1
|
Renou L, Sun W, Friedrich C, Galant K, Conrad C, Consalus A, Plantier E, Schallmoser K, Krisch L, Barroca V, Devanand S, Dechamps N, Reinisch A, Martinovic J, Magnani A, Faivre L, Lewandowski D, Calvo J, Perie L, Kosmider O, Pflumio F. Orchestration of human multi-lineage hematopoietic cell development by humanized in vivo bone marrow models. Hemasphere 2025; 9:e70120. [PMID: 40265169 PMCID: PMC12012840 DOI: 10.1002/hem3.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 04/24/2025] Open
Abstract
Hematopoiesis develops in the bone marrow (BM) where multiple interactions regulate the differentiation and preservation of hematopoietic stem and progenitor cells (HSPCs). Immune-deficient murine models have enabled the analysis of molecular and cellular regulation of human HSPCs, but the physiology of these models is questioned as human hematopoietic cells develop in xenogenic microenvironments. In this study, we thoroughly characterized a humanized (h) in vivo BM model, developed from fetal (F/) and post-natal (P-N/) mesenchymal stromal cell (MSC) differentiation (called hOssicles [hOss]), in which human hematopoietic cells are generated following the transplantation of CD34+ cells. Serial isolation and transplant experiments of hMSCs and HSPCs from hOss revealed the dynamic nature of these hBM niches. hOss modified human hematopoietic development by modulating myeloid/lymphoid cell production and HSPC levels, with no major transcriptional changes in HSPCs at the single-cell level. Clonal tracking using genetic barcodes highlighted hematopoietic cell cross-talks between the endogenous murine BM and hOss and differences in clonal myeloid/multipotent cell production between F/hOss and P-N/hOss, uncovering ontogeny-related impact of the BM on human hematopoietic cell production.
Collapse
Affiliation(s)
- Laurent Renou
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Wenjie Sun
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie CurieParisFrance
| | - Chloe Friedrich
- Institut Cochin, CNRS UMR8104, INSERM U1016Université Paris CitéParisFrance
| | - Klaudia Galant
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Cecile Conrad
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie CurieParisFrance
| | - Anne Consalus
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Evelia Plantier
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Katharina Schallmoser
- Department for Transfusion Medicine and GMP UnitParacelsus Medical UniversitySalzburgAustria
| | - Linda Krisch
- Department for Transfusion Medicine and GMP UnitParacelsus Medical UniversitySalzburgAustria
| | - Vilma Barroca
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Animal Experimentation PlatformIRCM, CEAFontenay‐aux‐RosesFrance
| | - Saryami Devanand
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Animal Experimentation PlatformIRCM, CEAFontenay‐aux‐RosesFrance
| | - Nathalie Dechamps
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Flow Cytometry PlatformIRCM, CEAFontenay‐aux‐RosesFrance
| | - Andreas Reinisch
- Department of Internal Medicine, Division of HematologyMedical University of GrazGrazAustria
- Department of Blood Group Serology and Transfusion MedicineMedical University of GrazGrazAustria
| | | | | | - Lionel Faivre
- Cell Therapy UnitAP‐HP, Saint Louis HospitalParisFrance
| | - Daniel Lewandowski
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Julien Calvo
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Leila Perie
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie CurieParisFrance
| | - Olivier Kosmider
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Institut Cochin, CNRS UMR8104, INSERM U1016Université Paris CitéParisFrance
| | - Françoise Pflumio
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| |
Collapse
|
2
|
Shin EY, Jeong S, Lee JE, Jeong DS, Han DK, Hong SH, Lee DR. Multiple treatments with human embryonic stem cell-derived mesenchymal progenitor cells preserved the fertility and ovarian function of perimenopausal mice undergoing natural aging. Stem Cell Res Ther 2024; 15:58. [PMID: 38433223 PMCID: PMC10910829 DOI: 10.1186/s13287-024-03684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES Currently, no approved stem cell-based therapies for preserving ovarian function during aging. To solve this problem, we developed a long-term treatment for human embryonic stem cell-derived mesenchymal progenitor cells (hESC-MPCs). We investigated whether the cells retained their ability to resist ovarian aging, which leads to delayed reproductive senescence. MATERIALS AND METHODS In a middle-aged female model undergoing natural aging, we analyzed whether hESC-MPCs benefit the long-term maintenance of reproductive fecundity and ovarian reservoirs and how their transplantation regulates ovarian function. RESULTS The number of primordial follicles and mice with regular estrous cycles were increased in perimenopausal mice who underwent multiple introductions of hESC-MPCs compared to age-matched controls. The estradiol levels in the hESC-MPCs group were restored to those in the young and adult groups. Embryonic development and live birth rates were higher in the hESC-MPC group than in the control group, suggesting that hESC-MPCs delayed ovarian senescence. In addition to their direct effects on the ovary, multiple-treatments with hESC-MPCs reduced ovarian fibrosis by downregulating inflammation and fibrosis-related genes via the suppression of myeloid-derived suppressor cells (MDSCs) produced in the bone marrow. CONCLUSIONS Multiple introductions of hESC-MPCs could be a useful approach to prevent female reproductive senescence and that these cells are promising sources for cell therapy to postpone the ovarian aging and retain fecundity in perimenopausal women.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Suji Jeong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, 24431, Gangwon-do, Republic of Korea
| | - Jeoung Eun Lee
- CHA Advanced Research Institute, Bundang CHA Medical Center, 335 Pangyo-ro, Bundang- gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Seok Jeong
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, 24431, Gangwon-do, Republic of Korea.
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea.
- CHA Advanced Research Institute, Bundang CHA Medical Center, 335 Pangyo-ro, Bundang- gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
4
|
Liesveld J, Galipeau J. In Vitro Insights Into the Influence of Marrow Mesodermal/Mesenchymal Progenitor Cells on Acute Myelogenous Leukemia and Myelodysplastic Syndromes. Stem Cells 2023; 41:823-836. [PMID: 37348128 DOI: 10.1093/stmcls/sxad050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The study of marrow-resident mesodermal progenitors can provide important insight into their role in influencing normal and aberrant hematopoiesis as occurs in acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS). In addition, the chemokine competency of these cells provides links to the inflammatory milieu of the marrow microenvironment with additional implications for normal and malignant hematopoiesis. While in vivo studies have elucidated the structure and function of the marrow niche in murine genetic models, corollary human studies have not been feasible, and thus the use of culture-adapted mesodermal cells has provided insights into the role these rare endogenous niche cells play in physiologic, malignant, and inflammatory states. This review focuses on culture-adapted human mesenchymal stem/stromal cells (MSCs) as they have been utilized in understanding their influence in AML and MDS as well as on their chemokine-mediated responses to myeloid malignancies, injury, and inflammation. Such studies have intrinsic limitations but have provided mechanistic insights and clues regarding novel druggable targets.
Collapse
Affiliation(s)
- Jane Liesveld
- Department of Medicine, James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Jaques Galipeau
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin in Madison, Madison, WI, USA
| |
Collapse
|
5
|
Yang X, Wang Y, Rovella V, Candi E, Jia W, Bernassola F, Bove P, Piacentini M, Scimeca M, Sica G, Tisone G, Mauriello A, Wei L, Melino G, Shi Y. Aged mesenchymal stem cells and inflammation: from pathology to potential therapeutic strategies. Biol Direct 2023; 18:40. [PMID: 37464416 PMCID: PMC10353240 DOI: 10.1186/s13062-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell population reduction and differentiation ability, reduced migratory and homing capacity and, most important, defective immunosuppression. It is necessary to explore the relationship between the "inflammaging" and aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for rejuvenating aged MSCs in future treatments.
Collapse
Affiliation(s)
- Xue Yang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Ying Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233 China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| |
Collapse
|
6
|
Kawano Y, Kawano H, Ghoneim D, Fountaine TJ, Byun DK, LaMere MW, Mendler JH, Ho TC, Salama NA, Myers JR, Hussein SE, Frisch BJ, Ashton JM, Azadniv M, Liesveld JL, Kfoury Y, Scadden DT, Becker MW, Calvi LM. Myelodysplastic syndromes disable human CD271+VCAM1+CD146+ niches supporting normal hematopoietic stem/progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536176. [PMID: 37066307 PMCID: PMC10104201 DOI: 10.1101/2023.04.09.536176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) within the bone marrow microenvironment (BMME) support normal hematopoietic stem and progenitor cells (HSPCs). However, the heterogeneity of human MSCs has limited the understanding of their contribution to clonal dynamics and evolution to myelodysplastic syndromes (MDS). We combined three MSC cell surface markers, CD271, VCAM-1 (Vascular Cell Adhesion Molecule-1) and CD146, to isolate distinct subsets of human MSCs from bone marrow aspirates of healthy controls (Control BM). Based on transcriptional and functional analysis, CD271+CD106+CD146+ (NGFR+/VCAM1+/MCAM+/Lin-; NVML) cells display stem cell characteristics, are compatible with murine BM-derived Leptin receptor positive MSCs and provide superior support for normal HSPCs. MSC subsets from 17 patients with MDS demonstrated shared transcriptional changes in spite of mutational heterogeneity in the MDS clones, with loss of preferential support of normal HSPCs by MDS-derived NVML cells. Our data provide a new approach to dissect microenvironment-dependent mechanisms regulating clonal dynamics and progression of MDS.
Collapse
|
7
|
Selle M, Koch JD, Ongsiek A, Ulbrich L, Ye W, Jiang Z, Krettek C, Neunaber C, Noack S. Influence of age on stem cells depends on the sex of the bone marrow donor. J Cell Mol Med 2022; 26:1594-1605. [PMID: 35088539 PMCID: PMC8899192 DOI: 10.1111/jcmm.17201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/05/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Abstract
Ageing is often accompanied by an increase in bone marrow fat together with reduced bone volume and diseases of the bone such as osteoporosis. As mesenchymal stem cells (MSCs) are capable of forming bone, cartilage and fat tissue, studying these cells is of great importance to understand the underlying mechanisms behind age‐related bone diseases. However, inter‐donor variation has been found when handling MSCs. Therefore, the aim of this study was to investigate the effects of donor age and sex by comparing in vitro characteristics of human bone marrow‐derived MSCs (hBMSCs) from a large donor cohort (n = 175). For this, hBMSCs were analysed for CFU‐F capacity, proliferation, differentiation capacity and surface antigen expression under standardized culture conditions. The results demonstrated a significantly reduced CFU‐F number for hBMSCs of female compared to male donors. Furthermore, there was a significant decrease in the proliferation rate, adipogenic differentiation potential and cell surface expression of SSEA‐4, CD146 and CD274 of hBMSCs with an increase in donor age. Interestingly, all these findings were exclusive to hBMSCs from female donors. Further research should focus on postmenopausal‐related effects on hBMSCs, as the results imply a functional loss and immunophenotypic change of hBMSCs particularly in aged women.
