1
|
Xu C, Ezzi SHA, Zou X, Dong Y, Alhaskawi A, Zhou H, Kota VG, Abdulla MHAH, Abdalbary SA, Lu H. The role of TNF in metabolic disorders and liver diseases. Cytokine 2025; 190:156933. [PMID: 40174483 DOI: 10.1016/j.cyto.2025.156933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Tumor necrosis factor (TNF) is identified as a pro-inflammatory cytokine critical to the pathology of liver disease. In the carbohydrate metabolism, TNF has been demonstrated to impede the insulin signaling pathway, thereby precipitating glucose intolerance and insulin resistance. In lipid metabolism, TNF upregulates genes implicated in fatty acid synthesis, resulting in increased lipid accumulation within the liver. In amino acid metabolism, TNF has shown to promote the gene expression for amino acid catabolism, leading to decreased protein synthesis. Additionally, TNF stimulates the production of other chemokines and inflammatory cytokines that can further exacerbate liver injury. Overall, TNF is crucial in developing liver diseases by disrupting various metabolic pathways in the liver, causing insulin resistance, lipid accumulation, and decreased protein synthesis. This review summarizes the present understanding of TNF's role in the regulation of carbohydrate, lipid and amino acid metabolism in liver disease together with its potential therapeutic implications.
Collapse
Affiliation(s)
- Chuze Xu
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - Xiaodi Zou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Haiying Zhou
- Faculty of Medicine, The Chinese University of Hong Kong School of Biomedical Science, Hong Kong, China
| | | | | | - Sahar Ahmed Abdalbary
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Khalafi M, Habibi Maleki A, Symonds ME, Rosenkranz SK, Ehsanifar M, Mohammadi Dinani S. The combined effects of omega-3 polyunsaturated fatty acid supplementation and exercise training on body composition and cardiometabolic health in adults: A systematic review and meta-analysis. Clin Nutr ESPEN 2025; 66:151-159. [PMID: 39848543 DOI: 10.1016/j.clnesp.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/19/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
INTRODUCTION We performed a systematic review and meta-analysis to investigate the effects of combining omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation with exercise training, as compared to exercise training alone, on body composition measures including body weight, body mass index (BMI), fat mass, body fat percentage, and lean body mass. Additionally, we determined the effects on cardiometabolic health outcomes including lipid profiles, blood pressure, glycemic markers, and inflammatory markers. METHOD Three primary electronic databases including PubMed, Web of Science, and Scopus were searched from inception to April 5th, 2023 to identify original articles comparing n-3 PUFA supplementation plus exercise training versus exercise training alone, that investigated at least one of the following outcomes: fat mass, body fat percentage, lean body mass, triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic (SBP) and diastolic (DBP) blood pressures, fasting glucose and insulin, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Standardized mean differences (SMD) or weighted mean differences (WMD), and 95 % confidence intervals (CIs) were calculated using random-effects models. RESULTS A total of 21 studies involving 673 participants with BMIs ranging from 24 to 37 kg.m2 and ages ranging from 30 to 70 years were included in the meta-analysis. Overall, the results indicated that as compared with exercise training alone, adding omega-3 supplementation to exercise training decreased fat mass [WMD: -1.05 kg (95 % CI: -1.88 to -0.22), p = 0.01], TG [WMD: -0.10 mmol/L (95 % CI: -0.19 to -0.02)], SBP [WMD: -4.09 mmHg (95 % CI: -7.79 to -2.16), p = 0.03], DBP [WMD: -4.26 mmHg (95 % CI: -6.46 to -2.07), p = 0.001], and TNF-α [SMD: -0.35 (95 % CI: -0.70 to -0.00), p = 0.04], and increased LDL [WMD: 0.14 mmol/L (95 % CI: 0.02 to 0.26), p = 0.01] and lower-body muscular strength [SMD: 0.42 (95 % CI: 0.01 to 0.84), p = 0.04]. However, omega-3 supplementation with exercise training had no additional effects compared with training alone, for other body composition or cardiometabolic outcomes. CONCLUSION This systematic review and meta-analyses suggestes that adding omega-3 supplementation to exercise training may augment some effects of exercise training on body composition and cardiometabolic health in adults, although such effects appear to be modest.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Aref Habibi Maleki
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Michael E Symonds
- Academic Unit of Population and Lifespan Sciences, Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Mahsa Ehsanifar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
| | - Sanaz Mohammadi Dinani
- Department of Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| |
Collapse
|
3
|
Sulaiman F, Khyriem C, Dsouza S, Abdul F, Alkhnbashi O, Faraji H, Farooqi M, Al Awadi F, Hassanein M, Ahmed F, Alsharhan M, Tawfik AR, Khamis AH, Bayoumi R. Characterizing Circulating microRNA Signatures of Type 2 Diabetes Subtypes. Int J Mol Sci 2025; 26:637. [PMID: 39859351 PMCID: PMC11766090 DOI: 10.3390/ijms26020637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes (T2D) is a heterogeneous disease influenced by both genetic and environmental factors. Recent studies suggest that T2D subtypes may exhibit distinct gene expression profiles. In this study, we aimed to identify T2D cluster-specific miRNA expression signatures for the previously reported five clinical subtypes that characterize the underlying pathophysiology of long-standing T2D: severe insulin-resistant diabetes (SIRD), severe insulin-deficient diabetes (SIDD), mild age-related diabetes (MARD), mild obesity-related diabetes (MOD), and mild early-onset diabetes (MEOD). We analyzed the circulating microRNAs (miRNAs) in 45 subjects representing the five T2D clusters and 7 non-T2D healthy controls by single-end small RNA sequencing. Bioinformatic analyses identified a total of 430 known circulating miRNAs and 13 previously unreported novel miRNAs. Of these, 71 were upregulated and 37 were downregulated in either controls or individual clusters. Each T2D subtype was associated with a specific dysregulated miRNA profile, distinct from that of healthy controls. Specifically, 3 upregulated miRNAs were unique to SIRD, 1 to MARD, 9 to MOD, and 18 to MEOD. Among the downregulated miRNAs, 11 were specific to SIRD, 9 to SIDD, 2 to MARD, and 1 to MEOD. Our study confirms the heterogeneity of T2D, represented by distinguishable subtypes both clinically and epigenetically and highlights the potential of miRNAs as markers for distinguishing the pathophysiology of T2D subtypes.
Collapse
Affiliation(s)
- Fatima Sulaiman
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| | - Costerwell Khyriem
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| | - Stafny Dsouza
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| | - Fatima Abdul
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| | - Omer Alkhnbashi
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
| | - Hanan Faraji
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| | - Muhammad Farooqi
- Dubai Diabetes Center, Dubai Health, Dubai P.O. Box 7272, United Arab Emirates;
| | - Fatheya Al Awadi
- Endocrinology Department, Dubai Hospital, Dubai Health, Dubai P.O. Box 7272, United Arab Emirates; (F.A.A.); (M.H.)
| | - Mohammed Hassanein
- Endocrinology Department, Dubai Hospital, Dubai Health, Dubai P.O. Box 7272, United Arab Emirates; (F.A.A.); (M.H.)
| | - Fayha Ahmed
- Pathology Department, Dubai Hospital, Dubai Health, Dubai P.O. Box 7272, United Arab Emirates; (F.A.); (M.A.)
| | - Mouza Alsharhan
- Pathology Department, Dubai Hospital, Dubai Health, Dubai P.O. Box 7272, United Arab Emirates; (F.A.); (M.A.)
| | - Abdel Rahman Tawfik
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (A.R.T.); (A.H.K.)
| | - Amar Hassan Khamis
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (A.R.T.); (A.H.K.)
| | - Riad Bayoumi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| |
Collapse
|
4
|
Atoum MF, Padma KR, Don KR. Curcumin is a potential therapeutic agent that ameliorates diabetes among non-alcoholic fatty liver disease coexist with type 2 diabetes. NUTRITION AND HEALTHY AGING 2024; 9:77-90. [DOI: 10.3233/nha-231504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) harmonize and act synergistically in clinical practices. About 70–80% of diabetic patients develop NAFLD. At the same time, NAFLD existence increases T2DM development. Meanwhile, the presence of T2DM increases the progression to liver disease such as NAFLD, and to non-alcoholic steatohepatitis (NASH). The most prevalent chronic liver disease worldwide is a NAFLD. NAFLD and (T2DM) have a two-way pathophysiologic relationship, with the latter driving the development of the former into NASH. Nonetheless, NASH enhances the threat of cirrhosis as well as hepatocellular carcinoma (HCC), both cases in turn need transplantation of the liver. The only treatment for NAFLD is still lifestyle management because there are no FDA-approved drugs for the condition. In the current study, we review how curcumin (a naturally occurring phytopolyphenol pigment) treats NAFLD. Also we showed broad insights on curcumin-based therapy, by severe reduction of hepatic inflammation. Thus, our review showed that curcumin ingestion considerably decreased glycemic parameters (fasting blood glucose, glycosylated hemoglobin, insulin resistance index (HOMA-IR), and free fatty acids) and adipocyte-fatty acid binding protein (A-FABP), and adipokine released from adipocytes. Clinical trials are needed to evaluate the effects of curcumin and its specific dosage on liver enzymes, glycemic consequences, among NAFLD coexist with T2DM patients.
Collapse
Affiliation(s)
- Manar Fayiz Atoum
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Kanchi Ravi Padma
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women’s) University, Tirupati, AP, India
| | - Kanchi Ravi Don
- Department of Oral Pathology and Microbiology, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research (BIHER) Bharath University, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Borda MG, Barreto GE, Baldera JP, de Lucia C, Khalifa K, Bergland AK, Pola I, Botero-Rodríguez F, Siow RC, Kivipelto M, Zetterberg H, Ashton NJ, Ballard C, Aarsland D. A randomized, placebo-controlled trial of purified anthocyanins on cognitive function in individuals at elevated risk for dementia: Analysis of inflammatory biomarkers toward personalized interventions. Exp Gerontol 2024; 196:112569. [PMID: 39226946 DOI: 10.1016/j.exger.2024.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Dementia poses a significant global health challenge. Anthocyanins neutralize free radicals, modulate signaling pathways, inhibit pro-inflammatory genes, and suppress cytokine production and may thus have positive cognitive effects in people at increased risk of dementia. We aim to investigate the effects of purified anthocyanins on cognitive function in people at increased risk of dementia according to their inflammation status based on blood-based inflammatory biomarkers. METHODS This is a secondary analysis of a 24-week randomized, double-blind, placebo-controlled trial. Cluster analysis was performed to categorize two groups based on their individual inflammatory biomarker profile using multiplex sandwich ELISA for the quantitative measurement of cytokines. Descriptive statistics and longitudinal models assessed cognitive outcomes. The primary comparison was the group difference at week 24 based on a modified intention-to-treat analysis. RESULTS Cluster analysis revealed two distinct inflammatory biomarker profiles. In Cluster 1 (high levels of inflammation biomarkers), anthocyanin treatment showed a statistically significant improvement on cognitive function compared to placebo at 24 weeks. No significant differences were observed in Cluster 2 (low levels of inflammation biomarkers). The demographic characteristics, cognitive scores, and biomarker distributions were similar between treatment groups at baseline. However, cluster 1 exhibited higher BMI, diabetes prevalence, medication usage, and lower HDL cholesterol levels. CONCLUSION Individuals with elevated levels of inflammation markers benefited from anthocyanin treatment to enhance cognitive performance, whereas those with lower levels did not. The anti-inflammatory and antioxidant properties of anthocyanins make them a promising intervention, and future prospective trials in people with increased inflammation are warranted.
Collapse
Affiliation(s)
- Miguel German Borda
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá, Colombia; Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan Edo. de México, Mexico.
