1
|
Wang B, Zhao JL, Cai WY, Wang GY, Li YZ, Wang JS, Xie HT, Zhang MC. Progress in Transdifferentiation of Autologous Alternative Cell Sources into Corneal Epithelial Cells. Stem Cell Rev Rep 2025; 21:226-235. [PMID: 39480612 PMCID: PMC11762461 DOI: 10.1007/s12015-024-10808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Corneal limbal epithelial stem cells (LESCs) play a crucial role in corneal epithelium regeneration. Severe damage to these cells can result in limbal stem cell deficiency (LSCD), characterized by repeated corneal conjunctivalization, leading to corneal turbidity and scar formation. Restoring functional LESCs and their ecological location are essential for treating LSCD. The goal of this review is to provide researchers and clinicians with key insights into LESCs biology and to conclude the current cell-based therapies advancement in LSCD treatments. Therapeutic cell resources mainly include mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), skin keratinocyte stem cells (SKCs), and oral mucosal epithelial cells (OMECs).
Collapse
Affiliation(s)
- Bei Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiang-Lan Zhao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Ying Cai
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gong-Yue Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Zhi Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Song Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Visintin PV, Zampieri BL, Griesi-Oliveira K. Chemical transdifferentiation of somatic cells to neural cells: a systematic review. EINSTEIN-SAO PAULO 2024; 22:eRW0423. [PMID: 39661857 PMCID: PMC11634374 DOI: 10.31744/einstein_journal/2024rw0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/21/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Transdifferentiation is the conversion of a specific somatic cell into another cell type, bypassing a transient pluripotent state. This implies a faster method to generate cells of interest with the additional benefit of reduced tumorigenic risk for clinical use. OBJECTIVE We describe protocols that use small molecules as direct conversion inducers, without the need for exogenous factors, to evaluate the potential of cell transdifferentiation for pharmacological and clinical applications. METHODS In this systematic review, using PRISMA guidelines, we conducted a personalized search strategy in four databases (PubMed, Scopus, Embase, and Web Of Science), looking for experimental works that used exclusively small molecules for transdifferentiation of non-neural cell types into neural lineage cells. RESULTS We explored the main biological mechanisms involved in direct cell conversion induced by different small molecules used in 33 experimental in vitro and in vitro transdifferentiation protocols. We also summarize the main characteristics of these protocols, such as the chemical cocktails used, time for transdifferentiation, and conversion efficiency. CONCLUSION Small molecules-based protocols for neuronal transdifferentiation are reasonably safe, economical, accessible, and are a promising alternative for future use in regenerative medicine and pharmacology.
Collapse
Affiliation(s)
- Paulo Victor Visintin
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Bruna Lancia Zampieri
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Karina Griesi-Oliveira
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Mohanty SK, Singh K, Kumar M, Verma SS, Srivastava R, Gnyawali SC, Palakurti R, Sahi AK, El Masry MS, Banerjee P, Kacar S, Rustagi Y, Verma P, Ghatak S, Hernandez E, Rubin JP, Khanna S, Roy S, Yoder MC, Sen CK. Vasculogenic skin reprogramming requires TET-mediated gene demethylation in fibroblasts for rescuing impaired perfusion in diabetes. Nat Commun 2024; 15:10277. [PMID: 39604331 PMCID: PMC11603198 DOI: 10.1038/s41467-024-54385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Tissue nanotransfection (TNT) topically delivers Etv2, Foxc2, and Fli1 (EFF) plasmids increasing vasculogenic fibroblasts (VF) and promoting vascularization in ischemic murine skin. Human dermal fibroblasts respond to EFF nanoelectroporation with elevated expression of endothelial genes in vitro, which is linked to increased ten-eleven translocase 1/2/3 (TET) expression. Single cell RNA sequencing dependent validation of VF induction reveals a TET-dependent transcript signature. TNTEFF also induces TET expression in vivo, and fibroblast-specific EFF overexpression leads to VF-transition, with TET-activation correlating with higher 5-hydroxymethylcytosine (5-hmC) levels in VF. VF emergence requires TET-dependent demethylation of endothelial genes in vivo, enhancing VF abundance and restoring perfusion in diabetic ischemic limbs. TNTEFF improves perfusion and wound closure in diabetic mice, while increasing VF in cultured human skin explants. Suppressed in diabetes, TET1/2/3 play a critical role in TNT-mediated VF formation which supports de novo blood vessel development to rescue diabetic ischemic tissue.
Collapse
Affiliation(s)
- Sujit K Mohanty
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Manishekhar Kumar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sumit S Verma
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajneesh Srivastava
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Surya C Gnyawali
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ravichand Palakurti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ajay K Sahi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed S El Masry
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pradipta Banerjee
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Peter Rubin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Savita Khanna
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sashwati Roy
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mervin C Yoder
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Jun S, Song MH, Choi SC, Noh JM, Kim KS, Park JH, Yoon DE, Kim K, Kim M, Hwang SW, Lim DS. FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2-STAT3 signaling. Exp Mol Med 2024; 56:2231-2245. [PMID: 39349833 PMCID: PMC11541553 DOI: 10.1038/s12276-024-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2-STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2-STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2-STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Schematic showing FA enhances direct cardiac reprogramming and JAK-STAT3 signaling pathways underlying cardiomyocyte maturation.
Collapse
Affiliation(s)
- Seongmin Jun
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
- R&D Center for Companion Diagnostic, SOL Bio Corporation, Seoul, Republic of Korea
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minseok Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Mekhtiev AA, Asadova SM. Impact of dihydropyrimidinase-related protein 2 in memory formation on rats and its possible role in neuronal back remodeling. IBRO Neurosci Rep 2024; 16:155-161. [PMID: 38304064 PMCID: PMC10831146 DOI: 10.1016/j.ibneur.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
The article concerns the problem of molecular mechanisms of memory formation. In this study the effects of polyclonal antibodies to serotonin-modulating anticonsolidation protein (SMAP) complex and its component dihydropyrimidinase-related protein 2 (DRP2) have been analyzed. Intra-cerebral administration of polyclonal anti-SMAP antibody significantly enhanced elaboration and strengthened memory formation in two complex behavioral conditioned models. At the same time, intra-cerebral administration of anti-SMAP antibody resulted in an increase of the content of nerve growth factor (NGF) in the water-soluble fraction of the hippocampus while intra-cerebral administration of anti-DRP2 antibody caused a decrease in the content of β-III tubulin (a marker of differentiated neurons) in the hippocampus and in the left parietal cortex of untrained rats. The obtained results indicate that DRP2 might participate in regulation of the processes of back remodeling of mature nerve cells of adult organisms, occurring during training of rats in the behavioral paradigm used in this study under the effects of anti-SMAP and anti-DRP2 antibodies. Conclusion is made that back remodeling (dedifferentiation) of mature nerve cells, apparently, is engaged in memory formation.
Collapse
Affiliation(s)
- Arif A. Mekhtiev
- Academician Abdulla Garayev Institute of Physiology, Ministry of Science and Education, Baku, Azerbaijan
| | - Shamsiyya M. Asadova
- Academician Abdulla Garayev Institute of Physiology, Ministry of Science and Education, Baku, Azerbaijan
| |
Collapse
|
6
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
7
|
Clark IH, Roman A, Fellows E, Radha S, Var SR, Roushdy Z, Borer SM, Johnson S, Chen O, Borgida JS, Steevens A, Shetty A, Strell P, Low WC, Grande AW. Cell Reprogramming for Regeneration and Repair of the Nervous System. Biomedicines 2022; 10:2598. [PMID: 36289861 PMCID: PMC9599606 DOI: 10.3390/biomedicines10102598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
A persistent barrier to the cure and treatment of neurological diseases is the limited ability of the central and peripheral nervous systems to undergo neuroregeneration and repair. Recent efforts have turned to regeneration of various cell types through cellular reprogramming of native cells as a promising therapy to replenish lost or diminished cell populations in various neurological diseases. This review provides an in-depth analysis of the current viral vectors, genes of interest, and target cellular populations that have been studied, as well as the challenges and future directions of these novel therapies. Furthermore, the mechanisms by which cellular reprogramming could be optimized as treatment in neurological diseases and a review of the most recent cellular reprogramming in vitro and in vivo studies will also be discussed.
Collapse
Affiliation(s)
- Isaac H. Clark
- Department of Biomedical Engineering, Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex Roman
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily Fellows
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swathi Radha
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susanna R. Var
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary Roushdy
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel M. Borer
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha Johnson
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacob S. Borgida
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aleta Steevens
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anala Shetty
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cell, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Phoebe Strell
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Comparative and Molecular Sciences Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walter C. Low
- Department of Biomedical Engineering, Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cell, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Comparative and Molecular Sciences Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew W. Grande
- Department of Biomedical Engineering, Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Li B, Hon GC. Single-Cell Genomics: Catalyst for Cell Fate Engineering. Front Bioeng Biotechnol 2021; 9:748942. [PMID: 34733831 PMCID: PMC8558416 DOI: 10.3389/fbioe.2021.748942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
As we near a complete catalog of mammalian cell types, the capability to engineer specific cell types on demand would transform biomedical research and regenerative medicine. However, the current pace of discovering new cell types far outstrips our ability to engineer them. One attractive strategy for cellular engineering is direct reprogramming, where induction of specific transcription factor (TF) cocktails orchestrates cell state transitions. Here, we review the foundational studies of TF-mediated reprogramming in the context of a general framework for cell fate engineering, which consists of: discovering new reprogramming cocktails, assessing engineered cells, and revealing molecular mechanisms. Traditional bulk reprogramming methods established a strong foundation for TF-mediated reprogramming, but were limited by their small scale and difficulty resolving cellular heterogeneity. Recently, single-cell technologies have overcome these challenges to rapidly accelerate progress in cell fate engineering. In the next decade, we anticipate that these tools will enable unprecedented control of cell state.
