1
|
Luo J, Wang L, Yao Y, Luo X, Zhang J, Luo D, Tian T, Wu G. Transcriptome analysis reveals the mechanism of Rhodiola polysaccharide affecting the proliferation of porcine Leydig cells under hypoxia. BMC Vet Res 2025; 21:211. [PMID: 40148855 PMCID: PMC11948637 DOI: 10.1186/s12917-025-04669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Hypoxia can affect the function of the male reproductive system and reduce fertility. Rhodiola polysaccharide (RDP) is the active ingredient of Rhodiola rosea L. and has a positive effect on reproductive cells. However, the mechanism of the effect of RDP on the proliferation of cells under hypoxia is still unclear. The experiment selected porcine Leydig cells (PLCs) as the test object and divided them into three groups: normal group, hypoxia group, and hypoxia + RDP-treated group. Cell viability was detected using CCK8 assay. RNA-Seq technology was used to identify the key genes that influence the effect of RDP on PLCs under hypoxia conditions and to determine their regulatory pathways. Transcriptome sequencing of PLCs from the N and H groups identified 6,794 differentially expressed genes (DEGs), including 3,329 up-regulated genes and 3,465 down-regulated genes. These DEGs were significantly enriched in the cell cycle signaling pathway, indicating that hypoxia mainly affects the cell cycle and inhibits cell proliferation. Furthermore, comparison of the transcriptomes between the H and HR group revealed 285 DEGs, including 137 up-regulated and 148 down-regulated, most of DEGs were found to be enriched in oxidative phosphorylation pathways. RDP inhibits PLCs apoptosis and promotes cell proliferation by up-regulating the expression of CXCL2, JUNB and VCAM1 of the TNF signaling pathway, and VEGFA, SGK2 and SPP1 of the PI3K/AKT signaling pathway. These genes deserve further study as candidate for understanding the role of RDP in alleviating the hypoxia stress.
Collapse
Affiliation(s)
- Jinting Luo
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary, Qinghai University, Xining, 810016, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary, Qinghai University, Xining, 810016, China
| | - Youli Yao
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary, Qinghai University, Xining, 810016, China
| | - Xuan Luo
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary, Qinghai University, Xining, 810016, China
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary, Qinghai University, Xining, 810016, China
| | - Dandan Luo
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary, Qinghai University, Xining, 810016, China
| | - Tian Tian
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary, Qinghai University, Xining, 810016, China
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary, Qinghai University, Xining, 810016, China.
| |
Collapse
|
2
|
Fang X, Zhang Y, Zhang Y, Guan H, Huang X, Miao R, Yin R, Tian J. Endothelial extracellular vesicles: their possible function and clinical significance in diabetic vascular complications. J Transl Med 2024; 22:944. [PMID: 39415278 PMCID: PMC11481601 DOI: 10.1186/s12967-024-05760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024] Open
Abstract
Diabetic vascular complications attract increased attention due to their high morbidity, mortality and disability rate. Comprehensive and in-depth exploration of the etiology and pathogenesis of diabetic vascular complications is important for diagnosis and treatment. Endothelial extracellular vesicles (EVs) serve as potential intercellular communicators, transmitting biological information from the donor cell to the recipient cell, exerting both harmful and beneficial effects on vascular function. Endothelial EVs are new diagnostic and therapeutic targets and biomarkers in diabetic vascular complications. This review summarizes the biogenesis and release of endothelial EVs, as well as isolation and characterization methods, and discusses the role of endothelial EVs in the maintenance of vascular homeostasis along with their contributions to vascular dysfunction. Finally, the article illustrates the impact of endothelial EVs on the pathogenesis of diabetic vascular complications and evaluates their potential as therapeutic tools and diagnostic markers in diabetic vascular complications.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Jilin, 130117, China
| | - Xinyue Huang
- First Clinical Medical College, Changzhi Medical College, Shanxi, 046013, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
3
|