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Jonathan Patricio Baldera
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Instituto de Investigación en Salud, Facultad de Ciencias de la Salud de la Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Chiara de Lucia
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Centre for Healthy Brain Ageing, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Khadija Khalifa
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
| | - Anne Katrine Bergland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ilaria Pola
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Felipe Botero-Rodríguez
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá, Colombia; Fundación para la Ciencia, Innovación y Tecnología - Fucintec, Bogotá, Colombia
| | - Richard C Siow
- Centre for Healthy Brain Ageing, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK; Ageing Research at King's (ARK) and School of Cardiovascular and Metabolic Medicine & Sciences, King's BHF Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, UK; Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas J Ashton
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Clive Ballard
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Centre for Healthy Brain Ageing, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| |
Collapse
|
6
|
Sheemar A, Goel P, Thakur PS, Takkar B, Kaur I, Rani PK, Tyagi M, Basu S, Venkatesh P. Diabetes, Diabetic Retinopathy, and Inflammatory Disorders. Ocul Immunol Inflamm 2024; 32:1155-1168. [PMID: 37159104 DOI: 10.1080/09273948.2023.2203742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
This review summarizes the impact of systemic and ocular inflammatory disorders on diabetes mellitus (DM) and diabetic retinopathy (DR). Local inflammation is a key pathology in diabetic retinopathy (DR) and is also an evolving target for clinical therapy. The legacy effects of local inflammation at the intracellular level make DR a persistent self-driven vicious process. Ocular inflammation is accompanied as well as incited by systemic inflammation due to diabetes mellitus (DM) itself. Over the years, a multitude of studies have evaluated the impact of systemic inflammatory disorders (SIDs, like rheumatoid arthritis, lupus, psoriasis, etc.) and anti-inflammatory drugs prescribed for managing them on manifestations of DM. Recent studies have indicated increased insulin resistance to be a result of chronic inflammation, and the anti-inflammatory drugs to have a protective effect towards DM. Very few studies have evaluated the impact of SIDs on DR. Furthermore, the evidence from these studies is conflicting, and while local anti-inflammatory therapy has shown a lot of clinical potential for use in DR, the results of systemic anti-inflammatory therapies have been inconsistent. The impact of local ocular inflammation due to uveitis on DR is a crucial aspect that has not been evaluated well at present. Initial pre-clinical studies and small-sized clinical reports have shown a strong and positive relationship between the presence of uveitis and the severity of DR as well as its progression, while larger cross-sectional patient surveys have refuted the same. The long term impact of ocular inflammation due to uveitis on DR needs to be studied while adjusting for confounders.
Collapse
Affiliation(s)
- Abhishek Sheemar
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Pallavi Goel
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | | | - Brijesh Takkar
- Anant Bajaj Retina Institute, L V Prasad Eye Institute, Hyderabad, India
- Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Padmaja K Rani
- Anant Bajaj Retina Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Mudit Tyagi
- Uveitis Services, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Soumyava Basu
- Uveitis Services, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Pradeep Venkatesh
- Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Jaffey JA, Backus RC, Kreisler R, Graves TK, Al-Nakkash L, Allison L. Evaluation of serum vitamin D metabolites, phagocytosis, and biomarkers of inflammation in dogs with naturally occurring diabetes mellitus. Front Vet Sci 2024; 11:1441993. [PMID: 39234180 PMCID: PMC11371797 DOI: 10.3389/fvets.2024.1441993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Naturally occurring diabetes mellitus (NODM) is one of the most common endocrine disorders in dogs and its etiology closely resembles type 1 diabetes mellitus (T1DM) in people. Human patients with T1DM commonly have cellular derangements consistent with inflammation, impaired immune function, and hypovitaminosis D. There is little information available regarding inflammatory biomarkers, immune function, and vitamin D status in diabetic dogs. Therefore, our objectives were to assess inflammatory biomarkers, vitamin D metabolites, and phagocytic capacity in diabetic dogs and determine whether associations exist with these variables and the level of clinical control or vitamin D metabolites. This was a prospective case-control study that included 20 otherwise healthy diabetic dogs (clinically controlled, n = 10; uncontrolled, n = 10) and 20 non-diabetic, healthy, age (± 2 years), breed, and sex matched controls. Complete blood count, biochemical panel, urinalysis, and fructosamine were performed at a single commercial reference laboratory. Basal plasma tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8, and IL-10 were measured using a canine-specific multiplex bead-based assay. Serum C-reactive protein (CRP) was measured using a commercially available ELISA kit. Serum 25-hydroxyvitamin (OH)D3 and 24,25-dihydroxyvitamin (OH)2D3 were measured with HPLC. Phagocytosis of opsonized-Escherichia coli (E. coli) was evaluated with flow cytometry. Diabetic dogs had higher serum CRP concentrations than controls (p = 0.02). Plasma IL-8 concentrations were higher in diabetic dogs with uncontrolled clinical disease compared to controls (p = 0.02). Diabetic dogs had a lower percentage of leukocytes that phagocytized opsonized-E. coli (p = 0.02), but an increased number of bacteria phagocytized per cell (p < 0.001) compared to controls. No between-group differences were identified in vitamin D metabolites, nor were associations found between vitamin D and any variables. Fructosamine had a positive association with serum CRP concentration (rho = 0.35, p = 0.03) and number of bacteria phagocytized per cell (rho = 0.45, p = 0.004) in our cohort (n = 40). Like people with T1DM, diabetic dogs have a proinflammatory phenotype and phagocytic dysregulation that may be correlated with glycemic control.
Collapse
Affiliation(s)
- Jared A Jaffey
- Department of Specialty Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Robert C Backus
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Rachael Kreisler
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Thomas K Graves
- Department of Specialty Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ,United States
| | - Lauren Allison
- Department of Specialty Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| |
Collapse
|
8
|
Guldan M, Unlu S, Abdel-Rahman SM, Ozbek L, Gaipov A, Covic A, Soler MJ, Covic A, Kanbay M. Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches. J Clin Med 2024; 13:4354. [PMID: 39124622 PMCID: PMC11312746 DOI: 10.3390/jcm13154354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular kidney metabolic (CKM) syndrome represents a complex interplay of cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic comorbidities, posing a significant public health challenge. Gender exerts a critical influence on CKM syndrome, affecting the disease severity and onset through intricate interactions involving sex hormones and key physiological pathways such as the renin-angiotensin system, oxidative stress, inflammation, vascular disease and insulin resistance. It is widely known that beyond the contribution of traditional risk factors, men and women exhibit significant differences in CKM syndrome and its components, with distinct patterns observed in premenopausal women and postmenopausal women compared to men. Despite women generally experiencing a lower incidence of CVD, their outcomes following cardiovascular events are often worse compared to men. The disparities also extend to the treatment approaches for kidney failure, with a higher prevalence of dialysis among men despite women exhibiting higher rates of CKD. The impact of endogenous sex hormones, the correlations between CKM and its components, as well as the long-term effects of treatment modalities using sex hormones, including hormone replacement therapies and gender-affirming therapies, have drawn attention to this topic. Current research on CKM syndrome is hindered by the scarcity of large-scale studies and insufficient integration of gender-specific considerations into treatment strategies. The underlying mechanisms driving the gender disparities in the pathogenesis of CKM syndrome, including the roles of estrogen, progesterone and testosterone derivatives, remain poorly understood, thus limiting their application in personalized therapeutic interventions. This review synthesizes existing knowledge to clarify the intricate relationship between sex hormones, gender disparities, and the progression of CVD within CKM syndrome. By addressing these knowledge gaps, this study aims to guide future research efforts and promote tailored approaches for effectively managing CKD syndrome.
Collapse
Affiliation(s)
- Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Selen Unlu
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Sama Mahmoud Abdel-Rahman
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Laşin Ozbek
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andreea Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Maria José Soler
- Nephrology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Research, 08035 Barcelona, Spain;
- Centro de Referencia en Enfermedad, Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), RICORS2040 (Kidney Disease), 08003 Barcelona, Spain
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), 39008 Santander, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey;
| |
Collapse
|
9
|
Knoll M, Honce R, Meliopoulos V, Segredo-Otero EA, Johnson KE, Schultz-Cherry S, Ghedin E, Gresham D. Host obesity impacts genetic variation in influenza A viral populations. J Virol 2024; 98:e0177823. [PMID: 38785423 PMCID: PMC11237528 DOI: 10.1128/jvi.01778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Obesity is well established as a risk factor for many noncommunicable diseases; however, its consequences for infectious disease are poorly understood. Here, we investigated the impact of host obesity on influenza A virus (IAV) genetic variation using a diet-induced obesity ferret model and the A/Hong Kong/1073/1999 (H9N2) strain. Using a co-caging study design, we investigated the maintenance, generation, and transmission of intrahost IAV genetic variation by sequencing viral genomic RNA obtained from nasal wash samples over multiple days of infection. We found evidence for an enhanced role of positive selection acting on de novo mutations in obese hosts that led to nonsynonymous changes that rose to high frequency. In addition, we identified numerous cases of mutations throughout the genome that were specific to obese hosts and that were preserved during transmission between hosts. Despite detection of obese-specific variants, the overall viral genetic diversity did not differ significantly between obese and lean hosts. This is likely due to the high supply rate of de novo variation and common evolutionary adaptations to the ferret host regardless of obesity status, which we show are mediated by variation in the hemagglutinin and polymerase genes (PB2 and PB1). We also identified defective viral genomes (DVGs) that were found uniquely in either obese or lean hosts, but the overall DVG diversity and dynamics did not differ between the two groups. Our study suggests that obesity may result in a unique selective environment impacting intrahost IAV evolution, highlighting the need for additional genetic and functional studies to confirm these effects.IMPORTANCEObesity is a chronic health condition characterized by excess adiposity leading to a systemic increase in inflammation and dysregulation of metabolic hormones and immune cell populations. Influenza A virus (IAV) is a highly infectious pathogen responsible for seasonal and pandemic influenza. Host risk factors, including compromised immunity and pre-existing health conditions, can contribute to increased infection susceptibility and disease severity. During viral replication in a host, the negative-sense single-stranded RNA genome of IAV accumulates genetic diversity that may have important consequences for viral evolution and transmission. Our study provides the first insight into the consequences of host obesity on viral genetic diversity and adaptation, suggesting that host factors associated with obesity alter the selective environment experienced by a viral population, thereby impacting the spectrum of genetic variation.
Collapse
Affiliation(s)
- Marissa Knoll
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Katherine E.E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| |
Collapse
|
10
|
Charrier A, Ockunzzi J, Main L, Ghanta SV, Buchner DA. Molecular regulation of PPARγ/RXRα signaling by the novel cofactor ZFP407. PLoS One 2024; 19:e0294003. [PMID: 38781157 PMCID: PMC11115250 DOI: 10.1371/journal.pone.0294003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/20/2024] [Indexed: 05/25/2024] Open
Abstract
Cofactors interacting with PPARγ can regulate adipogenesis and adipocyte metabolism by modulating the transcriptional activity and selectivity of PPARγ signaling. ZFP407 was previously demonstrated to regulate PPARγ target genes such as GLUT4, and its overexpression improved glucose homeostasis in mice. Here, using a series of molecular assays, including protein-interaction studies, mutagenesis, and ChIP-seq, ZFP407 was found to interact with the PPARγ/RXRα protein complex in the nucleus of adipocytes. Consistent with this observation, ZFP407 ChIP-seq peaks significantly overlapped with PPARγ ChIP-seq peaks, with more than half of ZFP407 peaks overlapping with PPARγ peaks. Transcription factor binding motifs enriched in these overlapping sites included CTCF, RARα/RXRγ, TP73, and ELK1, which regulate cellular development and function within adipocytes. Site-directed mutagenesis of frequent PPARγ phosphorylation or SUMOylation sites did not prevent its regulation by ZFP407, while mutagenesis of ZFP407 domains potentially necessary for RXR and PPARγ binding abrogated any impact of ZFP407 on PPARγ activity. These data suggest that ZFP407 controls the activity of PPARγ, but does so independently of post-translational modifications, likely by direct binding, establishing ZFP407 as a newly identified PPARγ cofactor. In addition, ZFP407 ChIP-seq analyses identified regions that did not overlap with PPARγ peaks. These non-overlapping peaks were significantly enriched for the transcription factor binding motifs of TBX19, PAX8, HSF4, and ZKSCAN3, which may contribute to the PPARγ-independent functions of ZFP407 in adipocytes and other cell types.