Collapse
Affiliation(s)
- Boxun Li
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gary C. Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
9
|
Goals and Challenges of Stem Cell-Based Therapy for Corneal Blindness Due to Limbal Deficiency. Pharmaceutics 2021; 13:pharmaceutics13091483. [PMID: 34575560 PMCID: PMC8466237 DOI: 10.3390/pharmaceutics13091483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal failure is a highly prevalent cause of blindness. One special cause of corneal failure occurs due to malfunction or destruction of the limbal stem cell niche, upon which the superficial cornea depends for homeostatic maintenance and wound healing. Failure of the limbal niche is referred to as limbal stem cell deficiency. As the corneal epithelial stem cell niche is easily accessible, limbal stem cell-based therapy and regenerative medicine applied to the ocular surface are among the most highly advanced forms of this novel approach to disease therapy. However, the challenges are still great, including the development of cell-based products and understanding how they work in the patient's eye. Advances are being made at the molecular, cellular, and tissue levels to alter disease processes and to reduce or eliminate blindness. Efforts must be coordinated from the most basic research to the most clinically oriented projects so that cell-based therapies can become an integrated part of the therapeutic armamentarium to fight corneal blindness. We undoubtedly are progressing along the right path because cell-based therapy for eye diseases is one of the most successful examples of global regenerative medicine.
Collapse
|
10
|
Hywood JD, Sadeghipour S, Clayton ZE, Yuan J, Stubbs C, Wong JWT, Cooke JP, Patel S. Induced endothelial cells from peripheral arterial disease patients and neonatal fibroblasts have comparable angiogenic properties. PLoS One 2021; 16:e0255075. [PMID: 34375370 PMCID: PMC8354451 DOI: 10.1371/journal.pone.0255075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/11/2021] [Indexed: 12/05/2022] Open
Abstract
Induced endothelial cells (iECs) generated from neonatal fibroblasts via transdifferentiation have been shown to have pro-angiogenic properties and are a potential therapy for peripheral arterial disease (PAD). It is unknown if iECs can be generated from fibroblasts collected from PAD patients and whether these cells are pro-angiogenic. In this study fibroblasts were collected from four PAD patients undergoing carotid endarterectomies. These cells, and neonatal fibroblasts, were transdifferentiated into iECs using modified mRNA. Endothelial phenotype and pro-angiogenic cytokine secretion were investigated. NOD-SCID mice underwent surgery to induce hindlimb ischaemia in a murine model of PAD. Mice received intramuscular injections with either control vehicle, or 1 × 106 neonatal-derived or 1 × 106 patient-derived iECs. Recovery in perfusion to the affected limb was measured using laser Doppler scanning. Perfusion recovery was enhanced in mice treated with neonatal-derived iECs and in two of the three patient-derived iEC lines investigated in vivo. Patient-derived iECs can be successfully generated from PAD patients and for specific patients display comparable pro-angiogenic properties to neonatal-derived iECs.
Collapse
Affiliation(s)
- Jack D. Hywood
- Heart Research Institute, Newtown, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | | | - Zoe E. Clayton
- Heart Research Institute, Newtown, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Jun Yuan
- Heart Research Institute, Newtown, NSW, Australia
| | - Colleen Stubbs
- RNACore, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Jack W. T. Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - John P. Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Sanjay Patel
- Heart Research Institute, Newtown, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
11
|
Stojanović SD, Fiedler J, Bauersachs J, Thum T, Sedding DG. Senescence-induced inflammation: an important player and key therapeutic target in atherosclerosis. Eur Heart J 2021; 41:2983-2996. [PMID: 31898722 PMCID: PMC7453834 DOI: 10.1093/eurheartj/ehz919] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/13/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a hallmark and potent driver of pathological vascular remodelling in atherosclerosis. However, current anti-inflammatory therapeutic strategies have shown mixed results. As an alternative perspective on the conundrum of chronic inflammation emerging evidence points towards a small subset of senescent cells as a critical player and central node driving atherosclerosis. Senescent cells belonging to various cell types are a dominant and chronic source of a large array of pro-inflammatory cytokines and various additional plaque destabilizing factors, being involved with various aspects of atherosclerosis pathogenesis. Antagonizing these key agitators of local chronic inflammation and plaque instability may provide a causative and multi-purpose therapeutic strategy to treat atherosclerosis. Anti-senescence treatment options with translational potential are currently in development. However, several questions and challenges remain to be addressed before these novel treatment approaches may enter the clinical setting.
Collapse
Affiliation(s)
- Stevan D Stojanović
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Daniel G Sedding
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Villalón-García I, Álvarez-Córdoba M, Suárez-Rivero JM, Povea-Cabello S, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Sánchez-Alcázar JA. Precision Medicine in Rare Diseases. Diseases 2020; 8:diseases8040042. [PMID: 33202892 PMCID: PMC7709101 DOI: 10.3390/diseases8040042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023] Open
Abstract
Rare diseases are those that have a low prevalence in the population (less than 5 individuals per 10,000 inhabitants). However, infrequent pathologies affect a large number of people, since according to the World Health Organization (WHO), there are about 7000 rare diseases that affect 7% of the world’s population. Many patients with rare diseases have suffered the consequences of what is called the diagnostic odyssey, that is, extensive and prolonged serial tests and clinical visits, sometimes for many years, all with the hope of identifying the etiology of their disease. For patients with rare diseases, obtaining the genetic diagnosis can mean the end of the diagnostic odyssey, and the beginning of another, the therapeutic odyssey. This scenario is especially challenging for the scientific community, since more than 90% of rare diseases do not currently have an effective treatment. This therapeutic failure in rare diseases means that new approaches are necessary. Our research group proposes that the use of precision or personalized medicine techniques can be an alternative to find potential therapies in these diseases. To this end, we propose that patients’ own cells can be used to carry out personalized pharmacological screening for the identification of potential treatments.
Collapse
|
13
|
Davaapil H, Shetty DK, Sinha S. Aortic "Disease-in-a-Dish": Mechanistic Insights and Drug Development Using iPSC-Based Disease Modeling. Front Cell Dev Biol 2020; 8:550504. [PMID: 33195187 PMCID: PMC7655792 DOI: 10.3389/fcell.2020.550504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
Thoracic aortic diseases, whether sporadic or due to a genetic disorder such as Marfan syndrome, lack effective medical therapies, with limited translation of treatments that are highly successful in mouse models into the clinic. Patient-derived induced pluripotent stem cells (iPSCs) offer the opportunity to establish new human models of aortic diseases. Here we review the power and potential of these systems to identify cellular and molecular mechanisms underlying disease and discuss recent advances, such as gene editing, and smooth muscle cell embryonic lineage. In particular, we discuss the practical aspects of vascular smooth muscle cell derivation and characterization, and provide our personal insights into the challenges and limitations of this approach. Future applications, such as genotype-phenotype association, drug screening, and precision medicine are discussed. We propose that iPSC-derived aortic disease models could guide future clinical trials via “clinical-trials-in-a-dish”, thus paving the way for new and improved therapies for patients.
Collapse
Affiliation(s)
- Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Deeti K Shetty
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
14
|
Lee S, Park BW, Lee YJ, Ban K, Park HJ. In vivo combinatory gene therapy synergistically promotes cardiac function and vascular regeneration following myocardial infarction. J Tissue Eng 2020; 11:2041731420953413. [PMID: 35003614 PMCID: PMC8738857 DOI: 10.1177/2041731420953413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Since myocardial infarction (MI) excessively damage the myocardium and blood
vessels, the therapeutic approach for treating MI hearts should simultaneously
target these two major components in the heart to achieve comprehensive cardiac
repair. Here, we investigated a combinatory platform of ETV2 and Gata4, Mef2c
and Tbx5 (GMT) transcription factors to develop a strategy that can rejuvenate
both myocardium and vasculatures together in MI hearts. Previously ETV2
demonstrated significant effects on neovascularization and GMT was known to
directly reprogram cardiac fibroblasts into cardiomyocytes under in vivo
condition. Subsequently, intramyocardial delivery of a combination of retroviral
GMT and adenoviral ETV2 particles into the rat MI hearts significantly increased
viable myocardium area, capillary density compared to ETV2 or GMT only treated
hearts, leading to improved heart function and reduced scar formation. These
results demonstrate that this combinatorial gene therapy can be a promising
approach to enhance the cardiac repair in MI hearts.