Siedlecki E, Remiszewski P, Stec R. The Role of circHIPK3 in Tumorigenesis and Its Potential as a Biomarker in Lung Cancer. Cells 2024; 13:1483. [PMID: 39273053 PMCID: PMC11393915 DOI: 10.3390/cells13171483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Lung cancer treatment and detection can be improved by the identification of new biomarkers. Novel approaches in investigating circular RNAs (circRNAs) as biomarkers have yielded promising results. A circRNA molecule circHIPK3 was found to be widely expressed in non-small-cell lung cancer (NSCLC) cells, where it plays a crucial role in lung cancer tumorigenesis. CircHIPK3 promotes lung cancer progression by sponging oncosuppressive miRNAs such as miR-124, miR-381-3p, miR-149, and miR-107, which results in increased cell proliferation, migration, and resistance to therapies. Inhibiting circHIPK3 has been demonstrated to suppress tumour growth and induce apoptosis, which suggests its potential use in the development of new lung cancer treatment strategies targeting circHIPK3-related pathways. As a biomarker, circHIPK3 shows promise for early detection and monitoring of lung cancer. CircHIPK3 increased expression levels in lung cancer cells, and its potential link to metastasis risk highlights its clinical relevance. Given the promising preliminary findings, more clinical trials are needed to validate circHIPK3 efficacy as a biomarker. Moreover, future research should determine if the mechanisms discovered in NSCLC apply to small cell lung cancer (SCLC) to investigate circHIPK3-targeted therapies for SCLC.
Collapse
Affiliation(s)
- Eryk Siedlecki
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.R.); (R.S.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Piotr Remiszewski
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.R.); (R.S.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Rafał Stec
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.R.); (R.S.)
| |
Collapse
|
4
|
Xin Y, Zhang Z, Lv S, Xu S, Liu A, Li H, Li P, Han H, Liu Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front Cardiovasc Med 2024; 11:1400780. [PMID: 38803664 PMCID: PMC11128571 DOI: 10.3389/fcvm.2024.1400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.
Collapse
Affiliation(s)
- Yuning Xin
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zipei Zhang
- Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shan Lv
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shan Xu
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Aidong Liu
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Li
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Pengfei Li
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Huize Han
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Liu F, Xiao J, Chen LH, Pan YY, Tian JZ, Zhang ZR, Bai XC. Self-assembly of differentiated dental pulp stem cells facilitates spheroid human dental organoid formation and prevascularization. World J Stem Cells 2024; 16:287-304. [PMID: 38577232 PMCID: PMC10989288 DOI: 10.4252/wjsc.v16.i3.287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine. Stem cells can self-organise into microsized organ units, partially modelling tissue function and regeneration. Dental pulp organoids have been used to recapitulate the processes of tooth development and related diseases. However, the lack of vasculature limits the utility of dental pulp organoids. AIM To improve survival and aid in recovery after stem cell transplantation, we demonstrated the three-dimensional (3D) self-assembly of adult stem cell-human dental pulp stem cells (hDPSCs) and endothelial cells (ECs) into a novel type of spheroid-shaped dental pulp organoid in vitro under hypoxia and conditioned medium (CM). METHODS During culture, primary hDPSCs were induced to differentiate into ECs by exposing them to a hypoxic environment and CM. The hypoxic pretreated hDPSCs were then mixed with ECs at specific ratios and conditioned in a 3D environment to produce prevascularized dental pulp organoids. The biological characteristics of the organoids were analysed, and the regulatory pathways associated with angiogenesis were studied. RESULTS The combination of these two agents resulted in prevascularized human dental pulp organoids (Vorganoids) that more closely resembled dental pulp tissue in terms of morphology and function. Single-cell RNA sequencing of dental pulp tissue and RNA sequencing of Vorganoids were integrated to analyse key regulatory pathways associated with angiogenesis. The biomarkers forkhead box protein O1 and fibroblast growth factor 2 were identified to be involved in the regulation of Vorganoids. CONCLUSION In this innovative study, we effectively established an in vitro model of Vorganoids and used it to elucidate new mechanisms of angiogenesis during regeneration, facilitating the development of clinical treatment strategies.