Collapse
Affiliation(s)
- Alyssa Charrier
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jeremiah Ockunzzi
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Leighanne Main
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Siddharth V. Ghanta
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David A. Buchner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
11
|
Jaffey JA, Kreisler R, Graves TK, Al-Nakkash L, Backus RC, Allison L. Ex Vivo Immune Function and Modulatory Effects of Calcitriol in Dogs with Naturally Occurring Diabetes Mellitus. Vet Sci 2024; 11:193. [PMID: 38787165 PMCID: PMC11125998 DOI: 10.3390/vetsci11050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Human patients with type 1 diabetes mellitus (T1DM) are susceptible to several long-term complications that are related to glycemic control and immune dysregulation. Immune function remains relatively unexplored in dogs with naturally occurring diabetes mellitus (NODM). Calcitriol improves various aspects of immune function in a variety of species, but its effect in diabetic dogs remains unexplored. Therefore, the objectives of this study were to (i) evaluate immune function in dogs with NODM and determine if differences exist based on the level of clinical control and (ii) assess the immunomodulatory effects of calcitriol. Twenty diabetic dogs (clinically controlled, n = ten, not controlled, n = ten) and 20 non-diabetic, healthy control dogs were included in this prospective, case-control study. Whole blood was incubated with calcitriol (10-7 M) or negative control, after which the samples were divided for phagocytosis and leukocyte cytokine response experiments. The phagocytosis of opsonized Escherichia coli (E. coli) was evaluated with flow cytometry. The samples for leukocyte cytokine response evaluations were stimulated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or phosphate buffer solution (PBS; negative control), and tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8, and IL-10 were measured in supernatant using a canine-specific multiplex bead-based assay. The leukocytes from diabetic dogs produced higher concentrations of IL-10 (p = 0.01), IL-6 (p < 0.0001), and IL-8 (p < 0.0001) than the control dogs while controlling for the intervention and stimulant. Calcitriol decreased the supernatant concentrations of TNF-α (p < 0.001) and IL-8 (p = 0.04) with concomitant increases in IL-6 (p = 0.005). Diabetic dogs had a lower percentage of leukocytes undergoing phagocytosis (p < 0.0001) but a higher number of bacteria phagocytized per cell (p = 0.001) when compared to the control dogs. Calcitriol had no effect on phagocytic capacity. Lastly, the status of clinical control in diabetic dogs did not yield differences in immune function. These results support that dogs with NODM exhibit immune dysregulation and warrant additional investigation.
Collapse
Affiliation(s)
- Jared A. Jaffey
- Department of Specialty Medicine, Midwestern University, College of Veterinary Medicine, Glendale, AZ 85308, USA; (T.K.G.); (L.A.)
| | - Rachael Kreisler
- Department of Pathology and Population Medicine, Midwestern University, College of Veterinary Medicine, Glendale, AZ 85308, USA;
| | - Thomas K. Graves
- Department of Specialty Medicine, Midwestern University, College of Veterinary Medicine, Glendale, AZ 85308, USA; (T.K.G.); (L.A.)
| | - Layla Al-Nakkash
- Department of Physiology, Midwestern University, College of Graduate Studies, Glendale, AZ 85308, USA;
| | - Robert C. Backus
- Department of Veterinary Medicine and Surgery, University of Missouri, College of Veterinary Medicine, Columbia, MO 65211, USA;
| | - Lauren Allison
- Department of Specialty Medicine, Midwestern University, College of Veterinary Medicine, Glendale, AZ 85308, USA; (T.K.G.); (L.A.)
| |
Collapse
|
12
|
Tattersall MC, Jarjour NN, Busse PJ. Systemic Inflammation in Asthma: What Are the Risks and Impacts Outside the Airway? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:849-862. [PMID: 38355013 PMCID: PMC11219096 DOI: 10.1016/j.jaip.2024.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Airway inflammation in asthma has been well recognized for several decades, with general agreement on its role in asthma pathogenesis, symptoms, propensity toward exacerbation, and decline in lung function. This has led to universal recommendation in asthma management guidelines to incorporate the use of inhaled corticosteroid as an anti-inflammatory therapy for all patients with persistent asthma symptoms. However, there has been limited attention paid to the presence and potential impact of systemic inflammation in asthma. Accumulating evidence from epidemiological observations and cohort studies points to a host of downstream organ dysfunction in asthma especially among patients with longstanding or more severe disease, frequent exacerbations, and underlying risk factors for organ dysfunction. Most studies to date have focused on cognitive impairment, depression/anxiety, metabolic syndrome, and cardiovascular abnormalities. In this review, we summarize some of the evidence demonstrating these abnormalities and highlight the proposed mechanisms and potential benefits of treatment in limiting these extrapulmonary abnormalities in patients with asthma. The goal of this commentary is to raise awareness of the importance of recognizing potential extrapulmonary conditions associated with systemic inflammation of asthma. This area of treatment of patients with asthma is a large unmet need.
Collapse
Affiliation(s)
- Matthew C Tattersall
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Paula J Busse
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
13
|
Bergamo ET, de Oliveira PG, Campos TMB, Bonfante EA, Tovar N, Boczar D, Nayak VV, Coelho PG, Witek L. Osseointegration of implant surfaces in metabolic syndrome and type-2 diabetes mellitus. J Biomed Mater Res B Appl Biomater 2024; 112:e35382. [PMID: 38355936 PMCID: PMC10883641 DOI: 10.1002/jbm.b.35382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/20/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
This in vivo study evaluated the bone healing response around endosteal implants with varying surface topography/chemistry in a preclinical, large transitional model induced with metabolic syndrome (MS) and type-2 diabetes mellitus (T2DM). Fifteen Göttingen minipigs were randomly distributed into two groups: (i) control (normal diet, n = 5) and (ii) O/MS (cafeteria diet for obesity induction, n = 10). Following obesity induction, five minipigs from the obese/metabolic syndrome (O/MS) group were further allocated, randomly, into the third experimental group: (iii) T2DM (cafeteria diet + streptozotocin). Implants with different surface topography/chemistry: (i) dual acid-etched (DAE) and (ii) nano-hydroxyapatite coating over the DAE surface (NANO), were placed into the right ilium of the subjects and allowed to heal for 4 weeks. Histomorphometric evaluation of bone-to-implant contact (%BIC) and bone area fraction occupancy (%BAFO) within implant threads were performed using histomicrographs. Implants with NANO surface presented significantly higher %BIC (~26%) and %BAFO (~35%) relative to implants with DAE surface (%BIC = ~14% and %BAFO = ~28%, p < .025). Data as a function of systemic condition presented significantly higher %BIC (~28%) and %BAFO (~42%) in the control group compared with the metabolically compromised groups (O/MS: %BIC = 14.35% and %BAFO = 26.24%, p < .021; T2DM: %BIC = 17.91% and %BAFO = 26.12%, p < .021) with no significant difference between O/MS and T2DM (p > .05). Statistical evaluation considering both factors demonstrated significantly higher %BIC and %BAFO for the NANO surface relative to DAE implant, independent of systemic condition (p < .05). The gain increase of %BIC and %BAFO for the NANO compared with DAE was more pronounced in O/MS and T2DM subjects. Osseointegration parameters were significantly reduced in metabolically compromised subjects compared with healthy subjects. Nanostructured hydroxyapatite-coated surfaces improved osseointegration relative to DAE, regardless of systemic condition.
Collapse
Affiliation(s)
- Edmara T.P. Bergamo
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Prosthodontics, University of São Paulo, School of Dentistry, São Paulo, SP, Brazil
| | - Paula G.F.P. de Oliveira
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- CESUPA, Department of Periodontology, University Center of State of Para, Belem, PA, Brazil
| | - Tiago M B Campos
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Physics, Technological Institute of Aeronautics, São José dos Campos, SP, Brazil
| | - Estevam A Bonfante
- Department of Prosthodontics, University of São Paulo, School of Dentistry, São Paulo, SP, Brazil
| | - Nick Tovar
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, NYU Langone Medical Center and Bellevue, Hospital Center, New York, NY, USA
| | - Daniel Boczar
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lukasz Witek
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Hasan I, Rainsford KD, Ross JS. Salsalate: a pleotropic anti-inflammatory drug in the treatment of diabetes, obesity, and metabolic diseases. Inflammopharmacology 2023; 31:2781-2797. [PMID: 37758933 DOI: 10.1007/s10787-023-01242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/12/2023] [Indexed: 09/29/2023]
Abstract
Type two Diabetes Mellitus (T2DM) is a rising epidemic. Available therapeutic strategies have provided glycaemic control via HbA1c reduction but fail to provide clinically meaningful reduction in microvascular and macrovascular (cardiac, renal, ophthalmological, and neurological) complications. Inflammation is strongly linked to the pathogenesis of T2DM. Underlying inflammatory mechanisms include oxidative stress, endoplasmic reticulum stress amyloid deposition in the pancreas, lipotoxicity, and glucotoxicity. Molecular signalling mechanisms in chronic inflammation linked to obesity and diabetes include JANK, NF-kB, and AMPK pathways. These activated pathways lead to a production of various inflammatory cytokines, such as Interleukin (IL-6), tumor necrosis factor (TNF)-alpha, and C-reactive protein (CRP), which create a chronic low-grade inflammation and ultimately dysregulation of glucose homeostasis in the liver, skeletal muscle, and smooth muscle. Anti-inflammatory agents are being tested as anti-diabetic agents such as the IL-1b antagonist, Anakinra, the IL-1b inhibitor, Canakinuma, the IL-6 antagonists such as Tocilizumab, Rapamycin (Everolimus), and the IKK-beta kinase inhibitor, Salsalate. Salsalate is a century old safe anti-inflammatory drug used in the treatment of arthritis. Long-term safety and efficacy of Salsalate in the treatment of T2DM have been evaluated, which showed improved fasting plasma glucose and reduced HbA1C levels as well as reduced pro-inflammatory markers in T2DM patients. Current publication summarizes the literature review of pathophysiology of role of inflammation in T2DM and clinical efficacy and safety of Salsalate in the treatment of T2DM.
Collapse
Affiliation(s)
- I Hasan
- RH Nanopharmaceuticals LLC, 140 Ocean Ave, Monmouth Beach, New Jersey, 07750, USA.
| | - K D Rainsford
- Emeritus Professor of Biomedical Sciences, Department of Biosciences and Chemistry, BMRC, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Joel S Ross
- RH Nanopharmaceuticals LLC, 140 Ocean Ave, Monmouth Beach, New Jersey, 07750, USA
- J & D Pharmaceuticals LLC, Monmouth County, USA
| |
Collapse
|
15
|
Schmidt AM. Obesity research: Moving from bench to bedside to population. PLoS Biol 2023; 21:e3002448. [PMID: 38048365 PMCID: PMC10721162 DOI: 10.1371/journal.pbio.3002448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/14/2023] [Indexed: 12/06/2023] Open
Abstract
Globally, obesity is on the rise. Research over the past 20 years has highlighted the far-reaching multisystem complications of obesity, but a better understanding of its complex pathogenesis is needed to identify safe and lasting solutions.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
16
|
Akhter N, Wilson A, Arefanian H, Thomas R, Kochumon S, Al-Rashed F, Abu-Farha M, Al-Madhoun A, Al-Mulla F, Ahmad R, Sindhu S. Endoplasmic Reticulum Stress Promotes the Expression of TNF-α in THP-1 Cells by Mechanisms Involving ROS/CHOP/HIF-1α and MAPK/NF-κB Pathways. Int J Mol Sci 2023; 24:15186. [PMID: 37894865 PMCID: PMC10606873 DOI: 10.3390/ijms242015186] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.
Collapse
Affiliation(s)
- Nadeem Akhter
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Ajit Wilson
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Hossein Arefanian
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Reeby Thomas
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Shihab Kochumon
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Mohamed Abu-Farha
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| | - Ashraf Al-Madhoun
- Department of Genetics & Bioinformatics, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait;
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
17
|
Jiang S, Liu A, Ma W, Liu X, Luo P, Zhan M, Zhou X, Chen L, Zhang J. Lactobacillus gasseri CKCC1913 mediated modulation of the gut-liver axis alleviated insulin resistance and liver damage induced by type 2 diabetes. Food Funct 2023; 14:8504-8520. [PMID: 37655696 DOI: 10.1039/d3fo01701j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by dysregulation of lipid metabolism, insulin resistance, and gut microbiota disorder. Compared to drug interventions, probiotic interventions may have a more enduring effect without producing any side effects. Thus, the potential of probiotics as a therapeutic approach for diabetes and other metabolic disorders has gained increasing attention in recent years. In this study, we evaluated the therapeutic efficacy of Lactobacillus gasseri CKCC1913, a potential probiotic strain, in high-fat diet-induced insulin-resistant diabetes using the C57BL/6J mouse animal model. From the results, L. gasseri CKCC1913 has been shown to increase glucose tolerance, reduce fasting blood glucose levels in diabetic mice, and reduce the expression of pro-inflammatory cytokines, such as TNF-α and IL-6. Besides, L. gasseri CKCC1913 intervention effectively alleviated oxidative stress damage by increasing SOD activity, decreasing MDA levels, reducing insulin resistance, and improving dyslipidemia caused by diabetes. The potential mechanism of L. gasseri CKCC1913 in improving metabolic health and alleviating diabetes involves an increased abundance of beneficial bacteria, such as Parabacteroides merdae, which directly produce short-chain fatty acids that help regulate immune cells and reduce inflammation. SCFAs also enter the bloodstream and promote antioxidant enzyme activity in the liver, protecting against oxidative damage. Additionally, L. gasseri CKCC1913 influences local bacterial metabolism pathways, such as the superpathway of unsaturated fatty acid biosynthesis, leading to an increase in unsaturated fatty acids, increasing high-density lipoprotein cholesterol (HDL-C) levels and improving lipid metabolism and glucose control in diabetic mice. In summary, in this study, L. gasseri CKCC1913 and its potential impact on metabolic health highlight the promising potential of probiotics as a therapeutic approach for diabetes. Future research should focus on identifying the optimal dose and duration, investigating the long-term effects and mechanisms of action, and exploring the potential use of probiotics as an adjunct to other therapies or in preventing metabolic disorders.
