1
|
Rieber J, Niederhauser RK, Giovanoli P, Buschmann J. Release kinetics, static and dynamic water contact angles and FTIR data for tissue inhibitor of matrix metalloprotease-1 (TIMP-1) incorporated in electrospun random DegraPol® fibers and TIMP-1 impact on tenocytes and adipose-derived stem cells proliferation and gene expression data. Data Brief 2025; 60:111468. [PMID: 40231153 PMCID: PMC11994933 DOI: 10.1016/j.dib.2025.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
A first data set refers to tissue inhibitor of matrix metalloprotease-1 (TIMP-1) protein inclusion into a DegraPol® fibres utilizing emulsion electrospinning and the characterization of the random fibre mesh. Specifically, the release kinetics of the protein from the mesh was studied over 7 days. Moreover, the static and the dynamic water contact angles were determined. Finally, we assessed Fourier-Transformed Infrared Spectra (FTIR spectra) for DegraPol® with and without TIMP-1. A second data set represents proliferation data obtained with the Alamar Blue Assay, applied on rabbit Achilles tenocytes and rabbit adipose-derived stem cells, when stimulated in vitro with 1, 10, and 100 ng/mL TIMP-1 supplementation compared to the corresponding cell culture without TIMP-1 (control). Furthermore, qPCR was performed and collagen I, ki67, tenomodulin and alkaline phosphatase gene expression data are presented for both cell types in vitro stimulated with 1, 10, and 100 ng/mL TIMP-1 supplementation, respectively, and data are presented as manifold induction compared to a TIMP-1-free cell culture medium (control).
Collapse
Affiliation(s)
- Julia Rieber
- Division of Plastic Surgery and Hand Surgery, Sternwartstrasse 14, University Hospital Zurich, Zurich 8091, Switzerland
| | - Roger Khalid Niederhauser
- Division of Plastic Surgery and Hand Surgery, Sternwartstrasse 14, University Hospital Zurich, Zurich 8091, Switzerland
| | - Pietro Giovanoli
- Division of Plastic Surgery and Hand Surgery, Sternwartstrasse 14, University Hospital Zurich, Zurich 8091, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, Sternwartstrasse 14, University Hospital Zurich, Zurich 8091, Switzerland
| |
Collapse
|
2
|
Yang C, Chen C, Chen R, Yang F, Xiao H, Geng B, Xia Y. Application and optimization of bioengineering strategies in facilitating tendon-bone healing. Biomed Eng Online 2025; 24:46. [PMID: 40269911 PMCID: PMC12016306 DOI: 10.1186/s12938-025-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Tendon-bone insertion trauma is prevalent in both rotator cuff and anterior cruciate ligament injuries, which are frequently encountered conditions in the field of sports medicine. The main treatment for such injuries is reconstructive surgery. The primary determinant impacting this process is the graft's capacity to integrate with the bone tunnel. In recent years, researchers have attempted to use a variety of methods to facilitate tendon-bone healing after reconstructive surgery. Such as the implantation of biological materials, cytokines and the local application of permanently differentiated cells from various sources. However, there are limitations to the efficacy of one therapy alone in facilitating tendon-bone healing. Therefore, researchers are trying to combine strategies to overcome this conundrum. At present, most studies are based on biomaterial combined with other therapeutic strategies for tissue repair and regeneration. Biomaterials mainly include the application of bioengineering scaffolds, hydrogels and bioabsorbable interference screws. By conducting a thorough review of relevant literature, this study provides a comprehensive overview of the present research progress in enhancing tendon-bone healing using biomaterials. Additionally, it explores the potential benefits of combining biomaterials with other approaches to promote tendon-bone healing. The ultimate goal is to offer insights for future basic research endeavors and establish a solid groundwork for advancing clinical applications in the near future.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
- Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
He Z, Zeng S, Qin B, Liu G, Liu H, Bao D. Investigation on the role of Icariin in tendon injury repair: focusing on tendon stem cell differentiation. J Orthop Surg Res 2025; 20:379. [PMID: 40234966 PMCID: PMC12001499 DOI: 10.1186/s13018-025-05784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
OBJECTIVE Tendon injury is a common and frequent disease in the field of sports medicine, and tendon repair after injury is a common clinical difficulty. Repair strategy based on tendon stem cells (TDSCs) therapy is considered a promising therapeutic option for the treatment of tendon injuries. Icariin (ICA) has been shown to be an effective herbal monomer for the treatment of tendon-bone healing and may be effective in the repair of tendon injuries. METHODS In vitro, TDSCs isolated from C57 mice were treated with ICA (0.01-100 µM) to assess proliferation (CCK-8 assay) and tendonogenic differentiation (qRT-PCR). In vivo, 42 C57 mice with surgically induced patellar tendon defects were randomized into three groups (n = 14/group): (1) 20 mg/kg ICA, (2) 40 mg/kg ICA, and (3) control group (DMSO), administered intraperitoneally for 14 days. Half of each group (n = 7) underwent histopathological (hematoxylin-eosin staining, Masson staining) and molecular (qRT-PCR) analyses at 2 and 4 weeks post-surgery. RESULTS In vitro, after 7 days of ICA intervention in TDSC, the expression of Mohawk (MKX), Scleraxis (SCX), fibromodulin (FMOD), and Tenomodulin (TNC) were higher in the ICA group than in the control group. In vivo, the expression of MKX, SCX, FMOD, and TNC was higher in the 20 mg/kg ICA group and 40 mg/kg ICA group than in the control group at 2 and 4 weeks after surgery. Histological evaluation revealed superior tendon repair in both ICA-treated groups compared to controls at both 2 and 4 weeks postoperative intervals. The 20 mg/kg ICA group demonstrated a significant enhancement in tissue continuity and collagen fiber organization, exhibiting greater defect filling, fewer interstitial gaps, and reduced vascular infiltration. In contrast, control specimens exhibited disorganized collagen architecture with prominent interstitial gaps. The 40 mg/kg ICA group showed intermediate repair outcomes between the 20 mg/kg ICA and control groups. CONCLUSION ICA can improve tendon injury repair by enhancing tendonogenic differentiation of TDSC.
Collapse
Affiliation(s)
- Zhenhong He
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shengqiang Zeng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Bo Qin
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Gang Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Dingsu Bao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
4
|
Cheng Q, Wang Y, Liu Y, Mu J, Wang Z, Lin X, Yin G, Li S. A novel grid-assisted pie-crusting technique for achieving soft tissue balance in total knee arthroplasty. Front Surg 2025; 12:1566642. [PMID: 40171007 PMCID: PMC11958710 DOI: 10.3389/fsurg.2025.1566642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Background To evaluate the effectiveness of a novel grid-based pie-crusting technique for soft tissue release at different locations of the medial collateral ligament (MCL) during total knee arthroplasty (TKA). Methods Twelve fresh-frozen cadaveric knee joints were dissected. A novel grid was designed to cover the entire surface of the MCL. The specimens were divided into two groups: Group A, where only the central portion of the ligament underwent pie-crusting release, and Group B, where selective release targeted the femoral and tibial attachment points of the MCL. Mechanical testing was conducted via a Shimadzu AG-X precision instrument. Each group underwent twelve punctures, and data were collected to calculate deformation and stiffness metrics. The mean elongation and stiffness values were analyzed, and regression analysis was performed to evaluate correlations between the number of punctures and changes in elongation and stiffness. Results No significant differences in initial stiffness were observed between the two groups (P = 0.42). Following 12 punctures, the stiffness decreased by 6.47 ± 4.06 N/mm in Group A and 1.08 ± 1.32 N/mm in Group B (P = 0.006). Despite this disparity in stiffness reduction, no significant differences in MCL elongation were observed between the groups. Group A demonstrated an elongation of 0.171 ± 0.180 mm, whereas Group B exhibited an elongation of 0.164 ± 0.123 mm (P = 0.47). A linear relationship was identified between stiffness reduction and the number of punctures (R 2 = 0.61 ± 0.29), as well as between ligament elongation and the number of punctures (R 2 = 0.89 ± 0.09). Conclusion The grid-assisted pie-crusting technique, which uniformly covers the MCL, enables precise and controlled soft tissue release. This approach provides valuable insights for clinicians performing MCL release during TKA, facilitating improved soft tissue balance and potentially enhancing surgical outcomes.
Collapse
Affiliation(s)
- Qisheng Cheng
- Department of Orthopedic Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- The First Operation Room, The First Hospital of Jilin University, Changchun, China
| | - Yi Liu
- Department of Orthopedic Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Mu
- Department of Orthopedic Center, The First Hospital of Jilin University, Changchun, China
| | - Zhenyan Wang
- Department of Orthopedic Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Lin
- Department of Orthopedic Center, The First Hospital of Jilin University, Changchun, China
| | - Guanchen Yin
- Department of Orthopedic Center, The First Hospital of Jilin University, Changchun, China
| | - Shuqiang Li
- Department of Orthopedic Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Yoon JP, Park SJ, Kim DH, Choi YS, Lee HJ, Kim JY, Chung SW. Anti-Leukotriene Receptor Blockers Improve Tendon-Bone Interface Healing in a Rat Model of Acute Rotator Cuff Tear. Orthopedics 2025; 48:e105-e112. [PMID: 40052921 DOI: 10.3928/01477447-20250218-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
BACKGROUND Excessive expression of proinflammatory cytokines after rotator cuff (RC) surgery impairs the quality of tendon-bone interface (TBI) healing. There is evidence that the asthma drug montelukast (MS) inhibits the expression of proinflammatory cytokines. This study was conducted to verify the effect of MS administration on TBI healing after RC repair. MATERIALS AND METHODS Thirteen rats in the MS group were intraperitoneally administered 10 mg/kg of the drug daily for 2 weeks after RC surgery, and 13 rats in the control group were administered only 0.9% saline. The healing effect of the TBI was assessed through histologic and biomechanical analysis 4 weeks after tendon repair. RESULTS In the MS group, the expression of interleukin-1 beta (IL-1β; P<.01) and interleukin 6 (IL-6; P<.01) was significantly reduced compared with the control group. In the evaluation of supraspinatus fatty infiltration, the MS group showed significant inhibition of fatty infiltration compared with the control group (P<.001). Histologic analysis showed that the MS group had significant improvements in collagen density (P=.035) and alignment (P=.011). Biomechanical analysis after systemic administration of MS showed an increase in the cross-sectional area (P<.001) and elongation (P<.01) of the TBI. CONCLUSION The use of MS improved tendon elasticity through suppressing fatty infiltration and improving TBI collagen density and arrangement. The mechanism is down-regulation of IL-1β and IL-6. These results strongly support the use of MS as an anti-inflammatory agent that does not impair tendon healing. [Orthopedics. 2025;48(2):e105-e112.].
Collapse
|
6
|
Li Y, Wang W, Xu W. Mechanisms and new advances in the efficacy of plant active ingredients in tendon-bone healing. J Orthop Surg Res 2025; 20:106. [PMID: 39881382 PMCID: PMC11776161 DOI: 10.1186/s13018-025-05483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
The tendon-bone interface, known as the tenosynovial union or attachment, can be easily damaged by excessive exercise or trauma. Tendon-bone healing is a significant research topic in orthopedics, encompassing various aspects of sports injuries and postoperative recovery. Surgery is the most common treatment; however, it has limited efficacy in promoting tendon-bone healing and carries a risk of postoperative recurrence, necessitating the search for more effective treatments. Recently, plant-active ingredients such as tanshinone IIA, astragaloside, ginsenoside Rb1, and resveratrol have garnered significant attention due to their unique advantages in promoting tendon-bone healing. This review outlines the various mechanisms and research progress of these four plant-active ingredients, as well as compound ingredients, in promoting tendon-bone healing. For instance, tanshinone IIA significantly accelerates the healing rate and improves healing quality through anti-inflammatory, antioxidant, and cell proliferation-promoting mechanisms. Astragaloside expedites tendon-bone healing and enhances the mechanical strength of healing tissues primarily through anti-inflammatory, antioxidant, and immunoregulatory effects. Ginsenoside Rb1 enhances local blood supply and facilitates tendon-bone tissue repair through angiogenesis, anti-inflammatory, and antioxidant pathways. Resveratrol protects cellular function and accelerates tissue healing due to its potent antioxidant and anti-inflammatory effects. Additionally, the mechanisms and progress of certain Chinese herbal compound components in tendon-bone healing are outlined. This review concludes that these four plant-active ingredients and herbal compound components promote tendon-bone healing through various mechanisms. The efficacy mechanisms and research progress of these plant-active ingredients are summarized to provide references for clinical treatment and related research.