Collapse
Affiliation(s)
- Fei Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Health Management, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong Province, China
| | - Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai 519000, Guangdong Province, China
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Lei-Hui Chen
- Department of Stomatology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong Province, China
| | - Yu-Yue Pan
- Department of Stomatology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong Province, China
| | - Jun-Zhang Tian
- Department of Health Management, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong Province, China
| | - Zhi-Ren Zhang
- Zhuhai Institute of Translational Medicine, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, Guangdong Province, China
| | - Xiao-Chun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
6
|
Qin B, Peng Q, Dong H, Lei L, Wu S. Non-coding RNAs in diabetic foot ulcer- a focus on infected wounds. Diabetes Metab Res Rev 2024; 40:e3740. [PMID: 37839046 DOI: 10.1002/dmrr.3740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Diabetes mellitus is associated with a wide range of neuropathies, vasculopathies, and immunopathies, resulting in many complications. More than 30% of diabetic patients risk developing diabetic foot ulcers (DFUs). Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play essential roles in various biological functions in the hyperglycaemic environment that determines the development of DFU. Ulceration results in tissue breakdown and skin barrier scavenging, thereby facilitating bacterial infection and biofilm formation. Many bacteria contribute to diabetic foot infection (DFI), including Staphylococcus aureus (S. aureus) et al. A heterogeneous group of "ncRNAs," termed small RNAs (sRNAs), powerfully regulates biofilm formation and DFI healing. Multidisciplinary foot care interventions have been identified for nonhealing ulcers. With an appreciation of the link between disease processes and ncRNAs, a novel therapeutic model of bioactive materials loaded with ncRNAs has been developed to prevent and manage diabetic foot complications.
Collapse
Affiliation(s)
- Boquan Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Peng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxian Dong
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shizhou Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Feng S, Qi Y, Xiao Z, Chen H, Liu S, Luo H, Wu H, Zhang W. CircHIPK3 relieves vascular calcification via mediating SIRT1/PGC-1α/MFN2 pathway by interacting with FUS. BMC Cardiovasc Disord 2023; 23:583. [PMID: 38012555 PMCID: PMC10683355 DOI: 10.1186/s12872-023-03602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to regulate the biological processes of human diseases. CircHIPK3 has been implicated in vascular calcification, but the downstream regulatory mechanisms remain unclear. Our study aimed to understand the regulatory function of circHIPK3 in vascular calcification. METHODS CircHIPK3 expression in atherosclerosis (AS) serum samples and vascular smooth muscle cells (VSMCs) calcification model was assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The binding relationships between fused in sarcoma (FUS) and circHIPK3 or sirtuin 1 (SIRT1) were verified by RNA immunoprecipitation (RIP) assay and RNA pull-down assays. Alkaline phosphatase (ALP) activity and alizarin red staining assays were performed to evaluate the biological effect of β-glycerophosphate (β-GP) and circHIPK3 on calcium deposition. qRT-PCR and western blot assays were used to examine the effect of β-GP, circHIPK3, SIRT1, mitofusin 2 (MFN2), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) on VSMCs calcification and the expression of calcification-related proteins. RESULTS In AS serum samples and VSMCs calcification model, the expression of circHIPK3 was significantly reduced. CircHIPK3 overexpression inhibited ALP activity and calcium deposition in β-GP-induced VSMCs. Moreover, circHIPK3 could recruit FUS to further stabilize SIRT1 mRNA. CircHIPK3 promoted MFN2 expression to alleviate VSMCs calcification via activating SIRT1/PGC-1α signaling. CONCLUSION The positive regulation of circHIPK3/FUS/SIRT1/PGC-1α/MFN2 signaling pathway contributed to the alleviate VSMCs calcification, revealing a novel regulatory axis for vascular calcification.