Collapse
Affiliation(s)
- Sunghun Lee
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Kowloon tong, Hong Kong
| | - Bong-Woo Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Jin Lee
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Kowloon tong, Hong Kong
| | - Hun-Jun Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
15
|
Kumar A, Mali P. Mapping regulators of cell fate determination: Approaches and challenges. APL Bioeng 2020; 4:031501. [PMID: 32637855 PMCID: PMC7332300 DOI: 10.1063/5.0004611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Given the limited regenerative capacities of most organs, strategies are needed to efficiently generate large numbers of parenchymal cells capable of integration into the diseased organ. Although it was initially thought that terminally differentiated cells lacked the ability to transdifferentiate, it has since been shown that cellular reprogramming of stromal cells to parenchymal cells through direct lineage conversion holds great potential for the replacement of post-mitotic parenchymal cells lost to disease. To this end, an assortment of genetic, chemical, and mechanical cues have been identified to reprogram cells to different lineages both in vitro and in vivo. However, some key challenges persist that limit broader applications of reprogramming technologies. These include: (1) low reprogramming efficiencies; (2) incomplete functional maturation of derived cells; and (3) difficulty in determining the typically multi-factor combinatorial recipes required for successful transdifferentiation. To improve efficiency by comprehensively identifying factors that regulate cell fate, large scale genetic and chemical screening methods have thus been utilized. Here, we provide an overview of the underlying concept of cell reprogramming as well as the rationale, considerations, and limitations of high throughput screening methods. We next follow with a summary of unique hits that have been identified by high throughput screens to induce reprogramming to various parenchymal lineages. Finally, we discuss future directions of applying this technology toward human disease biology via disease modeling, drug screening, and regenerative medicine.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
16
|
Chen Y, Wu B, Lin J, Yu D, Du X, Sheng Z, Yu Y, An C, Zhang X, Li Q, Zhu S, Sun H, Zhang X, Zhang S, Zhou J, Bunpetch V, El-Hashash A, Ji J, Ouyang H. High-Resolution Dissection of Chemical Reprogramming from Mouse Embryonic Fibroblasts into Fibrocartilaginous Cells. Stem Cell Reports 2020; 14:478-492. [PMID: 32084387 PMCID: PMC7066361 DOI: 10.1016/j.stemcr.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/20/2023] Open
Abstract
Articular cartilage injury and degeneration causing pain and loss of quality-of-life has become a serious problem for increasingly aged populations. Given the poor self-renewal of adult human chondrocytes, alternative functional cell sources are needed. Direct reprogramming by small molecules potentially offers an oncogene-free and cost-effective approach to generate chondrocytes, but has yet to be investigated. Here, we directly reprogrammed mouse embryonic fibroblasts into PRG4+ chondrocytes using a 3D system with a chemical cocktail, VCRTc (valproic acid, CHIR98014, Repsox, TTNPB, and celecoxib). Using single-cell transcriptomics, we revealed the inhibition of fibroblast features and activation of chondrogenesis pathways in early reprograming, and the intermediate cellular process resembling cartilage development. The in vivo implantation of chemical-induced chondrocytes at defective articular surfaces promoted defect healing and rescued 63.4% of mechanical function loss. Our approach directly converts fibroblasts into functional cartilaginous cells, and also provides insights into potential pharmacological strategies for future cartilage regeneration.
A chemical method to derive functional murine articular chondrocytes from fibroblasts Chemical-induced chondrocytes promote in vivo regeneration of articular defects In single-cell analysis, intermediate reprogramming events resemble cartilage development
Collapse
Affiliation(s)
- Yishan Chen
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Bingbing Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junxin Lin
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongsheng Yu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaotian Du
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zixuan Sheng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yeke Yu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengrui An
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qikai Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shouan Zhu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Heng Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| | - Jing Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ahmed El-Hashash
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junfeng Ji
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China.
| |
Collapse
|
17
|
Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019; 8:E1536. [PMID: 31795206 PMCID: PMC6952950 DOI: 10.3390/cells8121536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter's inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.
Collapse
Affiliation(s)
- Sara Barreto
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | | | - Teresa Schiatti
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Ying Yang
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Vinoj George
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| |
Collapse
|
18
|
Peskova L, Cerna K, Oppelt J, Mraz M, Barta T. Oct4-mediated reprogramming induces embryonic-like microRNA expression signatures in human fibroblasts. Sci Rep 2019; 9:15759. [PMID: 31673026 PMCID: PMC6823439 DOI: 10.1038/s41598-019-52294-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
Oct4-mediated reprogramming has recently become a novel tool for the generation of various cell types from differentiated somatic cells. Although molecular mechanisms underlying this process are unknown, it is well documented that cells over-expressing Oct4 undergo transition from differentiated state into plastic state. This transition is associated with the acquisition of stem cells properties leading to epigenetically “open” state that is permissive to cell fate switch upon external stimuli. In order to contribute to our understanding of molecular mechanisms driving this process, we characterised human fibroblasts over-expressing Oct4 and performed comprehensive small-RNAseq analysis. Our analyses revealed new interesting aspects of Oct4-mediated cell plasticity induction. Cells over-expressing Oct4 lose their cell identity demonstrated by down-regulation of fibroblast-specific genes and up-regulation of epithelial genes. Interestingly, this process is associated with microRNA expression profile that is similar to microRNA profiles typically found in pluripotent stem cells. We also provide extensive network of microRNA families and clusters allowing us to precisely determine the miRNAome associated with the acquisition of Oct4-induced transient plastic state. Our data expands current knowledge of microRNA and their implications in cell fate alterations and contributing to understanding molecular mechanisms underlying it.
Collapse
Affiliation(s)
- Lucie Peskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, 625 00, Czech Republic
| | - Katerina Cerna
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Marek Mraz
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, 625 00, Czech Republic.
| |
Collapse
|
19
|
El Gezawi M, Wölfle UC, Haridy R, Fliefel R, Kaisarly D. Remineralization, Regeneration, and Repair of Natural Tooth Structure: Influences on the Future of Restorative Dentistry Practice. ACS Biomater Sci Eng 2019; 5:4899-4919. [PMID: 33455239 DOI: 10.1021/acsbiomaterials.9b00591] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, the principal strategy for the treatment of carious defects involves cavity preparations followed by the restoration of natural tooth structure with a synthetic material of inferior biomechanical and esthetic qualities and with questionable long-term clinical reliability of the interfacial bonds. Consequently, prevention and minimally invasive dentistry are considered basic approaches for the preservation of sound tooth structure. Moreover, conventional periodontal therapies do not always ensure predictable outcomes or completely restore the integrity of the periodontal ligament complex that has been lost due to periodontitis. Much effort and comprehensive research have been undertaken to mimic the natural development and biomineralization of teeth to regenerate and repair natural hard dental tissues and restore the integrity of the periodontium. Regeneration of the dentin-pulp tissue has faced several challenges, starting with the basic concerns of clinical applicability. Recent technologies and multidisciplinary approaches in tissue engineering and nanotechnology, as well as the use of modern strategies for stem cell recruitment, synthesis of effective biodegradable scaffolds, molecular signaling, gene therapy, and 3D bioprinting, have resulted in impressive outcomes that may revolutionize the practice of restorative dentistry. This Review covers the current approaches and technologies for remineralization, regeneration, and repair of natural tooth structure.
Collapse
Affiliation(s)
- Moataz El Gezawi
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Uta Christine Wölfle
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Department of Conservative Dentistry, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| | - Riham Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital, LMU Munich, 80337 Munich, Germany.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany.,Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| |
Collapse
|
20
|
Caines R, Cochrane A, Kelaini S, Vila-Gonzalez M, Yang C, Eleftheriadou M, Moez A, Stitt AW, Zeng L, Grieve DJ, Margariti A. The RNA-binding protein QKI controls alternative splicing in vascular cells, producing an effective model for therapy. J Cell Sci 2019; 132:jcs.230276. [PMID: 31331967 DOI: 10.1242/jcs.230276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Dysfunction of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) leads to ischaemia, the central pathology of cardiovascular disease. Stem cell technology will revolutionise regenerative medicine, but a need remains to understand key mechanisms of vascular differentiation. RNA-binding proteins have emerged as novel post-transcriptional regulators of alternative splicing and we have previously shown that the RNA-binding protein Quaking (QKI) plays roles in EC differentiation. In this study, we decipher the role of the alternative splicing isoform Quaking 6 (QKI-6) to induce VSMC differentiation from induced pluripotent stem cells (iPSCs). PDGF-BB stimulation induced QKI-6, which bound to HDAC7 intron 1 via the QKI-binding motif, promoting HDAC7 splicing and iPS-VSMC differentiation. Overexpression of QKI-6 transcriptionally activated SM22 (also known as TAGLN), while QKI-6 knockdown diminished differentiation capability. VSMCs overexpressing QKI-6 demonstrated greater contractile ability, and upon combination with iPS-ECs-overexpressing the alternative splicing isoform Quaking 5 (QKI-5), exhibited higher angiogenic potential in vivo than control cells alone. This study demonstrates that QKI-6 is critical for modulation of HDAC7 splicing, regulating phenotypically and functionally robust iPS-VSMCs. These findings also highlight that the QKI isoforms hold key roles in alternative splicing, giving rise to cells which can be used in vascular therapy or for disease modelling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachel Caines
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Amy Cochrane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Sophia Kelaini
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Marta Vila-Gonzalez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Chunbo Yang
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Arya Moez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| |
Collapse
|
21
|
El Wazan L, Urrutia-Cabrera D, Wong RCB. Using transcription factors for direct reprogramming of neurons in vitro. World J Stem Cells 2019; 11:431-444. [PMID: 31396370 PMCID: PMC6682505 DOI: 10.4252/wjsc.v11.i7.431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/07/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cell therapy offers great promises in replacing the neurons lost due to neurodegenerative diseases or injuries. However, a key challenge is the cellular source for transplantation which is often limited by donor availability. Direct reprogramming provides an exciting avenue to generate specialized neuron subtypes in vitro, which have the potential to be used for autologous transplantation, as well as generation of patient-specific disease models in the lab for drug discovery and testing gene therapy. Here we present a detailed review on transcription factors that promote direct reprogramming of specific neuronal subtypes with particular focus on glutamatergic, GABAergic, dopaminergic, sensory and retinal neurons. We will discuss the developmental role of master transcriptional regulators and specification factors for neuronal subtypes, and summarize their use in promoting direct reprogramming into different neuronal subtypes. Furthermore, we will discuss up-and-coming technologies that advance the cell reprogramming field, including the use of computational prediction of reprogramming factors, opportunity of cellular reprogramming using small chemicals and microRNA, as well as the exciting potential for applying direct reprogramming in vivo as a novel approach to promote neuro-regeneration within the body. Finally, we will highlight the clinical potential of direct reprogramming and discuss the hurdles that need to be overcome for clinical translation.