Collapse
Affiliation(s)
- Michael Selle
- Trauma Department, Hannover Medical School, Hannover, Germany
| | | | - Alina Ongsiek
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - Linnea Ulbrich
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - Weikang Ye
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - Zhida Jiang
- Trauma Department, Hannover Medical School, Hannover, Germany
| | | | | | - Sandra Noack
- Trauma Department, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Guo X, Wang J, Zou W, Wei W, Guan X, Liu J. Exploring microenvironment strategies to delay mesenchymal stem cell senescence. Stem Cells Dev 2021; 31:38-52. [PMID: 34913751 DOI: 10.1089/scd.2021.0254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have recently emerged as an important candidate for cell therapy and tissue regeneration. However, some limitations in translational research and therapies still exist, such as insufficient cell supply, inadequate differentiation potential, and decreased immune capacity, all of which result from replicative senescence during long-term in vitro culture. In vitro, stem cells lack a protective microenvironment owing to the absence of physical and biochemical cues compared with the in vivo niche, which provides dynamic physicochemical and biological cues. This difference results in accelerated aging after long-term in vitro culture. Therefore, it remains a great challenge to delay replicative senescence in culture. Constructing a microenvironment to delay replicative senescence of MSCs by maintaining their phenotypes, properties, and functions is a feasible strategy to solve this problem and has made measurable progress both in preclinical studies and clinical trials. Here, we review the current knowledge on the characteristics of senescent MSCs, explore the molecular mechanisms of MSCs senescence, describe the niche of MSCs, and discuss some current microenvironment strategies to delay MSCs replicative senescence that can broaden their range of therapeutic applications.
Collapse
Affiliation(s)
- Xunhui Guo
- First Affiliated Hospital of Dalian Medical University, 74710, Stem Cell Clinical Research Center, Dalian, China;
| | - Jiayi Wang
- First Affiliated Hospital of Dalian Medical University, 74710, Stem Cell Clinical Research Center, Dalian, Dalian, China;
| | - Wei Zou
- Liaoning Normal University, 66523, College of Life Sciences, Dalian, China;
| | - Wenjuan Wei
- First Affiliated Hospital of Dalian Medical University, 74710, Dalian, China, 116011;
| | - Xin Guan
- First Affiliated Hospital of Dalian Medical University, 74710, Dalian, China, 116011;
| | - Jing Liu
- First Affiliated Hospital of Dalian Medical University, 74710, Dalian, China, 116011;
| |
Collapse
|
9
|
Malagón-Escandón A, Hautefeuille M, Jimenez-Díaz E, Arenas-Alatorre J, Saniger JM, Badillo-Ramírez I, Vazquez N, Piñón-Zarate G, Castell-Rodríguez A. Three-Dimensional Porous Scaffolds Derived from Bovine Cancellous Bone Matrix Promote Osteoinduction, Osteoconduction, and Osteogenesis. Polymers (Basel) 2021; 13:4390. [PMID: 34960941 PMCID: PMC8705055 DOI: 10.3390/polym13244390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
The use of three-dimensional porous scaffolds derived from decellularized extracellular matrix (ECM) is increasing for functional repair and regeneration of injured bone tissue. Because these scaffolds retain their native structures and bioactive molecules, in addition to showing low immunogenicity and good biodegradability, they can promote tissue repair and regeneration. Nonetheless, imitating these features in synthetic materials represents a challenging task. Furthermore, due to the complexity of bone tissue, different processes are necessary to maintain these characteristics. We present a novel approach using decellularized ECM material derived from bovine cancellous bone by demineralization, decellularization, and hydrolysis of collagen to obtain a three-dimensional porous scaffold. This study demonstrates that the three-dimensional porous scaffold obtained from bovine bone retained its osteoconductive and osteoinductive properties and presented osteogenic potential when seeded with human Wharton's jelly mesenchymal stromal cells (hWJ-MSCs). Based on its characteristics, the scaffold described in this work potentially represents a therapeutic strategy for bone repair.
Collapse
Affiliation(s)
- Alda Malagón-Escandón
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | | | - Edgar Jimenez-Díaz
- Facultad de Ciencias, UNAM, Mexico City C.P. 04510, Mexico; (M.H.); (E.J.-D.)
| | | | - José Manuel Saniger
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), UNAM, Mexico City C.P. 04510, Mexico; (J.M.S.); (I.B.-R.)
| | - Isidro Badillo-Ramírez
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), UNAM, Mexico City C.P. 04510, Mexico; (J.M.S.); (I.B.-R.)
| | - Nadia Vazquez
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | - Gabriela Piñón-Zarate
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | | |
Collapse
|
10
|
Li J, Lu L, Liu Y, Yu X. Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events. J Mol Med (Berl) 2021; 100:167-183. [PMID: 34751809 DOI: 10.1007/s00109-021-02164-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Bone marrow (BM) is a heterogeneous niche where bone marrow stromal cells (BMSCs), osteoblasts, osteoclasts, adipocytes, hematopoietic cells, and immune cells coexist. The cellular composition of BM changes with various pathophysiological states. A reduction in osteoblast number and a concomitant increase in adipocyte number in aging and pathological conditions put bone marrow adipose tissue (BMAT) into spotlight. Accumulating evidence strongly supports that an overwhelming production of BMAT is a major contributor to bone loss disorders. Therefore, BMAT-targeted therapy can be an efficient and feasible intervention for osteoporosis. However, compared to blocking bone-destroying molecules produced by BMAT, suppressing BMAT formation is theoretically a more effective and fundamental approach in treating osteoporotic bone diseases. Thus, a deep insight into the molecular basis underlying increased BM adiposity during pathologic bone loss is critical to formulate strategies for therapeutically manipulating BMAT. In this review, we comprehensively summarize the molecular mechanisms involved in adipocyte differentiation of BMSCs as well as the interaction between bone marrow adipocytes and osteoclasts. More importantly, we further discuss the potential clinical implications of therapeutically targeting the upstream of BMAT formation in bone loss diseases.
Collapse
Affiliation(s)
- Jiao Li
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
11
|
Zupan J, Strazar K, Kocijan R, Nau T, Grillari J, Marolt Presen D. Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mech Ageing Dev 2021; 198:111539. [PMID: 34242668 DOI: 10.1016/j.mad.2021.111539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
The most common clinical manifestations of age-related musculoskeletal degeneration are osteoarthritis and osteoporosis, and these represent an enormous burden on modern society. Mesenchymal stromal cells (MSCs) have pivotal roles in musculoskeletal tissue development. In adult organisms, MSCs retain their ability to regenerate tissues following bone fractures, articular cartilage injuries, and other traumatic injuries of connective tissue. However, their remarkable regenerative ability appears to be impaired through aging, and in particular in age-related diseases of bones and joints. Here, we review age-related alterations of MSCs in musculoskeletal tissues, and address the underlying mechanisms of aging and senescence of MSCs. Furthermore, we focus on the properties of MSCs in osteoarthritis and osteoporosis, and how their changes contribute to onset and progression of these disorders. Finally, we consider current treatments that exploit the enormous potential of MSCs for tissue regeneration, as well as for innovative cell-free extracellular-vesicle-based and anti-aging treatment approaches.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Klemen Strazar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, 1020, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Building 14, Mohamed Bin Rashid University of Medicine and Health Sciences Dubai, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
12
|
Meza-León B, Gratzinger D, Aguilar-Navarro AG, Juárez-Aguilar FG, Rebel VI, Torlakovic E, Purton LE, Dorantes-Acosta EM, Escobar-Sánchez A, Dick JE, Flores-Figueroa E. Human, mouse, and dog bone marrow show similar mesenchymal stromal cells within a distinctive microenvironment. Exp Hematol 2021; 100:41-51. [PMID: 34228982 DOI: 10.1016/j.exphem.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 12/22/2022]
Abstract
Bone marrow stromal cells (BMSCs) are a key part of the hematopoietic niche. Mouse and human BMSCs are recognized by different markers (LepR and NGFR/CD271, respectively). However, there has not been a detailed in situ comparison of both populations within the hematopoietic microenvironment. Moreover, dog BMSCs have not been characterized in situ by any of those markers. We conducted a systematic histopathological comparison of mouse, human, and dog BMSCs within their bone marrow architecture and microenvironment. Human and dog CD271+ BMSCs had a morphology, frequency, and distribution within trabecular bone marrow similar to those of mouse LepR+ BMSCs. However, mouse bone marrow had higher cellularity and megakaryocyte content. In conclusion, highly comparable bone marrow mesenchymal stromal cell distribution among the three species establishes the validity of using mouse and dog as a surrogate experimental model of hematopoietic stem cell-BMSC interactions. However, the distinct differences in adipocyte and megakaryocyte microenvironment content of mouse bone marrow and how they might influence hematopoietic stem cell interactions as compared with humans require further study.
Collapse
Affiliation(s)
- Berenice Meza-León
- Unidad de Investigación Médica en Enfermedades Oncológicas. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Alicia G Aguilar-Navarro
- Unidad de Investigación Médica en Enfermedades Oncológicas. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México
| | - Fany G Juárez-Aguilar
- Departamento de Patología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México
| | - Vivienne I Rebel
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Emina Torlakovic
- Saskatchewan Health Authority (SHA), Saskatoon, Saskatchewan, Canada; University of Saskatchewan, Saskatchewan, Canada
| | - Louise E Purton
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Elisa M Dorantes-Acosta
- Biobanco de Investigación en Células Leucémicas, Hospital Infantil de México Federico Gómez, Mexico City, México
| | | | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eugenia Flores-Figueroa
- Unidad de Investigación Médica en Enfermedades Oncológicas. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
13
|
Hochheuser C, Windt LJ, Kunze NY, de Vos DL, Tytgat GA, Voermans C, Timmerman I. Mesenchymal Stromal Cells in Neuroblastoma: Exploring Crosstalk and Therapeutic Implications. Stem Cells Dev 2021; 30:59-78. [PMID: 33287630 PMCID: PMC7826431 DOI: 10.1089/scd.2020.0142] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the second most common solid cancer in childhood, accounting for 15% of cancer-related deaths in children. In high-risk NB patients, the majority suffers from metastasis. Despite intensive multimodal treatment, long-term survival remains <40%. The bone marrow (BM) is among the most common sites of distant metastasis in patients with high-risk NB. In this environment, small populations of tumor cells can persist after treatment (minimal residual disease) and induce relapse. Therapy resistance of these residual tumor cells in BM remains a major obstacle for the cure of NB. A detailed understanding of the microenvironment and its role in tumor progression is of utmost importance for improving the treatment efficiency of NB. In BM, mesenchymal stromal cells (MSCs) constitute an important part of the microenvironment, where they support hematopoiesis and modulate immune responses. Their role in tumor progression is not completely understood, especially for NB. Although MSCs have been found to promote epithelial-mesenchymal transition, tumor growth, and metastasis and to induce chemoresistance, some reports point toward a tumor-suppressive effect of MSCs. In this review, we aim to compile current knowledge about the role of MSCs in NB development and progression. We evaluate arguments that depict tumor-supportive versus -suppressive properties of MSCs in the context of NB and give an overview of factors involved in MSC-NB crosstalk. A focus lies on the BM as a metastatic niche, since that is the predominant site for NB metastasis and relapse. Finally, we will present opportunities and challenges for therapeutic targeting of MSCs in the BM microenvironment.