Collapse
Affiliation(s)
- Siyi Feng
- Department of Ultrasound Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Youfei Qi
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, China
| | - Zhanxiang Xiao
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, China
| | - Hao Chen
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, China
| | - Sahua Liu
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, China
| | - Haimei Luo
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, China
| | - Hongfei Wu
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, China
| | - Wenbo Zhang
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
8
|
Zhang X, Sun S, Ren G, Liu W, Chen H. Advances in Intercellular Communication Mediated by Exosomal ncRNAs in Cardiovascular Disease. Int J Mol Sci 2023; 24:16197. [PMID: 38003385 PMCID: PMC10671547 DOI: 10.3390/ijms242216197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases are a leading cause of worldwide mortality, and exosomes have recently gained attention as key mediators of intercellular communication in these diseases. Exosomes are double-layered lipid vesicles that can carry biomolecules such as miRNAs, lncRNAs, and circRNAs, and the content of exosomes is dependent on the cell they originated from. They can be involved in the pathophysiological processes of cardiovascular diseases and hold potential as diagnostic and monitoring tools. Exosomes mediate intercellular communication, stimulate or inhibit the activity of target cells, and affect myocardial hypertrophy, injury and infarction, ventricular remodeling, angiogenesis, and atherosclerosis. Exosomes can be released from various types of cells, including endothelial cells, smooth muscle cells, cardiomyocytes, fibroblasts, platelets, adipocytes, immune cells, and stem cells. In this review, we highlight the communication between different cell-derived exosomes and cardiovascular cells, with a focus on the roles of RNAs. This provides new insights for further exploring targeted therapies in the clinical management of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (S.S.); (G.R.)
| | - Shengjie Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (S.S.); (G.R.)
| | - Gang Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (S.S.); (G.R.)
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| |
Collapse
|
9
|
Triska J, Mathew C, Zhao Y, Chen YE, Birnbaum Y. Circular RNA as Therapeutic Targets in Atherosclerosis: Are We Running in Circles? J Clin Med 2023; 12:4446. [PMID: 37445481 DOI: 10.3390/jcm12134446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Much attention has been paid lately to harnessing the diagnostic and therapeutic potential of non-coding circular ribonucleic acids (circRNAs) and micro-RNAs (miRNAs) for the prevention and treatment of cardiovascular diseases. The genetic environment that contributes to atherosclerosis pathophysiology is immensely complex. Any potential therapeutic application of circRNAs must be assessed for risks, benefits, and off-target effects in both the short and long term. A search of the online PubMed database for publications related to circRNA and atherosclerosis from 2016 to 2022 was conducted. These studies were reviewed for their design, including methods for developing atherosclerosis and the effects of the corresponding atherosclerotic environment on circRNA expression. Investigated mechanisms were recorded, including associated miRNA, genes, and ultimate effects on cell mechanics, and inflammatory markers. The most investigated circRNAs were then further analyzed for redundant, disparate, and/or contradictory findings. Many disparate, opposing, and contradictory effects were observed across experiments. These include levels of the expression of a particular circRNA in atherosclerotic environments, attempted ascertainment of the in toto effects of circRNA or miRNA silencing on atherosclerosis progression, and off-target, cell-specific, and disease-specific effects. The high potential for detrimental and unpredictable off-target effects downstream of circRNA manipulation will likely render the practice of therapeutic targeting of circRNA or miRNA molecules not only complicated but perilous.
Collapse
Affiliation(s)
- Jeffrey Triska
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christo Mathew
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Zhao
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yuqing E Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yochai Birnbaum
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Lichołai S, Studzińska D, Plutecka H, Gubała T, Sanak M. Comprehensive Analysis of Circular RNAs in Endothelial Cells. Int J Mol Sci 2023; 24:10025. [PMID: 37373172 DOI: 10.3390/ijms241210025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Non-coding RNAs constitute a heterogeneous group of molecules that lack the ability to encode proteins but retain the potential ability to influence cellular processes through a regulatory mechanism. Of these proteins, microRNAs, long non-coding RNAs, and more recently, circular RNAs have been the most extensively described. However, it is not entirely clear how these molecules interact with each other. For circular RNAs, the basics of their biogenesis and properties are also lacking. Therefore, in this study we performed a comprehensive analysis of circular RNAs in relation to endothelial cells. We identified the pool of circular RNAs present in the endothelium and showed their spectrum and expression across the genome. Using different computational strategies, we proposed approaches to search for potentially functional molecules. In addition, using data from an in vitro model that mimics conditions in the endothelium of an aortic aneurysm, we demonstrated altered expression levels of circRNAs mediated by microRNAs.