Collapse
Affiliation(s)
- Shuaiming Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Aijie Liu
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Wenyao Ma
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xinlei Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | | | - Meng Zhan
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | | | - Lihao Chen
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
18
|
Wang F, Xu SJ, Ye F, Zhang B, Sun XB. Integration of Transcriptomics and Lipidomics Profiling to Reveal the Therapeutic Mechanism Underlying Ramulus mori (Sangzhi) Alkaloids for the Treatment of Liver Lipid Metabolic Disturbance in High-Fat-Diet/Streptozotocin-Induced Diabetic Mice. Nutrients 2023; 15:3914. [PMID: 37764698 PMCID: PMC10536214 DOI: 10.3390/nu15183914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder, with a global prevalence of 25%. Currently, there remains no approved therapy. Ramulus mori (Sangzhi) alkaloids (SZ-As), a novel natural medicine, have achieved comprehensive benefits in the treatment of type 2 diabetes; however, few studies have focused on its role in ameliorating hepatic lipid metabolic disturbance. Herein, the therapeutic effect and mechanism of SZ-As on a high-fat diet (HFD) combined with streptozotocin (STZ)-induced NAFLD mice were investigated via incorporating transcriptomics and lipidomics. SZ-As reduced body weight and hepatic lipid levels, restored pathological alternation and converted the blood biochemistry perturbations. SZ-A treatment also remarkedly inhibited lipogenesis and enhanced lipolysis, fatty acid oxidation and thermogenesis. Transcriptomics analysis confirmed that SZ-As mainly altered fatty acid oxidative metabolism and the TNF signaling pathway. SZ-As were further demonstrated to downregulate inflammatory factors and effectively ameliorate hepatic inflammation. Lipidomics analysis also suggested that SZ-As affected differential lipids including triglyceride (TG) and phosphatidylcholine (PC) expression, and the main metabolic pathways included glycerophospholipid, sphingomyelins and choline metabolism. Collectively, combined with transcriptomics and metabolomics data, it is suggested that SZ-As exert their therapeutic effect on NAFLD possibly through regulating lipid metabolism pathways (glycerophospholipid metabolism and choline metabolism) and increasing levels of PC and lysophosphatidylcholine (LPC) metabolites. This study provides the basis for more widespread clinical applications of SZ-As.
Collapse
Affiliation(s)
- Fan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (F.W.); (S.-J.X.); (F.Y.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Sai-Jun Xu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (F.W.); (S.-J.X.); (F.Y.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Fan Ye
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (F.W.); (S.-J.X.); (F.Y.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (F.W.); (S.-J.X.); (F.Y.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (F.W.); (S.-J.X.); (F.Y.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| |
Collapse
|
19
|
Bergamo ET, Witek L, Ramalho I, Lopes ACO, Vivekanand Nayak V, Bonfante EA, Tovar N, Torroni A, Coelho PG. Bone healing around implants placed in subjects with metabolically compromised systemic conditions. J Biomed Mater Res B Appl Biomater 2023; 111:1664-1671. [PMID: 37184298 PMCID: PMC10330391 DOI: 10.1002/jbm.b.35264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
The aim of this study was to evaluate the bone healing of tight-fit implants placed in the maxilla and mandible of subjects compromised with metabolic syndrome (MS) and type-2 Diabetes Mellitus (T2DM). Eighteen Göttingen minipigs were randomly distributed into three groups: (i) control (normal diet), (ii) MS (cafeteria diet for obesity induction), (iii) T2DM (cafeteria diet for obesity induction + Streptozotocin for T2DM induction). Maxillary and mandibular premolars and molar were extracted. After 8 weeks of healing, implants with progressive small buttress threads were placed, and allowed to integrate for 6 weeks after which the implant/bone blocks were retrieved for histological processing. Qualitative and quantitative histomorphometric analyses (percentage of bone-to-implant contact, %BIC, and bone area fraction occupancy within implant threads, %BAFO) were performed. The bone healing process around the implant occurred predominantly through interfacial remodeling with subsequent bone apposition. Data as a function of systemic condition yielded significantly higher %BIC and %BAFO values for healthy and MS relative to T2DM. Data as a function of maxilla and mandible did not yield significant differences for either %BIC and %BAFO. When considering both factors, healthy and MS subjects had %BIC and %BAFO trend towards higher values in the mandible relative to maxilla, whereas T2DM yielded higher %BIC and %BAFO in the maxilla relative to mandible. All systemic conditions presented comparable levels of %BIC and %BAFO in the maxilla; healthy and MS presented significantly higher %BIC and %BAFO relative to T2DM in the mandible. T2DM presented lower amounts of bone formation around implants relative to MS and healthy. Implants placed in the maxilla and in the mandible showed comparable amounts of bone in proximity to implants.
Collapse
Affiliation(s)
- Edmara T.P. Bergamo
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Lukasz Witek
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY USA
| | - Ilana Ramalho
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Adolfo CO Lopes
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Vasudev Vivekanand Nayak
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, Brooklyn, NY USA
| | - Estevam A Bonfante
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Nick Tovar
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Oral and Maxillofacial Surgery, NYU Langone Medical Center and Bellevue, Hospital Center, New York, NY USA
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, Grossman School of Medicine, New York University, New York, NY USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
20
|
Blandin A, Amosse J, Froger J, Hilairet G, Durcin M, Fizanne L, Ghesquière V, Prieur X, Chaigneau J, Vergori L, Dray C, Pradère JP, Blandin S, Dupont J, Ducluzeau PH, Dubois S, Boursier J, Cariou B, Le Lay S. Extracellular vesicles are carriers of adiponectin with insulin-sensitizing and anti-inflammatory properties. Cell Rep 2023; 42:112866. [PMID: 37605533 DOI: 10.1016/j.celrep.2023.112866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
Recent evidence supporting that adipose tissue (AT)-derived extracellular vesicles (EVs) carry an important part of the AT secretome led us to characterize the EV-adipokine profile. In addition to evidencing a high AT-derived EV secretion ability that is further increased by obesity, we identify enrichment of oligomeric forms of adiponectin in small EVs (sEVs). This adipokine is mainly distributed at the EV external surface as a result of nonspecific adsorption of soluble adiponectin. EVs also constitute stable conveyors of adiponectin in the blood circulation. Adiponectin-enriched sEVs display in vitro insulin-sensitizing effects by binding to regular adiponectin receptors. Adoptive transfer of adiponectin-enriched sEVs in high-fat-diet-fed mice prevents animals from gaining weight and ameliorated insulin resistance and tissue inflammation, with major effects observed in the AT and liver. Our results therefore provide information regarding adiponectin-related metabolic responses by highlighting EVs as delivery platforms of metabolically active forms of adiponectin molecules.
Collapse
Affiliation(s)
- Alexia Blandin
- L'Institut du Thorax, CNRS, INSERM, Nantes Université, 44000 Nantes, France; Université Angers, SFR ICAT, 49000 Angers, France; L'institut du Thorax, CNRS, INSERM, CHU Nantes, Nantes Université, 44000 Nantes, France
| | - Jérémy Amosse
- Université Angers, SFR ICAT, 49000 Angers, France; IRSET Laboratory, Inserm, UMR 1085, Rennes, France
| | - Josy Froger
- L'Institut du Thorax, CNRS, INSERM, Nantes Université, 44000 Nantes, France; Université Angers, SFR ICAT, 49000 Angers, France
| | | | - Maëva Durcin
- Université Angers, SFR ICAT, 49000 Angers, France
| | - Lionel Fizanne
- HIFIH, CHU Angers, Université Angers, SFR ICAT, 49000 Angers, France
| | - Valentine Ghesquière
- L'Institut du Thorax, CNRS, INSERM, Nantes Université, 44000 Nantes, France; Université Angers, SFR ICAT, 49000 Angers, France
| | - Xavier Prieur
- L'Institut du Thorax, CNRS, INSERM, Nantes Université, 44000 Nantes, France
| | - Julien Chaigneau
- HIFIH, CHU Angers, Université Angers, SFR ICAT, 49000 Angers, France
| | | | - Cédric Dray
- RESTORE, UMR 1301 Inserm, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | | | - Stéphanie Blandin
- CHU Nantes, CNRS, Inserm BioCore US16, SFR Bonamy, Nantes Université, 44000 Nantes, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, PRC, Université de Tours, 37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- CNRS, IFCE, INRAE, PRC, Université de Tours, 37380 Nouzilly, France; Service de Médecine Interne, Unité d'Endocrinologie Diabétologie et Nutrition, Centre Hospitalier Universitaire et Faculté de Médecine, Université de Tours, Tours, France
| | | | - Jérôme Boursier
- HIFIH, CHU Angers, Université Angers, SFR ICAT, 49000 Angers, France; CHU Angers, Angers, France
| | - Bertrand Cariou
- L'Institut du Thorax, CNRS, INSERM, Nantes Université, 44000 Nantes, France
| | - Soazig Le Lay
- L'Institut du Thorax, CNRS, INSERM, Nantes Université, 44000 Nantes, France; Université Angers, SFR ICAT, 49000 Angers, France.
| |
Collapse
|
21
|
Weston WC, Hales KH, Hales DB. Flaxseed Reduces Cancer Risk by Altering Bioenergetic Pathways in Liver: Connecting SAM Biosynthesis to Cellular Energy. Metabolites 2023; 13:945. [PMID: 37623888 PMCID: PMC10456508 DOI: 10.3390/metabo13080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
This article illustrates how dietary flaxseed can be used to reduce cancer risk, specifically by attenuating obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). We utilize a targeted metabolomics dataset in combination with a reanalysis of past work to investigate the "metabo-bioenergetic" adaptations that occur in White Leghorn laying hens while consuming dietary flaxseed. Recently, we revealed how the anti-vitamin B6 effects of flaxseed augment one-carbon metabolism in a manner that accelerates S-adenosylmethionine (SAM) biosynthesis. Researchers recently showed that accelerated SAM biosynthesis activates the cell's master energy sensor, AMP-activated protein kinase (AMPK). Our paper provides evidence that flaxseed upregulates mitochondrial fatty acid oxidation and glycolysis in liver, concomitant with the attenuation of lipogenesis and polyamine biosynthesis. Defatted flaxseed likely functions as a metformin homologue by upregulating hepatic glucose uptake and pyruvate flux through the pyruvate dehydrogenase complex (PDC) in laying hens. In contrast, whole flaxseed appears to attenuate liver steatosis and body mass by modifying mitochondrial fatty acid oxidation and lipogenesis. Several acylcarnitine moieties indicate Randle cycle adaptations that protect mitochondria from metabolic overload when hens consume flaxseed. We also discuss a paradoxical finding whereby flaxseed induces the highest glycated hemoglobin percentage (HbA1c%) ever recorded in birds, and we suspect that hyperglycemia is not the cause. In conclusion, flaxseed modifies bioenergetic pathways to attenuate the risk of obesity, type 2 diabetes, and NAFLD, possibly downstream of SAM biosynthesis. These findings, if reproducible in humans, can be used to lower cancer risk within the general population.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
22
|
Knoll M, Honce R, Meliopoulos V, Schultz-Cherry S, Ghedin E, Gresham D. Host obesity impacts genetic variation in influenza A viral populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548715. [PMID: 37503024 PMCID: PMC10369978 DOI: 10.1101/2023.07.12.548715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Obesity is a chronic health condition characterized by excess adiposity leading to a systemic increase in inflammation and dysregulation of metabolic hormones and immune cell populations. Obesity is well established as a risk factor for many noncommunicable diseases; however, its consequences for infectious disease are poorly understood. Influenza A virus (IAV) is a highly infectious pathogen responsible for seasonal and pandemic influenza. Host risk factors, including compromised immunity and pre-existing health conditions, can contribute to increased infection susceptibility and disease severity. During viral replication in a host, the negative sense single stranded RNA genome of IAV accumulates genetic diversity that may have important consequences for viral evolution and transmission. Here, we investigated the impact of host obesity on IAV genetic variation using a diet induced obesity ferret model. We infected obese and lean male ferrets with the A/Hong Kong/1073/1999 (H9N2) IAV strain. Using a co-caging study design, we investigated the maintenance, generation, and transmission of intrahost IAV genetic variation by sequencing viral genomic RNA obtained from nasal wash samples over multiple days of infection. We found evidence for an enhanced role of positive selection acting on de novo mutations in obese hosts that led to nonsynonymous changes that rose to high frequency. In addition, we identified numerous cases of recurrent low-frequency mutations throughout the genome that were specific to obese hosts. Despite these obese-specific variants, overall viral genetic diversity did not differ significantly between obese and lean hosts. This is likely due to the high supply rate of de novo variation and common evolutionary adaptations to the ferret host regardless of obesity status, which we show are mediated by variation in the hemagglutinin (HA) and polymerase genes (PB2 and PB1). As with single nucleotide variants, we identified a class of defective viral genomes (DVGs) that were found uniquely in either obese or lean hosts, but overall DVG diversity and dynamics did not differ between the two groups. Our study provides the first insight into the consequences of host obesity on viral genetic diversity and adaptation, suggesting that host factors associated with obesity alter the selective environment experienced by a viral population, thereby impacting the spectrum of genetic variation.