Collapse
Affiliation(s)
- Caroline Hochheuser
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Laurens J. Windt
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina Y. Kunze
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Dieuwke L. de Vos
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Carlijn Voermans
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse Timmerman
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
14
|
Aging of Bone Marrow Mesenchymal Stromal Cells: Hematopoiesis Disturbances and Potential Role in the Development of Hematologic Cancers. Cancers (Basel) 2020; 13:cancers13010068. [PMID: 33383723 PMCID: PMC7794884 DOI: 10.3390/cancers13010068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As for many other cancers, the risk of developing hematologic malignancies increases considerably as people age. In recent years, a growing number of studies have highlighted the influence of the aging microenvironment on hematopoiesis and tumor progression. Mesenchymal stromal cells are a major player in intercellular communication inside the bone marrow microenvironment involved in hematopoiesis support. With aging, their functions may be altered, leading to hematopoiesis disturbances which can lead to hematologic cancers. A good understanding of the mechanisms involved in mesenchymal stem cell aging and the consequences on hematopoiesis and tumor progression is therefore necessary for a better comprehension of hematologic malignancies and for the development of therapeutic approaches. Abstract Aging of bone marrow is a complex process that is involved in the development of many diseases, including hematologic cancers. The results obtained in this field of research, year after year, underline the important role of cross-talk between hematopoietic stem cells and their close environment. In bone marrow, mesenchymal stromal cells (MSCs) are a major player in cell-to-cell communication, presenting a wide range of functionalities, sometimes opposite, depending on the environmental conditions. Although these cells are actively studied for their therapeutic properties, their role in tumor progression remains unclear. One of the reasons for this is that the aging of MSCs has a direct impact on their behavior and on hematopoiesis. In addition, tumor progression is accompanied by dynamic remodeling of the bone marrow niche that may interfere with MSC functions. The present review presents the main features of MSC senescence in bone marrow and their implications in hematologic cancer progression.
Collapse
|
15
|
Hochheuser C, van Zogchel LMJ, Kleijer M, Kuijk C, Tol S, van der Schoot CE, Voermans C, Tytgat GAM, Timmerman I. The Metastatic Bone Marrow Niche in Neuroblastoma: Altered Phenotype and Function of Mesenchymal Stromal Cells. Cancers (Basel) 2020; 12:E3231. [PMID: 33147765 PMCID: PMC7692745 DOI: 10.3390/cancers12113231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The bone marrow (BM) is the main site of metastases and relapse in patients with neuroblastoma (NB). BM-residing mesenchymal stromal cells (MSCs) were shown to promote tumor cell survival and chemoresistance. Here we characterize the MSC compartment of the metastatic NB BM niche. Methods: Fresh BM of 62 NB patients (all stages), and control fetal and adult BM were studied by flow cytometry using well-established MSC-markers (CD34-, CD45-, CD90+, CD105+), and CD146 and CD271 subtype-markers. FACS-sorted BM MSCs and tumor cells were validated by qPCR. Moreover, isolated MSCs were tested for multilineage differentiation and Colony-forming-unit-fibroblasts (CFU-Fs) capacity. Results: Metastatic BM contains a higher number of MSCs (p < 0.05) with increased differentiation capacity towards the osteoblast lineage. Diagnostic BM contains a MSC-subtype (CD146+CD271-), only detected in BM of patients with metastatic-NB, determined by flow cytometry. FACS-sorting clearly discriminated MSC(-subtypes) and NB fractions, validated by mRNA and DNA qPCR. Overall, the CD146+CD271- subtype decreased during therapy and was detected again in the majority of patients at relapse. Conclusions: We demonstrate that the neuroblastoma BM-MSC compartment is different in quantity and functionality and contains a metastatic-niche-specific MSC-subtype. Ultimately, the MSCs contribution to tumor progression could provide targets with potential for eradicating resistant metastatic disease.
Collapse
Affiliation(s)
- Caroline Hochheuser
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
- Department of Pediatric Oncology, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| | - Lieke M. J. van Zogchel
- Department of Pediatric Oncology, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - Marion Kleijer
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
| | - Carlijn Kuijk
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
| | - Simon Tol
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - Carlijn Voermans
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
| | - Godelieve A. M. Tytgat
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
- Department of Pediatric Oncology, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| | - Ilse Timmerman
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
- Department of Pediatric Oncology, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| |
Collapse
|
16
|
Meng QS, Liu J, Wei L, Fan HM, Zhou XH, Liang XT. Senescent mesenchymal stem/stromal cells and restoring their cellular functions. World J Stem Cells 2020; 12:966-985. [PMID: 33033558 PMCID: PMC7524698 DOI: 10.4252/wjsc.v12.i9.966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have various properties that make them promising candidates for stem cell-based therapies in clinical settings. These include self-renewal, multilineage differentiation, and immunoregulation. However, recent studies have confirmed that aging is a vital factor that limits their function and therapeutic properties as standardized clinical products. Understanding the features of senescence and exploration of cell rejuvenation methods are necessary to develop effective strategies that can overcome the shortage and instability of MSCs. This review will summarize the current knowledge on characteristics and functional changes of aged MSCs. Additionally, it will highlight cell rejuvenation strategies such as molecular regulation, non-coding RNA modifications, and microenvironment controls that may enhance the therapeutic potential of MSCs in clinical settings.
Collapse
Affiliation(s)
- Qing-Shu Meng
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Lu Wei
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Hui-Min Fan
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Hui Zhou
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Ting Liang
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| |
Collapse
|
17
|
Kang JY, Oh MK, Joo H, Park HS, Chae DH, Kim J, Lee HR, Oh IH, Yu KR. Xeno-Free Condition Enhances Therapeutic Functions of Human Wharton's Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis by Upregulated Indoleamine 2,3-Dioxygenase Activity. J Clin Med 2020; 9:jcm9092913. [PMID: 32927587 PMCID: PMC7565923 DOI: 10.3390/jcm9092913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022] Open
Abstract
The therapeutic applications of mesenchymal stem cells (MSCs) have been actively explored due to their broad anti-inflammatory and immunomodulatory properties. However, the use of xenogeneic components, including fetal bovine serum (FBS), in the expansion media might pose a risk of xenoimmunization and zoonotic transmission to post-transplanted patients. Here, we extensively compared the physiological functions of human Wharton’s jelly-derived MSCs (WJ-MSCs) in a xeno-free medium (XF-MSCs) and a medium containing 10% FBS (10%-MSCs). Both groups showed similar proliferation potential; however, the 10%-MSCs showed prolonged expression of CD146, with higher colony-forming unit-fibroblast (CFU-F) ability than the XF-MSCs. The XF-MSCs showed enhanced adipogenic differentiation potential and sufficient hematopoietic stem cell (HSC) niche activity, with elevated niche-related markers including CXCL12. Furthermore, we demonstrated that the XF-MSCs had a significantly higher suppressive effect on human peripheral blood-derived T cell proliferation, Th1 and Th17 differentiation, as well as naïve macrophage polarization toward an M1 phenotype. Among the anti-inflammatory molecules, the production of indoleamine 2,3-dioxygenase (IDO) and nitric oxide synthase 2 (NOS2) was profoundly increased, whereas cyclooxygenase-2 (COX-2) was decreased in the XF-MSCs. Finally, the XF-MSCs had an enhanced therapeutic effect against mouse experimental colitis. These findings indicate that xeno-free culture conditions improved the immunomodulatory properties of WJ-MSCs and ex vivo-expanded XF-MSCs might be an effective strategy for preventing the progression of colitis.
Collapse
Affiliation(s)
- Ji Yeon Kang
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Mi-Kyung Oh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Hansol Joo
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Hyun Sung Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Dong-Hoon Chae
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Jieun Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea
| | - Hae-Ri Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 08826, Korea;
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 08826, Korea;
- Correspondence: (I.-H.O.); (K.-R.Y.)
| | - Kyung-Rok Yu
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: (I.-H.O.); (K.-R.Y.)
| |
Collapse
|
18
|
Filipchiuk C, Laganà AS, Beteli R, Ponce TG, Christofolini DM, Martins Trevisan C, Fonseca FLA, Barbosa CP, Bianco B. BIRC5/Survivin Expression as a Non-Invasive Biomarker of Endometriosis. Diagnostics (Basel) 2020; 10:diagnostics10080533. [PMID: 32751449 PMCID: PMC7459871 DOI: 10.3390/diagnostics10080533] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
The etiology of endometriosis is highly complex, and although it is a benign disease, it has several biological behaviors similar to malignant lesions, including cell invasion, neo-angiogenesis, and decreased apoptosis. Survivin is a protein encoded by the BIRC5 gene that plays a role in cell division by inhibiting apoptosis and regulating the process of mitosis in embryonic and cancer cells. Therefore, we aimed to evaluate the expression of BIRC5 in samples of peripheral blood of women with and without endometriosis. This study comprised of 40 women with endometriosis and 10 healthy women as controls. Peripheral blood samples were collected in the three phases of the menstrual cycle (follicular, ovulatory, and luteal). The expression of the BIRC5 gene was evaluated by RT-qPCR using the TaqMan methodology. The BIRC5 expression was significantly higher in all phases of the menstrual cycle in women with endometriosis, regardless of the disease stage. The accuracy of BIRC5 expression in the peripheral blood for the diagnosis endometriosis presented AUC of 0.887 (p < 0.001), with 97.2% of sensitivity and specificity of 65.5% considering the overall endometriosis group. Regarding the minimal/mild endometriosis group, the AUC presented a value of 0.925 (p < 0.001), with 100% of sensitivity and 79.3% of specificity, whereas in the moderate/severe endometriosis group the AUC was 0.868 (p < 0.001), with a sensitivity of 95.8% and specificity of 65.5%. These findings suggest that the expression of BIRC5 may be a potential noninvasive biomarker for the diagnosis of endometriosis.
Collapse
Affiliation(s)
- Carolina Filipchiuk
- Center of Natural and Human Sciences (CCNH), Universidade Federal do ABC, Santo André 09210-580, SP, Brazil; (C.F.); (B.B.)
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, 2100 Varese, Italy
- Correspondence:
| | - Rubia Beteli
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André 09210-580, Brazil; (R.B.); (D.M.C.); (C.P.B.)
| | - Tatiana Guida Ponce
- Postgraduate Program in Health Sciences, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André 09210-580, Brazil; (T.G.P.); (C.M.T.)
| | - Denise Maria Christofolini
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André 09210-580, Brazil; (R.B.); (D.M.C.); (C.P.B.)
| | - Camila Martins Trevisan
- Postgraduate Program in Health Sciences, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André 09210-580, Brazil; (T.G.P.); (C.M.T.)
| | - Fernando Luiz Affonso Fonseca
- Discipline of Clinical Analysis, Deparment of Patology, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André 09210-580, Brazil;
| | - Caio Parente Barbosa
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André 09210-580, Brazil; (R.B.); (D.M.C.); (C.P.B.)
| | - Bianca Bianco
- Center of Natural and Human Sciences (CCNH), Universidade Federal do ABC, Santo André 09210-580, SP, Brazil; (C.F.); (B.B.)