Collapse
Affiliation(s)
- Yuan Li
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China
| | - Wei Wang
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China
| | - Wensheng Xu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China.
| |
Collapse
|
7
|
Peez C, Hägerich LM, Ruhl F, Klimek M, Briese T, Glasbrenner J, Deichsel A, Raschke MJ, Kittl C, Herbst E. Collateral ligament strain is linearly related to coronal lower limb alignment: A biomechanical study. Knee Surg Sports Traumatol Arthrosc 2025; 33:144-156. [PMID: 38932622 PMCID: PMC11716353 DOI: 10.1002/ksa.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE The purpose of this study was to analyse the influence of coronal lower limb alignment on collateral ligament strain. METHODS Twelve fresh-frozen human cadaveric knees were used. Long-leg standing radiographs were obtained to assess lower limb alignment. Specimens were axially loaded in a custom-made kinematics rig with 200 and 400 N, and dynamic varus/valgus angulation was simulated in 0°, 30°, and 60° of knee flexion. The changes in varus/valgus angulation and strain within different fibre regions of the collateral ligaments were captured using a three-dimensional optical measuring system to examine the axis-dependent strain behaviour of the superficial medial collateral ligament (sMCL) and lateral collateral ligament (LCL) at intervals of 2°. RESULTS The LCL and sMCL were exposed to the highest strain values at full extension (p < 0.001). Regardless of flexion angle and extent of axial loading, the ligament strain showed a strong and linear association with varus (all Pearson's r ≥ 0.98; p < 0.001) and valgus angulation (all Pearson's r ≥ -0.97; p < 0.01). At full extension and 400 N of axial loading, the anterior and posterior LCL fibres exceeded 4% ligament strain at 3.9° and 4.0° of varus, while the sMCL showed corresponding strain values of more than 4% at a valgus angle of 6.8°, 5.4° and 4.9° for its anterior, middle and posterior fibres, respectively. CONCLUSION The strain within the native LCL and sMCL was linearly related to coronal lower limb alignment. Strain levels associated with potential ultrastructural damages to the ligaments of more than 4% were observed at 4° of varus and about 5° of valgus malalignment, respectively. When reconstructing the collateral ligaments, an additional realigning osteotomy should be considered in cases of chronic instability with a coronal malalignment exceeding 4°-5° to protect the graft and potentially reduce failures. LEVEL OF EVIDENCE There is no level of evidence as this study was an experimental laboratory study.
Collapse
Affiliation(s)
- Christian Peez
- Department of Trauma, Hand and Reconstructive SurgeryUniversity Hospital MünsterMünsterGermany
| | - Luise Maria Hägerich
- Department of Trauma, Hand and Reconstructive SurgeryUniversity Hospital MünsterMünsterGermany
| | - Felix Ruhl
- Department of Trauma, Hand and Reconstructive SurgeryUniversity Hospital MünsterMünsterGermany
| | - Matthias Klimek
- Department of Trauma, Hand and Reconstructive SurgeryUniversity Hospital MünsterMünsterGermany
| | - Thorben Briese
- Department of Trauma, Hand and Reconstructive SurgeryUniversity Hospital MünsterMünsterGermany
| | - Johannes Glasbrenner
- Department of Trauma, Hand and Reconstructive SurgeryUniversity Hospital MünsterMünsterGermany
| | - Adrian Deichsel
- Department of Trauma, Hand and Reconstructive SurgeryUniversity Hospital MünsterMünsterGermany
| | - Michael J. Raschke
- Department of Trauma, Hand and Reconstructive SurgeryUniversity Hospital MünsterMünsterGermany
| | - Christoph Kittl
- Department of Trauma, Hand and Reconstructive SurgeryUniversity Hospital MünsterMünsterGermany
| | - Elmar Herbst
- Department of Trauma, Hand and Reconstructive SurgeryUniversity Hospital MünsterMünsterGermany
| |
Collapse
|
8
|
Iorio F, El Khatib M, Wöltinger N, Turriani M, Di Giacinto O, Mauro A, Russo V, Barboni B, Boccaccini AR. Electrospun poly(ε-caprolactone)/poly(glycerol sebacate) aligned fibers fabricated with benign solvents for tendon tissue engineering. J Biomed Mater Res A 2025; 113:e37794. [PMID: 39295227 DOI: 10.1002/jbm.a.37794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
The electrospinning technique is a commonly employed approach to fabricate fibers intended for various tissue engineering applications. The aim of this study is to develop a novel strategy for tendon repair through the use of aligned poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS) fibers fabricated in benign solvents, and further explore the potential application of PGS in tendon tissue engineering (TTE). The fibers were characterized for their morphological and physicochemical properties; amniotic epithelial stem cells (AECs) were used to assess the fibers teno-inductive and immunomodulatory potential due to their ability to teno-differentiate undergoing first a stepwise epithelial to mesenchymal transition, and due to their documented therapeutic role in tendon regeneration. The addition of PGS to PCL improved the spinnability of the polymer solution, as well as the uniformity and directionality of the so-obtained fibers. The mechanical properties were in the range of most TTE applications, specifically in the case of PCL/PGS 4:1 and 2:1 ratios. Compared to PCL alone, the same ratios also allowed a better AECs infiltration and growth over 7 days of culture, and triggered the activation of tendon-related genes (SCX, COL1, TNMD) and the expression of tenomodulin (TNMD) at the protein level. Concerning the immunomodulatory properties, both PCL and PCL/PGS fibers negatively affected the immunomodulatory profile of AECs, up-regulating both anti-inflammatory (IL-10) and pro-inflammatory (IL-12) cytokines over 7 days of culture. Overall, PCL/PGS 2:1 fibers fabricated with benign solvents proved to be the most suitable composition for TTE application based on their topographical cues, mechanical properties, biocompatibility, and teno-inductive properties.
Collapse
Affiliation(s)
- Francesco Iorio
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Mohammad El Khatib
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Natalie Wöltinger
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Maura Turriani
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Oriana Di Giacinto
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Barbara Barboni
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
Zhang W, Rao Y, Wong SH, Wu Y, Zhang Y, Yang R, Tsui SK, Ker DFE, Mao C, Frith JE, Cao Q, Tuan RS, Wang DM. Transcriptome-Optimized Hydrogel Design of a Stem Cell Niche for Enhanced Tendon Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2313722. [PMID: 39417770 PMCID: PMC11733723 DOI: 10.1002/adma.202313722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Bioactive hydrogels have emerged as promising artificial niches for enhancing stem cell-mediated tendon repair. However, a substantial knowledge gap remains regarding the optimal combination of niche features for targeted cellular responses, which often leads to lengthy development cycles and uncontrolled healing outcomes. To address this critical gap, an innovative, data-driven materiomics strategy is developed. This approach is based on in-house RNA-seq data that integrates bioinformatics and mathematical modeling, which is a significant departure from traditional trial-and-error methods. It aims to provide both mechanistic insights and quantitative assessments and predictions of the tenogenic effects of adipose-derived stem cells induced by systematically modulated features of a tendon-mimetic hydrogel (TenoGel). The knowledge generated has enabled a rational approach for TenoGel design, addressing key considerations, such as tendon extracellular matrix concentration, uniaxial tensile loading, and in vitro pre-conditioning duration. Remarkably, our optimized TenoGel demonstrated robust tenogenesis in vitro and facilitated tendon regeneration while preventing undesired ectopic ossification in a rat tendon injury model. These findings shed light on the importance of tailoring hydrogel features for efficient tendon repair. They also highlight the tremendous potential of the innovative materiomics strategy as a powerful predictive and assessment tool in biomaterial development for regenerative medicine.
Collapse
Affiliation(s)
- Wanqi Zhang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Ying Rao
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Shing Hei Wong
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Yeung Wu
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Yuanhao Zhang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Rui Yang
- Department of Sports MedicineOrthopedicsSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Stephen Kwok‐Wing Tsui
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Dai Fei Elmer Ker
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SARChina
| | - Jessica E. Frith
- Materials Science and EngineeringMonash UniversityClayton3800VICAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClayton3800VICAustralia
- Australian Research Council Training Centre for Cell and Tissue Engineering TechnologiesMonash UniversityClayton3800VICAustralia
| | - Qin Cao
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Rocky S. Tuan
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| | - Dan Michelle Wang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
10
|
Xu J, Zheng M, Feng Z, Lin Q. CCL4L2 participates in tendinopathy progression by promoting macrophage inflammatory responses: a single-cell analysis. J Orthop Surg Res 2024; 19:836. [PMID: 39696421 DOI: 10.1186/s13018-024-05268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Tendinopathy is very common in clinical practice, which is highly prevalent in athletes, sports enthusiasts and other people involved in high-load weight-bearing activities. Common types of tendinopathy include rotator cuff injury, Achilles tendinitis, tennis elbow and so on. Macrophages (Macs) are key immune cells in the pathogenesis of tendinopathy. In this study, CCL4L2+ M1-related signaling pathways were screened by combining single-cell RNA sequencing (scRNA-seq) to explore their significance in tendinopathy treatment. METHODS Immune cell populations were screened by Uniform Manifold Approximation and Projection (UMAP) downscaling, and Mac cell subsets were annotated using cell marker genes. The cellular communication mechanism between different cellular subsets such as Macs and tendon stem/progenitor cells (TSPCs) was demonstrated by cellular communication analysis. Based on cell marker genes of CCL4L2 + M1, Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to compare the expression differences in M1 and M2 between the Disease and Healthy groups. Associations between CCL4L2+ M1 and TSPCs were inferred by cell-cell communication analysis. The effects of CCL4L2 on Mac polarization and TSPCs were verified by enzyme-linked immunosorbent assay (ELISA) and real-time fluorescence quantitative PCR (qPCR). RESULTS The proportions of TSPCs, endothelial cells (ECs), smooth muscle cells (SMCs), and immune cells were significantly elevated in the Disease group. The proportion of M1 cells in the Disease group was higher than that in the Healthy group, while the proportion of M2 cells was lower than that in the Healthy group. M1 differentially expressed genes (DEGs) were mainly enriched to disease-related and immunoinflammation-related signaling pathways. Signaling intensities between M1 and TSPCs in pathways related to immunoinflammation and ischemic injury were significantly increased in the Disease group. The proportion of CCL4L2 + M1 in the Disease group was significantly higher than in the Healthy group, and communications between CCL4L2 + M1 and TSPCs varied significantly. Compared with the Control group, the expression levels of inflammatory cytokines were higher in the CCL4L2 group, and the expression levels of tendon differentiation markers (Egr1, Mkx, Scx, Type 1 collagen, Tnmd) were significantly down-regulated. CONCLUSION The present study analyzed the heterogeneous alterations in the Healthy and Disease groups by scRNA-seq data and found that there was a significant inflammatory infiltrate in the Disease group with markedly increased Mac activity, which was associated with activation of the CCL4L2 + M1-associated signaling pathways. CCL4L2 promotes M1 polarization and inhibits TSPC differentiation through activating M1-related inflammatory signaling pathways. These findings contribute to a more comprehensive understanding of tendon injury progression and provide potential targets for tendinopathy treatment.