Collapse
Affiliation(s)
- Marissa Knoll
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children’s Research Hospital
| | | | | | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20894, USA
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University
| |
Collapse
|
23
|
Hayden MR. Brain Endothelial Cells Play a Central Role in the Development of Enlarged Perivascular Spaces in the Metabolic Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1124. [PMID: 37374328 DOI: 10.3390/medicina59061124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Brain capillary endothelial cell(s) (BECs) have numerous functions, including their semipermeable interface-barrier (transfer and diffusion of solutes), trophic (metabolic homeostasis), tonic (vascular hemodynamics), and trafficking (vascular permeability, coagulation, and leukocyte extravasation) functions to provide brain homeostasis. BECs also serve as the brain's sentinel cell of the innate immune system and are capable of antigen presentation. In metabolic syndrome (MetS), there are two regions resulting in the proinflammatory signaling of BECs, namely visceral adipose tissue depots supplying excessive peripheral cytokines/chemokines (pCCs) and gut microbiota dysbiotic regions supplying excessive soluble lipopolysaccharide (sLPS), small LPS-enriched extracellular vesicle exosomes (lpsEVexos), and pCCs. This dual signaling of BECs at their receptor sites results in BEC activation and dysfunction (BECact/dys) and neuroinflammation. sLPS and lpsEVexos signal BECs' toll-like receptor 4, which then signals translocated nuclear factor kappa B (NFkB). Translocated NFkB promotes the synthesis and secretion of BEC proinflammatory cytokines and chemokines. Specifically, the chemokine CCL5 (RANTES) is capable of attracting microglia cells to BECs. BEC neuroinflammation activates perivascular space(s) (PVS) resident macrophages. Excessive phagocytosis by reactive resident PVS macrophages results in a stagnation-like obstruction, which along with increased capillary permeability due to BECact/dys could expand the fluid volume within the PVS to result in enlarged PVS (EPVS). Importantly, this remodeling may result in pre- and post-capillary EPVS that would contribute to their identification on T2-weighted MRI, which are considered to be biomarkers for cerebral small vessel disease.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Kiran S, Mandal M, Rakib A, Bajwa A, Singh UP. miR-10a-3p modulates adiposity and suppresses adipose inflammation through TGF-β1/Smad3 signaling pathway. Front Immunol 2023; 14:1213415. [PMID: 37334370 PMCID: PMC10272755 DOI: 10.3389/fimmu.2023.1213415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Background Obesity is a multifactorial disease characterized by an enhanced amount of fat and energy storage in adipose tissue (AT). Obesity appears to promote and maintain low-grade chronic inflammation by activating a subset of inflammatory T cells, macrophages, and other immune cells that infiltrate the AT. Maintenance of AT inflammation during obesity involves regulation by microRNAs (miRs), which also regulate the expression of genes implicated in adipocyte differentiation. This study aims to use ex vivo and in vitro approaches to evaluate the role and mechanism of miR-10a-3p in adipose inflammation and adipogenesis. Methods Wild-type BL/6 mice were placed on normal (ND) and high-fat diet (HFD) for 12 weeks and their obesity phenotype, inflammatory genes, and miRs expression were examined in the AT. We also used differentiated 3T3-L1 adipocytes for mechanistic in vitro studies. Results Microarray analysis allowed us to identify an altered set of miRs in the AT immune cells and Ingenuity pathway analysis (IPA) prediction demonstrated that miR-10a-3p expression was downregulated in AT immune cells in the HFD group as compared to ND. A molecular mimic of miR-10a-3p reduced expression of inflammatory M1 macrophages, cytokines, and chemokines, including transforming growth factor-beta 1 (TGF-β1), transcription factor Krüppel-like factor 4 (KLF4), and interleukin 17F (IL-17F) and induced expression of forkhead box P3 (FoxP3) in the immune cells isolated from AT of HFD-fed mice as compared to ND. In differentiated 3T3-L1 adipocytes, the miR-10a-3p mimics also reduced expression of proinflammatory genes and lipid accumulation, which plays a role in the dysregulation of AT function. In these cells, overexpression of miR-10a-3p reduced the expression of TGF-β1, Smad3, CHOP-10, and fatty acid synthase (FASN), relative to the control scramble miRs. Conclusion Our findings suggest that miR-10a-3p mimic mediates the TGF-β1/Smad3 signaling to improve metabolic markers and adipose inflammation. This study provides a new opportunity for the development of miR-10a-3p as a novel therapeutic for adipose inflammation, and its associated metabolic disorders.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amandeep Bajwa
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
25
|
Würfel M, Blüher M, Stumvoll M, Ebert T, Kovacs P, Tönjes A, Breitfeld J. Adipokines as Clinically Relevant Therapeutic Targets in Obesity. Biomedicines 2023; 11:biomedicines11051427. [PMID: 37239098 DOI: 10.3390/biomedicines11051427] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines provide an outstanding role in the comprehensive etiology of obesity and may link adipose tissue dysfunction to further metabolic and cardiovascular complications. Although several adipokines have been identified in terms of their physiological roles, many regulatory circuits remain unclear and translation from experimental studies to clinical applications has yet to occur. Nevertheless, due to their complex metabolic properties, adipokines offer immense potential for their use both as obesity-associated biomarkers and as relevant treatment strategies for overweight, obesity and metabolic comorbidities. To provide an overview of the current clinical use of adipokines, this review summarizes clinical studies investigating the potential of various adipokines with respect to diagnostic and therapeutic treatment strategies for obesity and linked metabolic disorders. Furthermore, an overview of adipokines, for which a potential for clinical use has been demonstrated in experimental studies to date, will be presented. In particular, promising data revealed that fibroblast growth factor (FGF)-19, FGF-21 and leptin offer great potential for future clinical application in the treatment of obesity and related comorbidities. Based on data from animal studies or other clinical applications in addition to obesity, adipokines including adiponectin, vaspin, resistin, chemerin, visfatin, bone morphogenetic protein 7 (BMP-7) and tumor necrosis factor alpha (TNF-α) provide potential for human clinical application.
Collapse
Affiliation(s)
- Marleen Würfel
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Thomas Ebert
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Peter Kovacs
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anke Tönjes
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Jana Breitfeld
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Hojeij B, Rousian M, Sinclair KD, Dinnyes A, Steegers-Theunissen RPM, Schoenmakers S. Periconceptional biomarkers for maternal obesity: a systematic review. Rev Endocr Metab Disord 2023; 24:139-175. [PMID: 36520252 PMCID: PMC10023635 DOI: 10.1007/s11154-022-09762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 12/23/2022]
Abstract
Periconceptional maternal obesity is linked to adverse maternal and neonatal outcomes. Identifying periconceptional biomarkers of pathways affected by maternal obesity can unravel pathophysiologic mechanisms and identify individuals at risk of adverse clinical outcomes. The literature was systematically reviewed to identify periconceptional biomarkers of the endocrine, inflammatory and one-carbon metabolic pathways influenced by maternal obesity. A search was conducted in Embase, Ovid Medline All, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases, complemented by manual search in PubMed until December 31st, 2020. Eligible studies were those that measured biomarker(s) in relation to maternal obesity, overweight/obesity or body mass index (BMI) during the periconceptional period (14 weeks preconception until 14 weeks post conception). The ErasmusAGE score was used to assess the quality of included studies. Fifty-one articles were included that evaluated over 40 biomarkers. Endocrine biomarkers associated with maternal obesity included leptin, insulin, thyroid stimulating hormone, adiponectin, progesterone, free T4 and human chorionic gonadotropin. C-reactive protein was associated with obesity as part of the inflammatory pathway, while the associated one-carbon metabolism biomarkers were folate and vitamin B12. BMI was positively associated with leptin, C-reactive protein and insulin resistance, and negatively associated with Free T4, progesterone and human chorionic gonadotropin. Concerning the remaining studied biomarkers, strong conclusions could not be established due to limited or contradictory data. Future research should focus on determining the predictive value of the optimal set of biomarkers for their use in clinical settings. The most promising biomarkers include leptin, adiponectin, human chorionic gonadotropin, insulin, progesterone and CRP.
Collapse
Affiliation(s)
- Batoul Hojeij
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Kevin D Sinclair
- School of Biosciences, Sutton Bonnington Campus, University of Nottingham, Leicestershire, LE12 6HD, UK
| | - Andras Dinnyes
- BioTalentum Ltd., Godollo, 2100, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6720, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, 2100, Hungary
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands.
| |
Collapse
|
27
|
Sun X, Qiu WW, Wu J, Ding SL, Wu RZ. Associations between the levels of circulating inflammatory adipokines and the risk of type 2 diabetes in Chinese male individuals: A case-control study. J Clin Lab Anal 2023; 37:e24875. [PMID: 37003602 PMCID: PMC10156094 DOI: 10.1002/jcla.24875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Whether the levels of circulating inflammatory adipokines affect the progression of type 2 diabetes (T2D) remains unclear. This study aimed to assess the association between circulating inflammatory adipokine levels and risk of T2D. METHODS This case-control study involved 130 individuals consisting of 66 healthy controls (Control group) and 64 patients with T2D (T2D group) in Lishui Municipal Central Hospital from January 2017 to June 2017. Multivariate logistic regression analysis was applied to assess the associations between circulating inflammatory adipokine levels and the risk of T2D. RESULTS There were significant differences in the levels of adiponectin (p = 0.013) and visfatin (p < 0.001) between the T2D and Control groups. In contrast, no significant differences in leptin (p = 0.113), TNF-α (p = 0.632), and IL-6 (p = 0.156) levels were found between the groups. Multivariate logistic regression indicated that elevated visfatin level was associated with an increased risk of T2D (OR: 3.543; 95% CI: 1.771-7.088; p < 0.001), while adiponectin (OR: 1.946; 95% CI: 0.925-4.094; p = 0.079), leptin (OR: 3.723; 95% CI: 0.788-17.583; p = 0.097), TNF-α (OR: 1.081; 95% CI: 0.911-1.281; p = 0.373), and IL-6 (OR: 0.878; 95% CI: 0.657-1.173; p = 0.379) were not associated with the risk of T2D. CONCLUSIONS This study found elevated visfatin levels are associated with an increased risk of T2D, while adiponectin, leptin, TNF-α, and IL-6 are not. These findings should be further verified by a large-scale prospective study.