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André 09210-580, Brazil; (R.B.); (D.M.C.); (C.P.B.)
| |
Collapse
|
19
|
Aguilar-Navarro AG, Meza-León B, Gratzinger D, Juárez-Aguilar FG, Chang Q, Ornatsky O, Tsui H, Esquivel-Gómez R, Hernández-Ramírez A, Xie SZ, Dick JE, Flores-Figueroa E. Human Aging Alters the Spatial Organization between CD34+ Hematopoietic Cells and Adipocytes in Bone Marrow. Stem Cell Reports 2020; 15:317-325. [PMID: 32649902 PMCID: PMC7419665 DOI: 10.1016/j.stemcr.2020.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023] Open
Abstract
Age-related clonal hematopoiesis is a major risk factor for myeloid malignancy and myeloid skewing is a hallmark of aging. However, while it is known that non-cell-autonomous components of the microenvironment can also influence this risk, there have been few studies of how the spatial architecture of human bone marrow (BM) changes with aging. Here, we show that BM adiposity increases with age, which correlates with increased density of maturing myeloid cells and CD34+ hematopoietic stem/progenitor cells (HSPCs) and an increased proportion of HSPCs adjacent to adipocytes. However, NGFR+ bone marrow stromal cell (NGFR+ BMSC) density and distance to HSPCs and vessels remained stable. Interestingly, we found that, upon aging, maturing myeloid cell density increases in hematopoietic areas surrounding adipocytes. We propose that increased adjacency to adipocytes in the BM microenvironment may influence myeloid skewing of aging HSPCs, contributing to age-related risk of myeloid malignancies.
Aging increases adipose, myeloid, and CD34+ HSPC density in the human bone marrow Human CD34+ HSPC niche is reticular, perivascular, and periadipocytic in aging Aging increases maturing myeloid cell density surrounding adipocytes
Collapse
Affiliation(s)
- Alicia G Aguilar-Navarro
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Berenice Meza-León
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fany G Juárez-Aguilar
- Departamento de Patología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Qing Chang
- Fluidigm Canada Inc., Markham, ON, Canada
| | | | - Hubert Tsui
- Division of Hematopathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Ricardo Esquivel-Gómez
- División de Ortopedia, Hospital de Traumatología y Ortopedia Lomas Verdes, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Antonio Hernández-Ramírez
- Unidad de Reemplazo Articular, Hospital de Traumatología y Ortopedia Lomas Verdes, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Eugenia Flores-Figueroa
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
20
|
Bowles AC, Kouroupis D, Willman MA, Perucca Orfei C, Agarwal A, Correa D. Signature quality attributes of CD146 + mesenchymal stem/stromal cells correlate with high therapeutic and secretory potency. Stem Cells 2020; 38:1034-1049. [PMID: 32379908 DOI: 10.1002/stem.3196] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/01/2020] [Indexed: 12/22/2022]
Abstract
CD146+ bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) play key roles in the perivascular niche, skeletogenesis, and hematopoietic support; however, comprehensive evaluation of therapeutic potency has yet to be determined. In this study, in vitro inflammatory priming to crude human BM-MSCs (n = 8) captured a baseline of signature responses, including enriched CD146+ with coexpression of CD107aHigh , CXCR4High , and LepRHigh , transcriptional profile, enhanced secretory capacity, and robust immunomodulatory secretome and function, including immunopotency assays (IPAs) with stimulated immune cells. These signatures were significantly more pronounced in CD146+ (POS)-sorted subpopulation than in the CD146- (NEG). Mechanistically, POS BM-MSCs showed a markedly higher secretory capacity with significantly greater immunomodulatory and anti-inflammatory protein production upon inflammatory priming compared with the NEG BM-MSCs. Moreover, IPAs with stimulated peripheral blood mononuclear cells and T lymphocytes demonstrated robust immunosuppression mediated by POS BM-MSC while inducing significant frequencies of regulatory T cells. in vivo evidence showed that POS BM-MSC treatment promoted pronounced M1-to-M2 macrophage polarization, ameliorating inflammation/fibrosis of knee synovium and fat pad, unlike treatment with NEG BM-MSCs. These data correlate the expression of CD146 with innately higher immunomodulatory and secretory capacity, and thus therapeutic potency. This high-content, reproducible evidence suggests that the CD146+ (POS) MSC subpopulation are the mediators of the beneficial effects achieved using crude BM-MSCs, leading to translational implications for improving cell therapy and manufacturing.
Collapse
Affiliation(s)
- Annie C Bowles
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Department of Biomedical Engineering College of Engineering, University of Miami, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Melissa A Willman
- Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Ashutosh Agarwal
- Department of Biomedical Engineering College of Engineering, University of Miami, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| | - Diego Correa
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| |
Collapse
|
21
|
Liufu R, Shi G, He X, Lv J, Liu W, Zhu F, Wen C, Zhu Z, Chen H. The therapeutic impact of human neonatal BMSC in a right ventricular pressure overload model in mice. Stem Cell Res Ther 2020; 11:96. [PMID: 32122393 PMCID: PMC7052971 DOI: 10.1186/s13287-020-01593-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To determine the impact of donor age on the therapeutic effect of bone marrow-derived mesenchymal stem cells (BMSCs) in treating adverse remodeling as the result of right ventricle (RV) pressure overload. Methods BMSCs were isolated from neonatal (< 1 month), infant (1 month to 1 year), and young children (1 year to 5 years) and were compared in their migration potential, surface marker expression, VEGF secretion, and matrix metalloprotein (MMP) 9 expression. Four-week-old male C57 mice underwent pulmonary artery banding and randomized to treatment and untreated control groups. During the surgery, BMSCs were administered to the mice by intramyocardial injection into the RV free wall. Four weeks later, RV function and tissue were analyzed by echocardiography, histology, and quantitative real-time polymerase chain reaction. Results Human neonatal BMSCs demonstrated the greatest migration capacity and secretion of vascular endothelial growth factor but no difference in expression of surface markers. Neonate BMSCs administration resulted in increasing expression of VEGF, a significant reduction in RV wall thickness, and internal diameter in mice after PA banding. These beneficial effects were probably associated with paracrine secretion as no cardiomyocyte transdifferentiation was observed. Conclusions Human BMSCs from different age groups have different characteristics, and the youngest BMSCs may favorably impact the application of stem cell-based therapy to alleviate adverse RV remodeling induced by pressure overload.
Collapse
Affiliation(s)
- Rong Liufu
- Cardiovascular Intensive Care Unit, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Jingjing Lv
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Wei Liu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Fang Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Chen Wen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China.
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China.
| |
Collapse
|
22
|
Khademi-Shirvan M, Ghorbaninejad M, Hosseini S, Baghaban Eslaminejad M. The Importance of Stem Cell Senescence in Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1288:87-102. [PMID: 32026416 DOI: 10.1007/5584_2020_489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are an interesting tool in regenerative medicine and a unique cell-based therapy to treat aging-associated diseases. Successful MSC therapy needs a large-scale cell culture, and requires a prolonged in vitro cell culture that subsequently leads to cell senescence. Administration of senescent MSCs results in inefficient cell differentiation in the clinical setting. Therefore, it is of utmost importance to enhance our knowledge about the aging process and methods to detect cell senescence in order to overcome this challenge. Numerous studies have addressed senescence in various aspects. Here, we review the characteristics of MSCs, how aging affects their features, mechanisms involved in aging of MSCs, and potential approaches to detect MSC senescence in vitro.
Collapse
Affiliation(s)
- Maliheh Khademi-Shirvan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
23
|
Mesenchymal stem cells in the treatment of articular cartilage degeneration: New biological insights for an old-timer cell. Cytotherapy 2019; 21:1179-1197. [DOI: 10.1016/j.jcyt.2019.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/15/2023]
|
24
|
Oliva AA, McClain-Moss L, Pena A, Drouillard A, Hare JM. Allogeneic mesenchymal stem cell therapy: A regenerative medicine approach to geroscience. Aging Med (Milton) 2019; 2:142-146. [PMID: 31667462 PMCID: PMC6820701 DOI: 10.1002/agm2.12079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extraordinary advances in medicine and public health have contributed to increasing life expectancy worldwide. However, health span-"healthy aging"-has paradoxically lagged to parallel this increase. Consequently, aging-associated illnesses, such as Alzheimer's disease and aging frailty, are having a growing impact on patients, their families, and entire health-care systems. Typically, such disorders have been treated as isolated disease entities. However, the inextricable links between aging-associated disorders and the aging process itself have become increasingly recognized, leading to formation of the field of geroscience. The geroscience concept is that treating the aging process itself should lead to treatment and prevention of aging-related disorders. However, the aging process is complex, dictated by highly interrelated pleiotropic processes. As such, therapeutics with pleiotropic mechanisms of action (either alone, or as part of combinatorial strategies) will be required for preventing and treating both aging and related disorders. Mesenchymal stem cells (MSCs) have multiple mechanisms of action that make these highly promising geroscience therapeutic candidates. These cells have a high safety profile for clinical use, are amenable to allogeneic use since tissue-type matching is not required, and can have sustained activity after transplantation. Herein, we review preclinical and clinical data supporting the utility of allogeneic MSCs as a geroscience therapeutic candidate.
Collapse
Affiliation(s)
| | | | | | | | - Joshua M Hare
- Longeveron LLC, Miami, FL, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
25
|
The Analysis of In Vivo Aging in Human Bone Marrow Mesenchymal Stromal Cells Using Colony-Forming Unit-Fibroblast Assay and the CD45 lowCD271 + Phenotype. Stem Cells Int 2019; 2019:5197983. [PMID: 31467563 PMCID: PMC6701348 DOI: 10.1155/2019/5197983] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022] Open
Abstract
Uncultured mesenchymal stromal cells (MSCs) are increasingly used in therapies; however, the effects of donor age on their biological characteristics and gene expression remain unclear. The aim of this study was to investigate age-related changes in bone marrow (BM) MSCs following minimal or no culture manipulation. Iliac crest BM was aspirated from 67 healthy donors (19-89 years old) and directly used for the colony-forming unit-fibroblast (CFU-F) assay or CD45lowCD271+ cell enumeration. The colonies were analysed for colony area and integrated density (ID) when grown in standard MSC media or media supplemented with human serum from young (YS) or old (OS) donors. There was a notable age-related decline in the number of MSCs per millilitre of BM aspirate revealed by the CFU-F assay (r = −0.527, p < 0.0001) or flow cytometry (r = −0.307, p = 0.0116). Compared to young donors (19-40 years old), colony IDs were significantly lower in older donors (61-89 years old), particularly for smaller-sized colonies (42% lower, p < 0.01). When cultured in media supplemented with OS, young and old donor MSCs formed colonies with lower IDs, by 21%, p < 0.0001, and 27%, p < 0.05, respectively, indicating the formation of smaller sparser colonies. No significant differences in the expression of selected adipogenic, osteogenic, stromal, and bone remodelling genes as well as CD295, CD146, CD106, and connexin 43 surface molecules were found in sorted CD45lowCD271+ MSCs from young and old donors (n = 8 donors each). Altogether, these results show similar trends for age-related decline in BM MSC numbers measured by the CFU-F assay and flow cytometry and reveal age-related effects of human serum on MSC colony formation. No significant differences in selected gene expression in uncultured CD45lowCD271+ MSCs suggest that old donor MSCs may not be inferior in regard to their multipotential functions. Due to large donor-to-donor variation in all donor groups, our data indicate that an individual's chronological age is not a reliable predictor of their MSC number or potency.