Collapse
Affiliation(s)
- Junxiang Xu
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, 315000, China.
| | - Minzhe Zheng
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, 315000, China
| | - Zongxian Feng
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, 315000, China
| | - Qiji Lin
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, 315000, China
| |
Collapse
|
11
|
Später T, Del Rio P, Shelest O, Wechsler JT, Kaneda G, Chavez M, Sheyn J, Yu V, Metzger W, Huang D, Metzger M, Tawackoli W, Sheyn D. Collagen scaffold-seeded iTenocytes accelerate the healing and functional recovery of Achilles tendon defects in a rat model. Front Bioeng Biotechnol 2024; 12:1407729. [PMID: 39713100 PMCID: PMC11658981 DOI: 10.3389/fbioe.2024.1407729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Tendon injuries represent an ongoing challenge in clinical practice due to poor regenerative capacity, structure, and biomechanical function recovery of ruptured tendons. This study is focused on the assessment of a novel strategy to repair ruptured Achilles tendons in a Nude rat model using stem cell-seeded biomaterial. Methods Specifically, we have used induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) overexpressing the early tendon marker Scleraxis (SCX, iMSCSCX+, iTenocytes) in combination with an elastic collagen scaffold. Achilles tendon defects in Nude rat models were created by isolating the tendon and excising 3 mm of the midsection. The Achilles tendon defects were then repaired with iTenocyte-seeded scaffolds, unseeded scaffolds, or suture only and compared to native Nude rat tendon tissue using gait analyses, biomechanical testing, histology, and immunohistochemistry. Results The results show faster functional recovery of gait in iTenocyte-seeded scaffold group comparing to scaffold only and suture only groups. Both iTenocyte-seeded scaffold and scaffold only treatment groups had improved biomechanical properties when compared to suture only treatment group, however no statistically significant difference was found in comparing the cell seeding scaffold an scaffold only group in terms of biomechanical properties. Immunohistochemistry staining further demonstrated that iTenocytes successfully populated the collagen scaffolds and survived 9 weeks after implantation in vivo. Additionally, the repaired tissue of iTenocyte-treated injuries exhibited a more organized structure when compared to tendon defects that were repaired only with suturing or unseeded scaffolds. Conclusion We suggest that iTenocyte-seeded DuRepair™ collagen scaffold can be used as potential treatment to regenerate the tendon tissue biomechanically and functionally.
Collapse
Affiliation(s)
- Thomas Später
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Patricia Del Rio
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jacob T. Wechsler
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Melissa Chavez
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Victoria Yu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Dave Huang
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Melodie Metzger
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
12
|
Liang W, Zhou C, Deng Y, Fu L, Zhao J, Long H, Ming W, Shang J, Zeng B. The current status of various preclinical therapeutic approaches for tendon repair. Ann Med 2024; 56:2337871. [PMID: 38738394 PMCID: PMC11095292 DOI: 10.1080/07853890.2024.2337871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Yongjun Deng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
13
|
Xu J, Wang J, Ji Y, Liu Y, Jiang J, Wang Y, Cui X, Wan Y, Guo B, Yu H. The impact of diabetes mellitus on tendon pathology: a review. Front Pharmacol 2024; 15:1491633. [PMID: 39564114 PMCID: PMC11575704 DOI: 10.3389/fphar.2024.1491633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
Diabetes is one of the most common metabolic diseases worldwide, leading to complications, mortality, and significant healthcare expenditures, which impose a substantial social and financial burden globally. A diabetic environment can induce metabolic changes, negatively affecting tendon homeostasis, leading to alterations in biomechanical properties and histopathology. Numerous studies have investigated the mechanisms through which diabetes exerts pathological effects on tendons, including increased free radical production, oxidative stress, inflammatory responses, deposition of advanced glycation end products (AGEs), and microvascular changes. These metabolic changes damages tendon structure, biomechanics, and tendon repair processes. The proliferation of tendon stem cells decreases, apoptosis increases, and abnormal differentiation, along with abnormal expression of myofibroblasts, ultimately lead to insufficient tendon repair, fibrosis, and remodeling. Although researches unveiling the effects of diabetes on tendinopathy, fibrosis or contracture, and tendon injury healing are growing, systematic understanding is still lacking. Therefore, this review summarizes the current research status and provides a comprehensive overview, offering theoretical guidance for future in-depth exploration of the impact of diabetes on tendons and the development of treatments for diabetes-related tendon diseases.
Collapse
Affiliation(s)
- Jian Xu
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Jinbo Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncong Ji
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Yanlong Liu
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Jishi Jiang
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Yanbo Wang
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Xilong Cui
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Yunpeng Wan
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Biao Guo
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Haiyang Yu
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| |
Collapse
|
14
|
Asgari N, Moghtadaei-Khorasgani E, Yadegari M, Taheri-Boroujeni O. Effect of hydroalcoholic extract of Sambucus nigra on superficial digital flexor tendon repair in rabbit by ultrasonography and histopathology. Vet Med Sci 2024; 10:e1581. [PMID: 39321186 PMCID: PMC11423904 DOI: 10.1002/vms3.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/26/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Adult tendon tissue has limited and slow regenerative capacity. Sambucus nigra plant possesses antioxidant and anti-inflammatory attributes. OBJECTIVES This study aimed to evaluate the effect of hydroalcoholic extract of this plant's fruit on superficial digital flexor tendon repair in rabbits (SDFT). METHODS Twenty-five male New Zealand white rabbits weighing 1.5-2 kg were selected, quarantined and randomly divided into four groups of six. By performing a partial left posterior limb tenotomy, differentiating the SDFT and creating multiple scrapes were performed. During 3 consecutive days post-surgery, the positive control group was injected with 0.5 mg/kg dexamethasone, whereas the treatment groups received extract doses of 200 and 400 mg/kg, respectively. The negative control group did not receive any medication. Evaluation of sonographic and histopathological parameters was conducted on days 0, 7 and 28 post-surgeries. Findings were analysed and compared using SPSS22. RESULTS Both treatment groups showed significant differences in echogenicity, and collagen fibre alignment compared to the control and positive control groups, in sonographic evaluation. Histopathological examination revealed fewer inflammatory cells and increased collagen fibre formation in the treatment groups compared to the other two groups. No significant difference in angiogenesis was observed among the groups on days 7 and 28 (p value <0.05). CONCLUSIONS The results indicate that the S. nigra fruit extract, by stimulating collagen synthesis and reducing inflammation, effectively accelerates the healing process of injured tendons.
Collapse
Affiliation(s)
- Niusha Asgari
- Graduated of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mehrdad Yadegari
- Department of Veterinary Clinical Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Omid Taheri-Boroujeni
- Faculty of Veterinary Medicine, Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
15
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024; 38:802-841. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Chen ZY, Chen SH, Chen SH, Chou PY, Kuan CY, Yang IH, Chang CT, Su YC, Lin FH. Bletilla striata Polysaccharide-Containing Carboxymethyl Cellulose Bilayer Structure Membrane for Prevention of Postoperative Adhesion and Achilles Tendon Repair. Biomacromolecules 2024; 25:5786-5797. [PMID: 38935055 PMCID: PMC11388445 DOI: 10.1021/acs.biomac.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Postoperative tissue adhesion and poor tendon healing are major clinical problems associated with tendon surgery. To avoid postoperative adhesion and promote tendon healing, we developed and synthesized a membrane to wrap the surgical site after tendon suturing. The bilayer-structured porous membrane comprised an outer layer [1,4-butanediol diglycidyl ether cross-linked with carboxymethyl cellulose (CX)] and an inner layer [1,4-butanediol diglycidyl ether cross-linked with Bletilla striata polysaccharides and carboxymethyl cellulose (CXB)]. The morphology, chemical functional groups, and membrane structure were determined. In vitro experiments revealed that the CX/CXB membrane demonstrated good biosafety and biodegradability, promoted tenocyte proliferation and migration, and exhibited low cell attachment and anti-inflammatory effects. Furthermore, in in vivo animal study, the CX/CXB membrane effectively reduced postoperative tendon-peripheral tissue adhesion and improved tendon repair, downregulating inflammatory cytokines in the tendon tissue at the surgical site, which ultimately increased tendon strength by 54% after 4 weeks.
Collapse
Affiliation(s)
- Zhi-Yu Chen
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Shih-Heng Chen
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Department
of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan, ROC
| | - Shih-Hsien Chen
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Department
of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan, ROC
| | - Pang-Yun Chou
- Department
of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan, ROC
| | - Che-Yung Kuan
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - I-Hsuan Yang
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Chia-Tien Chang
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Yi-Chun Su
- Institute
of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Feng-Huei Lin
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| |
Collapse
|
17
|
Zade AP, Ramteke SU, Keoliya A, Deshmukh TV. Rehabilitation Approaches for Proximal Peroneal Tendinopathy With Concurrent Anterior Cruciate Ligament (ACL) Sprain: A Case Report. Cureus 2024; 16:e69706. [PMID: 39429395 PMCID: PMC11489928 DOI: 10.7759/cureus.69706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Proximal peroneal tendinopathy is a relatively rare condition and can cause severe pain, discomfort, and often disability, especially if it coexists with other pathologies of the lower limbs. This case report discusses a 32-year-old male surgeon with the condition of chronic lateral ankle pain due to proximal peroneal tendinopathy, complicated by an anterior cruciate ligament sprain, a posterior cruciate ligament ganglion cyst, and early medial meniscus degeneration. His ability to perform surgeries has been compromised due to the need to stand for prolonged periods. A multi-factorial rehabilitation approach was designed to address the tendon pathology and the knee dysfunctions associated with it. The treatment program included patient education, therapeutic exercise, and pain management. There were considerable improvements in terms of pain, range of motion, muscle strength, and function from the previous stage of six weeks. This case indicates the clinical necessity of kinetic-chain-oriented, very individualized approaches to rehabilitation for complex musculoskeletal conditions such as this, especially in active professionals. The success of the rehabilitation lies in the potential for recovery even with some tough conditions if the treatment modality is appropriately designed to address the interactive aspects of the patient's condition. This case highlights the importance of an integrated approach in managing complex peroneal tendonitis, especially when associated with upstream joint pathology. The positive outcome underscores the value of early recognition and individualized management to restore function and avoid permanent complications. Additionally, the report serves as a guide for future research into the potential long-term benefits of holistic, patient-specific approaches for similar cases.
Collapse
Affiliation(s)
- Amisha P Zade
- Musculoskeletal Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swapnil U Ramteke
- Sports Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Keoliya
- Sports Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanushree V Deshmukh
- Musculoskeletal Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
18
|
Frizziero A, Maffulli N, Saglietti C, Sarti E, Bigliardi D, Costantino C, Demeco A. A Practical Guide to Injection Therapy in Hand Tendinopathies: A Systematic Review of Randomized Controlled Trials. J Funct Morphol Kinesiol 2024; 9:146. [PMID: 39311254 PMCID: PMC11417863 DOI: 10.3390/jfmk9030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Hand tendinopathies represent a pathological condition associated with significant disability. However, due to this high heterogeneity of the treatments and their efficacy, there is still a lack of consensus on the infiltrative therapy of the hand. This systematic review aimed to investigate the efficacy of injection techniques in the treatment of pain related to the main hand tendinopathies. We searched online medical databases (PubMed, Pedro, Cochrane Library, Scopus, and WoS). Only RCTs published in the last 10 years (up to 5 August 2024), written in English, and related to infiltrative treatment in wrist and hand tendinopathies were evaluated. The risk of bias in RCTs was assessed with Version 2 of the Cochrane Risk of Bias tool for randomized trials (RoB 2). Out of 641 articles identified, 23 were included in the final synthesis: 14 RCTs on trigger finger, and 9 RCTs on de Quervain's tenosynovitis. The present systematic review showed that infiltrative therapy of trigger finger and de Quervain's tenosynovitis constitutes a fundamental element in the treatment of these pathological conditions, in terms of pain reduction and improvement in the functionality of the hand.
Collapse
Affiliation(s)
| | - Nicola Maffulli
- Faculty of Medicine and Psychology, University La Sapienza, 49911 Rome, Italy;
| | - Chiara Saglietti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.S.); (E.S.); (D.B.); (C.C.); (A.D.)
| | - Eugenio Sarti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.S.); (E.S.); (D.B.); (C.C.); (A.D.)
| | - Davide Bigliardi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.S.); (E.S.); (D.B.); (C.C.); (A.D.)
| | - Cosimo Costantino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.S.); (E.S.); (D.B.); (C.C.); (A.D.)
| | - Andrea Demeco
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.S.); (E.S.); (D.B.); (C.C.); (A.D.)
| |
Collapse
|
19
|
Kim JG, Sharma AR, Lee YH, Chatterjee S, Choi YJ, Rajvansh R, Chakraborty C, Lee SS. Therapeutic Potential of Quercetin as an Antioxidant for Bone-Muscle-Tendon Regeneration and Aging. Aging Dis 2024; 16:1414-1437. [PMID: 39012676 PMCID: PMC12096925 DOI: 10.14336/ad.2024.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Quercetin (QC), a naturally occurring bioflavonoid found in various fruits and vegetables, possesses many potential health benefits, primarily attributed to its robust antioxidant properties. The generation of oxidative stress in bone cells is a key modulator of their physiological behavior. Moreover, oxidative stress status influences the pathophysiology of mineralized tissues. Increasing scientific evidence demonstrates that manipulating the redox balance in bone cells might be an effective technique for developing bone disease therapies. The QC antioxidant abilities in skeletal muscle significantly enhance muscle regeneration and reduce muscle atrophy. In addition, QC has been shown to have protective effects against oxidative stress, inflammation, apoptosis, and matrix degradation in tendons, helping to maintain the structural integrity and functionality of tendons. Thus, the antioxidant properties of QC might be crucial for addressing age-related musculoskeletal disorders like osteoporosis, sarcopenia, and tendon-related inflammatory conditions. Understanding how QC influences redox signaling pathways involved in musculoskeletal disorders, including their effect on bone, muscle, and tendon differentiation, might provide insights into the diverse advantages of QC in promoting tissue regeneration and preventing cellular damage. Therefore, this study reviewed the intricate relationship among oxidative stress, inflammation, and tissue repair, affected by the antioxidative abilities of QC, in age-related musculoskeletal tissues to improve the overall health of bones, muscles, and tendons of the skeletal system. Also, reviewing the ongoing clinical trials of QC for musculoskeletal systems is encouraging. Given the positive effect of QC on musculoskeletal health, further scientific investigations and controlled human intervention studies are necessary to explore the therapeutic potential to its optimum strength.