Collapse
Affiliation(s)
- Xia Sun
- Department of Endocrinology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| | - Wei-Wen Qiu
- Department of Neurology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| | - Jing Wu
- Department of Endocrinology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| | - Shi-Ling Ding
- Department of Endocrinology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| | - Rong-Zhen Wu
- Department of Clinical Laboratory, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| |
Collapse
|
28
|
Kuang X, Shao X, Li H, Jiang D, Gao T, Yang J, Li K, Li D. Lipid extract from blue mussel (Mytilus edulis) improves glycemic traits in Chinese type 2 diabetic mellitus patients: a double-blind randomized controlled trial. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2970-2980. [PMID: 36409163 DOI: 10.1002/jsfa.12346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Studies have shown that blue mussel lipid extract (BMLE) has strong anti-inflammatory activity in both rheumatoid arthritis patients and animal arthritis models. Chronic inflammation was closely related to type 2 diabetes mellitus (T2DM). Though the beneficial effects cannot be completely attributed to n-3 polyunsaturated fatty acids, the aim of this study was to investigate whether BMLE can improve glycemic traits of T2DM patients. METHOD In a double-blind randomized controlled trial, 133 Chinese T2DM participants were randomized to either fish oil (FO, n = 44), BMLE (n = 44), or corn oil (CO, n = 45) groups for 60 days. The participants were asked to take the corresponding oil capsules (two capsules per day, 0.8 g per capsule), which provided 1.6 g day-1 of FO (29.9% eicosapentaenoic acid + 20.4% docosahexaenoic acid), BMLE (20.7% eicosapentaenoic acid + 26.7% docosahexaenoic acid), or CO (53.5% linoleic acid). RESULTS The fasting serum concentration of insulin (P = 0.005) and the homeostasis model of insulin resistance (P = 0.026) were significantly decreased in the BMLE group, whereas no significant change was found in the FO or CO groups. There was no significant difference between groups on serum glycosylated hemoglobin. Tumor necrosis factor-α was significantly decreased in the BMLE group (P = 0.003), but not in the FO or CO groups. A significant decrease of interleukin-1β was observed in the BMLE and CO groups (P = 0.004 and P = 0.011 respectively), but not in the FO group. The total cholesterol was significantly decreased in the BMLE and CO groups (P < 0.001 and P < 0.001 respectively), but not in the FO group. Triacylglycerol was significantly decreased in the BMLE group (P = 0.007), but not in the FO or CO groups. High-density lipoprotein cholesterol was significantly lower in the BMLE and CO groups than in the FO group (P = 0.003). CONCLUSION Blue mussel lipid supplements improved glycemic traits, inflammatory cytokines, and lipids profile in Chinese T2DM patients (Chinese Clinical Trial Registration number: ChiCTR1900025617). © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xianfeng Shao
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Dongmei Jiang
- Health Service Center of Lingzhushan Community, Qingdao, China
| | - Tianlin Gao
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Jie Yang
- Health Service Center of Xinan Community, Qingdao, China
| | - Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Lutz TA. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nat Rev Endocrinol 2023; 19:350-360. [PMID: 36941447 DOI: 10.1038/s41574-023-00818-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Although no single animal model replicates all aspects of diabetes mellitus in humans, animal models are essential for the study of energy balance and metabolism control as well as to investigate the reasons for their imbalance that could eventually lead to overt metabolic diseases such as type 2 diabetes mellitus. The most frequently used animal models in diabetes mellitus research are small rodents that harbour spontaneous genetic mutations or that can be manipulated genetically or by other means to influence their nutrient metabolism and nutrient handling. Non-rodent species, including pigs, cats and dogs, are also useful models in diabetes mellitus research. This Review will outline the advantages and disadvantages of selected animal models of diabetes mellitus to build a basis for their most appropriate use in biomedical research.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.
| |
Collapse
|
30
|
Hayden MR. Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina (B Aires) 2023; 59:medicina59030561. [PMID: 36984562 PMCID: PMC10059871 DOI: 10.3390/medicina59030561] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic syndrome (MetS) is considered a metabolic disorder that has been steadily increasing globally and seems to parallel the increasing prevalence of obesity. It consists of a cluster of risk factors which traditionally includes obesity and hyperlipidemia, hyperinsulinemia, hypertension, and hyperglycemia. These four core risk factors are associated with insulin resistance (IR) and, importantly, the MetS is known to increase the risk for developing cerebrocardiovascular disease and type 2 diabetes mellitus. The MetS had its early origins in IR and syndrome X. It has undergone numerous name changes, with additional risk factors and variables being added over the years; however, it has remained as the MetS worldwide for the past three decades. This overview continues to add novel insights to the MetS and suggests that leptin resistance with hyperleptinemia, aberrant mitochondrial stress and reactive oxygen species (ROS), impaired folate-mediated one-carbon metabolism with hyperhomocysteinemia, vascular stiffening, microalbuminuria, and visceral adipose tissues extracellular vesicle exosomes be added to the list of associated variables. Notably, the role of a dysfunctional and activated endothelium and deficient nitric oxide bioavailability along with a dysfunctional and attenuated endothelial glycocalyx, vascular inflammation, systemic metainflammation, and the important role of ROS and reactive species interactome are discussed. With new insights and knowledge regarding the MetS comes the possibility of new findings through further research.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
31
|
Cacciatore I, Spalletta S, Di Rienzo A, Flati V, Fornasari E, Pierdomenico L, Del Boccio P, Valentinuzzi S, Costantini E, Toniato E, Martinotti S, Conte C, Di Stefano A, Robuffo I. Anti-Obesity and Anti-Inflammatory Effects of Novel Carvacrol Derivatives on 3T3-L1 and WJ-MSCs Cells. Pharmaceuticals (Basel) 2023; 16:340. [PMID: 36986440 PMCID: PMC10055808 DOI: 10.3390/ph16030340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Obesity, a complex metabolic disease resulting from an imbalance between food consumption and energy expenditure, leads to an increase in adipocytes and chronic inflammatory conditions. The aim of this paper was to synthesize a small series of carvacrol derivatives (CD1-3) that are able to reduce both adipogenesis and the inflammatory status often associated with the progression of the obesity disease. (2) Methods: The synthesis of CD1-3 was performed using classical procedures in a solution phase. Biological studies were performed on three cell lines: 3T3-L1, WJ-MSCs, and THP-1. The anti-adipogenic properties of CD1-3 were evaluated using western blotting and densitometric analysis by assessing the expression of obesity-related proteins, such as ChREBP. The anti-inflammatory effect was estimated by measuring the reduction in TNF-α expression in CD1-3-treated THP-1 cells. (3) Results: CD1-3-obtained through a direct linkage between the carboxylic moiety of anti-inflammatory drugs (Ibuprofen, Flurbiprofen, and Naproxen) and the hydroxyl group of carvacrol-have an inhibitory effect on the accumulation of lipids in both 3T3-L1 and WJ-MSCs cell cultures and an anti-inflammatory effect by reducing TNF- α levels in THP-1 cells. (4) Conclusions: Considering the physicochemical properties, stability, and biological data, the CD3 derivative-obtained by a direct linkage between carvacrol and naproxen-resulted in the best candidate, displaying anti-obesity and anti-inflammatory effects in vitro.
Collapse
Affiliation(s)
- Ivana Cacciatore
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sonia Spalletta
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa Di Rienzo
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Erika Fornasari
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Pierdomenico
- Department of Medicine and Aging Sciences, Center on Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Erica Costantini
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Elena Toniato
- Department of Innovative Technology in Medicine and Odontoiatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Martinotti
- Department of Innovative Technology in Medicine and Odontoiatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Iole Robuffo
- Department of Medicine and Aging Sciences, Center on Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute of Molecular Genetics “Luigi Luca Cavalli Sforza”, National Research Council, Section of Chieti, 66100 Chieti, Italy
| |
Collapse
|
32
|
Hepatokines and Adipokines in Metabolic Syndrome. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2023. [DOI: 10.1055/s-0042-1760087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
AbstractHepatokines and adipokines are secretory proteins derived from hepatocytes and adipocytes, respectively. These proteins play a main role in the pathogenesis of metabolic syndrome (MetS), characterized by obesity, dysglycemia, insulin resistance, dyslipidemia, and hypertension. Adipose tissue and liver are important endocrine organs because they regulate metabolic homeostasis as well as inflammation because they secrete adipokines and hepatokines, respectively. These adipokines and hepatokines communicate their action through different autocrine, paracrine and endocrine pathways. Liver regulates systemic homeostasis and also glucose and lipid metabolism through hepatokines. Dysregulation of hepatokines can lead to progression toward MetS, type 2 diabetes (T2D), inflammation, hypertension, and other diseases. Obesity is now a worldwide epidemic. Increasing cases of obesity and obesity-associated metabolic syndrome has brought the focus on understanding the biology of adipocytes and the mechanisms occurring in adipose tissue of obese individuals. A lot of facts are now available on adipose tissue as well. Adipose tissue is now given the status of an endocrine organ. Recent evidence indicates that obesity contributes to systemic metabolic dysfunction. Adipose tissue plays a significant role in systemic metabolism by communicating with other central and peripheral organs via the production and secretion of a group of proteins known as adipokines. Adipokine levels regulate metabolic state of our body and are potent enough to have a direct impact upon energy homeostasis and systemic metabolism. Dysregulation of adipokines contribute to obesity, T2D, hypertension and several other pathological changes in various organs. This makes characterization of hepatokines and adipokines extremely important to understand the pathogenesis of MetS. Hepatokines such as fetuin-A and leukocyte cell-derived chemotaxin 2, and adipokines such as resistin, leptin, TNF-α, and adiponectin are some of the most studied proteins and they can modulate the manifestations of MetS. Detailed insight into the function and mechanism of these adipokines and hepatokines in the pathogenesis of MetS can show the path for devising better preventative and therapeutic strategies against this present-day pandemic.
Collapse
|
33
|
Tattersall MC, Lee KE, Tsuchiya N, Osman F, Korcarz CE, Hansen KM, Peters MC, Fahy JV, Longhurst CA, Dunican E, Wentzel SE, Leader JK, Israel E, Levy BD, Castro M, Erzurum SC, Lempel J, Moore WC, Bleecker ER, Phillips BR, Mauger DT, Hoffman EA, Fain SB, Reeder SB, Sorkness RL, Jarjour NN, Denlinger LC, Schiebler ML. Skeletal Muscle Adiposity and Lung Function Trajectory in the Severe Asthma Research Program. Am J Respir Crit Care Med 2023; 207:475-484. [PMID: 36194556 PMCID: PMC9940151 DOI: 10.1164/rccm.202203-0597oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/04/2022] [Indexed: 01/05/2023] Open
Abstract
Rationale: Extrapulmonary manifestations of asthma, including fatty infiltration in tissues, may reflect systemic inflammation and influence lung function and disease severity. Objectives: To determine if skeletal muscle adiposity predicts lung function trajectory in asthma. Methods: Adult SARP III (Severe Asthma Research Program III) participants with baseline computed tomography imaging and longitudinal postbronchodilator FEV1% predicted (median follow-up 5 years [1,132 person-years]) were evaluated. The mean of left and right paraspinous muscle density (PSMD) at the 12th thoracic vertebral body was calculated (Hounsfield units [HU]). Lower PSMD reflects higher muscle adiposity. We derived PSMD reference ranges from healthy control subjects without asthma. A linear multivariable mixed-effects model was constructed to evaluate associations of baseline PSMD and lung function trajectory stratified by sex. Measurements and Main Results: Participants included 219 with asthma (67% women; mean [SD] body mass index, 32.3 [8.8] kg/m2) and 37 control subjects (51% women; mean [SD] body mass index, 26.3 [4.7] kg/m2). Participants with asthma had lower adjusted PSMD than control subjects (42.2 vs. 55.8 HU; P < 0.001). In adjusted models, PSMD predicted lung function trajectory in women with asthma (β = -0.47 Δ slope per 10-HU decrease; P = 0.03) but not men (β = 0.11 Δ slope per 10-HU decrease; P = 0.77). The highest PSMD tertile predicted a 2.9% improvement whereas the lowest tertile predicted a 1.8% decline in FEV1% predicted among women with asthma over 5 years. Conclusions: Participants with asthma have lower PSMD, reflecting greater muscle fat infiltration. Baseline PSMD predicted lung function decline among women with asthma but not men. These data support an important role of metabolic dysfunction in lung function decline.