Collapse
Affiliation(s)
- Layal El Wazan
- Cellular Reprogramming Unit, Centre for Eye Research Australia, Melbourne 3004, Australia
| | - Daniel Urrutia-Cabrera
- Cellular Reprogramming Unit, Centre for Eye Research Australia, Melbourne 3004, Australia
| | | |
Collapse
|
22
|
Ahlfors JE, Azimi A, El-Ayoubi R, Velumian A, Vonderwalde I, Boscher C, Mihai O, Mani S, Samoilova M, Khazaei M, Fehlings MG, Morshead CM. Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells. Stem Cell Res Ther 2019; 10:166. [PMID: 31196173 PMCID: PMC6567617 DOI: 10.1186/s13287-019-1255-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cell reprogramming is a promising avenue for cell-based therapies as it allows for the generation of multipotent, unipotent, or mature somatic cells without going through a pluripotent state. While the use of autologous cells is considered ideal, key challenges for their clinical translation include the ability to reproducibly generate sufficient quantities of cells within a therapeutically relevant time window. METHODS We performed transfection of three distinct human somatic starting populations of cells with a non-integrating synthetic plasmid expressing Musashi 1 (MSI1), Neurogenin 2 (NGN2), and Methyl-CpG-Binding Domain 2 (MBD2). The resulting directly reprogrammed neural precursor cells (drNPCs) were examined in vitro using RT-qPCR, karyotype analysis, immunohistochemistry, and FACS at early and late time post-transfection. Electrophysiology (patch clamp) was performed on drNPC-derived neurons to determine their capacity to generate action potentials. In vivo characterization was performed following transplantation of drNPCs into two animal models (Shiverer and SCID/Beige mice), and the numbers, location, and differentiation profile of the transplanted cells were examined using immunohistochemistry. RESULTS Human somatic cells can be directly reprogrammed within two weeks to neural precursor cells (drNPCs) by transient exposure to Msi1, Ngn2, and MBD2 using non-viral constructs. The drNPCs generate all three neural cell types (astrocytes, oligodendrocytes, and neurons) and can be passaged in vitro to generate large numbers of cells within four weeks. drNPCs can respond to in vivo differentiation and migration cues as demonstrated by their migration to the olfactory bulb and contribution to neurogenesis in vivo. Differentiation profiles of transplanted cells onto the corpus callosum of myelin-deficient mice reveal the production of oligodendrocytes and astrocytes. CONCLUSIONS Human drNPCs can be efficiently and rapidly produced from donor somatic cells and possess all the important characteristics of native neural multipotent cells including differentiation into neurons, astrocytes, and oligodendrocytes, and in vivo neurogenesis and myelination.
Collapse
Affiliation(s)
| | - Ashkan Azimi
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8 Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Ontario, M5S 1A8 Canada
| | | | - Alexander Velumian
- Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario, M5T 1P5 Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Ilan Vonderwalde
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 Canada
| | | | - Oana Mihai
- New World Laboratories, Laval, Quebec, H7V 5B7 Canada
| | - Sarathi Mani
- New World Laboratories, Laval, Quebec, H7V 5B7 Canada
| | - Marina Samoilova
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Michael G. Fehlings
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8 Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario, M5T 1P5 Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Cindi M Morshead
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8 Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Ontario, M5S 1A8 Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S3E1 Canada
| |
Collapse
|
23
|
Lee E, Piranlioglu R, Wicha MS, Korkaya H. Plasticity and Potency of Mammary Stem Cell Subsets During Mammary Gland Development. Int J Mol Sci 2019; 20:ijms20092357. [PMID: 31085991 PMCID: PMC6539898 DOI: 10.3390/ijms20092357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/04/2019] [Accepted: 05/11/2019] [Indexed: 12/20/2022] Open
Abstract
It is now widely believed that mammary epithelial cell plasticity, an important physiological process during the stages of mammary gland development, is exploited by the malignant cells for their successful disease progression. Normal mammary epithelial cells are heterogeneous and organized in hierarchical fashion, in which the mammary stem cells (MaSC) lie at the apex with regenerative capacity as well as plasticity. Despite the fact that the majority of studies supported the existence of multipotent MaSCs giving rise to both basal and luminal lineages, others proposed lineage restricted unipotent MaSCs. Consistent with the notion, the latest research has suggested that although normal MaSC subsets mainly stay in a quiescent state, they differ in their reconstituting ability, spatial localization, and molecular and epigenetic signatures in response to physiological stimuli within the respective microenvironment during the stages of mammary gland development. In this review, we will focus on current research on the biology of normal mammary stem cells with an emphasis on properties of cellular plasticity, self-renewal and quiescence, as well as the role of the microenvironment in regulating these processes. This will include a discussion of normal breast stem cell heterogeneity, stem cell markers, and lineage tracing studies.
Collapse
Affiliation(s)
- Eunmi Lee
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| | - Raziye Piranlioglu
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| | - Max S Wicha
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Hasan Korkaya
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
24
|
Chang Y, Cho B, Kim S, Kim J. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med 2019; 51:1-8. [PMID: 31073120 PMCID: PMC6509166 DOI: 10.1038/s12276-019-0251-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/24/2018] [Accepted: 01/28/2019] [Indexed: 12/31/2022] Open
Abstract
Mortality caused by age-related bone fractures or osteoporosis is steadily increasing worldwide as the population ages. The pace of the development of bone regeneration engineering to treat bone fractures has consequently increased in recent years. A range of techniques for bone regeneration, such as immunotherapy, allografts, and hydrogel therapy, have been devised. Cell-based therapies using bone marrow-derived mesenchymal stem cells and induced pluripotent stem cells derived from somatic cells are considered to be suitable approaches for bone repair. However, these cell-based therapies suffer from a number of limitations in terms of efficiency and safety. Somatic cells can also be directly differentiated into osteoblasts by several transcription factors. As osteoblasts play a central role in the process of bone formation, the direct reprogramming of fibroblasts into osteoblasts may hence be a new way to treat bone fractures in elderly individuals. Here, we review recent developments regarding the therapeutic potential of the direct reprogramming of cells for bone regeneration. Reprogramming cells that produce connective tissue to form bone instead could help prevent fractures in the elderly. Bones weaken with age, and fractures are a significant health risk in ageing populations. Most current bone regeneration treatments use stem cells, which can differentiate into any type of cell and have infinite capacity to divide; however, they are difficult to source and can lead to tumor formation. Jongpil Kim at Dongguk University in South Korea and coworkers have reviewed a new method that uses genetic signals to transform connective tissue-forming cells into bone-producing cells. The reprogrammed cells have been shown to generate new bone at the desired site, and because they have already lost their capacity for infinite division, tumor formation risk is greatly reduced. This method shows promise to expand treatment options for fractures and osteoporosis.
Collapse
Affiliation(s)
- Yujung Chang
- Department of Biomedical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Byounggook Cho
- Department of Biomedical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Siyoung Kim
- Department of Biomedical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea. .,Department of Chemistry, Dongguk University, 30, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
25
|
Shirzaei Sani E, Kheirkhah A, Rana D, Sun Z, Foulsham W, Sheikhi A, Khademhosseini A, Dana R, Annabi N. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. SCIENCE ADVANCES 2019; 5:eaav1281. [PMID: 30906864 PMCID: PMC6426459 DOI: 10.1126/sciadv.aav1281] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/31/2019] [Indexed: 05/19/2023]
Abstract
Corneal injuries are common causes of visual impairment worldwide. Accordingly, there is an unmet need for transparent biomaterials that have high adhesion, cohesion, and regenerative properties. Herein, we engineer a highly biocompatible and transparent bioadhesive for corneal reconstruction using a visible light cross-linkable, naturally derived polymer, GelCORE (gel for corneal regeneration). The physical properties of GelCORE could be finely tuned by changing prepolymer concentration and photocrosslinking time. GelCORE revealed higher tissue adhesion compared to commercial adhesives. Furthermore, in situ photopolymerization of GelCORE facilitated easy delivery to the cornea, allowing for bioadhesive curing precisely according to the required geometry of the defect. In vivo experiments, using a rabbit stromal defect model, showed that bioadhesive could effectively seal corneal defects and induce stromal regeneration and re-epithelialization. Overall, GelCORE has many advantages including low cost and ease of production and use. This makes GelCORE a promising bioadhesive for corneal repair.