Collapse
Affiliation(s)
- Jae Gyu Kim
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Yeon-Hee Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Yean Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Korea.
| | - Roshani Rajvansh
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India.
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| |
Collapse
|
20
|
Wang B, Chen Q, Zou X, Zheng P, Zhu J. Advances in non-coding RNA in tendon injuries. Front Genet 2024; 15:1396195. [PMID: 38836038 PMCID: PMC11148651 DOI: 10.3389/fgene.2024.1396195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Tendons serve as important weight-bearing structures that smoothly transfer forces from muscles to skeletal parts, allowing contracted muscle movements to be translated into corresponding joint movements. For body mechanics, tendon tissue plays an important role. If the tendons are damaged to varying degrees, it can lead to disability or pain in patients. That is to say, tendon injuries havea significant impact on quality of life and deserve our high attention. Compared to other musculoskeletal tissues, tendons are hypovascular and hypo-cellular, and therefore have a greater ability to heal, this will lead to a longer recovery period after injury or even disability, which will significantly affect the quality of life. There are many causes of tendon injury, including trauma, genetic factors, inflammation, aging, and long-term overuse, and the study of related mechanisms is of great significance. Currently, tendon there are different treatment modalities, like injection therapy and surgical interventions. However, they have a high failure rate due to different reasons, among which the formation of adhesions severely weakens the tissue strength, affecting the functional recovery and the patient's quality of life. A large amount of data has shown that non coding RNAs can play a huge role in this field, thus attracting widespread attention from researchers from various countries. This review summarizes the relevant research progress on non-coding RNAs in tendon injuries, providing new ideas for a deeper understanding of tendon injuries and exploring new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Bin Wang
- Department of Plastics, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, China
| | - Qiang Chen
- Center for Plastic and Reconstructive Surgery, Department of Hand and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodi Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Zheng
- Department of Plastics, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, China
| | - Jie Zhu
- Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
21
|
Gundogdu K, Kılıc Erkek O, Gundogdu G, Sayin D, Abban Mete G. Anti-inflammatory effects of sericin and swimming exercise in treating experimental Achilles tendinopathy in rat. Appl Physiol Nutr Metab 2024; 49:501-513. [PMID: 38284362 DOI: 10.1139/apnm-2023-0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The aim of this study was to assess the effectiveness of combining sericin with swimming exercise as a treatment for type-I collagenase-induced Achilles tendinopathy (AT) in rats, with a focus on inflammatory cytokines. An experimental AT model was established using type-I collagenase in male Sprague-Dawley rats, categorized into five groups: Group 1 (Control + Saline), Group 2 (AT), Group 3 (AT + exercise), Group 4 (AT + sericin), and Group 5 (AT + sericin + exercise). Intratendinous sericin administration (0.8 g/kg/mL) took place from days 3 to 6, coupled with 30 min daily swimming exercise sessions (5 days/week, 4 weeks). Serum samples were analyzed using ELISA for tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-10 (IL-10), and total antioxidant-oxidant status (TAS-TOS), alongside histopathological and immunohistochemical assessments of Achilles tendon samples. Elevated TNF-α and IL-1β and decreased IL-10 levels were evident in Group 2; Of these, TNF-α and IL-1β were effectively reduced and IL-10 increased across all treatment groups, particularly groups 4 and 5. Serum TAS was notably lower in Group 2 and significantly increased in Group 5 compared to Group 2. Histopathologically, Group 2 displayed severe degeneration, irregular fibers, and round cell nuclei, while Group 5 exhibited decreased degeneration and spindle-shaped fibers. The Bonar score increased in Group 2 and decreased in groups 4 and 5. Collagen type-I alpha-1 (Col1A1) expression was notably lower in Group 2 (P = 0.001) and significantly increased in groups 4 and 5 compared to Group 2 (P = 0.011 and 0.028, respectively). This study underscores the potential of sericin and swimming exercises in mitigating inflammation and oxidative stress linked to AT pathogenesis, presenting a promising combined therapeutic strategy.
Collapse
Affiliation(s)
- Koksal Gundogdu
- Department of Orthopedics and Traumatology, Denizli State Hospital, Denizli, Turkey
| | - Ozgen Kılıc Erkek
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Dilek Sayin
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulcin Abban Mete
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
22
|
Peez C, Deichsel A, Zderic I, Richards RG, Gueorguiev B, Kittl C, Raschke MJ, Herbst E. Valgus malalignment causes increased forces on a medial collateral ligament reconstruction under dynamic valgus loading: A biomechanical study. Knee Surg Sports Traumatol Arthrosc 2024; 32:864-871. [PMID: 38454816 DOI: 10.1002/ksa.12110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE To investigate the forces on a medial collateral ligament (MCL) reconstruction (MCLR) relative to the valgus alignment of the knee. METHODS Eight fresh-frozen human cadaveric knees were subjected to dynamic valgus loading at 400 N using a custom-made kinematics rig. After resection of the superficial medial collateral ligament, a single-bundle MCLR with a hamstring tendon autograft was performed. A medial opening wedge distal femoral osteotomy was performed and fixed with an external fixator to gradually adjust the alignment in 5° increments from 0° to 10° valgus. For each degree of valgus deformity, the resulting forces acting on the MCLR were measured through a force sensor and captured in 15° increments from 0° to 60° of knee flexion. RESULTS Irrespective of the degree of knee flexion, increasing valgus malalignment resulted in significantly increased forces acting on the MCLR compared to neutral alignment (p < 0.05). Dynamic loading at 5° valgus resulted in increased forces on the MCLR at all flexion angles ranging between 16.2 N and 18.5 N (p < 0.05 from 0° to 30°; p < 0.01 from 45° to 60°). A 10° valgus malalignment further increased the forces on the MCLR at all flexion angles ranging between 29.4 N and 40.0 N (p < 0.01 from 0° to 45°, p < 0.05 at 60°). CONCLUSION Valgus malalignment of the knee caused increased forces acting on the reconstructed MCL. In cases of chronic medial instabilities accompanied by a valgus deformity ≥ 5°, a realigning osteotomy should be considered concomitantly to the MCLR to protect the graft and potentially reduce graft failures. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Christian Peez
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
- AO Research Institute Davos, Davos, Switzerland
| | - Adrian Deichsel
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | - Ivan Zderic
- AO Research Institute Davos, Davos, Switzerland
| | | | | | - Christoph Kittl
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | - Michael J Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | - Elmar Herbst
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
23
|
Wang N, Wang H, Shen L, Liu X, Ma Y, Wang C. Aging-Related Rotator Cuff Tears: Molecular Mechanisms and Implications for Clinical Management. Adv Biol (Weinh) 2024; 8:e2300331. [PMID: 38295015 DOI: 10.1002/adbi.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Indexed: 02/02/2024]
Abstract
Shoulder pain and disabilities are prevalent issues among the elderly population, with rotator cuff tear (RCT) being one of the leading causes. Although surgical treatment has shown some success, high postoperative retear rates remain a great challenge, particularly in elderly patients. Aging-related degeneration of muscle, tendon, tendon-to-bone enthesis, and bone plays a critical role in the development and prognosis of RCT. Studies have demonstrated that aging worsens muscle atrophy and fatty infiltration, alters tendon structure and biomechanical properties, exacerbates enthesis degeneration, and reduces bone density. Although recent researches have contributed to understanding the pathophysiological mechanisms of aging-related RCT, a comprehensive systematic review of this topic is still lacking. Therefore, this article aims to present a review of the pathophysiological changes and their clinical significance, as well as the molecular mechanisms underlying aging-related RCT, with the goal of shedding light on new therapeutic approaches to reduce the occurrence of aging-related RCT and improve postoperative prognosis in elderly patients.
Collapse
Affiliation(s)
- Ni Wang
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haoyuan Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Longxiang Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xudong Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yanhong Ma
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chongyang Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
24
|
Zhang X, Wang C, Pan L, Li Y. Effects of evidence-based nursing care interventions on wound pain and wound complications following surgery for finger tendon injury. Int Wound J 2024; 21:e14818. [PMID: 38444052 PMCID: PMC10915127 DOI: 10.1111/iwj.14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
We conducted this study aimed to examine the impact of evidence-based nursing interventions on postoperative wound pain and complications after surgery for finger tendon injury. A total of 86 patients treated for finger tendon injuries at our hospital from January 2021 to October 2023 were selected and randomly divided into an experimental group and a control group. The control group received conventional nursing care, while the experimental group received evidence-based nursing interventions. The study compared the postoperative wound pain intensity, incidence of complications and patient satisfaction with nursing care between the two groups. The analysis revealed that compared with conventional care, evidence-based nursing interventions significantly reduced the level of wound pain (p = 0.034) and the incidence of complications (4.65% vs. 18.60%, p = 0.043). It also increased patient satisfaction with the nursing care (97.67% vs. 83.72%, p = 0.026). The study indicates that the application of evidence-based nursing interventions for patients with finger tendon injuries can reduce postoperative wound pain, decrease the incidence of complications and enhance patient satisfaction with nursing care.
Collapse
Affiliation(s)
- Xin‐Lan Zhang
- Department of Orthopedic Microsurgery Hand and Foot Repair and Reconstruction WardThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Chun‐Yan Wang
- Department of Orthopedic Microsurgery Hand and Foot Repair and Reconstruction WardThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Liu‐Liu Pan
- Department of Orthopedic Microsurgery Hand and Foot Repair and Reconstruction WardThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yu‐Jie Li
- Department of Orthopedic Microsurgery Hand and Foot Repair and Reconstruction WardThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
25
|
Newton JB, Nuss CA, Weiss SN, Betts RL, Soslowsky LJ. Novel application of in vivo microdialysis in a rat Achilles tendon acute injury model. J Appl Physiol (1985) 2024; 136:43-52. [PMID: 37969085 PMCID: PMC11212791 DOI: 10.1152/japplphysiol.00720.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/10/2024] [Indexed: 11/17/2023] Open
Abstract
Tendon injury and healing involve intricate changes to tissue metabolism, biology, and inflammation. Current techniques often require animal euthanasia or tissue destruction, limiting assessment of dynamic changes in tendon, including treatment response, disease development, rupture risk, and healing progression. Microdialysis, a minimally invasive technique, offers potential for longitudinal assessment, yet it has not been applied to rat tendon models. Therefore, the objective of this study is to adapt a novel application of an in vivo assay, microdialysis, using acute injury as a model for extreme disruption of the tendon homeostasis. We hypothesize that microdialysis will be able to detect measurable differences in the healing responses of acute injury with high specificity and sensitivity. Overall results suggest that microdialysis is a promising in vivo technique for longitudinal assessment for this system with strong correlations between extracellular fluid (ECF) and dialysate concentrations and reasonable recovery rates considering the limitations of this model. Strong positive correlations were found between dialysate and extracellular fluid (ECF) concentration for each target molecule of interest including metabolites, inflammatory mediators, and collagen synthesis and degradation byproducts. These results suggest that microdialysis is capable of detecting changes in tendon healing following acute tendon injury with high specificity and sensitivity. In summary, this is the first study to apply microdialysis to a rat tendon model and assess its efficacy as a direct measurement of tendon metabolism, biology, and inflammation.NEW & NOTEWORTHY This study adapts a novel application of microdialysis to rat tendon models, offering a minimally invasive avenue for longitudinal tendon assessment. Successfully detecting changes in tendon healing after acute injury, it showcases strong correlations between extracellular fluid and dialysate concentrations. The results highlight the potential of microdialysis as a direct measure of tendon metabolism, biology, and inflammation, bypassing the need for animal euthanasia and tissue destruction.