Collapse
|
26
|
Potential Involvement of BIRC5 in Maintaining Pluripotency and Cell Differentiation of Human Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8727925. [PMID: 30774747 PMCID: PMC6350561 DOI: 10.1155/2019/8727925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
The BIRC5 gene encodes a survivin protein belonging to class III of inhibitors of apoptosis, IAP. This protein serves a dual role. First, it regulates cell death, and second, it is an important regulator of mitosis progression, although its physiological regulatory function has not been fully understood. Many studies have shown and confirmed that survivin is practically absent in mature tissues in nature, while its overexpression has been reported in many cancerous tissues. There is little information about the significance of BIRC5 expression in normal adult human stem cells. This paper presents the study and analysis of survivin expression at the transcription level using qPCR method, in hematopoietic stem cells from peripheral blood mobilized with a granulocyte growth factor, adherent cells derived from the umbilical cord, and normal bone marrow stem cells. The expression of this gene was also examined in the blood of normal healthy individuals. The results of the analysis have shown that the more mature the cells are, the lower the expression of the BIRC5 gene is. The lowest expression has been found in peripheral blood cells, while the highest in normal bone marrow cells. The more the CD34+ and CD105 cells in the tested material are, the higher the BIRC5 expression is. Stem cells from cell culture show higher BIRC5 expression. The study confirms the involvement of BIRC5 from the IAP family in many physiological processes apart from apoptosis inhibition. The possible effect of BIRC5 on cell proliferation; involvement in cell cycle, cell differentiation, survival, and maintenance of stem cells; and the possible effect of IAP on the antineoplastic properties of mesenchymal stem cells have been demonstrated. Our research suggests that BIRC5 may be responsible for the condition of stem cell pluripotency and its high expression may also be responsible for the dedifferentiation of tumor cells.
Collapse
|
27
|
Kouroupis D, Sanjurjo-Rodriguez C, Jones E, Correa D. Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:55-77. [PMID: 30165783 DOI: 10.1089/ten.teb.2018.0118] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPACT STATEMENT Culture expansion of MSCs has detrimental effects on various cell characteristics and attributes (e.g., phenotypic changes and senescence), which, in addition to inherent interdonor variability, negatively impact the standardization and reproducibility of their therapeutic potential. The identification of innate distinct functional MSC subpopulations, as well as the description of ex vivo protocols aimed at maintaining phenotypes and enhancing specific functions have the potential to overcome these limitations. The incorporation of those approaches into cell-based therapy would significantly impact the field, as more reproducible clinical outcomes may be achieved.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Clara Sanjurjo-Rodriguez
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom.,4 Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| | - Elena Jones
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom
| | - Diego Correa
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
28
|
Hematopoietic stem cell and mesenchymal stem cell population size in bone marrow samples depends on patient's age and harvesting technique. Cytotechnology 2018; 70:1575-1583. [PMID: 30229373 DOI: 10.1007/s10616-018-0250-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are heterogeneous population of cells with great potential for regenerative medicine. MSCs are relatively easy to expand in a cell culture, however determination of their concentration in harvested tissue is more complex and is not implemented as routine procedure. To identify MSCs collected from bone marrow we have used two combinations of cell markers (CD45-/CD73+/CD90+/CD105+ and CD45-/CD271+) and fibroblast colony-forming unit (CFU-F) assay. Further, in donors of various ages, mesenchymal stem cell concentration was compared with the result of CFU-F assay and with hematopoietic stem cell concentration, determined by a standardized flow cytometric assay. A positive correlation of MSC populations to the CFU-F numbers is observed, the population of the CD45-/CD271+ cells correlates better with CFU-F numbers than the population of the CD45-/CD73+/CD90+/CD105+ cells. The relationship between the hematopoietic CD45dim/CD34+ cell concentration and mesenchymal CFU-Fs or CD45-/CD271+ cells shows a positive linear regression. An age-related quantitative reduction of hematopoietic CD45dim/CD34+, mesenchymal CD45-/CD73+/CD90+/CD105+ and CD45-/CD271+ stem cells, and CFU-F numbers were noted. Additionally, statistically significant higher CFU-F numbers were observed when bone marrow samples were harvested from three different sites from the anterior iliac crest instead of harvesting the same sample amount only from one site.
Collapse
|
29
|
Affiliation(s)
- Irene Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine; University of Oxford, Centre for Haematology; Oxford UK
- Oxford BRC Blood Theme, NIHR Oxford Biomedical Centre; Oxford UK
- Department of Paediatrics; University of Oxford; John Radcliffe Hospital; Oxford UK
| | - Nicholas J. Fordham
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine; University of Oxford, Centre for Haematology; Oxford UK
| | - Anupama Rao
- Great Ormond Street Hospital for Children; London UK
| | - Barbara J. Bain
- St Mary's Hospital campus of Imperial College London; St Mary's Hospital; London UK
| |
Collapse
|
30
|
Shikhagaie MM, Björklund ÅK, Mjösberg J, Erjefält JS, Cornelissen AS, Ros XR, Bal SM, Koning JJ, Mebius RE, Mori M, Bruchard M, Blom B, Spits H. Neuropilin-1 Is Expressed on Lymphoid Tissue Residing LTi-like Group 3 Innate Lymphoid Cells and Associated with Ectopic Lymphoid Aggregates. Cell Rep 2017; 18:1761-1773. [PMID: 28199847 PMCID: PMC5318658 DOI: 10.1016/j.celrep.2017.01.063] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/09/2016] [Accepted: 01/24/2017] [Indexed: 10/26/2022] Open
Abstract
Here, we characterize a subset of ILC3s that express Neuropilin1 (NRP1) and are present in lymphoid tissues, but not in the peripheral blood or skin. NRP1+ group 3 innate lymphoid cells (ILC3s) display in vitro lymphoid tissue inducer (LTi) activity. In agreement with this, NRP1+ ILC3s are mainly located in proximity to high endothelial venules (HEVs) and express cell surface molecules involved in lymphocyte migration in secondary lymphoid tissues via HEVs. NRP1 was also expressed on mouse fetal LTi cells, indicating that NRP1 is a conserved marker for LTi cells. Human NRP1+ ILC3s are primed cells because they express CD45RO and produce higher amounts of cytokines than NRP1- cells, which express CD45RA. The NRP1 ligand vascular endothelial growth factor A (VEGF-A) served as a chemotactic factor for NRP1+ ILC3s. NRP1+ ILC3s are present in lung tissues from smokers and patients with chronic obstructive pulmonary disease, suggesting a role in angiogenesis and/or the initiation of ectopic pulmonary lymphoid aggregates.
Collapse
Affiliation(s)
- Medya Mara Shikhagaie
- Department of Experimental Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| | - Åsa K Björklund
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jonas S Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Anne S Cornelissen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1006 AN Amsterdam, the Netherlands
| | - Xavier Romero Ros
- Department of Experimental Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Suzanne M Bal
- Department of Experimental Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Michiko Mori
- Unit of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Melanie Bruchard
- Department of Experimental Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Bianca Blom
- Department of Experimental Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Hergen Spits
- Department of Experimental Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Paciejewska MM, Maijenburg MW, Gilissen C, Kleijer M, Vermeul K, Weijer K, Veltman JA, von Lindern M, van der Schoot CE, Voermans C. Different Balance of Wnt Signaling in Adult and Fetal Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Dev 2017; 25:934-47. [PMID: 27154244 DOI: 10.1089/scd.2015.0263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are applied as novel therapeutics for their regenerative and immune-suppressive capacities. Clinical applications, however, require extensive expansion of MSCs. Fetal bone marrow-derived MSCs (FBMSCs) proliferate faster than adult bone marrow-derived MSC (ABMSCs). To optimize expansion and function of MSC in general, we explored the differences between ABMSC and FBMSC. Gene expression profiling implicated differential expression of genes encoding proteins in the Wnt signaling pathway, including excreted inhibitors of Wnt signaling, particularly by ABMSC. Both MSC types had a similar basal level of canonical Wnt signaling. Abrogation of autocrine Wnt production by inhibitor of Wnt production-2 (IWP2) reduced canonical Wnt signaling and cell proliferation of FBMSCs, but hardly affected ABMSC. Addition of exogenous Wnt3a, however, induced expression of the target genes lymphocyte enhancer-binding factor (LEF) and T-cell factor (TCF) faster and at lower Wnt3a levels in ABMSC compared to FBMSC. Medium replacement experiments indicated that ABMSC produce an inhibitor of Wnt signaling that is effective on ABMSC itself but not on FBMSC, whereas FBMSC excrete (Wnt) factors that stimulate proliferation of ABMSC. In contrast, FBMSC were not able to support hematopoiesis, whereas ABMSC displayed hematopoietic support sensitive to IWP2, the inhibitor of Wnt factor excretion. In conclusion, ABMSC and FBMSC differ in their Wnt signature. While FBMSC produced factors, including Wnt signals, that enhanced MSC proliferation, ABMSC produced Wnt factors in a setting that enhanced hematopoietic support. Thus, further unraveling the molecular basis of this phenomenon may lead to improvement of clinical expansion protocols of ABMSCs.
Collapse
Affiliation(s)
- Maja M Paciejewska
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marijke W Maijenburg
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands .,2 Department of Experimental Immunohematology, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Christian Gilissen
- 3 Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Marion Kleijer
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kim Vermeul
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kees Weijer
- 4 Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris A Veltman
- 3 Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Marieke von Lindern
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands .,5 Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - C Ellen van der Schoot
- 2 Department of Experimental Immunohematology, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands .,5 Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Carlijn Voermans
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands .,2 Department of Experimental Immunohematology, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Desbourdes L, Javary J, Charbonnier T, Ishac N, Bourgeais J, Iltis A, Chomel JC, Turhan A, Guilloton F, Tarte K, Demattei MV, Ducrocq E, Rouleux-Bonnin F, Gyan E, Hérault O, Domenech J. Alteration Analysis of Bone Marrow Mesenchymal Stromal Cells from De Novo Acute Myeloid Leukemia Patients at Diagnosis. Stem Cells Dev 2017; 26:709-722. [PMID: 28394200 DOI: 10.1089/scd.2016.0295] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bone marrow (BM)-derived mesenchymal stromal cells (MSCs) frequently display alterations in several hematologic disorders, such as acute lymphoid leukemia, acute myeloid leukemia (AML), and myelodysplastic syndromes. In acute leukemias, it is not clear whether MSC alterations contribute to the development of the malignant clone or whether they are simply the effect of tumor expansion on the microenvironment. We extensively investigated the characteristics of MSCs isolated from the BM of patients with de novo AML at diagnosis (L-MSCs) in terms of phenotype (gene and protein expression, apoptosis and senescence levels, DNA double-strand break formation) and functions (proliferation and clonogenic potentials, normal and leukemic hematopoiesis-supporting activity). We found that L-MSCs show reduced proliferation capacity and increased apoptosis levels compared with MSCs from healthy controls. Longer population doubling time in L-MSCs was not related to the AML characteristics at diagnosis (French-American-British type, cytogenetics, or tumor burden), but was related to patient age and independently associated with poorer patient outcome, as was cytogenetic prognostic feature. Analyzing, among others, the expression of 93 genes, we found that proliferative deficiency of L-MSCs was associated with a perivascular feature at the expense of the osteo-chondroblastic lineage with lower expression of several niche factors, such as KITLG, THPO, and ANGPT1 genes, the cell adhesion molecule VCAM1, and the developmental/embryonic genes, BMI1 and DICER1. L-MSC proliferative capacity was correlated positively with CXCL12, THPO, and ANGPT1 expression and negatively with JAG1 expression. Anyway, these changes did not affect their in vitro capacity to support normal hematopoiesis and to modify leukemic cell behavior (protection from apoptosis and quiescence induction). Our findings indicate that BM-derived MSCs from patients with newly diagnosed AML display phenotypic and functional alterations such as proliferative deficiency that could be attributed to tumor progression, but does not seem to play a special role in the leukemic process.