Collapse
Affiliation(s)
- Ehsan Shirzaei Sani
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ahmad Kheirkhah
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Devyesh Rana
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Zhongmou Sun
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Amir Sheikhi
- Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
- Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Vilà-González M, Kelaini S, Magee C, Caines R, Campbell D, Eleftheriadou M, Cochrane A, Drehmer D, Tsifaki M, O'Neill K, Pedrini E, Yang C, Medina R, McDonald D, Simpson D, Zampetaki A, Zeng L, Grieve D, Lois N, Stitt AW, Margariti A. Enhanced Function of Induced Pluripotent Stem Cell-Derived Endothelial Cells Through ESM1 Signaling. Stem Cells 2018; 37:226-239. [PMID: 30372556 PMCID: PMC6392130 DOI: 10.1002/stem.2936] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/14/2018] [Accepted: 10/07/2018] [Indexed: 01/11/2023]
Abstract
The mortality rate for (cardio)‐vascular disease is one of the highest in the world, so a healthy functional endothelium is of outmost importance against vascular disease. In this study, human induced pluripotent stem (iPS) cells were reprogrammed from 1 ml blood of healthy donors and subsequently differentiated into endothelial cells (iPS‐ECs) with typical EC characteristics. This research combined iPS cell technologies and next‐generation sequencing to acquire an insight into the transcriptional regulation of iPS‐ECs. We identified endothelial cell‐specific molecule 1 (ESM1) as one of the highest expressed genes during EC differentiation, playing a key role in EC enrichment and function by regulating connexin 40 (CX40) and eNOS. Importantly, ESM1 enhanced the iPS‐ECs potential to improve angiogenesis and neovascularisation in in vivo models of angiogenesis and hind limb ischemia. These findings demonstrated for the first time that enriched functional ECs are derived through cell reprogramming and ESM1 signaling, opening the horizon for drug screening and cell‐based therapies for vascular diseases. Therefore, this study showcases a new approach for enriching and enhancing the function of induced pluripotent stem (iPS) cell‐derived ECs from a very small amount of blood through ESM1 signaling, which greatly enhances their functionality and increases their therapeutic potential. Stem Cells2019;37:226–239
Collapse
Affiliation(s)
- Marta Vilà-González
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Sophia Kelaini
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Corey Magee
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Rachel Caines
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - David Campbell
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Magdalini Eleftheriadou
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Amy Cochrane
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Daiana Drehmer
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Marianna Tsifaki
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Karla O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Edoardo Pedrini
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Chunbo Yang
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Reinhold Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Denise McDonald
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - David Simpson
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Anna Zampetaki
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London, United Kingdom
| | - David Grieve
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Noemi Lois
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Andriana Margariti
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| |
Collapse
|
27
|
Chen C, Pla‐Palacín I, Baptista PM, Shang P, Oosterhoff LA, van Wolferen ME, Penning LC, Geijsen N, Spee B. Hepatocyte-like cells generated by direct reprogramming from murine somatic cells can repopulate decellularized livers. Biotechnol Bioeng 2018; 115:2807-2816. [PMID: 29959867 PMCID: PMC6221165 DOI: 10.1002/bit.26784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022]
Abstract
Direct reprogramming represents an easy technique to generate induced hepatocytes (iHeps) from somatic cells. However, current protocols are accompanied by several drawbacks as iHeps are heterogenous and lack fully mature phenotypes of primary hepatocytes. Here, we established a polycistronic expression system to induce the direct reprogramming of mouse embryonic fibroblasts towards hepatocytes. The resulting iHeps are homogenous and display key properties of primary hepatocytes, such as expression of hepatocyte markers, albumin secretion, and presence of liver transaminases. iHeps also possess the capacity to repopulate decellularized liver tissue and exhibit enhanced hepatic maturation. As such, we present a novel strategy to generate homogenous and functional iHeps for applications in tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
- Hubrecht Institute‐KNAW and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Iris Pla‐Palacín
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón)ZaragozaSpain
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón)ZaragozaSpain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd)MadridSpain
- Fundación ARAIDZaragozaSpain
- Instituto de Investigación Sanitaria de la Fundación Jiménez DíazMadridSpain
- Department of Biomedical and Aerospace EngineeringUniversidad Carlos III de MadridMadridSpain
| | - Peng Shang
- Hubrecht Institute‐KNAW and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Loes A. Oosterhoff
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| | - Monique E. van Wolferen
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| | - Louis C. Penning
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| | - Niels Geijsen
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
- Hubrecht Institute‐KNAW and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
28
|
Molecular characterization and prospective isolation of human fetal cochlear hair cell progenitors. Nat Commun 2018; 9:4027. [PMID: 30279445 PMCID: PMC6168603 DOI: 10.1038/s41467-018-06334-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 08/27/2018] [Indexed: 01/02/2023] Open
Abstract
Sensory hair cells located in the organ of Corti are essential for cochlear mechanosensation. Their loss is irreversible in humans resulting in permanent hearing loss. The development of therapeutic interventions for hearing loss requires fundamental knowledge about similarities and potential differences between animal models and human development as well as the establishment of human cell based-assays. Here we analyze gene and protein expression of the developing human inner ear in a temporal window spanning from week 8 to 12 post conception, when cochlear hair cells become specified. Utilizing surface markers for the cochlear prosensory domain, namely EPCAM and CD271, we purify postmitotic hair cell progenitors that, when placed in culture in three-dimensional organoids, regain proliferative potential and eventually differentiate to hair cell-like cells in vitro. These results provide a foundation for comparative studies with otic cells generated from human pluripotent stem cells and for establishing novel platforms for drug validation. Hearing requires mechanosensitive hair cells in the organ of Corti, which derive from progenitors of the cochlear duct. Here the authors examine human inner ear development by studying key developmental markers and describe organoid cultures from human cochlear duct progenitors for in vitro hair cell differentiation.
Collapse
|
29
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
30
|
Duran Alonso MB, Lopez Hernandez I, de la Fuente MA, Garcia-Sancho J, Giraldez F, Schimmang T. Transcription factor induced conversion of human fibroblasts towards the hair cell lineage. PLoS One 2018; 13:e0200210. [PMID: 29979748 PMCID: PMC6034836 DOI: 10.1371/journal.pone.0200210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022] Open
Abstract
Hearing loss is the most common sensorineural disorder, affecting over 5% of the population worldwide. Its most frequent cause is the loss of hair cells (HCs), the mechanosensory receptors of the cochlea. HCs transduce incoming sounds into electrical signals that activate auditory neurons, which in turn send this information to the brain. Although some spontaneous HC regeneration has been observed in neonatal mammals, the very small pool of putative progenitor cells that have been identified in the adult mammalian cochlea is not able to replace the damaged HCs, making any hearing impairment permanent. To date, guided differentiation of human cells to HC-like cells has only been achieved using either embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). However, use of such cell types suffers from a number of important disadvantages, such as the risk of tumourigenicity if transplanted into the host´s tissue. We have obtained cells expressing hair cell markers from cultures of human fibroblasts by overexpression of GFI1, Pou4f3 and ATOH1 (GPA), three genes that are known to play a critical role in the development of HCs. Immunocytochemical, qPCR and RNAseq analyses demonstrate the expression of genes typically expressed by HCs in the transdifferentiated cells. Our protocol represents a much faster approach than the methods applied to ESCs and iPSCs and validates the combination of GPA as a set of genes whose activation leads to the direct conversion of human somatic cells towards the hair cell lineage. Our observations are expected to contribute to the development of future therapies aimed at the regeneration of the auditory organ and the restoration of hearing.
Collapse
Affiliation(s)
- María Beatriz Duran Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Iris Lopez Hernandez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Miguel Angel de la Fuente
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Javier Garcia-Sancho
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Fernando Giraldez
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona, Spain
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| |
Collapse
|
31
|
Sasamoto Y, Ksander BR, Frank MH, Frank NY. Repairing the corneal epithelium using limbal stem cells or alternative cell-based therapies. Expert Opin Biol Ther 2018; 18:505-513. [PMID: 29471701 PMCID: PMC6317528 DOI: 10.1080/14712598.2018.1443442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The corneal epithelium is maintained by limbal stem cells (LSCs) that reside in the basal epithelial layer of the tissue surrounding the cornea termed the limbus. Loss of LSCs results in limbal stem cell deficiency (LSCD) that can cause severe visual impairment. Patients with partial LSCD may respond to conservative therapies designed to rehabilitate the remaining LSCs. However, if these conservative approaches fail or, if complete loss of LSCs occurs, transplantation of LSCs or their alternatives is the only option. While a number of clinical studies utilizing diverse surgical and cell culture techniques have shown favorable results, a universal cure for LSCD is still not available. Knowledge of the potential risks and benefits of current approaches, and development of new technologies, is essential for further improvement of LSCD therapies. AREAS COVERED This review focuses on cell-based LSCD treatment approaches ranging from current available clinical therapies to preclinical studies of novel promising applications. EXPERT OPINION Improved understanding of LSC identity and development of LSC expansion methods will influence the evolution of successful LSCD therapies. Ultimately, future controlled clinical studies enabling direct comparison of the diverse employed approaches will help to identify the most effective treatment strategies.
Collapse
Affiliation(s)
- Yuzuru Sasamoto
- Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R. Ksander
- Mass Eye & Ear, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Western School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Natasha Y. Frank
- Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
32
|
Abstract
Despite considerable advances in medicine, cardiovascular disease is still rising, with ischemic heart disease being the leading cause of death and disability worldwide. Thus extensive efforts are continuing to establish effective therapeutic modalities that would improve both quality of life and survival in this patient population. Novel therapies are being investigated not only to protect the myocardium against ischemia-reperfusion injury but also to regenerate the heart. Stem cell therapy, such as potential use of human mesenchymal stem cells and induced pluripotent stem cells and their exosomes, will make it possible not only to address molecular mechanisms of cardiac conditioning, but also to develop new therapies for ischemic heart disease. Despite the studies and progress made over the last 15 years on the use of stem cell therapy for cardiovascular disease, the efforts are still in their infancy. Even though the expectations have been high, the findings indicate that most of the clinical trials generally have been small and the results inconclusive. Because of many negative findings, there is certain pessimism that cardiac cell therapy is likely to yield any meaningful results over the next decade or so. Similar to other new technologies, early failures are not unusual and they may be followed by impressive success. Nevertheless, there has been considerable attention to safety by the clinical investigators because the adverse events of stem cell therapy have been impressively rare. In summary, although regenerative biology might not help the cardiovascular patient in the near term, it is destined to do so over the next several decades.