Collapse
Affiliation(s)
- Joseph B Newton
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Courtney A Nuss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Stephanie N Weiss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca L Betts
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Louis J Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
26
|
Deng X, Li Q, Yuan H, Hu H, Fan S. Galangin Promotes Tendon Repair Mediated by Tendon-Derived Stem Cells through Activating the TGF-β1/Smad3 Signaling Pathway. Chem Pharm Bull (Tokyo) 2024; 72:669-675. [PMID: 39010213 DOI: 10.1248/cpb.c24-00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Tendon injury is a prevalent orthopedic disease that currently lacks effective treatment. Galangin (GLN) is a vital flavonoid found abundantly in galangal and is known for its natural activity. This study aimed to investigate the GLN-mediated molecular mechanism of tendon-derived stem cells (TDSCs) in tendon repair. The TDSCs were characterized using alkaline phosphatase staining, alizarin red S staining, oil red O staining, and flow cytometry. The effect of GLN treatment on collagen deposition was evaluated using Sirius red staining and quantitative (q)PCR, while a Western bot was used to assess protein levels and analyze pathways. Results showed that GLN treatment not only increased the collagen deposition but also elevated the mRNA expression and protein levels of multiple tendon markers like collagen type I alpha 1 (COL1A1), decorin (DCN) and tenomodulin (TNMD) in TDSCs. Moreover, GLN was also found to upregulate the protein levels of transforming growth factor β1 (TGF-β1) and p-Smad3 to activate the TGF-β1/Smad3 signaling pathway, while GLN mediated collagen deposition in TDSCs was reversed by LY3200882, a TGF-β receptor inhibitor. The study concluded that GLN-mediated TDSCs enhanced tendon repair by activating the TGF-β1/Smad3 signaling pathway, suggesting a novel therapeutic option in treating tendon repair.
Collapse
Affiliation(s)
- Xiongwei Deng
- Department of Foot and Ankle Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Qiang Li
- Department of Foot and Ankle Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Haitao Yuan
- Department of Foot and Ankle Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Hejun Hu
- Department of Foot and Ankle Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Shaoyong Fan
- Department of Foot and Ankle Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine
| |
Collapse
|
27
|
Kenmoku T, Miyajima G, Tazawa R, Ishii D, Inoue K, Matsumoto M, Takaso M. Kinematic analysis of damaged capsulolabral structure in patients with anterior shoulder instability using cine-magnetic resonance imaging. JSES Int 2023; 7:2330-2336. [PMID: 37969497 PMCID: PMC10638605 DOI: 10.1016/j.jseint.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Background We assessed damaged anterior capsulolabral motion during axial shoulder rotation in patients with anterior shoulder instability. Methods Twenty-nine shoulders of 28 patients with anterior shoulder instability who underwent cine-magnetic resonance imaging during axial rotation of the adducted arm were included. The motion was captured after an intra-articular injection of saline solution (10-20 mL). During imaging, the shoulder was rotated passively from maximum internal rotation to maximum external rotation in the first 10 s and then back to maximum internal rotation in the subsequent 10 s. We assessed the rotational angles of the damaged labrum during compressing and pulling the humeral head against the glenoid. Evaluation of the rotational angles was performed on a series of axial images through the humeral head center. Results The mean angles that damaged labrum compressed and pulled off against the glenoid were 12.0 ± 19.1° and 2.8 ± 21.2°, respectively. Additionally, seven of the 29 shoulders showed that the damaged labrum compressed on the glenoid rim before the rotational angle exceeded 0° during external rotation. In 13 shoulders, the damaged labrum could remain repositioned on the glenoid rim over the neutral position during internal rotation. In two shoulders, the damaged labrum was not compressed against the glenoid at the maximum external rotation. The injected saline moved from the posterior to the anterior side of the glenohumeral joint during internal rotation in each shoulder. Conclusion The damaged labrum could be positioned on the glenoid when the arm was in a traditional internal immobilization.
Collapse
Affiliation(s)
- Tomonori Kenmoku
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Genyo Miyajima
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Ryo Tazawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Daisuke Ishii
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kosuke Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mitsuyoshi Matsumoto
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
28
|
Li M, Wu Y, Yuan T, Su H, Qin M, Yang X, Mi S. Biofabrication of Composite Tendon Constructs with the Fibrous Arrangement, High Cell Density, and Enhanced Cell Alignment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47989-48000. [PMID: 37796904 DOI: 10.1021/acsami.3c10697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Current tissue-engineered tendons are mostly limited to the replication of fibrous organizations of native tendons, which lack the biomimicry of a densely packed cell arrangement. In this study, composite tendon constructs (CTCs) with fibrous arrangement, high cell density, and enhanced cell alignment were developed by integrating the electrohydrodynamic jet 3D printing (e-jetting) technique and the fabrication of tissue strands (TSs). A tubular polycaprolactone (PCL) scaffold was created using e-jetting, followed by coating a thin layer of alginate. Human mesenchymal stem cells were then microinjected into the PCL scaffolds, aggregated into TSs, and formed CTCs with a core-shell structure. Owing to the presence of TSs, CTCs demonstrated the anatomically relevant cell density and morphology, and cells migrated from the TSs onto e-jetted scaffolds. Also, the mechanical strength of CTCs approached that of native tendons due to the existence of e-jetted scaffolds (Young's modulus: ∼21 MPa, ultimate strength: ∼5 MPa). During the entire culture period, CTCs maintained high survival rates and good structural integrity without the observation of necrotic cores and disintegration of two portions. In addition, CTCs that were cultured with uniaxial cyclic stretching revealed not only the increased expression of tendon-related proteins but also the enhanced cellular orientation. The promising results demonstrated the potential of this novel biofabrication strategy for building tissue-engineered tendon constructs with the proper biological, mechanical, and histological relevance..
Collapse
Affiliation(s)
- Ming Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tianying Yuan
- Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Hao Su
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shengli Mi
- Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
29
|
Li H, Luo S, Li H, Pan H, Jiang L, Chen Y, Chen H, Feng Z, Li S. From fetal tendon regeneration to adult therapeutic modalities: TGF-β3 in scarless healing. Regen Med 2023; 18:809-822. [PMID: 37671630 DOI: 10.2217/rme-2023-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Tendon injuries are common disorders that can significantly impact people's lives. Unfortunately, the limited regenerative ability of tendons results in tissue healing in a scar-mediated manner. The current therapeutic strategies fail to fully recover the functions of the injured tendons, and as such, the conception of 'scarless healing' has gained prominent attention in the field of regenerative medicine. Interestingly, injured fetal tendons possess the capability to heal through regeneration, which builds an ideal blueprint for adult tendon regeneration. Studies have shown that fetal biochemical cues have the potential to improve adult tendon healing. Here we review the biological factors that contribute to fetal tendon regeneration and how manipulation of these biochemical cues in the adult tendon healing process could achieve regeneration.
Collapse
Affiliation(s)
- Hanyue Li
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Shengyu Luo
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hongtao Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Hongyu Pan
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hui Chen
- Geriatric department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University
| | - Sen Li
- School of Physical Education, Southwest Medical University, Luzhou, China
| |
Collapse
|
30
|
Lin M, Li W, Ni X, Sui Y, Li H, Chen X, Lu Y, Jiang M, Wang C. Growth factors in the treatment of Achilles tendon injury. Front Bioeng Biotechnol 2023; 11:1250533. [PMID: 37781529 PMCID: PMC10539943 DOI: 10.3389/fbioe.2023.1250533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Achilles tendon (AT) injury is one of the most common tendon injuries, especially in athletes, the elderly, and working-age people. In AT injury, the biomechanical properties of the tendon are severely affected, leading to abnormal function. In recent years, many efforts have been underway to develop effective treatments for AT injuries to enable patients to return to sports faster. For instance, several new techniques for tissue-engineered biological augmentation for tendon healing, growth factors (GFs), gene therapy, and mesenchymal stem cells were introduced. Increasing evidence has suggested that GFs can reduce inflammation, promote extracellular matrix production, and accelerate AT repair. In this review, we highlighted some recent investigations regarding the role of GFs, such as transforming GF-β(TGF-β), bone morphogenetic proteins (BMP), fibroblast GF (FGF), vascular endothelial GF (VEGF), platelet-derived GF (PDGF), and insulin-like GF (IGF), in tendon healing. In addition, we summarized the clinical trials and animal experiments on the efficacy of GFs in AT repair. We also highlighted the advantages and disadvantages of the different isoforms of TGF-β and BMPs, including GFs combined with stem cells, scaffolds, or other GFs. The strategies discussed in this review are currently in the early stages of development. It is noteworthy that although these emerging technologies may potentially develop into substantial clinical treatment options for AT injury, definitive conclusions on the use of these techniques for routine management of tendon ailments could not be drawn due to the lack of data.
Collapse
Affiliation(s)
- Meina Lin
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Wei Li
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
- Medical School, Shandong Modern University, Jinan, China
| | - Xiang Ni
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yu Sui
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Huan Li
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xinren Chen
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yongping Lu
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Miao Jiang
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Wang X, Xu K, Mu L, Zhang X, Huang G, Xing M, Li Z, Wu J. Mussel-Derived Bioadaptive Artificial Tendon Facilitates the Cell Proliferation and Tenogenesis to Promote Tendon Functional Reconstruction. Adv Healthc Mater 2023; 12:e2203400. [PMID: 37462927 DOI: 10.1002/adhm.202203400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/02/2023] [Indexed: 07/28/2023]
Abstract
Tendon injuries range from acute-related trauma to chronic-related injuries are prevalent and bring substantial pain, functional loss, and even disability to the patients. The management of tendon injuries is tricky due to the innate limited regenerative capability of the tendon. Currently, surgical intervention of tendon injuries with artificial tendons remains the standard of care. However, most of artificial tendons are manufactured with synthetic materials, which possess relatively poor biomimetic characteristics and inadequate inherent biodegradability, hence rendering limited cell proliferation and migration for tendon healing. To address these limitations, this work develops a mussel-derived artificial tendon based on double-cross-linked chitosan modification. In this design, decellularized artificial tendon serves as a natural biomimetic scaffold to facilitate the migration and adhesion of tendon repair cells. Additionally, as the cells proliferate, the artificial tendon can be degraded to facilitate tendon regeneration. Moreover, the chitosan cross-linking further enhances the mechanical strength of artificial tendon and offers a controllable degradation. The in vitro and in vivo experimental results demonstrate that mussel-derived artificial tendon not only accelerate the tendon functional reconstruction but also enable harmless clearance at postimplantation. The finding provides a promising alternative to conventional artificial tendons and spurs a new frontier to explore nature-derived artificial tendons.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Burn Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Kaige Xu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Lan Mu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xiaoqi Zhang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zhibin Li
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| |
Collapse
|
32
|
Li Y, Li W, Liu X, Liu X, Zhu B, Guo S, Wang C, Wang D, Li S, Zhang Z. Effects of Low-Intensity Pulsed Ultrasound in Tendon Injuries. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:1923-1939. [PMID: 37079603 DOI: 10.1002/jum.16230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Tendon injuries are the most common soft tissue injuries, caused by tissue overuse and age-related degeneration. However, the tendon repair process is slow and inefficient due to the lack of cellular structure and blood vessels in the tendon. Low-intensity pulsed ultrasound (LIPUS) has received increasing attention as a non-invasive, simple, and safe way to promote tendon healing. This review summarizes the effects and underlying mechanisms of LIPUS on tendon injury by comprehensively examining the published literature, including in vitro, in vivo, and clinical studies. This review reviewed 24 studies, with 87.5% showing improvement. The application of LIPUS in tendon diseases is a promising field worthy of further study.
