopecka J, Pasino M, Akman M, De Smaele E, Donadelli M, Riganti C. Hypoxia Dictates Metabolic Rewiring of Tumors: Implications for Chemoresistance. Cells 2020; 9:cells9122598. [PMID: 33291643 PMCID: PMC7761956 DOI: 10.3390/cells9122598] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a condition commonly observed in the core of solid tumors. The hypoxia-inducible factors (HIF) act as hypoxia sensors that orchestrate a coordinated response increasing the pro-survival and pro-invasive phenotype of cancer cells, and determine a broad metabolic rewiring. These events favor tumor progression and chemoresistance. The increase in glucose and amino acid uptake, glycolytic flux, and lactate production; the alterations in glutamine metabolism, tricarboxylic acid cycle, and oxidative phosphorylation; the high levels of mitochondrial reactive oxygen species; the modulation of both fatty acid synthesis and oxidation are hallmarks of the metabolic rewiring induced by hypoxia. This review discusses how metabolic-dependent factors (e.g., increased acidification of tumor microenvironment coupled with intracellular alkalinization, and reduced mitochondrial metabolism), and metabolic-independent factors (e.g., increased expression of drug efflux transporters, stemness maintenance, and epithelial-mesenchymal transition) cooperate in determining chemoresistance in hypoxia. Specific metabolic modifiers, however, can reverse the metabolic phenotype of hypoxic tumor areas that are more chemoresistant into the phenotype typical of chemosensitive cells. We propose these metabolic modifiers, able to reverse the hypoxia-induced metabolic rewiring, as potential chemosensitizer agents against hypoxic and refractory tumor cells.
Collapse
Affiliation(s)
- Dimas Carolina Belisario
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Martina Pasino
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, 00185 Roma, Italy;
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy;
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
- Correspondence: ; Tel.: +39-011-670-5857
| |
Collapse
|
38
|
Wang P, Zhu P, Liu R, Meng Q, Li S. Baicalin promotes extracellular matrix synthesis in chondrocytes via the activation of hypoxia-inducible factor-1α. Exp Ther Med 2020; 20:226. [PMID: 33193840 DOI: 10.3892/etm.2020.9356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 07/23/2020] [Indexed: 11/06/2022] Open
Abstract
Chinese herbal extracts are being used increasingly to treat osteoarthritis (OA) in recent years. Baicalin (BA) is an active component of Scutellaria baicalensis Georgi extracts and protects chondrocytes against damage. The aim of the present study was to examine the mechanism of action of BA on chondrocytes from mouse articular cartilage. In total, 44 µM BA and 10 µM hypoxia-inducible-factor-1α (HIF-1α) inhibitor BAY-87-2243 were screened by the [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] method. Alcian blue and Safran O staining were used to investigate the synthesis of extracellular matrix (ECM) in chondrocytes treated with BA. The expression of HIF-1α and chondrogenic marker genes including SOX9, AGG and Col2α was detected by western blotting or reverse-transcription quantitative (RT-qPCR), the expression of PHD1,2,3 and catabolic genes including ADAMTS5, MMP9 and MMP13 were detected by RT-qPCR. To investigate the effect of BA on the ECM synthesis of chondrocytes, 44 µM BA and 10 µM BAY were chosen for further experimentation. It was confirmed that BA at a concentration of 44 µM could significantly promote the secretion of ECM. The expressions of genes including HIF-1α, SOX9, collagen type 2 (Col2α) and aggrecan (AGG) were elevated following BA pretreatment and decreased by subsequent BAY-87-2243 stimulation for 24 h. Compared with untreated chondrocytes, the expressions of genes including ADAMTS5, MMP9, MMP13, PHD1, PHD2 and PHD3 in chondrocytes treated by BA were downregulated, however, BAY-87-2243 reversed the effect of BA on the genes including ADAMTS5, MMP9, MMP13, PHD1, PHD2 and PHD3 in chondrocytes. The findings of the present study suggest that BA may promote ECM synthesis and marker gene expression in chondrocytes by activating HIF-1α. Therefore, BA may represent a novel clinical drug for OA.