Collapse
Affiliation(s)
- Laura Desbourdes
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Joaquim Javary
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Thomas Charbonnier
- 2 Department of Biological Hematology, University Hospital of Tours , Tours, France
| | - Nicole Ishac
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Jerome Bourgeais
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Aurore Iltis
- 2 Department of Biological Hematology, University Hospital of Tours , Tours, France .,3 Department of Hematology and Cell Therapy, University Hospital of Tours , Tours, France
| | - Jean-Claude Chomel
- 4 INSERM U935, University of Poitiers , Poitiers, France .,5 Department of Biological Oncology, University Hospital of Poitiers , Poitiers, France
| | - Ali Turhan
- 6 INSERM U935, University of Paris-Sud 11 , Paris, France .,7 Department of Hematology, University Hospitals of Paris-Sud , Le Kremlin Bicêtre, France
| | | | - Karin Tarte
- 8 INSERM U917, University of Rennes 1 , Rennes, France .,9 Department of Immunology, Cellular Therapy and Hematopoiesis, University Hospital of Rennes , Rennes, France .,10 CNRS GDR 3697, MicroNiT National Network, Tours , France
| | - Marie-Veronique Demattei
- 11 CNRS UMR 7292, Telomeres and Genome Stability Team, François Rabelais University , Tours, France
| | - Elfi Ducrocq
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | | | - Emmanuel Gyan
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France .,3 Department of Hematology and Cell Therapy, University Hospital of Tours , Tours, France
| | - Olivier Hérault
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France .,2 Department of Biological Hematology, University Hospital of Tours , Tours, France .,10 CNRS GDR 3697, MicroNiT National Network, Tours , France
| | - Jorge Domenech
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France .,2 Department of Biological Hematology, University Hospital of Tours , Tours, France .,10 CNRS GDR 3697, MicroNiT National Network, Tours , France
| |
Collapse
|
33
|
Charif N, Li Y, Targa L, Zhang L, Ye J, Li Y, Stoltz J, Han H, de Isla N. Aging of bone marrow mesenchymal stromal/stem cells: Implications on autologous regenerative medicine. Biomed Mater Eng 2017; 28:S57-S63. [DOI: 10.3233/bme-171624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- N. Charif
- CNRS-UL, UMR 7365, IMoPA, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
| | - Y.Y. Li
- CNRS-UL, UMR 7365, IMoPA, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
| | - L. Targa
- CNRS-UL, UMR 7365, IMoPA, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
| | - L. Zhang
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
- Centre de Recherche Biomedicale, Calmette Hospital, Kunming, China
| | - J.S. Ye
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
- Centre de Recherche Biomedicale, Calmette Hospital, Kunming, China
| | - Y.P. Li
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
- College Médical, Université de Wuhan, Wuhan, Chine
| | - J.F. Stoltz
- CNRS-UL, UMR 7365, IMoPA, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UL-CHU), Vandoeuvre-Lès-Nancy, France
| | - H.Z. Han
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
- Centre de Recherche sur les cellules souches, Beijing et Tianjin, China
| | - N. de Isla
- CNRS-UL, UMR 7365, IMoPA, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
| |
Collapse
|
34
|
Resistance for Genotoxic Damage in Mesenchymal Stromal Cells Is Increased by Hypoxia but Not Generally Dependent on p53-Regulated Cell Cycle Arrest. PLoS One 2017; 12:e0169921. [PMID: 28081228 PMCID: PMC5231334 DOI: 10.1371/journal.pone.0169921] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/23/2016] [Indexed: 11/19/2022] Open
Abstract
Adult stem cells including multipotent mesenchymal stromal cells (MSC) acquire a high amount of DNA-damage due to their prolonged lifespan. MSC may exert specific mechanisms of resistance to avoid loss of functional activity. We have previously shown that resistance of MSC is associated with an induction of p53 and proliferation arrest upon genotoxic damage. Hypoxia may also contribute to resistance in MSC due to the low oxygen tension in the niche. In this study we characterized the role of p53 and contribution of hypoxia in resistance of MSC to genotoxic damage. MSC exhibited increased resistance to cisplatin induced DNA-damage. This resistance was associated with a temporary G2/M cell cycle arrest, induction of p53- and p21-expression and reduced cyclin B / cdk1-levels upon subapoptotic damage. Resistance of MSC to cisplatin was increased at hypoxic conditions i. e. oxygen <0.5%. However, upon hypoxia the cisplatin-induced cell cycle arrest and expression of p53 and p21 were abrogated. MSC with shRNA-mediated p53 knock-down showed a reduced cell cycle arrest and increased cyclin B / cdk1 expression. However, this functional p53 knock down did not alter the resistance to cisplatin. In contrast to cisplatin, functional p53-knock-down increased the resistance of MSC to etoposide. We conclude that resistance of MSC to genotoxic damage is influenced by oxygen tension but is not generally dependent on p53. Thus, p53-dependent and p53-independent mechanisms of resistance are likely to contribute to the life-long functional activity of MSC in vivo. These findings indicate that hypoxia and different resistance pathways contribute to the phenotype that enables the prolonged lifespan of MSC.
Collapse
|
35
|
Valencia J, Blanco B, Yáñez R, Vázquez M, Herrero Sánchez C, Fernández-García M, Rodríguez Serrano C, Pescador D, Blanco JF, Hernando-Rodríguez M, Sánchez-Guijo F, Lamana ML, Segovia JC, Vicente Á, Del Cañizo C, Zapata AG. Comparative analysis of the immunomodulatory capacities of human bone marrow– and adipose tissue–derived mesenchymal stromal cells from the same donor. Cytotherapy 2016; 18:1297-311. [DOI: 10.1016/j.jcyt.2016.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 02/09/2023]
|
36
|
Serena C, Keiran N, Ceperuelo-Mallafre V, Ejarque M, Fradera R, Roche K, Nuñez-Roa C, Vendrell J, Fernández-Veledo S. Obesity and Type 2 Diabetes Alters the Immune Properties of Human Adipose Derived Stem Cells. Stem Cells 2016; 34:2559-2573. [DOI: 10.1002/stem.2429] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Carolina Serena
- Hospital Universitari De Tarragona Joan XXIII, Institut D´Investigació Sanitària Pere Virgili; Universitat Rovira I Virgili; Tarragona Spain
- Instituto De Salud Carlos III; CIBER De Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM); Madrid Spain
| | - Noelia Keiran
- Hospital Universitari De Tarragona Joan XXIII, Institut D´Investigació Sanitària Pere Virgili; Universitat Rovira I Virgili; Tarragona Spain
- Instituto De Salud Carlos III; CIBER De Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM); Madrid Spain
| | - Victoria Ceperuelo-Mallafre
- Hospital Universitari De Tarragona Joan XXIII, Institut D´Investigació Sanitària Pere Virgili; Universitat Rovira I Virgili; Tarragona Spain
- Instituto De Salud Carlos III; CIBER De Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM); Madrid Spain
| | - Miriam Ejarque
- Hospital Universitari De Tarragona Joan XXIII, Institut D´Investigació Sanitària Pere Virgili; Universitat Rovira I Virgili; Tarragona Spain
- Instituto De Salud Carlos III; CIBER De Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM); Madrid Spain
| | | | - Kelly Roche
- Hospital Universitari De Tarragona Joan XXIII, Institut D´Investigació Sanitària Pere Virgili; Universitat Rovira I Virgili; Tarragona Spain
- Instituto De Salud Carlos III; CIBER De Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM); Madrid Spain
| | - Catalina Nuñez-Roa
- Hospital Universitari De Tarragona Joan XXIII, Institut D´Investigació Sanitària Pere Virgili; Universitat Rovira I Virgili; Tarragona Spain
- Instituto De Salud Carlos III; CIBER De Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM); Madrid Spain
| | - Joan Vendrell
- Hospital Universitari De Tarragona Joan XXIII, Institut D´Investigació Sanitària Pere Virgili; Universitat Rovira I Virgili; Tarragona Spain
- Instituto De Salud Carlos III; CIBER De Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM); Madrid Spain
| | - Sonia Fernández-Veledo
- Hospital Universitari De Tarragona Joan XXIII, Institut D´Investigació Sanitària Pere Virgili; Universitat Rovira I Virgili; Tarragona Spain
- Instituto De Salud Carlos III; CIBER De Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM); Madrid Spain
| |
Collapse
|
37
|
Holton J, Imam MA, Snow M. Bone Marrow Aspirate in the Treatment of Chondral Injuries. Front Surg 2016; 3:33. [PMID: 27379241 PMCID: PMC4909728 DOI: 10.3389/fsurg.2016.00033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
The ability of mesenchymal stem cells (MSCs) to transdifferentiate into a desired cell lineage has captured the imagination of scientists and clinicians alike. The limited ability for chondrocytes to regenerate in chondral injuries has raised the concept of using MSCs to help regenerate and repair damaged tissue. The expansion of cells in a laboratory setting to be delivered back to the patient is too costly for clinical use in the present tough economic climate. This process is slow with due to the complexity of trying to imitate the natural environment and biological stimulation of chondral cell replication and proliferation. Bone marrow aspirate concentrate (BMAC) has the potential to provide an easily accessible and readily available source of MSCs with key growth factors that can be used in treating chondral injuries. This review summarizes the underlying basic science of MSCs and the therapeutic potential of BMAC.