Collapse
Affiliation(s)
- Yujie Li
- Institute of Physical Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Li
- Orthopaedics Department, Hejiang County People's Hospital, Luzhou, Sichuan, China
| | - Xinyue Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Xueli Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Zhu
- Institute of Physical Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Guo
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglong Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Dingxuan Wang
- Institute of Physical Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhongfa Zhang
- Orthopaedics Department, Hejiang County People's Hospital, Luzhou, Sichuan, China
| |
Collapse
|
33
|
Erdoğan F, Kaplan AA, Coşkun HS, Altun G, Altunkaynak BZ, Kelsaka E, Kaplan S, Pişkin A. Momordica charantia Enhances Tendon Healing in Rats: An Experimental Study. Cells Tissues Organs 2023; 213:304-315. [PMID: 37586334 DOI: 10.1159/000533644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Momordica charantia (MC) is a traditional plant widely used since ancient times for wound healing. This study evaluated its potential effects on tendon healing. Adult male Wistar albino rats (n = 32, 8 rats in each group) were anesthetized, and their Achilles tendons were prepared for surgical procedures. Group 1 (Cont = control group) was not subjected to any surgery and was used as a control group for baseline values. Group 2 (PR = primary repair group) underwent primary repair (PR) with a monofilament suture after a full-thickness incision of the Achilles tendon. A full-thickness incision was also made to the Achilles tendon of group 3 (CT = collagen tube-administered group), followed by PR and collagen tube insertion. In group 4 (MC = M. charantia-administered group), 1 mL of MC extract was applied locally on the collagen tube in addition to the surgical procedure applied to group 3. The Achilles tendons were excised on the postoperative 40th day and examined stereologically, histologically, and bioinformatically. Data showed that the total volume of the collagen fibers was higher in MC and CT groups than in the PR group. The total volume of the tendon was decreased in MC and CT groups than in the Cont group. The ratios between the volumes of the collagen fibers and total tendon in the MC and CT groups were significantly different from PR, but not different from the Cont group. Additionally, MC improved tenoblastic activity, collagen production, and neovascularization. Bioinformatic interactions showed that the proteases of MC could trigger the signals playing a role on vasculogenesis, reducing inflammation, and contributing to tenoblast activation and collagen remodeling. MC extract ameliorates the healing of injured tendon and can provide satisfactory tendon repair. Further works are recommended to explore the healing capacity of MC.
Collapse
Affiliation(s)
- Furkan Erdoğan
- Clinic of Orthopaedic and Traumatology, Sabuncuoğlu Şerafeddin Training and Research Hospital, Amasya, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Medipol University, Samsun, Turkey
| | - Hüseyin Sina Coşkun
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Okan University, Istanbul, Turkey
| | - Ebru Kelsaka
- Department of Anaesthesia and Reanimation, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Suleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Ahmet Pişkin
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
34
|
Ganji E, Lamia SN, Stepanovich M, Whyte N, Abraham AC, Killian ML. Optogenetic-Induced Muscle Loading Leads to Mechanical Adaptation of the Achilles Tendon Enthesis in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536376. [PMID: 37090593 PMCID: PMC10120626 DOI: 10.1101/2023.04.11.536376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The growth of the skeleton depends on the transmission of contractile muscle forces from tendon to bone across the extracellular matrix-rich enthesis. Loss of muscle loading leads to significant impairments in enthesis development. However, little is known about how the enthesis responds to increased loading during postnatal growth. To study the cellular and matrix adaptations of the enthesis in response to increased muscle loading, we used optogenetics to induce skeletal muscle contraction and unilaterally load the Achilles tendon and enthesis in young (i.e., during growth) and adult (i.e., mature) mice. In young mice, daily bouts of unilateral optogenetic loading led to expansion of the calcaneal apophysis and growth plate, as well as increased vascularization of the normally avascular enthesis. Daily loading bouts, delivered for 3 weeks, also led to a mechanically weaker enthesis with increased molecular-level accumulation of collagen damage in young mice. However, adult mice did not exhibit impaired mechanical properties or noticeable structural adaptations to the enthesis. We then focused on the transcriptional response of the young tendon and bone following optogenetic-induced loading. After 1 or 2 weeks of loading, we identified, in tendon, transcriptional activation of canonical pathways related to glucose metabolism (glycolysis) and inhibited pathways associated with cytoskeletal remodeling (e.g., RHOA and CREB signaling). In bone, we identified activation of inflammatory signaling (e.g., NFkB and STAT3 signaling) and inhibition of ERK/MAPK and PTEN signaling. Thus, we have demonstrated the utility of optogenetic-induced skeletal muscle contraction to elicit structural, functional, and molecular adaptation of the enthesis in vivo especially during growth.
Collapse
Affiliation(s)
- Elahe Ganji
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, 109 Zina Pitcher Pl., Ann Arbor, Michigan, 48109
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Ave., Urbana, Illinois, 61801
| | - Syeda N Lamia
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, 109 Zina Pitcher Pl., Ann Arbor, Michigan, 48109
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, Michigan, 48109
| | - Matthew Stepanovich
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, 109 Zina Pitcher Pl., Ann Arbor, Michigan, 48109
| | - Noelle Whyte
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, 109 Zina Pitcher Pl., Ann Arbor, Michigan, 48109
| | - Adam C Abraham
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, 109 Zina Pitcher Pl., Ann Arbor, Michigan, 48109
| | - Megan L Killian
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, 109 Zina Pitcher Pl., Ann Arbor, Michigan, 48109
- Department of Biomedical Engineering, University of Delaware, 540 S. College Ave., Newark, Delaware, 19713
| |
Collapse
|
35
|
Maffulli N, Cuozzo F, Migliorini F, Oliva F. The tendon unit: biochemical, biomechanical, hormonal influences. J Orthop Surg Res 2023; 18:311. [PMID: 37085854 PMCID: PMC10120196 DOI: 10.1186/s13018-023-03796-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
The current literature has mainly focused on the biology of tendons and on the characterization of the biological properties of tenocytes and tenoblasts. It is still not understood how these cells can work together in homeostatic equilibrium. We put forward the concept of the "tendon unit" as a morpho-functional unit that can be influenced by a variety of external stimuli such as mechanical stimuli, hormonal influence, or pathological states. We describe how this unit can modify itself to respond to such stimuli. We evidence the capability of the tendon unit of healing itself through the production of collagen following different mechanical stimuli and hypothesize that restoration of the homeostatic balance of the tendon unit should be a therapeutic target.
Collapse
Affiliation(s)
- Nicola Maffulli
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke On Trent, England
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Francesco Cuozzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St. Brigida, 52152, Simmerath, Germany.
| | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| |
Collapse
|
36
|
Assessing the biocompatibility of bovine tendon scaffold, a step forward in tendon tissue engineering. Cell Tissue Bank 2023; 24:11-24. [PMID: 35596907 DOI: 10.1007/s10561-022-10012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
Tendon is a collagen-enriched, tough, and intricately arranged connective tissue that connects muscle to the bone and transmits forces, resulting in joint movement. High mechanical demands can affect normal tissues and may lead to severe disorders, which usually require replacement of the damaged tendon. In recent decades, various decellularization methods have been studied for tissue engineering applications. One of the major challenges in tendon decellularization is preservation of the tendon extracellular matrix (ECM) architecture to maintain natural tissue characteristics. The aim of the present study was to create a decellularized bovine Achilles tendon scaffold to investigate its cytocompatibility with seeded hAd-MSCs (human adipose derived-mesenchymal stem cells) and blastema tissue in vitro. Here, we describe a reliable procedure to decellularize bovine Achilles tendon using a combination of physical and chemical treatments including repetitive freeze-thaw cycles and the ionic detergent SDS, respectively. The decellularization effectiveness and cytocompatibility of the tendon scaffolds were verified by histological studies and scanning electron microscopy for up to 30 days after culture. Histological studies revealed hAd-MSC attachment and penetration into the scaffolds at 5, 10, 15 and 20 days of culture. However, a decrease in cell number was observed on days 25 and 30 after culture in vitro. Moreover, migration of the blastema tissue cells into the scaffold were shown at 10 to 25 days post culture, however, destruction of the scaffolds and reduction in cell number were observed on 30th day after culture. Our results suggest that this decellularization protocol is an effective and biocompatible procedure which supports the maintenance and growth of both hAd-MSCs and blastema cells, and thus might be promising for tendon tissue engineering.
Collapse
|
37
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
38
|
Li S, Sun Y, Chen Y, Lu J, Jiang G, Yu K, Wu Y, Mao Y, Jin H, Luo J, Dong S, Hu B, Ding Y, Liu A, Shen Y, Feng G, Yan S, He Y, Yan R. Sandwich Biomimetic Scaffold Based Tendon Stem/Progenitor Cell Alignment in a 3D Microenvironment for Functional Tendon Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4652-4667. [PMID: 36698266 DOI: 10.1021/acsami.2c16584] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tendon injuries are some of the most commonly diagnosed musculoskeletal diseases. Tendon regeneration is sensitive to the topology of the substitute as it affects the cellular microenvironment and homeostasis. To bionic in vivo three-dimensional (3D) aligned microenvironment, an ordered 3D sandwich model was used to investigate the cell response in the tendon. First, high-resolution 3D printing provided parallel-grooved topographical cues on the hydrogel surface. Then the cells were seeded on its surface to acquire a 2D model. Afterward, an additional hydrogel coating layer was applied to the cells to create the 3D model. The interaction between cells and order structures in three-dimensions is yet to be explored. The study found that the tendon stem/progenitor cells (TSPCs) still maintain their ordering growth in the 3D model as in the 2D model. The study also found that the 3D-aligned TSPCs exhibited enhanced tenogenic differentiation through the PI3K-AKT signaling pathway and presented a less inflammatory phenotype than those in the 2D model. The in vivo implantation of such a 3D-aligned TSPC composite promoted tendon regeneration and mitigated heterotopic ossification in an Achilles defect model. These findings demonstrated that 3D-aligned TSPCs within a biomimetic topology environment are promising for functional tendon regeneration.
Collapse
Affiliation(s)
- Sihao Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
| | - Yazhou Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
| | - Yifan Wu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Yufei Mao
- Medical College of Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Hao Jin
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Jikui Luo
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Shurong Dong
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Bin Hu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Yi Ding
- Basic Medical College, Naval Medical University, Shanghai, 200433, China
| | - An Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Yu Shen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Gang Feng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Shigui Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ruijian Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
39
|
Quintero D, Perucca Orfei C, Kaplan LD, de Girolamo L, Best TM, Kouroupis D. The roles and therapeutic potentialof mesenchymal stem/stromal cells and their extracellular vesicles in tendinopathies. Front Bioeng Biotechnol 2023; 11:1040762. [PMID: 36741745 PMCID: PMC9892947 DOI: 10.3389/fbioe.2023.1040762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Tendinopathies encompass a highly prevalent, multi-faceted spectrum of disorders, characterized by activity-related pain, compromised function, and propensity for an extended absence from sport and the workplace. The pathophysiology of tendinopathy continues to evolve. For decades, it has been related primarily to repetitive overload trauma but more recently, the onset of tendinopathy has been attributed to the tissue's failed attempt to heal after subclinical inflammatory and immune challenges (failed healing model). Conventional tendinopathy management produces only short-term symptomatic relief and often results in incomplete repair or healing leading to compromised tendon function. For this reason, there has been increased effort to develop therapeutics to overcome the tissue's failed healing response by targeting the cellular metaplasia and pro-inflammatory extra-cellular environment. On this basis, stem cell-based therapies have been proposed as an alternative therapeutic approach designed to modify the course of the various tendon pathologies. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells often referred to as "medicinal signaling cells" due to their immunomodulatory and anti-inflammatory properties that can produce a pro-regenerative microenvironment in pathological tendons. However, the adoption of MSCs into clinical practice has been limited by FDA regulations and perceived risk of adverse events upon infusion in vivo. The introduction of cell-free approaches, such as the extracellular vesicles of MSCs, has encouraged new perspectives for the treatment of tendinopathies, showing promising short-term results. In this article, we review the most recent advances in MSC-based and MSC-derived therapies for tendinopathies. Preclinical and clinical studies are included with comment on future directions of this rapidly developing therapeutic modality, including the importance of understanding tissue loading and its relationship to any treatment regimen.