Collapse
Affiliation(s)
- Maia Terashvili
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Zeljko J Bosnjak
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
33
|
Meas SJ, Zhang CL, Dabdoub A. Reprogramming Glia Into Neurons in the Peripheral Auditory System as a Solution for Sensorineural Hearing Loss: Lessons From the Central Nervous System. Front Mol Neurosci 2018; 11:77. [PMID: 29593497 PMCID: PMC5861218 DOI: 10.3389/fnmol.2018.00077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Disabling hearing loss affects over 5% of the world’s population and impacts the lives of individuals from all age groups. Within the next three decades, the worldwide incidence of hearing impairment is expected to double. Since a leading cause of hearing loss is the degeneration of primary auditory neurons (PANs), the sensory neurons of the auditory system that receive input from mechanosensory hair cells in the cochlea, it may be possible to restore hearing by regenerating PANs. A direct reprogramming approach can be used to convert the resident spiral ganglion glial cells into induced neurons to restore hearing. This review summarizes recent advances in reprogramming glia in the CNS to suggest future steps for regenerating the peripheral auditory system. In the coming years, direct reprogramming of spiral ganglion glial cells has the potential to become one of the leading biological strategies to treat hearing impairment.
Collapse
Affiliation(s)
- Steven J Meas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Chun-Li Zhang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Lipps C, Klein F, Wahlicht T, Seiffert V, Butueva M, Zauers J, Truschel T, Luckner M, Köster M, MacLeod R, Pezoldt J, Hühn J, Yuan Q, Müller PP, Kempf H, Zweigerdt R, Dittrich-Breiholz O, Pufe T, Beckmann R, Drescher W, Riancho J, Sañudo C, Korff T, Opalka B, Rebmann V, Göthert JR, Alves PM, Ott M, Schucht R, Hauser H, Wirth D, May T. Expansion of functional personalized cells with specific transgene combinations. Nat Commun 2018. [PMID: 29520052 PMCID: PMC5843645 DOI: 10.1038/s41467-018-03408-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fundamental research and drug development for personalized medicine necessitates cell cultures from defined genetic backgrounds. However, providing sufficient numbers of authentic cells from individuals poses a challenge. Here, we present a new strategy for rapid cell expansion that overcomes current limitations. Using a small gene library, we expanded primary cells from different tissues, donors, and species. Cell-type-specific regimens that allow the reproducible creation of cell lines were identified. In depth characterization of a series of endothelial and hepatocytic cell lines confirmed phenotypic stability and functionality. Applying this technology enables rapid, efficient, and reliable production of unlimited numbers of personalized cells. As such, these cell systems support mechanistic studies, epidemiological research, and tailored drug development. Personalised medicine requires cell cultures from defined genetic backgrounds, but providing sufficient numbers of cells is a challenge. Here the authors develop gene cocktails to expand primary cells from a variety of different tissues and species, and show that expanded endothelial and hepatic cells retain properties of the differentiated phenotype.
Collapse
Affiliation(s)
- Christoph Lipps
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.,Experimental Cardiology, Justus-Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Franziska Klein
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Tom Wahlicht
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Virginia Seiffert
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Milada Butueva
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | | | | | - Martin Luckner
- InSCREENeX GmbH, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Mario Köster
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Roderick MacLeod
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Jörn Pezoldt
- Experimental Immunology, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Jochen Hühn
- Experimental Immunology, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Translational Research Group Cell and Gene Therapy, Twincore - Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Peter Paul Müller
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, MHH, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, MHH, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074, Aachen, Germany
| | - Rainer Beckmann
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074, Aachen, Germany
| | - Wolf Drescher
- Department of Orthopaedics, Aachen University Hospital, RWTH Aachen University, Aachen, 52074, Germany.,Department of Orthopedic Surgery of the Lower Limb and Arthroplasty, Rummelsberg Hospital, Schwarzenbruck, 90592, Germany
| | - Jose Riancho
- Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, 39008, Santander, Spain
| | - Carolina Sañudo
- Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, 39008, Santander, Spain
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, RG Blood Vessel Remodeling, University Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Bertram Opalka
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstr. 179, 45147, Essen, Germany
| | - Joachim R Göthert
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnologica, Universidade Nova de Lisboa, Oeiras, 2781-901, Portugal
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Translational Research Group Cell and Gene Therapy, Twincore - Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Roland Schucht
- InSCREENeX GmbH, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany. .,Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| |
Collapse
|
35
|
Bagó JR, Okolie O, Dumitru R, Ewend MG, Parker JS, Werff RV, Underhill TM, Schmid RS, Miller CR, Hingtgen SD. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Sci Transl Med 2018; 9:9/375/eaah6510. [PMID: 28148846 DOI: 10.1126/scitranslmed.aah6510] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 07/26/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
Abstract
Engineered neural stem cells (NSCs) are a promising approach to treating glioblastoma (GBM). The ideal NSC drug carrier for clinical use should be easily isolated and autologous to avoid immune rejection. We transdifferentiated (TD) human fibroblasts into tumor-homing early-stage induced NSCs (h-iNSCTE), engineered them to express optical reporters and different therapeutic gene products, and assessed the tumor-homing migration and therapeutic efficacy of cytotoxic h-iNSCTE in patient-derived GBM models of surgical and nonsurgical disease. Molecular and functional analysis revealed that our single-factor SOX2 TD strategy converted human skin fibroblasts into h-iNSCTE that were nestin+ and expressed pathways associated with tumor-homing migration in 4 days. Time-lapse motion analysis showed that h-iNSCTE rapidly migrated to human GBM cells and penetrated human GBM spheroids, a process inhibited by blockade of CXCR4. Serial imaging showed that h-iNSCTE delivery of the proapoptotic agent tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) reduced the size of solid human GBM xenografts 250-fold in 3 weeks and prolonged median survival from 22 to 49 days. Additionally, h-iNSCTE thymidine kinase/ganciclovir enzyme/prodrug therapy (h-iNSCTE-TK) reduced the size of patient-derived GBM xenografts 20-fold and extended survival from 32 to 62 days. Mimicking clinical NSC therapy, h-iNSCTE-TK therapy delivered into the postoperative surgical resection cavity delayed the regrowth of residual GBMs threefold and prolonged survival from 46 to 60 days. These results suggest that TD of human skin into h-iNSCTE is a platform for creating tumor-homing cytotoxic cell therapies for cancer, where the potential to avoid carrier rejection could maximize treatment durability in human trials.
Collapse
Affiliation(s)
- Juli R Bagó
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Onyi Okolie
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raluca Dumitru
- UNC Human Pluripotent Stem Cell Core Facility, Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew G Ewend
- Department of Neurosurgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan Vander Werff
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ralf S Schmid
- Division of Neuropathology and Department of Pathology and Laboratory Medicine, Department of Neurology and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - C Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Division of Neuropathology and Department of Pathology and Laboratory Medicine, Department of Neurology and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Neurosurgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
36
|
Charoensook SN, Williams DJ, Chakraborty S, Leong KW, Vunjak-Novakovic G. Bioreactor model of neuromuscular junction with electrical stimulation for pharmacological potency testing. Integr Biol (Camb) 2017; 9:956-967. [PMID: 29168874 PMCID: PMC5725265 DOI: 10.1039/c7ib00144d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In vitro models of the neuromuscular junction (NMJ) are emerging as a valuable tool to study synaptogenesis, synaptic maintenance, and pathogenesis of neurodegenerative diseases. Many models have previously been developed using a variety of cell sources for skeletal muscle and motoneurons. These models can advanced by integrating beneficial features of the native developmental milieu of the NMJ. We created a functional in vitro model of NMJ by bioreactor cultivation of transdifferentiated myocytes and stem cell-derived motoneurons, in the presence of electrical stimulation. In conjunction with a coculture medium, electrical stimulation resulted in improved maturation and function of motoneurons and myocytes, as evidenced by mature cellular structures, increased expression of neuronal and muscular genes, clusterization of acetylcholine receptors (AChRs) in the vicinity of motoneurons, and the response to glutamate stimulation. To validate the model and demonstrate its utility for pharmacological testing, we documented the potency of drugs that affect key pathways during NMJ signal transduction: (i) acetylcholine (ACh) synthesis, (ii) ACh vesicular storage, (iii) ACh synaptic release, (iv) AChR activation, and (v) ACh inactivation in the synaptic cleft. The model properly responded to the drugs in a concentration-dependent manner. We thus propose that this in vitro model of NMJ could be used as a platform in pharmacological screening and controlled studies of neuromuscular diseases.
Collapse
Affiliation(s)
- Surapon N Charoensook
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
37
|
Liu C, Himmati F, Sayed N. Paying the Toll in Nuclear Reprogramming. Front Cell Dev Biol 2017; 5:70. [PMID: 28861413 PMCID: PMC5562677 DOI: 10.3389/fcell.2017.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/31/2017] [Indexed: 01/07/2023] Open
Abstract
The ability to reverse lineage-committed cells toward pluripotent stem cells or to another cell type is one of the ultimate goals in regenerative medicine. We recently discovered that activation of innate immunity, through Toll-like receptor 3, is required during this conversion of cell fate by causing global changes in the expression and activity of epigenetic modifiers. Here we discuss, in a comprehensive manner, the recent studies on the role of innate immunity in nuclear reprogramming and transdifferentiation, the underlying mechanisms, and its role in regenerative medicine.