Collapse
Affiliation(s)
- James Holton
- Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Mohamed A. Imam
- Royal Orthopaedic Hospital, Birmingham, UK
- Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
38
|
Flores-Figueroa E, Gratzinger D. Beyond the Niche: Myelodysplastic Syndrome Topobiology in the Laboratory and in the Clinic. Int J Mol Sci 2016; 17:553. [PMID: 27089321 PMCID: PMC4849009 DOI: 10.3390/ijms17040553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/26/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022] Open
Abstract
We review the murine and human microenvironment and hematopoietic stem cell niche in the context of intact bone marrow architecture in man and mouse, both in normal and in myelodysplastic syndrome marrow. We propose that the complexity of the hematopoietic stem cell niche can usefully be approached in the context of its topobiology, and we provide a model that incorporates in vitro and in vivo models as well as in situ findings from intact human marrow to explain the changes seen in myelodysplastic syndrome patients. We highlight the clinical application of the study of the bone marrow microenvironment and its topobiology in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Eugenia Flores-Figueroa
- Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Avenida Cuauhtémoc 330, Colonia Doctores, c.p. 06720 Mexico City, Mexico.
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine 300 Pasteur Dr., L235, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Luetzkendorf J, Nerger K, Hering J, Moegel A, Hoffmann K, Hoefers C, Mueller-Tidow C, Mueller LP. Cryopreservation does not alter main characteristics of Good Manufacturing Process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation. Cytotherapy 2016; 17:186-98. [PMID: 25593077 DOI: 10.1016/j.jcyt.2014.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/07/2014] [Accepted: 10/21/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND AIMS The immunomodulating capacity of multipotent mesenchymal stromal cells (MSCs) qualifies them as a therapeutic tool in several diseases. However, repeated transplantation with products of reproducible characteristics may be required. This could be achieved with cryopreserved aliquots of Good Manufacturing Practice (GMP)-grade MSCs. However, the impact of cryopreservation on the characteristics of GMP-MSCs is ill defined. METHODS We produced fresh and cryopreserved MSCs from human donors with a xenogen-free GMP protocol. Immunogenicity and immunomodulating capacity were tested in co-culture with putative recipient-specific peripheral blood mononuclear cells (PBMCs). Risk of malignant transformation was assessed in vitro and in vivo. RESULTS Cryopreservation had no impact on viability and consensus criteria of MSCs. In co-culture with PBMCs, MSCs showed low immunogenicity and suppressed mitogen-stimulated proliferation of PBMC irrespective of cryopreservation. Cytogenetic aberrations were not observed consistently in fresh and cryopreserved products, and no signs of malignant transformation occurred in functional assays. MSC products from an elderly pretreated donor showed reduced functional quality, but imminent failure of functional criteria could be detected by an increased population doubling time in early passages. DISCUSSION This study is the first systematic analysis on cryopreservation of xenogen-free human bone marrow-derived GMP-MSCs. The data support that cryopreservation does not alter the characteristics of the cells and thus may allow the generation of products for serial transplantation. In addition, the protocol allowed early detection of MSC products with low functional capacity.
Collapse
Affiliation(s)
- Jana Luetzkendorf
- Universitätsklinik und Poliklinik für Innere Medizin IV, Halle (Saale), Germany
| | - Katrin Nerger
- Universitätsklinik und Poliklinik für Innere Medizin IV, Halle (Saale), Germany
| | - Julian Hering
- Einrichtung für Transfusionsmedizin, Halle (Saale), Germany
| | | | - Katrin Hoffmann
- Institut für Humangenetik, Universitätsklinikum Halle, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Christiane Hoefers
- Institut für Humangenetik, Universitätsklinikum Halle, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | - Lutz P Mueller
- Universitätsklinik und Poliklinik für Innere Medizin IV, Halle (Saale), Germany.
| |
Collapse
|
40
|
Harkness L, Zaher W, Ditzel N, Isa A, Kassem M. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations. Stem Cell Res Ther 2016; 7:4. [PMID: 26753846 PMCID: PMC4710006 DOI: 10.1186/s13287-015-0266-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/25/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023] Open
Abstract
Background Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC population. Methods Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146+ and hMSC-CD146− cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. Results In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146+ and hMSC-CD146− cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146− cells (12.6 % versus 8.1 %) and bone marrow elements enriched in implants containing hMSC-CD146+ cells (0.5 % versus 0.05 %). hMSC-CD146+ cells exhibited greater chemotactic attraction in a transwell migration assay and, when injected intravenously into immune-deficient mice following closed femoral fracture, exhibited wider tissue distribution and significantly increased migration ability as demonstrated by bioluminescence imaging. Conclusion Our studies demonstrate that CD146 defines a subpopulation of hMSCs capable of bone formation and in vivo trans-endothelial migration and thus represents a population of hMSCs suitable for use in clinical protocols of bone tissue regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0266-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda Harkness
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Winslowparken 25.1, 5000, Odense C, Denmark.
| | - Walid Zaher
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Winslowparken 25.1, 5000, Odense C, Denmark. .,Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, 4852 Ash Shaikh Hasan Ibn Abdullah Al Ash Shaikh, Riyadh, 11461, Kingdom of Saudi Arabia.
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Winslowparken 25.1, 5000, Odense C, Denmark.
| | - Adiba Isa
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Winslowparken 25.1, 5000, Odense C, Denmark.
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Winslowparken 25.1, 5000, Odense C, Denmark. .,Danish Stem Cell Center (DanStem), Panum Institute, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark. .,Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, 4852 Ash Shaikh Hasan Ibn Abdullah Al Ash Shaikh, Riyadh, 11461, Kingdom of Saudi Arabia.
| |
Collapse
|
41
|
Mesenchymal Stromal Cells and Tissue-Specific Progenitor Cells: Their Role in Tissue Homeostasis. Stem Cells Int 2015; 2016:4285215. [PMID: 26823669 PMCID: PMC4707334 DOI: 10.1155/2016/4285215] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
Multipotent mesenchymal stromal/stem cells (MSCs) reside in many human organs and comprise heterogeneous population of cells with self-renewal ability. These cells can be isolated from different tissues, and their morphology, immunophenotype, and differentiation potential are dependent on their tissue of origin. Each organ contains specific population of stromal cells which maintain regeneration process of the tissue where they reside, but some of them have much more wide plasticity and differentiate into multiple cells lineage. MSCs isolated from adult human tissues are ideal candidates for tissue regeneration and tissue engineering. However, MSCs do not only contribute to structurally tissue repair but also MSC possess strong immunomodulatory and anti-inflammatory properties and may influence in tissue repair by modulation of local environment. This paper is presenting an overview of the current knowledge of biology of tissue-resident mesenchymal stromal and progenitor cells (originated from bone marrow, liver, skeletal muscle, skin, heart, and lung) associated with tissue regeneration and tissue homeostasis.
Collapse
|
42
|
Organ-specific migration of mesenchymal stromal cells: Who, when, where and why? Immunol Lett 2015; 168:159-69. [DOI: 10.1016/j.imlet.2015.06.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022]
|
43
|
Park JS, Yi TG, Park JM, Han YM, Kim JH, Shin DH, Tak SJ, Lee K, Lee YS, Jeon MS, Hahm KB, Song SU, Park SH. Therapeutic effects of mouse bone marrow-derived clonal mesenchymal stem cells in a mouse model of inflammatory bowel disease. J Clin Biochem Nutr 2015; 57:192-203. [PMID: 26566304 PMCID: PMC4639590 DOI: 10.3164/jcbn.15-56] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022] Open
Abstract
Mouse bone marrow-derived clonal mesenchymal stem cells (mcMSCs), which were originated from a single cell by a subfractionation culturing method, are recognized as new paradigm for stem cell therapy featured with its homogenous cell population. Next to proven therapeutic effects against pancreatitis, in the current study we demonstrated that mcMSCs showed significant therapeutic effects in dextran sulfate sodium (DSS)-induced experimental colitis model supported with anti-inflammatory and restorative activities. mcMSCs significantly reduced the disease activity index (DAI) score, including weight loss, stool consistency, and intestinal bleeding and significantly increased survival rates. The pathological scores were also significantly improved with mcMSC. We have demonstrated that especial mucosal regeneration activity accompanied with significantly lowered level of apoptosis as beneficiary actions of mcMSCs in UC models. The levels of inflammatory cytokines including TNF-α, IFN-γ, IL-1β, IL-6, and IL-17 were all significantly concurrent with significantly repressed NF-κB activation compared to the control group and significantly decreased infiltrations of responsible macrophage and neutrophil. Conclusively, our findings provide the rationale that mcMSCs are applicable as a potential source of cell-based therapy in inflammatory bowel diseases, especially contributing either to prevent relapse or to accelerate healing as solution to unmet medical needs in IBD therapy.
Collapse
Affiliation(s)
- Jin Seok Park
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Korea
| | - Tac-Ghee Yi
- Translational Research Center and Inha Research Institute for Medical Sciences, Inha University School of Medicine, 100 Inharo, Nam-gu, Incheon 400-711, Korea ; SCM Lifescience Co., Ltd., 366 Saohae-daero, Jung-gu, Incheon 400-711, Korea
| | - Jong-Min Park
- Digestive Disease Center, CHA University Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam 463-838, Korea
| | - Young Min Han
- Digestive Disease Center, CHA University Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam 463-838, Korea
| | - Jun-Hyung Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Korea
| | - Dong-Hee Shin
- Translational Research Center and Inha Research Institute for Medical Sciences, Inha University School of Medicine, 100 Inharo, Nam-gu, Incheon 400-711, Korea ; SCM Lifescience Co., Ltd., 366 Saohae-daero, Jung-gu, Incheon 400-711, Korea
| | - Seon Ji Tak
- Translational Research Center and Inha Research Institute for Medical Sciences, Inha University School of Medicine, 100 Inharo, Nam-gu, Incheon 400-711, Korea
| | - Kyuheon Lee
- Translational Research Center and Inha Research Institute for Medical Sciences, Inha University School of Medicine, 100 Inharo, Nam-gu, Incheon 400-711, Korea
| | - Youn Sook Lee
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Korea
| | - Myung-Shin Jeon
- Translational Research Center and Inha Research Institute for Medical Sciences, Inha University School of Medicine, 100 Inharo, Nam-gu, Incheon 400-711, Korea
| | - Ki-Baik Hahm
- Digestive Disease Center, CHA University Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam 463-838, Korea
| | - Sun U Song
- Translational Research Center and Inha Research Institute for Medical Sciences, Inha University School of Medicine, 100 Inharo, Nam-gu, Incheon 400-711, Korea ; SCM Lifescience Co., Ltd., 366 Saohae-daero, Jung-gu, Incheon 400-711, Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Korea
| |
Collapse
|
44
|
Garcia-Gomez I, Gudehithlu KP, Arruda JAL, Singh AK. Autologous tissue patch rich in stem cells created in the subcutaneous tissue. World J Stem Cells 2015; 7:1127-1136. [PMID: 26435772 PMCID: PMC4584236 DOI: 10.4252/wjsc.v7.i8.1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/14/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether we could create natural autologous tissue patches in the subcutaneous space for organ repair.