Collapse
Affiliation(s)
- Daniel Quintero
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Lee D. Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Thomas M. Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States,*Correspondence: Dimitrios Kouroupis,
| |
Collapse
|
40
|
Gundogdu G, Tasci SY, Gundogdu K, Kapakin KAT, Demirkaya AK, Nalci KA, Gundogdu M, Hacimuftuoglu A, Abd El-Aty AM. A combination of omega-3 and exercise reduces experimental Achilles tendinopathy induced with a type-1 collagenase in rats. Appl Physiol Nutr Metab 2023; 48:62-73. [PMID: 36458821 DOI: 10.1139/apnm-2021-0801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This study aimed to evaluate the effectiveness of omega-3 supplementation with exercise in a collagenase-induced Achilles tendinopathy (AT) rat model. Experimental groups (healthy control (HC), AT, exercise (Ex), omega-3 (W), and Ex+W) were randomly allocated. After a week of adaptation, oral omega-3 was initiated for 8 weeks (5 days/week). The exercise groups performed treadmill running for 30 min/day (5 days/week, 20 m/min, 8 weeks) following one week of adaptation (10 m/min, 15 min/day). Matrix metalloproteinase-13 (MMP-13), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and total antioxidant-oxidant status (TAS) levels were determined in serum samples. Tendon samples were obtained for biomechanical, histopathological, and immunohistochemical assessments. Ultimate tensile force, yield force, stiffness values, collagen type-I alpha 1 expression, and serum TAS significantly decreased (P < 0.05) in AT vs. HC. These values and expression significantly increased in the Ex+W group vs. AT. Serum MMP-13, IL-1β, and TNF-α levels decreased in all treatment groups vs. AT. The most significant decrease was found in the Ex+W group (P < 0.01). Histopathologically, the improvement in degeneration was statistically significant in the Ex+W group (P < 0.05). Immunohistochemically, MMP-13, IL-1β, TNF-α, and nitric oxide synthase-2 expression was decreased in all treatment groups vs. AT. In conclusion, omega-3 and exercise might be recommended in AT patients.
Collapse
Affiliation(s)
- Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli 20100, Turkey
| | - Seymanur Yilmaz Tasci
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Koksal Gundogdu
- Department of Orthopedics and Traumatology, Denizli State Hospital, Denizli 20010, Turkey
| | - Kubra Asena Terim Kapakin
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum 20240, Turkey
| | - Alper Kursat Demirkaya
- Department of Food Processing, Vocational School, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| | - Kemal Alp Nalci
- Department of Pharmacy, Faculty of Pharmacy, Van Yüzüncü Yıl University, Van 65080, Turkey
| | - Mustafa Gundogdu
- Department of Prosthetic Dentistry, Faculty of Dentistry, Izmır Democracy University, İzmir 35140, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacy, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - A M Abd El-Aty
- Department of Medical Pharmacy, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
41
|
Peserico A, Barboni B, Russo V, Bernabò N, El Khatib M, Prencipe G, Cerveró-Varona A, Haidar-Montes AA, Faydaver M, Citeroni MR, Berardinelli P, Mauro A. Mammal comparative tendon biology: advances in regulatory mechanisms through a computational modeling. Front Vet Sci 2023; 10:1175346. [PMID: 37180059 PMCID: PMC10174257 DOI: 10.3389/fvets.2023.1175346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
There is high clinical demand for the resolution of tendinopathies, which affect mainly adult individuals and animals. Tendon damage resolution during the adult lifetime is not as effective as in earlier stages where complete restoration of tendon structure and property occurs. However, the molecular mechanisms underlying tendon regeneration remain unknown, limiting the development of targeted therapies. The research aim was to draw a comparative map of molecules that control tenogenesis and to exploit systems biology to model their signaling cascades and physiological paths. Using current literature data on molecular interactions in early tendon development, species-specific data collections were created. Then, computational analysis was used to construct Tendon NETworks in which information flow and molecular links were traced, prioritized, and enriched. Species-specific Tendon NETworks generated a data-driven computational framework based on three operative levels and a stage-dependent set of molecules and interactions (embryo-fetal or prepubertal) responsible, respectively, for signaling differentiation and morphogenesis, shaping tendon transcriptional program and downstream modeling of its fibrillogenesis toward a mature tissue. The computational network enrichment unveiled a more complex hierarchical organization of molecule interactions assigning a central role to neuro and endocrine axes which are novel and only partially explored systems for tenogenesis. Overall, this study emphasizes the value of system biology in linking the currently available disjointed molecular data, by establishing the direction and priority of signaling flows. Simultaneously, computational enrichment was critical in revealing new nodes and pathways to watch out for in promoting biomedical advances in tendon healing and developing targeted therapeutic strategies to improve current clinical interventions.
Collapse
|
42
|
Kayser F, Bori E, Fourny S, Hontoir F, Clegg P, Dugdale A, Vandeweerd JM, Innocenti B. Ex vivo study correlating the stiffness of the ovine patellar tendon to age and weight. Int Biomech 2022; 9:1-9. [PMID: 35929916 PMCID: PMC9359184 DOI: 10.1080/23335432.2022.2108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tendons play a crucial role in the musculoskeletal system. In humans, tendon injuries, especially chronic tendinopathy, are very common and the patellar tendon is a frequent location for tendinopathy or injuries. The biomechanical characteristics of the patellar tendon, such as elasticity and stiffness, are of paramount importance and constitute major outcome measures in research studies. We aimed to assess whether the stiffness of the healthy ovine patellar tendon changes with age and weight in a population of normal animals. Sixty-eight 'patella-patellar tendon-tibial tuberosity' units from thirty-four Ile-de-France ewes of body mass 65 to 95 kg, euthanized for reasons other than musculoskeletal diseases, underwent a tensile test providing a measure of the tendon stiffness. Animals were sorted into three categories of age (1-2 yo, 3-5 yo, 6-10 yo). We found a positive but not significant correlation between age category and stiffness (r = 0.22, p = 0.27). There was a significantly positive correlation between weight and stiffness (r = 0.39, p = 0.04). In conclusion, the study characterized biomechanical properties of healthy tendons, provided useful reference values, and established the basis for future biomechanical tests on healing tendons in sheep. The most appropriate sheep population for those future studies would be non-overweight young adults presenting with no lameness.
Collapse
Affiliation(s)
- Françoise Kayser
- Department of Medical Imaging, CHU UCL NAMUR (Centre Hospitalier Universitaire-Université Catholique de Louvain-NAMUR) site Godinne, Yvoir, Belgium
| | - Edoardo Bori
- BEAMS Department (Bio-Electro and Mechanical System), ULB (Université Libre de Bruxelles)-Ecole Polytechnique de Bruxelles, Bruxelles, Belgium
| | - Sophie Fourny
- Department of Veterinary Medicine, University of Namur, Namur, Belgium
| | - Fanny Hontoir
- NaRILiS (Namur Research Institute for Life Sciences)-IRVU (Integrated Veterinary Research Unit), Department of Veterinary Medicine, University of Namur, Namur, Belgium
| | - Peter Clegg
- Faculty of Health and Life Sciences, Department of Musculoskeletal Biology, University of Liverpool, Neston, UK
| | - Alexandra Dugdale
- Units E & F, Telford Court, Dunkirk Trading Estate, Gates Lane, Chester Gates Veterinary Specialists CVS (UK) Ltd, Chester, UK
| | - Jean-Michel Vandeweerd
- NaRILiS (Namur Research Institute for Life Sciences)-IRVU (Integrated Veterinary Research Unit), Department of Veterinary Medicine, University of Namur, Namur, Belgium
| | - Bernardo Innocenti
- BEAMS Department (Bio-Electro and Mechanical System), ULB (Université Libre de Bruxelles), Bruxelles, Belgium
| |
Collapse
|
43
|
Asymptomatic Hyperuricemia Is Associated with Achilles Tendon Rupture through Disrupting the Normal Functions of Tendon Stem/Progenitor Cells. Stem Cells Int 2022; 2022:6795573. [PMID: 36504525 PMCID: PMC9731760 DOI: 10.1155/2022/6795573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Hyperuricemia is a metabolic disorder that is essential to the development of inflammatory gout, with increasing prevalence over recent years. Emerging clinical findings has evidenced remarkable tendon damage in individuals with longstanding asymptomatic hyperuricemia, yet the impact of hyperuricemia on tendon homeostasis and associated repercussions is largely unknown. Here, we investigated whether asymptomatic hyperuricemia was associated with spontaneous ruptures in the Achilles tendon and the pathological effect of hyperuricemia on the tendon stem/progenitor cells (TSPCs). Significantly higher serum uric acid (SUA) levels were found in 648 closed Achilles tendon rupture (ATR) patients comparing to those in 12559 healthy volunteers. In vitro study demonstrated that uric acid (UA) dose dependently reduced rat Achilles TSPC viability, decreased the expressions of tendon collagens, and deformed their structural organization while significantly increased the transcript levels of matrix degradative enzymes and proinflammatory factors. Consistently, marked disruptions in Achilles tendon tissue structural and functional integrity were found in a rat model of hyperuricemia, together with enhanced immune cell infiltration. Transcriptome analysis revealed a significant elevation in genes involved in metabolic stress and tissue degeneration in TSPCs challenged by hyperuricemia. Specifically, reduced activity of the AKT-mTOR pathway with enhanced autophagic signaling was confirmed. Our findings indicate that asymptomatic hyperuricemia may be a predisposition of ATR by impeding the normal functions of TSPCs. This information may provide theoretical and experimental basis for exploring the early prevention and care of ATR.
Collapse
|
44
|
Hall MM, Allen GM, Allison S, Craig J, DeAngelis JP, Delzell PB, Finnoff JT, Frank RM, Gupta A, Hoffman DF, Jacobson JA, Narouze S, Nazarian LN, Onishi K, Ray JW, Sconfienza LM, Smith J, Tagliafico A. Recommended Musculoskeletal and Sports Ultrasound Terminology: A Delphi-Based Consensus Statement. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:2395-2412. [PMID: 35103998 DOI: 10.1002/jum.15947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES The current lack of agreement regarding standardized terminology in musculoskeletal and sports ultrasound presents challenges in education, clinical practice, and research. This consensus was developed to provide a reference to improve clarity and consistency in communication. METHODS A multidisciplinary expert panel was convened consisting of 18 members representing multiple specialty societies identified as key stakeholders in musculoskeletal and sports ultrasound. A Delphi process was used to reach consensus which was defined as group level agreement >80%. RESULTS Content was organized into seven general topics including: 1) General Definitions, 2) Equipment and Transducer Manipulation, 3) Anatomic and Descriptive Terminology, 4) Pathology, 5) Procedural Terminology, 6) Image Labeling, and 7) Documentation. Terms and definitions which reached consensus agreement are presented herein. CONCLUSIONS The historic use of multiple similar terms in the absence of precise definitions has led to confusion when conveying information between colleagues, patients, and third-party payers. This multidisciplinary expert consensus addresses multiple areas of variability in diagnostic ultrasound imaging and ultrasound-guided procedures related to musculoskeletal and sports medicine.