Collapse
Affiliation(s)
- Sabina Lichołai
- Division of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Dorota Studzińska
- Department of Intensive Care and Perioperative Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-901 Krakow, Poland
| | - Hanna Plutecka
- Division of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Tomasz Gubała
- Sano-Centre for Computational Medicine, 30-072 Krakow, Poland
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| |
Collapse
|
11
|
Monti P, Solazzo G, Accurti V, Gambitta B, Iodice S, Boito S, Cantone L, Manenti A, Dioni L, Montomoli E, Persico N, Bollati V. Pyroptosis: A Promising Mechanism Linking SARS-CoV-2 Infection to Adverse Pregnancy Outcomes. Int J Mol Sci 2023; 24:ijms24119278. [PMID: 37298229 DOI: 10.3390/ijms24119278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Pregnancy is characterized by a delicate immune balance; therefore, infectious diseases might increase the risk of adverse pregnancy outcomes (APOs). Here, we hypothesize that pyroptosis, a unique cell death pathway mediated by the NLRP3 inflammasome, could link SARS-CoV-2 infection, inflammation, and APOs. Two blood samples were collected from 231 pregnant women at 11-13 weeks of gestation and in the perinatal period. At each time point, SARS-CoV-2 antibodies and neutralizing antibody titers were measured by ELISA and microneutralization (MN) assays, respectively. Plasmatic NLRP3 was determined by ELISA. Fourteen miRNAs selected for their role in inflammation and/or pregnancy were quantified by qPCR and further investigated by miRNA-gene target analysis. NLRP3 levels were positively associated with nine circulating miRNAs, of which miR-195-5p was increased only in MN+ women (p-value = 0.017). Pre-eclampsia was associated with a decrease in miR-106a-5p (p-value = 0.050). miR-106a-5p (p-value = 0.026) and miR-210-3p (p-value = 0.035) were increased in women with gestational diabetes. Women giving birth to small for gestational age babies had lower miR-106a-5p and miR-21-5p (p-values = 0.001 and 0.036, respectively), and higher miR-155-5p levels (p-value = 0.008). We also observed that neutralizing antibodies and NLRP3 concentrations could affect the association between APOs and miRNAs. Our findings suggest for the first time a possible link between COVID-19, NLRP3-mediated pyroptosis, inflammation, and APOs. Circulating miRNAs might be suitable candidates to gain a comprehensive view of this complex interplay.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Veronica Accurti
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Bianca Gambitta
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Simona Iodice
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Cantone
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | | | - Laura Dioni
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Emanuele Montomoli
- VisMederi Srl, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- CRC, Center for Environmental Health, University of Milan, 20122 Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- CRC, Center for Environmental Health, University of Milan, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
12
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
13
|
Troncoso MF, Díaz-Vesga MC, Sanhueza-Olivares F, Riquelme JA, Müller M, Garrido L, Gabrielli L, Chiong M, Corbalan R, Castro PF, Lavandero S. Targeting VCAM-1: a therapeutic opportunity for vascular damage. Expert Opin Ther Targets 2023; 27:207-223. [PMID: 36880349 DOI: 10.1080/14728222.2023.2187778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
INTRODUCTION The vascular cell adhesion molecule (VCAM-1) is a transmembrane sialoglycoprotein detected in activated endothelial and vascular smooth muscle cells involved in the adhesion and transmigration of inflammatory cells into damaged tissue. Widely used as a pro-inflammatory marker, its potential role as a targeting molecule has not been thoroughly explored. AREAS COVERED We discuss the current evidence supporting the potential targeting of VCAM-1 in atherosclerosis, diabetes, hypertension and ischemia/reperfusion injury. EXPERT OPINION There is emerging evidence that VCAM-1 is more than a biomarker and may be a promising therapeutic target for vascular diseases. While there are neutralizing antibodies that allow preclinical research, the development of pharmacological tools to activate or inhibit this protein are required to thoroughly assess its therapeutic potential.