Collapse
Affiliation(s)
| | | | - Nanae Tsuchiya
- Division of Cardiothoracic Imaging, Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin
- Department of Radiology, School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | | | | | - Michael C. Peters
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - John V. Fahy
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Eleanor Dunican
- Department of Medicine, School of Medicine, University College Dublin, Dublin, Ireland
- St. Vincent’s Hospital Elm Park, Dublin, Ireland
| | - Sally E. Wentzel
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Joseph K. Leader
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elliot Israel
- Division of Pulmonary and Critical Care and
- Division of Allergy and Immunology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Jason Lempel
- Department of Radiology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Wendy C. Moore
- Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Department of Internal Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Eugene R. Bleecker
- Division of Genetics and
- Division of Pharmacokinetics, Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona
| | - Brenda R. Phillips
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania; and
| | - David T. Mauger
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania; and
| | - Eric A. Hoffman
- Department of Biomedical Engineering
- Department of Radiology, and
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | | | | | - Nizar N. Jarjour
- Division of Pulmonary Medicine and Critical Care
- Department of Medicine
| | | | - Mark L. Schiebler
- Division of Cardiothoracic Imaging, Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin
| |
Collapse
|
34
|
Xu J, Wei Y, Huang Y, Wei X. Regulatory Effects and Molecular Mechanisms of Tea and Its Active Compounds on Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3103-3124. [PMID: 36773311 DOI: 10.1021/acs.jafc.2c07702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease, is a multifactorial disease resulting from the interaction between environment, genetic background, and metabolic stress. Most treatments for NAFLD include dietary intervention and exercise show limited efficacy due to the complex mechanisms involved in NAFLD. Meanwhile, drug therapy is accompanied by serious side effects. The development of high-efficiency natural supplements is a sustainable strategy for the prevention and treatment of NAFLD. As the second most consumed beverage, tea has health benefits that have been widely recognized. Nevertheless, the intervention of tea active compounds in NAFLD has received limited attention. Tea contains abundant bioactive compounds with potential effects on NAFLD, such as catechins, flavonoids, theanine, tea pigments, and tea polysaccharides. We reviewed the intrinsic and environmental factors and pathogenic mechanisms that affect the occurrence and development of NAFLD, and summarized the influences of exercise, drugs, diet, and tea drinking on NAFLD. On this basis, we further analyzed the potential effects and molecular regulatory mechanisms of tea active compounds on NAFLD and proposed future development directions. This review hopes to provide novel insights into the development and application of tea active compounds in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200240, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
35
|
Tognolli K, Silva V, Sousa-Filho CPB, Cardoso CAL, Gorjão R, Otton R. Green tea beneficial effects involve changes in the profile of immune cells in the adipose tissue of obese mice. Eur J Nutr 2023; 62:321-336. [PMID: 35994086 DOI: 10.1007/s00394-022-02963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE During obesity, the adipose tissue is usually infiltrated by immune cells which are related to hallmarks of obesity such as systemic inflammation and insulin resistance (IR). Green tea (GT) has been widely studied for its anti-inflammatory actions, including the modulation in the proliferation and activity of immune cells, in addition to preventing cardiovascular and metabolic diseases. METHODS The aim of the present study was to analyze the population of immune cells present in the subcutaneous and epididymal white adipose tissue (WAT) of mice kept at thermoneutrality (TN) and fed with a high-fat diet (HFD) for 16 weeks, supplemented or not with GT extract (500 mg/kg/12 weeks). RESULTS The HFD in association with TN has induced chronic inflammation, and IR in parallel with changes in the profile of immune cells in the subcutaneous and epidydimal WAT, increasing pro-inflammatory cytokines release, inflammatory cells infiltration, and fibrotic aspects in WAT. On the other hand, GT prevented body weight gain, in addition to avoiding IR and inflammation, and the consequent tissue fibrosis, maintaining a lower concentration of cytokines and a profile of immune cells similar to the control mice, preventing the harmful modulations induced by both HFD and TN. CONCLUSIONS GT beneficial effects in WAT abrogated the deleterious effects triggered by HFD and TN, maintaining all immune cells and fibrotic markers at the same level as in lean mice. These results place WAT immune cells population as a potential target of GT action, also highlighting the positive effects of GT in obese mice housed at TN.
Collapse
Affiliation(s)
- Kaue Tognolli
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Victoria Silva
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Celso Pereira Batista Sousa-Filho
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | | | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Rosemari Otton
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil.
| |
Collapse
|
36
|
McAllister MJ, Gonzalez DE, Leonard M, Martaindale MH, Bloomer RJ, Pence J, Martin SE. Risk Factors for Cardiometabolic Disease in Professional Firefighters. J Occup Environ Med 2023; 65:119-124. [PMID: 36315015 DOI: 10.1097/jom.0000000000002743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Firefighters are plagued with cardiometabolic disease (CMD). Obesity, poor cardiorespiratory and muscular fitness, and blood lipids (low-density lipoprotein cholesterol, triglycerides, low high-density lipoprotein cholesterol) are risk factors for CMD. However, markers of oxidative stress, inflammation, and insulin resistance can provide further insight regarding CMD risk. METHODS This study investigated the relationships between fitness metrics (cardiorespiratory and muscular fitness, percent body fat, waist circumference), blood lipids, blood pressure, and years of experience as a firefighter to blood markers of insulin resistance: Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), oxidative stress: advanced oxidation protein products (AOPPs), and inflammation: C-reactive protein. RESULTS Waist circumference and blood concentrations of triglycerides were significantly related to AOPPs and HOMA-IR. Cardiorespiratory fitness was inversely related to AOPPs, HOMA-IR and C-reactive protein. CONCLUSION These findings demonstrate the importance of high cardiorespiratory fitness and low waist circumference to reduce markers of CMD.
Collapse
Affiliation(s)
- Matthew J McAllister
- From the Metabolic & Applied Physiology Laboratory, Department of Health & Human Performance, Texas State University, San Marcos, Texas (Dr McAllister); Department of Kinesiology and Sport Management, Texas A&M University, College Station, Texas (Mr Gonzalez, Ms Leonard, Dr Martin); ALERRT Center, Texas State University, San Marcos, Texas (Dr Martaindale); Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, Memphis, Tennessee (Dr Bloomer, Dr Pence)
| | | | | | | | | | | | | |
Collapse
|
37
|
Aldahhan RA, Motawei KH, Al-Hariri MT. Lipotoxicity-related sarcopenia: a review. J Med Life 2022; 15:1334-1339. [PMID: 36567835 PMCID: PMC9762358 DOI: 10.25122/jml-2022-0157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 12/27/2022] Open
Abstract
A body of literature supports the postulation that a persistent lipid metabolic imbalance causes lipotoxicity, "an abnormal fat storage in the peripheral organs". Hence, lipotoxicity could somewhat explain the process of sarcopenia, an aging-related, gradual, and involuntary decline in skeletal muscle strength and mass associated with several health complications. This review focuses on the recent mechanisms underlying lipotoxicity-related sarcopenia. A vicious cycle occurs between sarcopenia and ectopic fat storage via a complex interplay of mitochondrial dysfunction, pro-inflammatory cytokine production, oxidative stress, collagen deposition, extracellular matrix remodeling, and life habits. The repercussions of lipotoxicity exacerbation of sarcopenia can include increased disability, morbidity, and mortality. This suggests that appropriate lipotoxicity management should be considered the primary target for the prevention and/or treatment of chronic musculoskeletal and other aging-related disorders. Further advanced research is needed to understand the molecular details of lipotoxicity and its consequences for sarcopenia and sarcopenia-related comorbidities.
Collapse
Affiliation(s)
| | - Kamaluddin Hasan Motawei
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Taha Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia,Corresponding Author: Mohammed Taha Al-Hariri, Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. E-mail:
| |
Collapse
|
38
|
Mahdavi-Roshan M, Shoaibinobarian N, Noormohammadi M, Fakhr Mousavi A, Savar Rakhsh A, Salari A, Ghorbani Z. Inflammatory Markers and Atherogenic Coefficient: Early Markers of Metabolic Syndrome. Int J Endocrinol Metab 2022; 20:e127445. [PMID: 36714188 PMCID: PMC9871968 DOI: 10.5812/ijem-127445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Considering the close link between metabolic syndrome (MetSyn) and cardiovascular diseases, considerable attention has been devoted to the identification of their shared underlying pathological mechanisms in recent decades. OBJECTIVES This study aimed to investigate the association between pro-inflammatory factors and newly-diagnosed MetSyn. METHODS This case-control study recruited obese and nonobese individuals who were newly diagnosed with MetSyn (cases, n = 84) and healthy individuals (controls, n = 83). The medical and sociodemographic data of the participants were collected on enrollment. Serum analysis was performed to ascertain the concentrations of tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), fasting blood sugar (FBS), total cholesterol, triglyceride, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and atherogenic coefficient (AC). Multiple regression analysis was carried out to explore the relationship between inflammatory markers and AC with MetSyn odds. The Pearson correlation test was also performed to investigate the correlations between metabolic and inflammatory parameters. RESULTS Positive relationships were observed between the serum levels of TNF-α and CRP with the odds of MetSyn following controlling for confounders (adjusted odds ratio [AOR] = 1.32; 95% confidence interval [CI]: 1.01 - 1.72; AOR = 1.29; 95% CI: 1.18 - 1.41; respectively, P ≤ 0.03). Additionally, higher AC was accompanied by increased odds of MetSyn (AOR = 1.98; 95% CI: 1.31 - 2.98; P = 0.001). The Pearson correlation analysis also showed positive correlations between TNF-α levels and serum metabolic abnormalities, including elevated LDL-C, FBS, and AC and lowered HDL-C levels (P ≤ 0.02). CONCLUSIONS The present results revealed that higher serum concentrations of pro-inflammatory and atherogenic indices, including CRP, TNF-α, and AC, might be associated with elevated odds of newly diagnosed MetSyn regardless of potential confounders, particularly body mass index. The obtained findings might be moderated by the positive correlations observed between serum TNF-α, as the chronic inflammatory state indicator, and impaired lipid and glycemic markers.
Collapse
Affiliation(s)
- Marjan Mahdavi-Roshan
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nargeskhatoon Shoaibinobarian
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Morvarid Noormohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Aboozar Fakhr Mousavi
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Savar Rakhsh
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Corresponding Author: Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
39
|
Lee IS, Ko SJ, Lee YN, Lee G, Rahman MH, Kim B. The Effect of Laminaria japonica on Metabolic Syndrome: A Systematic Review of Its Efficacy and Mechanism of Action. Nutrients 2022; 14:3046. [PMID: 35893900 PMCID: PMC9370431 DOI: 10.3390/nu14153046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Metabolic syndrome (MetS) is a medical condition characterized by abdominal obesity, insulin resistance, high blood pressure, and hyperlipidemia. An increase in the incidence of MetS provokes an escalation in health care costs and a downturn in quality of life. However, there is currently no cure for MetS, and the absence of immediate treatment for MetS has prompted the development of novel therapies. In accordance with recent studies, the brown seaweed Laminaria japonica (LJP) has anti-inflammatory and antioxidant properties, and so forth. LJP contains bioactive compounds used as food globally, and it has been used as a medicine in East Asian countries. We conducted a systematic review to examine whether LJP could potentially be a useful therapeutic drug for MetS. The following databases were searched from initiation to September 2021: PubMed, Web of Science, EMBASE, and Cochrane Central Register of Controlled Trials Library. Clinical trials and in vivo studies evaluating the effects of LJP on MetS were included. LJP reduces the oxidative stress-related lipid mechanisms, inflammatory cytokines and macrophage-related chemokines, muscle cell proliferation, and migration. Bioactive-glucosidase inhibitors reduce diabetic complications, a therapeutic target in obesity and type 2 diabetes. In obesity, LJP increases AMP-activated protein kinase and decreases acetyl-CoA carboxylase. Based on our findings, we suggest that LJP could treat MetS, as it has pharmacological effects on MetS.
Collapse
Affiliation(s)
- In-Seon Lee
- Department of Meridians and Acupoints, College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea;
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea;
| | - Yu Na Lee
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Gahyun Lee
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Md. Hasanur Rahman
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| |
Collapse
|
40
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
41
|
Sugawara Y, Hirakawa Y, Mise K, Kashiwabara K, Hanai K, Yamaguchi S, Katayama A, Onishi Y, Yoshida Y, Kashihara N, Matsuyama Y, Babazono T, Nangaku M, Wada J. Analysis of inflammatory cytokines and estimated glomerular filtration rate decline in Japanese patients with diabetic kidney disease: a pilot study. Biomark Med 2022; 16:759-770. [PMID: 35583042 DOI: 10.2217/bmm-2021-1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: It is important to identify additional prognostic factors for diabetic kidney disease. Materials & methods: Baseline levels of ten cytokines (APRIL/TNFSF13, BAFF/TNFSF13B, chitinase 3-like 1, LIGHT/TNFSF14, TWEAK/TNFSF12, gp130/sIL-6Rβ, sCD163, sIL-6Rα, sTNF-R1, sTNF-R2) were measured in two cohorts of diabetic patients. In one cohort (n = 777), 156 individuals were randomly sampled after stratification and their plasma samples were analyzed; in the other cohort (n = 69), serum samples were analyzed in all the individuals. The levels of cytokines between rapid (estimated glomerular filtration rate decline >5 ml/min/1.73 m2/year) and non-rapid decliners were compared. Results: Multivariate analysis demonstrated significantly high levels of LIGHT/TNFSF14, TWEAK/TNFSF12 and sTNF-R2 in rapid decliners. Conclusion: These three cytokines can be potential biomarkers for the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Yuka Sugawara
- Division of Nephrology & Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, 113 8655, Japan
| | - Yosuke Hirakawa
- Division of Nephrology & Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, 113 8655, Japan
| | - Koki Mise
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, 700 8558, Japan
| | - Kosuke Kashiwabara
- Data Science Office, Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, 113 8655, Japan
| | - Ko Hanai
- Diabetes Center, Tokyo Women's Medical University School of Medicine, Tokyo, 162 8666, Japan
| | - Satoshi Yamaguchi
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, 700 8558, Japan
| | - Akihiro Katayama
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, 700 8558, Japan
| | - Yasuhiro Onishi
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, 700 8558, Japan
| | - Yui Yoshida
- Division of Nephrology & Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, 113 8655, Japan
| | - Naoki Kashihara
- Department of Nephrology & Hypertension, Kawasaki Medical School, Kurashiki, 701 0192, Japan
| | - Yutaka Matsuyama
- Department of Biostatistics, The University of Tokyo, Tokyo, 113 0033, Japan
| | - Tetsuya Babazono
- Diabetes Center, Tokyo Women's Medical University School of Medicine, Tokyo, 162 8666, Japan
| | - Masaomi Nangaku
- Division of Nephrology & Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, 113 8655, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, 700 8558, Japan
| |
Collapse
|
42
|
Adipose mitochondrial metabolism controls body growth by modulating systemic cytokine and insulin signaling. Cell Rep 2022; 39:110802. [PMID: 35545043 DOI: 10.1016/j.celrep.2022.110802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Animals must adapt their growth to fluctuations in nutrient availability to ensure proper development. These adaptations often rely on specific nutrient-sensing tissues that control whole-body physiology through inter-organ communication. While the signaling mechanisms that underlie this communication are well studied, the contributions of metabolic alterations in nutrient-sensing tissues are less clear. Here, we show how the reprogramming of adipose mitochondria controls whole-body growth in Drosophila larvae. We find that dietary nutrients alter fat-body mitochondrial morphology to lower their bioenergetic activity, leading to rewiring of fat-body glucose metabolism. Strikingly, we find that genetic reduction of mitochondrial bioenergetics just in the fat body is sufficient to accelerate body growth and development. These growth effects are caused by inhibition of the fat-derived secreted peptides ImpL2 and tumor necrosis factor alpha (TNF-α)/Eiger, leading to enhanced systemic insulin signaling. Our work reveals how reprogramming of mitochondrial metabolism in one nutrient-sensing tissue can couple nutrient availability to whole-body growth.