Collapse
Affiliation(s)
- Mederic M Hall
- Department of Orthopedics & Rehabilitation, University of Iowa, Iowa City, Iowa, USA
| | | | - Sandra Allison
- Department of Radiology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Joseph Craig
- Department of Radiology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Joseph P DeAngelis
- Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jonathan T Finnoff
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Rachel M Frank
- Department of Orthopaedic Surgery, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Atul Gupta
- Department of Radiology, Rochester General Hospital, Rochester, New York, USA
| | - Douglas F Hoffman
- Departments of Orthopedics and Radiology, Essentia Health, Duluth, Minnesota, USA
| | - Jon A Jacobson
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Samer Narouze
- Department of Surgery and Anesthesiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Levon N Nazarian
- Department of Radiology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kentaro Onishi
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Orthopedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeremiah W Ray
- Departments of Emergency Medicine and Physical Medicine and Rehabilitation, University of California, Davis, Davis, California, USA
| | - Luca M Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Jay Smith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Alberto Tagliafico
- Department of Health Sciences, University of Genoa, Genoa, Italy
- Department of Radiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
45
|
Yang Q, Li J, Su W, Yu L, Li T, Wang Y, Zhang K, Wu Y, Wang L. Electrospun aligned poly(ε-caprolactone) nanofiber yarns guiding 3D organization of tendon stem/progenitor cells in tenogenic differentiation and tendon repair. Front Bioeng Biotechnol 2022; 10:960694. [PMID: 36110313 PMCID: PMC9468671 DOI: 10.3389/fbioe.2022.960694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Hierarchical anisotropy structure directing 3D cellular orientation plays a crucial role in designing tendon tissue engineering scaffolds. Despite recent development of fabrication technologies for controlling cellular organization and design of scaffolds that mimic the anisotropic structure of native tendon tissue, improvement of tenogenic differentiation remains challenging. Herein, we present 3D aligned poly (ε-caprolactone) nanofiber yarns (NFYs) of varying diameter, fabricated using a dry-wet electrospinning approach, that integrate with nano- and micro-scale structure to mimic the hierarchical structure of collagen fascicles and fibers in native tendon tissue. These aligned NFYs exhibited good in vitro biocompatibility, and their ability to induce 3D cellular alignment and elongation of tendon stem/progenitor cells was demonstrated. Significantly, the aligned NFYs with a diameter of 50 μm were able to promote the tenogenic differentiation of tendon stem/progenitor cells due to the integration of aligned nanofibrous structure and suitable yarn diameter. Rat tendon repair results further showed that bundled NFYs encouraged tendon repair in vivo by inducing neo-collagen organization and orientation. These data suggest that electrospun bundled NFYs formed by aligned nanofibers can mimic the aligned hierarchical structure of native tendon tissue, highlighting their potential as a biomimetic multi-scale scaffold for tendon tissue regeneration.
Collapse
Affiliation(s)
- Qiao Yang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jianfeng Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weiwei Su
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongdi Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kairui Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Yaobin Wu, ; Ling Wang,
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- *Correspondence: Yaobin Wu, ; Ling Wang,
| |
Collapse
|
46
|
Mirghaderi SP, Valizadeh Z, Shadman K, Lafosse T, Oryadi-Zanjani L, Yekaninejad MS, Nabian MH. Cell therapy efficacy and safety in treating tendon disorders: a systemic review of clinical studies. J Exp Orthop 2022; 9:85. [PMID: 36042110 PMCID: PMC9428081 DOI: 10.1186/s40634-022-00520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Despite substantial animal evidence, cell therapy in humans remains in its infancy. The purpose of this study was to examine the potential therapeutic effects and safety of cell therapy in the treatment of tendon disorders. METHODS According to the PRISMA guideline, a systematic review was performed on clinical studies concerning cell therapy in tendon disorders. A comprehensive search including the 5 databases of MEDLINE, Embase, Scopus, Web of Science, and Cochrane Library until December 2021 was carried out and associated with hand searching. The quality of the eligible studies was assessed using the tools suggested by Cochrane recommendations. Qualitative synthesis was performed in 2 tables and discussed separately for rotator cuff, elbow, patella, Achilles, and gluteal tendons. RESULTS Through 6017 records, 22 studies were included in the qualitative synthesis, including 658 patients. All the studies administered autologous cells, except one that used allogenic adipose-derived mesenchymal stem cells (Allogenic AD-MSC). Almost all studies demonstrated the safety of cell injection in their follow-up period with no serious side effects or immunologic reactions, with only a few related minor adverse events in some cases. The included studies showed the effectiveness of cell injection in tendinopathies of different sites, rotator cuff, elbow, patella, Achilles, and gluteal tendons. Among the rotator cuff studies, 4 comparative studies claimed that cell therapy is a more efficient treatment with a lower retear rate and pain level compared to the control group. However, one study found no differences between the groups. No controlled study has been performed on elbow tendinopathies, but 5 case series demonstrated the effectiveness of cell injection in elbow tendon disorders. For Achilles tendinopathies, only one randomized controlled trial (RCT) found that both cell therapy and control groups showed significant pain reduction and functional improvement with no statistical differences at the 6 months follow-up, but the cell therapy group had improved faster at earlier follow-ups. Patellar tendinopathy was studied in 2 RCTs, one did not show a significant difference and the other showed superior improvement compared to controls. CONCLUSION Cell therapy showed promising results and the available evidence suggests that it is safe at several sites of tendon disease. Based on available evidence, cell therapy should be suggested in specific conditions at each site. To approve cell therapy for tendon diseases, randomized clinical trials are required with a large sample size and long-term follow-ups. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Seyed Peyman Mirghaderi
- Center of Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Valizadeh
- Center of Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Shadman
- Center of Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Thibault Lafosse
- Alps Surgery Institute: Hand, Upper Limb, Brachial Plexus, and Microsurgery Unit (PBMA), Clinique Générale d’Annecy, Annecy, France
| | - Leila Oryadi-Zanjani
- Center of Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran
- Department of Orthopedic and Trauma Surgery, Shariati Hospital and School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nabian
- Center of Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran
- Department of Orthopedic and Trauma Surgery, Shariati Hospital and School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Ciardulli MC, Scala P, Giudice V, Santoro A, Selleri C, Oliva F, Maffulli N, Porta GD. Stem Cells from Healthy and Tendinopathic Human Tendons: Morphology, Collagen and Cytokines Expression and Their Response to T3 Thyroid Hormone. Cells 2022; 11:2545. [PMID: 36010622 PMCID: PMC9406581 DOI: 10.3390/cells11162545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the effect of triiodothyronine (T3) on tendon specific markers and cytokines expression of stem cells extracted from human tendons. Indeed, thyroid hormones have been reported to be protective factors, maintaining tendons' homeostasis, whereas tendinopathy is believed to be related to a failed healing response. Healthy and tendinopathic human tendons were harvested to isolate tendon stem/progenitor cells (TSPCs). TSPCs obtained from pathological samples showed gene expression and morphological modifications at baseline in comparison with cells harvested from healthy tissues. When cells were maintained in a medium supplemented with T3 (10-6 M), only pathological populations showed a significant upregulation of tenogenic markers (DCN, TNC, COL1A1, COL3A1). Immunostaining revealed that healthy cells constantly released type I collagen, typical of tendon matrix, whereas pathological ones overexpressed and secreted type III collagen, typical of scarred and impaired tissue. Pathological cells also overexpressed pro- and anti-inflammatory cytokines, suggesting an impaired balance in the presence of T3, without STAT3 activation. Moreover, DKK-1 was significantly high in the culture medium of pathological cell cultures and was reversed by T3. This study opens perspectives on the complex biochemical alteration of cells from pathological tendons, which may lead to the chronic disease context with an impaired extracellular matrix.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Pasqualina Scala
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Valentina Giudice
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Antonietta Santoro
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Carmine Selleri
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Francesco Oliva
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Nicola Maffulli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
| | - Giovanna Della Porta
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo I, 84084 Fisciano, Italy
| |
Collapse
|
48
|
High-Resolution Ultrasonographic Anatomy of the Carpal Tendons of Sporting Border Collies. Animals (Basel) 2022; 12:ani12162050. [PMID: 36009639 PMCID: PMC9404444 DOI: 10.3390/ani12162050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Recent literature has demonstrated that high-resolution ultrasonographic anatomy of the canine carpus is possible; however, only the structures of the dorsal face were described. The aims of this prospective study were: (1) to describe the normal ultrasonographic appearance of the carpal tendons in sporting Border Collies; (2) to measure the height, length, and thickness of the tendon at the radial ulnar notch level in order to create a baseline reference for the breed, and (3) to describe a standardised protocol to ultrasonographically evaluate the carpal faces and visible tendinous structures. A pilot study based on ten cadaveric front limbs was used to identify the structures. A subsequent clinical phase of the study using twenty-six Border Collies was recorded. The tendons of the Extensor Carpi Radialis, Extensor Digitorum Communis, and Extensor Digitorum Lateralis were identified and followed from the tenomuscular junction to the distal insertion on the dorsal face of the digits. On the lateral face, the tendon of the Extensor Carpi Ulnaris was recognised and followed. On the palmar face, the two heads of the Flexor Carpi Ulnaris tendon ending on the accessory carpal bone, the adjacent Flexor Digitorum Superficialis tendon, and the deep and medially located Flexor Digitorum Profundus tendon were seen and followed. The Flexor Carpi Radialis and the Abductor Pollicis Longus tendons were seen in the medial carpal face. The ulnar notch of the radius was used as the measurement and starting point of the ultrasonography. These data could be used as a standard reference in the case of chronic overuse and trauma-induced changes in the canine carpus.
Collapse
|
49
|
Chen YC, Chang HN, Pang JHS, Lin LP, Chen JM, Yu TY, Tsai WC. Lidocaine Inhibited Tendon Cell Proliferation and Extracellular Matrix Production by Down Regulation of Cyclin A, CDK2, Type I and Type III Collagen Expression. Int J Mol Sci 2022; 23:ijms23158787. [PMID: 35955918 PMCID: PMC9368801 DOI: 10.3390/ijms23158787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Lidocaine injection is a common treatment for tendon injuries. However, the evidence suggests that lidocaine is toxic to tendon cells. This study investigated the effects of lidocaine on cultured tendon cells, focusing on the molecular mechanisms underlying cell proliferation and extracellular matrix (ECM) production. Tendon cells cultured from rat Achilles tendons were treated with 0.5, 1.0, or 1.5 mg/mL lidocaine for 24 h. Cell proliferation was evaluated by Cell Counting Kit 8 (CCK-8) assay and bromodeoxyuridine (BrdU) assay. Cell apoptosis was assessed by Annexin V and propidium iodide (PI) stain. Cell cycle progression and cell mitosis were assessed through flow cytometry and immunofluorescence staining, respectively. The expression of cyclin E, cyclin A, cyclin-dependent kinase 2 (CDK2), p21, p27, p53, matrix metalloproteinases-2 (MMP-2), matrix metalloproteinases-9 (MMP-9), type I collagen, and type III collagen were examined through Western blotting, and the enzymatic activity of MMP-9 was determined through gelatin zymography. Lidocaine reduced cell proliferation and reduced G1/S transition and cell mitosis. Lidocaine did not have a significant negative effect on cell apoptosis. Lidocaine significantly inhibited cyclin A and CDK2 expression but promoted p21, p27, and p53 expression. Furthermore, the expression of MMP-2 and MMP-9 increased, whereas that of type I and type III collagen decreased. Lidocaine also increased the enzymatic activity of MMP-9. Our findings support the premise that lidocaine inhibits tendon cell proliferation by changing the expression of cell-cycle-related proteins and reduces ECM production by altering levels of MMPs and collagens.
Collapse
Affiliation(s)
- Yen-Chia Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
| | - Hsiang-Ning Chang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
| | - Jong-Hwei Su Pang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Li-Ping Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Jing-Min Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
| | - Tung-Yang Yu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
| | - Wen-Chung Tsai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Center of Comprehensive Sports Medicine, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- Correspondence:
| |
Collapse
|
50
|
Makuku R, Werthel JD, Zanjani LO, Nabian MH, Tantuoyir MM. New frontiers of tendon augmentation technology in tissue engineering and regenerative medicine: a concise literature review. J Int Med Res 2022; 50:3000605221117212. [PMID: 35983666 PMCID: PMC9393707 DOI: 10.1177/03000605221117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue banking programs fail to meet the demand for human organs and tissues for
transplantation into patients with congenital defects, injuries, chronic
diseases, and end-stage organ failure. Tendons and ligaments are among the most
frequently ruptured and/or worn-out body tissues owing to their frequent use,
especially in athletes and the elderly population. Surgical repair has remained
the mainstay management approach, regardless of scarring and adhesion formation
during healing, which then compromises the gliding motion of the joint and
reduces the quality of life for patients. Tissue engineering and regenerative
medicine approaches, such as tendon augmentation, are promising as they may
provide superior outcomes by inducing host-tissue ingrowth and tendon
regeneration during degradation, thereby decreasing failure rates and morbidity.
However, to date, tendon tissue engineering and regeneration research has been
limited and lacks the much-needed human clinical evidence to translate most
laboratory augmentation approaches to therapeutics. This narrative review
summarizes the current treatment options for various tendon pathologies, future
of tendon augmentation, cell therapy, gene therapy, 3D/4D bioprinting,
scaffolding, and cell signals.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Jean-David Werthel
- Department of Orthopedic and Trauma Surgery, Shariati Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Oryadi Zanjani
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Mohammad Hossein Nabian
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Marcarious M Tantuoyir
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France.,Biomedical Engineering Unit, University of Ghana Medical Centre, Accra, Ghana
| |
Collapse
|