METHODS: We implanted the following three types of inert foreign bodies in the subcutaneous tissue of rats to produce autologous tissue patches of different geometries: (1) a large-sized polyvinyl tube (L = 25 mm, internal diameter = 7 mm) sealed at both ends by heat application for obtaining a large flat piece of tissue patch for organ repair; (2) a fine polyvinyl tubing (L = 25 mm, internal diameter = 3 mm) for creating cylindrically shaped grafts for vascular or nerve repair; and (3) a slurry of polydextran particle gel for inducing a bladder-like tissue. Implantation of inert materials was carried out by making a small incision on one or either side of the thoracic-lumbar region of rats. Subcutaneous pockets were created by blunt dissection around the incision into which the inert bodies were inserted (1 or 2 per rat). The incisions were closed with silk sutures, and the animals were allowed to recover. In case of the polydextran gel slurry 5 mL of the slurry was injected in the subcutaneous space using an 18 gauge needle. After implanting the foreign bodies a newly regenerated encapsulating tissue developed around the foreign bodies. The tissues were harvested after 4-42 d of implantation and studied by gross examination, histology, and histochemistry for organization, vascularity, and presence of mesenchymal stem cells (MSCs) (CD271+CD34+ cells).
RESULTS: Implanting a large cylindrically shaped polyvinyl tube resulted in a large flat sheet of tissue that could be tailored to a specific size and shape for use as a tissue patch for repairing large organs. Implanting a smaller sized polyvinyl tube yielded a cylindrical tissue that could be useful for repairing nerves and blood vessels. This type of patch could be obtained in different lengths by varying the length of the implanted tube. Implanting a suspension of inert polydextran suspension gave rise to a bladder-like tissue that could be potentially used for repairing heart valves. Histologically, the three different types of tissue patches generated were organized similarly, consisting of three layers, increasing in thickness until day 14. The inner layer in contact with the inert material was avascular; a middle layer that was highly vascular and filled with matrix, and an outer layer consisting of loose connective tissue. MSCs identified as CD271+CD34+ cells were present in the medial layer and around major blood vessels at day 4 but absent at later time points. The early-harvested tissues, endowed with MSCs, could be used for tissue repair, while the later-harvested tissues, being less vascular but thicker and tougher, could be used as filler tissue for cosmetic purposes.
CONCLUSION: An autologous, vascularized tissue patch of desired shape and size can be created in the subcutaneous space by implanting different types of inert bodies.
Collapse
|
45
|
Jones E, Schäfer R. Where is the common ground between bone marrow mesenchymal stem/stromal cells from different donors and species? Stem Cell Res Ther 2015; 6:143. [PMID: 26282627 PMCID: PMC4539918 DOI: 10.1186/s13287-015-0144-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) feature promising potential for cellular therapies, yet significant progress in development of MSC therapeutics and assays is hampered because of remarkable MSC heterogeneity in vivo and in vitro. This heterogeneity poses challenges for standardization of MSC characterization and potency assays as well as for MSC study comparability and manufacturing. This review discusses promising marker combinations for prospective MSC subpopulation enrichment and expansion, and reflects MSC phenotype changes due to environment and age. In order to address animal modelling in MSC biology, comparison of mouse and human MSC markers highlights current common ground of MSCs between species.
Collapse
Affiliation(s)
- Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds University, Room 5.24 Clinical Sciences Building, St James's University Hospital, Leeds, LS9 7TF, UK.
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service, Baden-Württemberg-Hessen gGmbH, Johann-Wolfgang-Goethe University Hospital, Sandhofstrasse 1, D-60528, Frankfurt am Main, Germany.
| |
Collapse
|
46
|
Thurman-Newell JA, Petzing JN, Williams DJ. Quantification of biological variation in blood-based therapy--a summary of a meta-analysis to inform manufacturing in the clinic. Vox Sang 2015; 109:394-402. [PMID: 26174339 PMCID: PMC5016773 DOI: 10.1111/vox.12288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/18/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022]
Abstract
Background and Objectives Biological raw materials, the basis for cellular therapies such as stem cells, have a significantly greater degree of complexity than their traditional pharmaceutical counterparts. This can be attributed to the inherent variation of its source – human beings. Currently, cell therapies are made in small, ad hoc batches, but larger scale production is a prerequisite to meeting future demand and will require a quality‐by‐design approach to manufacturing that will be designed around, or be robust to this variation. Quantification of variation will require understanding of the current baseline and stratification of its sources. Materials and Methods Haematopoietic stem cell therapy was chosen as a case study to explore this variation, and a PRISMA‐guided (Preferred Reporting Items for Systematic Reviews and Meta‐Analyses) systematic meta‐analysis was carried out for a number of predetermined cell measurements. Results From this data set, it appears that the extent of variation in therapeutic dose (in terms of transplanted total nucleated cells and CD34+ cells per kilogram) for HSCT is between one and four orders of magnitude of the median. Conclusions This is tolerated under the practice of medicine but would be unmanageable from a biomanufacturing perspective and raises concerns about comparable levels of efficacy and treatment. A number of sources that will contribute towards this variation are also reported, as is the direction of travel for 4 greater clarity of the scale of this challenge.
Collapse
Affiliation(s)
- J A Thurman-Newell
- Healthcare Engineering Group, Centre for Biological Engineering, Loughborough University, Loughborough, UK
| | - J N Petzing
- Healthcare Engineering Group, Centre for Biological Engineering, Loughborough University, Loughborough, UK
| | - D J Williams
- Healthcare Engineering Group, Centre for Biological Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
47
|
Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adh Migr 2015; 8:563-77. [PMID: 25482635 PMCID: PMC4594522 DOI: 10.4161/19336918.2014.968501] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products.
Collapse
Affiliation(s)
- Sofieke Klamer
- a Department of Hematopoiesis; Sanquin Research; Landsteiner Laboratory; Academic Medical Centre ; University of Amsterdam ; Amsterdam , The Netherlands
| | | |
Collapse
|
48
|
Brady K, Dickinson SC, Hollander AP. Changes in Chondrogenic Progenitor Populations Associated with Aging and Osteoarthritis. Cartilage 2015; 6:30S-5S. [PMID: 27340514 PMCID: PMC4481384 DOI: 10.1177/1947603515574838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chondrogenic progenitor populations, including mesenchymal stem cells, represent promising cell-based transplantation or tissue engineering therapies for the regeneration of damaged cartilage. Osteoarthritis (OA) predominantly affects the elderly and is a leading cause of disability worldwide. Advancing age is a prominent risk factor that is closely associated with the onset and progression of the disease. Understanding the influence that aging and OA have on chondrogenic progenitor cells is important to determine how these processes affect the cellular mechanisms of the cells and their capacity to differentiate into functional chondrocytes for use in therapeutic applications. Here, we review the effect of age- and OA-related changes on the growth kinetics and differentiation potential of chondrogenic progenitor cell populations. Aging differentially influences the proliferative potential of progenitor cells showing reduced growth rates with increased senescence and apoptotic activity over time, while chondrogenesis appears to be independent of donor age. Cartilage tissue affected by OA shows evidence of progenitor populations with some potential for repair, however reports on the proliferative propensity of mesenchymal stem cells and their chondrogenic potential are contradictory. This is likely attributed to the narrow age ranges of samples assessed and deficits in definitively identifying donors with OA versus healthy patients across a wide scope of advancing ages. Further studies that investigate the mechanistic effects of chondrogenic progenitor populations associated with aging and the progression of OA using clearly defined criteria and age-matched control subject groups are crucial to our understanding of the clinical relevance of these cells for use in cartilage repair therapies.
Collapse
Affiliation(s)
- Kyla Brady
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sally C. Dickinson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
49
|
Reduced levels of mesenchymal stem cells at the tendon-bone interface tuberosity in patients with symptomatic rotator cuff tear. INTERNATIONAL ORTHOPAEDICS 2015. [PMID: 25757411 DOI: 10.1007/s00264- 015-2724-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE While the use of bone marrow concentrate (BMC) has been described in the treatment of rotator cuff tears, the impact of a rotator cuff injury on the mesenchymal stem cells (MSCs) content present in the human shoulder has not been determined, especially with regard to changes in the levels of MSCs at the tendon-bone interface. With the hypothesis that there was a decreased level of MSCs at the tendon-bone interface tuberosity in patients with rotator cuff tear, we assessed the level of MSCs in the tuberosity of the shoulder of patients undergoing a rotator cuff repair. METHODS We analysed the data of 125 patients with symptomatic rotator cuff tears and of 75 control patients without rotator cuff injury. We recorded the following data: size of tear, number of torn tendons, aetiology of the tear, lag time between onset of shoulder symptoms/injury and repair, and also fatty infiltration of muscles. Mesenchymal stem cell content at the tendon-bone interface tuberosity was evaluated by bone marrow aspiration collected in the humeral tuberosities of patients at the beginning of surgery. RESULTS A significant reduction in MSC content (from moderate, 30-50 %, to severe >70 %) at the tendon-bone interface tuberosity relative to the MSC content of the control was observed in all rotator cuff repair study patients. Severity of the decrease was statistically correlated to a number of factors, including the delay between onset of symptoms and surgery, number of involved tendons, fatty infiltration stage and increasing patient age. CONCLUSION This study demonstrates that the level of MSCs present in the greater tuberosity of patients with a rotator cuff tear decreases as a function of a number of clinical factors, including lag time from tear onset to treatment, tear size, number of tears and stage of fatty infiltration, among others. This information may help the practices in using biologic augmentation of a rotator cuff repair.
Collapse
|
50
|
Hernigou P, Merouse G, Duffiet P, Chevalier N, Rouard H. Reduced levels of mesenchymal stem cells at the tendon-bone interface tuberosity in patients with symptomatic rotator cuff tear. INTERNATIONAL ORTHOPAEDICS 2015; 39:1219-25. [PMID: 25757411 DOI: 10.1007/s00264-015-2724-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE While the use of bone marrow concentrate (BMC) has been described in the treatment of rotator cuff tears, the impact of a rotator cuff injury on the mesenchymal stem cells (MSCs) content present in the human shoulder has not been determined, especially with regard to changes in the levels of MSCs at the tendon-bone interface. With the hypothesis that there was a decreased level of MSCs at the tendon-bone interface tuberosity in patients with rotator cuff tear, we assessed the level of MSCs in the tuberosity of the shoulder of patients undergoing a rotator cuff repair. METHODS We analysed the data of 125 patients with symptomatic rotator cuff tears and of 75 control patients without rotator cuff injury. We recorded the following data: size of tear, number of torn tendons, aetiology of the tear, lag time between onset of shoulder symptoms/injury and repair, and also fatty infiltration of muscles. Mesenchymal stem cell content at the tendon-bone interface tuberosity was evaluated by bone marrow aspiration collected in the humeral tuberosities of patients at the beginning of surgery. RESULTS A significant reduction in MSC content (from moderate, 30-50 %, to severe >70 %) at the tendon-bone interface tuberosity relative to the MSC content of the control was observed in all rotator cuff repair study patients. Severity of the decrease was statistically correlated to a number of factors, including the delay between onset of symptoms and surgery, number of involved tendons, fatty infiltration stage and increasing patient age. CONCLUSION This study demonstrates that the level of MSCs present in the greater tuberosity of patients with a rotator cuff tear decreases as a function of a number of clinical factors, including lag time from tear onset to treatment, tear size, number of tears and stage of fatty infiltration, among others. This information may help the practices in using biologic augmentation of a rotator cuff repair.
Collapse
|