Collapse
Affiliation(s)
- Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Pingping Zhu
- Department of Internal Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Ruijia Liu
- Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Qingqi Meng
- Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Siming Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China.,Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
39
|
Rajagopalan V, Gorecki M, Costello C, Schultz E, Zhang Y, Gerdes AM. Cardioprotection by triiodothyronine following caloric restriction via long noncoding RNAs. Biomed Pharmacother 2020; 131:110657. [DOI: 10.1016/j.biopha.2020.110657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022] Open
|
40
|
Minervini G, Pennuto M, Tosatto SCE. The pVHL neglected functions, a tale of hypoxia-dependent and -independent regulations in cancer. Open Biol 2020; 10:200109. [PMID: 32603638 PMCID: PMC7574549 DOI: 10.1098/rsob.200109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The von Hippel–Lindau protein (pVHL) is a tumour suppressor mainly known for its role as master regulator of hypoxia-inducible factor (HIF) activity. Functional inactivation of pVHL is causative of the von Hippel–Lindau disease, an inherited predisposition to develop different cancers. Due to its impact on human health, pVHL has been widely studied in the last few decades. However, investigations mostly focus on its role in degrading HIFs, whereas alternative pVHL protein–protein interactions and functions are insistently surfacing in the literature. In this review, we analyse these almost neglected functions by dissecting specific conditions in which pVHL is proposed to have differential roles in promoting cancer. We reviewed its role in regulating phosphorylation as a number of works suggest pVHL to act as an inhibitor by either degrading or promoting downregulation of specific kinases. Further, we summarize hypoxia-dependent and -independent pVHL interactions with multiple protein partners and discuss their implications in tumorigenesis.
Collapse
Affiliation(s)
- Giovanni Minervini
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.,Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
41
|
Farina AR, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay AR. Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer. J Exp Clin Cancer Res 2020; 39:110. [PMID: 32536347 PMCID: PMC7294618 DOI: 10.1186/s13046-020-01616-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
42
|
Valsecchi R, Coltella N, Magliulo D, Bongiovanni L, Scarfò L, Ghia P, Ponzoni M, Bernardi R. EZN-2208 treatment suppresses chronic lymphocytic leukaemia by interfering with environmental protection and increases response to fludarabine. Open Biol 2020; 10:190262. [PMID: 32397871 PMCID: PMC7276525 DOI: 10.1098/rsob.190262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor HIF-1α is overexpressed in chronic lymphocytic leukaemia (CLL), where it promotes leukaemia progression by favouring the interaction of leukaemic cells with protective tissue microenvironments. Here, we tested the hypothesis that a pharmacological compound previously shown to inhibit HIF-1α may act as a chemosensitizer by interrupting protective microenvironmental interactions and exposing CLL cells to fludarabine-induced cytotoxicity. We found that the camptothecin-11 analogue EZN-2208 sensitizes CLL cells to fludarabine-induced apoptosis in cytoprotective in vitro cultures; in vivo EZN-2208 improves fludarabine responses, especially in early phases of leukaemia expansion, and exerts significant anti-leukaemia activity, thus suggesting that this or similar compounds may be considered as effective CLL therapeutic approaches.
Collapse
Affiliation(s)
- Roberta Valsecchi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia Coltella
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Magliulo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Bongiovanni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lydia Scarfò
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University School of Medicine, Milan, Italy
| | - Paolo Ghia
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University School of Medicine, Milan, Italy
| | - Maurilio Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University School of Medicine, Milan, Italy
| | - Rosa Bernardi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
43
|
Seiffert M. HIF-1α: a potential treatment target in chronic lymphocytic leukemia. Haematologica 2020; 105:856-858. [PMID: 32238465 DOI: 10.3324/haematol.2019.246330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
44
|
Meloxicam, a Selective COX-2 Inhibitor, Mediates Hypoxia-Inducible Factor- (HIF-) 1 α Signaling in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7079308. [PMID: 32273947 PMCID: PMC7128048 DOI: 10.1155/2020/7079308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is regarded as a leading cause of cancer-related deaths, and its progression is associated with hypoxia and the induction of hypoxia-inducible factor (HIF). Meloxicam, a selective cyclooxygenase-2 (COX-2) inhibitor, induces cell death in various malignancies. However, the underlying mechanism remains to be elucidated in HCC, especially under hypoxic conditions. The alteration of COX-2 and HIF-1α oncogenicity was evaluated in HCC specimens by tissue microarray. Cell viability, angiogenesis assays, and xenografted nude mice were used to evaluate the effects of meloxicam, along with flow cytometry to detect the cell cycle, apoptosis, and mitochondrial membrane potential (ΔΨm) of HCC. qRT-PCR, Western blotting, immunofluorescence, immunohistochemistry, luciferase assay, and RNAi were carried out to determine the HIF-1α signaling affected by meloxicam. In this study, we showed that meloxicam exerts antiproliferative and antiangiogenesis efficacy in vitro and in vivo and causes disruption of mitochondrial membrane potential (ΔΨm), thus leading to caspase-dependent apoptosis under hypoxic environments. Exposure to meloxicam significantly reduced HIF-1α transcriptional activation and expression through sequestering it in the cytoplasm and accelerating degradation via increasing the von Hippel-Lindau tumor suppressor protein (pVHL) in HCC. These data demonstrated that inhibition of HIF-1α by meloxicam could suppress angiogenesis and enhance apoptosis of HCC cells. This discovery highlights that COX-2 specific inhibitors may be a promising therapy in the treatment of HCC.
Collapse
|