Collapse
Affiliation(s)
- Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanford, CA, United States
- Department of Medicine, Stanford University School of MedicineStanford, CA, United States
| | - Farhan Himmati
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanford, CA, United States
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanford, CA, United States
- Department of Medicine, Stanford University School of MedicineStanford, CA, United States
| |
Collapse
|
38
|
Changing Stem Cell Dynamics during Papillomavirus Infection: Potential Roles for Cellular Plasticity in the Viral Lifecycle and Disease. Viruses 2017; 9:v9080221. [PMID: 28805675 PMCID: PMC5580478 DOI: 10.3390/v9080221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Stem cells and cellular plasticity are likely important components of tissue response to infection. There is emerging evidence that stem cells harbor receptors for common pathogen motifs and that they are receptive to local inflammatory signals in ways suggesting that they are critical responders that determine the balance between health and disease. In the field of papillomaviruses stem cells have been speculated to play roles during the viral life cycle, particularly during maintenance, and virus-promoted carcinogenesis but little has been conclusively determined. I summarize here evidence that gives clues to the potential role of stem cells and cellular plasticity in the lifecycle papillomavirus and linked carcinogenesis. I also discuss outstanding questions which need to be resolved.
Collapse
|
39
|
Piechowski J. Hypothesis about Transdifferentiation As Backbone of Malignancy. Front Oncol 2017; 7:126. [PMID: 28674676 PMCID: PMC5474902 DOI: 10.3389/fonc.2017.00126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
Background Cancer is mainly watched through the prism of random mutations and related corruption of signaling pathways. However, it would seem puzzling to explain the tumor organization, pugnacity and steady evolution of the tumorous disease and, moreover, a systematic ascendancy over the healthy tissues, only through stochastic genomic alterations. Malignancy specific properties Considering the core characteristics of cancer cells, it appears that two major sets of properties are emerging, corresponding to well-identified physiological phenotypes, i.e., (1) the trophoblastic logistical functions for cell survival, protection, expansion, migration, and host-tissue conditioning for angiogenesis and immune tolerance and (2) the sexual functions for genome maintenance. To explain the resurgence of these trophoblastic and sexual phenotypes, a particular cell reprogramming, to be called “malignant transdifferentiation” in view of its key role in the precancer-to-cancer shift, appears to be a convincing hypothesis. Perspectives The concept of malignant transdifferentiation, in addition to oncogenic mutations, would determine a more rational approach of oncogenesis and would open so far unexplored ways of therapeutic actions. Indeed, the trophoblastic phenotype would be a good candidate for therapeutic purposes because, on the one hand, it covers numerous properties that all are vital for the tumor, and on the other hand, it can be targeted with potentially no risk of affecting the healthy tissues as it is not expressed there after birth.
Collapse
|
40
|
Abstract
Cancer stem cells (CSCs), with their self-renewal ability and multilineage differentiation potential, are a critical subpopulation of tumor cells that can drive tumor initiation, growth, and resistance to therapy. Like embryonic and adult stem cells, CSCs express markers that are not expressed in normal somatic cells and are thus thought to contribute towards a 'stemness' phenotype. This review summarizes the current knowledge of stemness-related markers in human cancers, with a particular focus on important transcription factors, protein surface markers and signaling pathways.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Yvonne Li
- Dana Farber cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
41
|
Cochrane A, Kelaini S, Tsifaki M, Bojdo J, Vilà-González M, Drehmer D, Caines R, Magee C, Eleftheriadou M, Hu Y, Grieve D, Stitt AW, Zeng L, Xu Q, Margariti A. Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis. Stem Cells 2017; 35:952-966. [PMID: 28207177 PMCID: PMC5396345 DOI: 10.1002/stem.2594] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 12/28/2022]
Abstract
The capability to derive endothelial cell (ECs) from induced pluripotent stem cells (iPSCs) holds huge therapeutic potential for cardiovascular disease. This study elucidates the precise role of the RNA‐binding protein Quaking isoform 5 (QKI‐5) during EC differentiation from both mouse and human iPSCs (hiPSCs) and dissects how RNA‐binding proteins can improve differentiation efficiency toward cell therapy for important vascular diseases. iPSCs represent an attractive cellular approach for regenerative medicine today as they can be used to generate patient‐specific therapeutic cells toward autologous cell therapy. In this study, using the model of iPSCs differentiation toward ECs, the QKI‐5 was found to be an important regulator of STAT3 stabilization and vascular endothelial growth factor receptor 2 (VEGFR2) activation during the EC differentiation process. QKI‐5 was induced during EC differentiation, resulting in stabilization of STAT3 expression and modulation of VEGFR2 transcriptional activation as well as VEGF secretion through direct binding to the 3′ UTR of STAT3. Importantly, mouse iPS‐ECs overexpressing QKI‐5 significantly improved angiogenesis and neovascularization and blood flow recovery in experimental hind limb ischemia. Notably, hiPSCs overexpressing QKI‐5, induced angiogenesis on Matrigel plug assays in vivo only 7 days after subcutaneous injection in SCID mice. These results highlight a clear functional benefit of QKI‐5 in neovascularization, blood flow recovery, and angiogenesis. Thus, they provide support to the growing consensus that elucidation of the molecular mechanisms underlying EC differentiation will ultimately advance stem cell regenerative therapy and eventually make the treatment of cardiovascular disease a reality. The RNA binding protein QKI‐5 is induced during EC differentiation from iPSCs. RNA binding protein QKI‐5 was induced during EC differentiation in parallel with the EC marker CD144. Immunofluorescence staining showing that QKI‐5 is localized in the nucleus and stained in parallel with CD144 in differentiated ECs (scale bar = 50 µm). stemcells2017 Stem Cells2017;35:952–966
Collapse
Affiliation(s)
- Amy Cochrane
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Sophia Kelaini
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Marianna Tsifaki
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - James Bojdo
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Marta Vilà-González
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Daiana Drehmer
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Rachel Caines
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Corey Magee
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Magdalini Eleftheriadou
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Yanhua Hu
- Cardiovascular Division, King's College London, London, United Kingdom
| | - David Grieve
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Alan W Stitt
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Qingbo Xu
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Andriana Margariti
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| |
Collapse
|
42
|
Functional human induced hepatocytes (hiHeps) with bile acid synthesis and transport capacities: A novel in vitro cholestatic model. Sci Rep 2016; 6:38694. [PMID: 27934920 PMCID: PMC5146671 DOI: 10.1038/srep38694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/11/2016] [Indexed: 12/25/2022] Open
Abstract
Drug-induced cholestasis is a leading cause of drug withdrawal. However, the use of primary human hepatocytes (PHHs), the gold standard for predicting cholestasis in vitro, is limited by their high cost and batch-to-batch variability. Mature hepatocyte characteristics have been observed in human induced hepatocytes (hiHeps) derived from human fibroblast transdifferentiation. Here, we evaluated whether hiHeps could biosynthesize and excrete bile acids (BAs) and their potential as PHH alternatives for cholestasis investigations. Quantitative real-time PCR (qRT-PCR) and western blotting indicated that hiHeps highly expressed BA synthases and functional transporters. Liquid chromatography tandem mass spectrometry (LC-MS/MS) showed that hiHeps produced normal intercellular unconjugated BAs but fewer conjugated BAs than human hepatocytes. When incubated with representative cholestatic agents, hiHeps exhibited sensitive drug-induced bile salt export pump (BSEP) dysfunction, and their response to cholestatic agent-mediated cytotoxicity correlated well with that of PHHs (r2 = 0.8032). Deoxycholic acid (DCA)-induced hepatotoxicity in hiHeps was verified by elevated aspartate aminotransferase (AST) and γ-glutamyl-transferase (γ-GT) levels. Mitochondrial damage and cell death suggested DCA-induced toxicity in hiHeps, which were attenuated by hepatoprotective drugs, as in PHHs. For the first time, hiHeps were reported to biosynthesize and excrete BAs, which could facilitate predicting cholestatic hepatotoxicity and screening potential therapeutic drugs against cholestasis.
Collapse
|
43
|
Kim E, Tae G. Direct reprogramming and biomaterials for controlling cell fate. Biomater Res 2016; 20:39. [PMID: 27980804 PMCID: PMC5142385 DOI: 10.1186/s40824-016-0086-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/26/2016] [Indexed: 01/08/2023] Open
Abstract
Direct reprogramming which changes the fate of matured cell is a very useful technique with a great interest recently. This approach can eliminate the drawbacks of direct usage of stem cells and allow the patient specific treatment in regenerative medicine. Overexpression of diverse factors such as general reprogramming factors or lineage specific transcription factors can change the fate of already differentiated cells. On the other hand, biomaterials can provide physical and topographical cues or biochemical cues on cells, which can dictate or significantly affect the differentiation of stem cells. The role of biomaterials on direct reprogramming has not been elucidated much, but will be potentially significant to improve the efficiency or specificity of direct reprogramming. In this review, the strategies for general direct reprogramming and biomaterials-guided stem cell differentiation are summarized with the addition of the up-to-date progress on biomaterials for direct reprogramming.