Collapse
|
43
|
|
44
|
Baraskar K, Thakur P, Shrivastava R, Shrivastava VK. Female obesity: Association with endocrine disruption and reproductive dysfunction. OBESITY MEDICINE 2021; 28:100375. [DOI: 10.1016/j.obmed.2021.100375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Abstract
Obesity is a major risk factor for the development of comorbidities such as type 2 diabetes, neurodegenerative disorders, osteoarthritis, cancer, cardiovascular and renal diseases. The onset of obesity is linked to an increase of senescent cells within adipose tissue and other organs. Cellular senescence is a stress response that has been shown to be causally linked to aging and development of various age-related diseases such as obesity. The senescence-associated-secretory phenotype of senescent cells creates a chronic inflammatory milieu that leads to local and systemic dysfunction. The elimination of senescent cells using pharmacological approaches (i.e., senolytics) has been shown to delay, prevent, or alleviate obesity-related organ dysfunction.
Collapse
Affiliation(s)
- Selim Chaib
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
46
|
Pediatric Obesity-Related Asthma: The Role of Nutrition and Nutrients in Prevention and Treatment. Nutrients 2021; 13:nu13113708. [PMID: 34835964 PMCID: PMC8620690 DOI: 10.3390/nu13113708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022] Open
Abstract
Childhood obesity rates have dramatically risen in numerous countries worldwide. Obesity is likely a factor in increased asthma risk, which is already one of the most widespread chronic respiratory pathologies. The pathogenic mechanism of asthma risk has still not yet been fully elucidated. Moreover, the role of obesity-related inflammation and pulmonary overreaction to environmental triggers, which ultimately result in asthma-like symptoms, and the importance of dietary characteristics is well recognized. Diet is an important adjustable element in the asthma development. Food-specific composition of the diet, in particular fat, sugar, and low-quality nutrients, is likely to promote the chronic inflammatory state seen in asthmatic patients with obesity. An unbalanced diet or supplementation as a way to control asthma more efficiently has been described. A personalized dietary intervention may improve respiratory symptoms and signs and therapeutic response. In this narrative review, we presented and discussed more recent literature on asthma associated with obesity among children, focusing on the risk of asthma among children with obesity, asthma as a result of obesity focusing on the role of adipose tissue as a mediator of systemic and local airway inflammation implicated in asthma regulation, and the impact of nutrition and nutrients in the development and treatment of asthma. Appropriate early nutritional intervention could possibly be critical in preventing and managing asthma associated with obesity among children.
Collapse
|
47
|
Chen Y, Kassam I, Lau SH, Kooner JS, Wilson R, Peters A, Winkelmann J, Chambers JC, Chow VT, Khor CC, van Dam RM, Teo YY, Loh M, Sim X. Impact of BMI and waist circumference on epigenome-wide DNA methylation and identification of epigenetic biomarkers in blood: an EWAS in multi-ethnic Asian individuals. Clin Epigenetics 2021; 13:195. [PMID: 34670603 PMCID: PMC8527674 DOI: 10.1186/s13148-021-01162-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/29/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The prevalence of obesity and its related chronic diseases have been increasing especially in Asian countries. Obesity-related genetic variants have been identified, but these explain little of the variation in BMI. Recent studies reported associations between DNA methylation and obesity, mostly in non-Asian populations. METHODS We performed an epigenome-wide association study (EWAS) on general adiposity (body mass index, BMI) and abdominal adiposity (waist circumference, WC) in 409 multi-ethnic Asian individuals and replicated BMI and waist-associated DNA methylation CpGs identified in other populations. The cross-lagged panel model and Mendelian randomization were used to assess the temporal relationship between methylation and BMI. The temporal relationship between the identified CpGs and inflammation and metabolic markers was also examined. RESULTS EWAS identified 116 DNA methylation CpGs independently associated with BMI and eight independently associated with WC at false discovery rate PFDR < 0.05 in 409 Asian samples. We replicated 110 BMI-associated CpGs previously reported in Europeans and identified six novel BMI-associated CpGs and two novel WC-associated CpGs. We observed high consistency in association direction of effect compared to studies in other populations. Causal relationship analyses indicated that BMI was more likely to be the cause of DNA methylation alteration, rather than the consequence. The causal analyses using BMI-associated methylation risk score also suggested that higher levels of the inflammation marker IL-6 were likely the consequence of methylation change. CONCLUSION Our study provides evidence of an association between obesity and DNA methylation in multi-ethnic Asians and suggests that obesity can drive methylation change. The results also suggested possible causal influence that obesity-related methylation changes might have on inflammation and lipoprotein levels.
Collapse
Affiliation(s)
- Yuqing Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Tahir Foundation Building, Singapore, 117549, Singapore
| | - Irfahan Kassam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Tahir Foundation Building, Singapore, 117549, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Suk Hiang Lau
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rory Wilson
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- Lehrstuhl Für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - John C Chambers
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Level 18, Lee Kong Chian Clinical Science Building, Singapore, 308232, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Vincent T Chow
- National University Health System Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Tahir Foundation Building, Singapore, 117549, Singapore
- Department of Nutrition and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Tahir Foundation Building, Singapore, 117549, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Level 18, Lee Kong Chian Clinical Science Building, Singapore, 308232, Singapore.
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
- National Skin Centre, Singapore, Singapore.
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Tahir Foundation Building, Singapore, 117549, Singapore.
| |
Collapse
|
48
|
PCOS and Depression: Common Links and Potential Targets. Reprod Sci 2021; 29:3106-3123. [PMID: 34642910 DOI: 10.1007/s43032-021-00765-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
PCOS or polycystic ovary syndrome is a common endocrine disorder that occurs during the reproductive age in females. It manifests in the form of a wide range of symptoms including (but not limited to) hirsutism, amenorrhea, oligomenorrhea, obesity, acne vulgaris, infertility, alopecia, and insulin resistance. The incidence of depression in PCOS population is increasing as compared to the general population. Increased depression in PCOS significantly alters the quality of life (QOL) of affected females. Also, self-esteem is found to be low in both depression and PCOS. The loss in self-esteem in such patients can be largely attributed to the associated factors including (but not limited to) obesity, acne, androgenic alopecia, and hirsutism. The reason behind the occurrence of depression in PCOS remains elusive to date. Literature suggests that there is an overlap of clinical symptoms between depression and PCOS. As the symptoms overlap, there is a possibility of common associations between depression, PCOS, and PCOS-associated abnormalities including insulin resistance (IR), obesity, CVD, and androgen excess. Studies demonstrate that depression is an inflammatory disorder marked with increased levels of inflammatory markers. On the other hand, PCOS is also regarded as a pro-inflammatory state that is characterized by increased levels of pro-inflammatory markers. Thus, there is a possibility of an inflammatory relationship existing between depression and PCOS. It is also possible that the inflammatory markers in PCOS can cross the blood-brain barrier (BBB) leading to the development of depression. Through the present review, we have attempted to shed light on common associations/shared links between depression and PCOS with respect to the levels of cortisol, androgen, vitamin D, neurotransmitters, monoaminoxidase (MAO), and insulin-like growth factor-1 (IGF-1). Tracking down common associations between depression and PCOS will help find potential drug therapies and improve the QOL of females with depression in PCOS.
Collapse
|
49
|
Akhter N, Wilson A, Thomas R, Al-Rashed F, Kochumon S, Al-Roub A, Arefanian H, Al-Madhoun A, Al-Mulla F, Ahmad R, Sindhu S. ROS/TNF-α Crosstalk Triggers the Expression of IL-8 and MCP-1 in Human Monocytic THP-1 Cells via the NF-κB and ERK1/2 Mediated Signaling. Int J Mol Sci 2021; 22:10519. [PMID: 34638857 PMCID: PMC8508672 DOI: 10.3390/ijms221910519] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023] Open
Abstract
IL-8/MCP-1 act as neutrophil/monocyte chemoattractants, respectively. Oxidative stress emerges as a key player in the pathophysiology of obesity. However, it remains unclear whether the TNF-α/oxidative stress interplay can trigger IL-8/MCP-1 expression and, if so, by which mechanism(s). IL-8/MCP-1 adipose expression was detected in lean, overweight, and obese individuals, 15 each, using immunohistochemistry. To detect the role of reactive oxygen species (ROS)/TNF-α synergy as a chemokine driver, THP-1 cells were stimulated with TNF-α, with/without H2O2 or hypoxia. Target gene expression was measured by qRT-PCR, proteins by flow cytometry/confocal microscopy, ROS by DCFH-DA assay, and signaling pathways by immunoblotting. IL-8/MCP-1 adipose expression was significantly higher in obese/overweight. Furthermore, IL-8/MCP-1 mRNA/protein was amplified in monocytic cells following stimulation with TNF-α in the presence of H2O2 or hypoxia (p ˂ 0.0001). Synergistic chemokine upregulation was related to the ROS levels, while pre-treatments with NAC suppressed this chemokine elevation (p ≤ 0.01). The ROS/TNF-α crosstalk involved upregulation of CHOP, ERN1, HIF1A, and NF-κB/ERK-1,2 mediated signaling. In conclusion, IL-8/MCP-1 adipose expression is elevated in obesity. Mechanistically, ROS/TNF-α crosstalk may drive expression of these chemokines in monocytic cells by inducing ER stress, HIF1A stabilization, and signaling via NF-κB/ERK-1,2. NAC had inhibitory effect on oxidative stress-driven IL-8/MCP-1 expression, which may have therapeutic significance regarding meta-inflammation.
Collapse
Affiliation(s)
- Nadeem Akhter
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Ajit Wilson
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Reeby Thomas
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Shihab Kochumon
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Areej Al-Roub
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Hossein Arefanian
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Ashraf Al-Madhoun
- Department of Genetics & Bioinformatics, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (A.A.-M.); (F.A.-M.)
- Animal & Imaging Core Facility, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics & Bioinformatics, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (A.A.-M.); (F.A.-M.)
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Sardar Sindhu
- Animal & Imaging Core Facility, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
50
|
Quantitative Proteomics and Phosphoproteomics Reveal TNF-α-Mediated Protein Functions in Hepatocytes. Molecules 2021; 26:molecules26185472. [PMID: 34576943 PMCID: PMC8464716 DOI: 10.3390/molecules26185472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Increased secretion of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNFα), is often associated with adipose tissue dysregulation, which often accompanies obesity. High levels of TNFα have been linked to the development of insulin resistance in several tissues and organs, including skeletal muscle and the liver. In this study, we examined the complex regulatory roles of TNFα in murine hepatocytes utilizing a combination of global proteomic and phosphoproteomic analyses. Our results show that TNFα promotes extensive changes not only of protein levels, but also the dynamics of their downstream phosphorylation signaling. We provide evidence that TNFα induces DNA replication and promotes G1/S transition through activation of the MAPK pathway. Our data also highlight several other novel proteins, many of which are regulated by phosphorylation and play a role in the progression and development of insulin resistance in hepatocytes.
Collapse
|