Collapse
Affiliation(s)
- Eunsol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| |
Collapse
|
44
|
Capetian P, Azmitia L, Pauly MG, Krajka V, Stengel F, Bernhardi EM, Klett M, Meier B, Seibler P, Stanslowsky N, Moser A, Knopp A, Gillessen-Kaesbach G, Nikkhah G, Wegner F, Döbrössy M, Klein C. Plasmid-Based Generation of Induced Neural Stem Cells from Adult Human Fibroblasts. Front Cell Neurosci 2016; 10:245. [PMID: 27822179 PMCID: PMC5075569 DOI: 10.3389/fncel.2016.00245] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV)-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expression of endogenous Oct3/4. We obtained induced neural stem cells (iNSC) 30 days after transfection. In contrast to previous results, plasmid vectors as well as a residual expression of reprogramming factors remained detectable in all cell lines. Cells showed a robust differentiation into neuronal (72%) and glial cells (9% astrocytes, 6% oligodendrocytes). Despite the temporary increase of pluripotency-associated Oct3/4 expression during reprogramming, we did not detect pluripotent stem cells or non-neural cells in culture (except occasional residual fibroblasts). Neurons showed electrical activity and functional glutamatergic synapses. Our results demonstrate that reprogramming adult human fibroblasts to iNSC by plasmid vectors and basic neural medium without small molecules is possible and feasible. However, a full set of pluripotency-associated transcription factors may indeed result in the acquisition of a transient (at least partial) pluripotent intermediate during reprogramming. In contrast to previous reports, the EBV-based plasmid system remained present and active inside the cells at all time points.
Collapse
Affiliation(s)
- Philipp Capetian
- Institute of Neurogenetics, University of LübeckLübeck, Germany; Department of Neurology, University of LübeckLübeck, Germany
| | - Luis Azmitia
- Department of Neurosurgery, University of Kiel Kiel, Germany
| | - Martje G Pauly
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| | - Victor Krajka
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| | - Felix Stengel
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| | | | - Mariana Klett
- Laboratory of Stereotaxy and Interventional Neuroscience, Department of Stereotactic and Functional Neuroscience, University Medical Center Freiburg Freiburg im Breisgau, Germany
| | - Britta Meier
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| | | | - Andreas Moser
- Department of Neurology, University of Lübeck Lübeck, Germany
| | - Andreas Knopp
- Institute of Physiology, University of Kiel Kiel, Germany
| | | | - Guido Nikkhah
- Department of Neurosurgery, University of Erlangen-Nuremberg Erlangen, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School Hanover, Germany
| | - Máté Döbrössy
- Laboratory of Stereotaxy and Interventional Neuroscience, Department of Stereotactic and Functional Neuroscience, University Medical Center Freiburg Freiburg im Breisgau, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| |
Collapse
|
45
|
Iacovides D, Rizki G, Lapathitis G, Strati K. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes. Stem Cell Res Ther 2016; 7:98. [PMID: 27473056 PMCID: PMC4966867 DOI: 10.1186/s13287-016-0357-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/12/2016] [Accepted: 06/29/2016] [Indexed: 01/14/2023] Open
Abstract
The insufficient ability of specialized cells such as neurons, cardiac myocytes, and epidermal cells to regenerate after tissue damage poses a great challenge to treat devastating injuries and ailments. Recent studies demonstrated that a diverse array of cell types can be directly derived from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), or somatic cells by combinations of specific factors. The use of iPSCs and direct somatic cell fate conversion, or transdifferentiation, holds great promise for regenerative medicine as these techniques may circumvent obstacles related to immunological rejection and ethical considerations. However, producing iPSC-derived keratinocytes requires a lengthy two-step process of initially generating iPSCs and subsequently differentiating into skin cells, thereby elevating the risk of cellular damage accumulation and tumor formation. In this study, we describe the reprogramming of mouse embryonic fibroblasts into functional keratinocytes via the transient expression of pluripotency factors coupled with directed differentiation. The isolation of an iPSC intermediate is dispensable when using this method. Cells derived with this approach, termed induced keratinocytes (iKCs), morphologically resemble primary keratinocytes. Furthermore they express keratinocyte-specific markers, downregulate mesenchymal markers as well as the pluripotency factors Oct4, Sox2, and Klf4, and they show important functional characteristics of primary keratinocytes. iKCs can be further differentiated by high calcium administration in vitro and are capable of regenerating a fully stratified epidermis in vivo. Efficient conversion of somatic cells into keratinocytes could have important implications for studying genetic skin diseases and designing regenerative therapies to ameliorate devastating skin conditions.
Collapse
Affiliation(s)
- Demetris Iacovides
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Gizem Rizki
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.,Current address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Georgios Lapathitis
- Transgenic Mouse Facility, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
46
|
Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 2016; 17:424-37. [PMID: 27194476 DOI: 10.1038/nrn.2016.46] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The scarcity of live human brain cells for experimental access has for a long time limited our ability to study complex human neurological disorders and elucidate basic neuroscientific mechanisms. A decade ago, the development of methods to reprogramme somatic human cells into induced pluripotent stem cells enabled the in vitro generation of a wide range of neural cells from virtually any human individual. The growth of methods to generate more robust and defined neural cell types through reprogramming and direct conversion into induced neurons has led to the establishment of various human reprogramming-based neural disease models.
Collapse
|
47
|
Daniel MG, Lemischka IR, Moore K. Converting cell fates: generating hematopoietic stem cells de novo via transcription factor reprogramming. Ann N Y Acad Sci 2016; 1370:24-35. [PMID: 26748878 DOI: 10.1111/nyas.12989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Even though all paradigms of stem cell therapy and regenerative medicine emerged from the study of hematopoietic stem cells (HSCs), the inability to generate these cells de novo or expand them in vitro persists. Initial efforts to obtain these cells began with the use of embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technologies, but these strategies have yet to yield fully functional cells. Subsequently, more recent approaches involve transcription factor (TF) overexpression to reprogram PSCs and various somatic cells. The induction of pluripotency with just four TFs by Yamanaka informs our ability to convert cell fates and demonstrates the feasibility of utilizing terminally differentiated cells to generate cells with multilineage potential. In this review, we discuss the recent efforts undertaken using TF-based reprogramming strategies to convert several cell types into HSCs.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York.,The Graduate School of Biomedical Science, Icahn School of Medicine, New York, New York
| | - Ihor R Lemischka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine, New York, New York
| | - Kateri Moore
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York
| |
Collapse
|
48
|
A Dishful of a Troubled Mind: Induced Pluripotent Stem Cells in Psychiatric Research. Stem Cells Int 2015; 2016:7909176. [PMID: 26839567 PMCID: PMC4709917 DOI: 10.1155/2016/7909176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Neuronal differentiation of induced pluripotent stem cells and direct reprogramming represent powerful methods for modeling the development of neurons in vitro. Moreover, this approach is also a means for comparing various cellular phenotypes between cell lines originating from healthy and diseased individuals or isogenic cell lines engineered to differ at only one or a few genomic loci. Despite methodological constraints and initial skepticism regarding this approach, the field is expanding at a fast pace. The improvements include the development of new differentiation protocols resulting in selected neuronal populations (e.g., dopaminergic, GABAergic, hippocampal, and cortical), the widespread use of genome editing methods, and single-cell techniques. A major challenge awaiting in vitro disease modeling is the integration of clinical data in the models, by selection of well characterized clinical populations. Ideally, these models will also demonstrate how different diagnostic categories share overlapping molecular disease mechanisms, but also have unique characteristics. In this review we evaluate studies with regard to the described developments, to demonstrate how differentiation of induced pluripotent stem cells and direct reprogramming can contribute to psychiatry.
Collapse
|
49
|
Uchugonova A, Breunig HG, Batista A, König K. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:115008. [PMID: 26618522 DOI: 10.1117/1.jbo.20.11.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.
Collapse
Affiliation(s)
- Aisada Uchugonova
- Saarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, GermanybJenLab GmbH, Schillerstrasse 1, 07745 Jena, Germany
| | - Hans Georg Breunig
- Saarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, GermanybJenLab GmbH, Schillerstrasse 1, 07745 Jena, Germany
| | - Ana Batista
- Saarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, Germany
| | - Karsten König
- Saarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, GermanybJenLab GmbH, Schillerstrasse 1, 07745 Jena, Germany
| |
Collapse
|
50
|
Sen CK, Ghatak S. miRNA control of tissue repair and regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2629-40. [PMID: 26056933 DOI: 10.1016/j.ajpath.2015.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022]
Abstract
Tissue repair and regeneration rely on the function of miRNA, molecular silencers that enact post-transcriptional gene silencing of coding genes. Disruption of miRNA homeostasis is developmentally lethal, indicating that fetal tissue development is tightly controlled by miRNAs. Multiple critical facets of adult tissue repair are subject to control by miRNAs, as well. Sources of cell pool for tissue repair and regeneration are diverse and provided by processes including cellular dedifferentiation, transdifferentiation, and reprogramming. Each of these processes is regulated by miRNAs. Furthermore, induced pluripotency may be achieved by miRNA-based strategies independent of transcription factor manipulation. The observation that miRNA does not integrate into the genome makes miRNA-based therapeutic strategies translationally valuable. Tools to manipulate cellular and tissue miRNA levels include mimics and inhibitors that may be specifically targeted to cells of interest at the injury site. Here, we discuss the extraordinary importance of miRNAs in tissue repair and regeneration based on emergent reports and rapid advances in miRNA-based therapeutics.
Collapse
Affiliation(s)
- Chandan K Sen
- Center for Regenerative Medicine and Cell-Based Therapies and the Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Subhadip Ghatak
- Center for Regenerative Medicine and Cell-Based Therapies and the Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|