Collapse
Affiliation(s)
- Mayarling F Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Magda C Díaz-Vesga
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Garrido
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ramon Corbalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Xu J, Li J, Xu X, Chen P, Wang Q, Li A, Ren Y. IncRNA XIST Promotes Cardiac Fibrosis in Mice with Diabetic Nephropathy via Sponging miR-106a-5p to Target RUNX1. Crit Rev Eukaryot Gene Expr 2023; 33:55-66. [PMID: 36734857 DOI: 10.1615/critreveukaryotgeneexpr.2022044404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) accompanied by cardiac fibrosis (CF) increases the mortality rate among people with diabetes. This study sought to explore the molecular mechanism of long non-coding RNA X inactive specific transcript (lncRNA XIST) in CF in DN mice. The animal model of DN was established by streptozocin (STZ). The levels of lncRNA XIST, microRNA (miR)-106a-5p, and RUNX family transcription factor 1 (RUNX1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR), followed by biochemical analysis, hematoxylin & eosin and Masson staining, echocardiography, and quantification of collagen I, collagen III, α-smooth muscle actin (α-SMA), and transforming growth factor-β1 (TGF-β1) levels through qRT-PCR and Western blot assay. The subcellular localization of lncRNA XIST was analyzed by nuclear/cytoplasmic fractionation assay and the bindings of miR-106a-5p to lncRNA XIST and RUNX1 were confirmed by RNA immunoprecipitation and dual-luciferase assays. Functional rescue experiments were performed to validate the role of miR-106a-5p/RUNX1 in CF in DN mice. lncRNA XIST and RUNX1 were elevated while miR-106a-5p was decreased in STZ mice. lncRNA XIST inhibition reduced myocardial injury and collagen deposition, along with decreased levels of fasting blood glucose, serum creatinine, blood urea nitrogen, and urinary microalbumin, collagen I, collagen III, α-SMA, and TGF-β1. lncRNA XIST competitively bound to miR-106a-5p to promote RUNX1 transcription. miR-106a-5p downregulation or RUXN1 upregulation reversed the protective role of lncRNA XIST inhibition in STZ mice. lncRNA XIST competitively bound to miR-106a-5p to promote RUNX1 transcription, thereby aggravating renal dysfunction and CF in DN mice.
Collapse
Affiliation(s)
- Jia Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Jinshun Li
- Department of Cardiovasology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518116, China
| | - Xiaohui Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Peidan Chen
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Qin Wang
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Aiping Li
- Department of Endocrinology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Yeping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518000, China
| |
Collapse
|
15
|
Xiong Q, Lu F, Xie X, Zhou W. Hypoxia-induced endothelial cell-derived exosome stimulates vascular smooth muscle cell proliferation and migration. Biomed Res 2023; 44:245-255. [PMID: 38008423 DOI: 10.2220/biomedres.44.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
This study mainly used human VSMCs and ECs cultured in vitro to investigate whether exosomes (Exos) are involved in the communication between ECs and VSMCs under hypoxia, and to explore the role and mechanism of ECs-derived exosomes in the abnormal proliferation of VSMCs. VSMCs proliferation and migration were assessed by a series of cell function assays after culturing VSMCs alone or co-culturing ECs under hypoxia or normoxia. Next, exosomes were extracted from ECs under hypoxia or normoxia and characterized. We then introduced ECs-Exos to observe their effects on VSMCs proliferation and migration, and further evaluated the expression of transforming growth factor-beta receptor 1 (TGFBR1) pathway-related proteins. Finally, the effect of ECs-Exos on VSMCs function was evaluated after knocking down TGFBR1 in ECs. VSMCs treated with ECs-Exos exhibited increased proliferation and migration ability in hypoxic environment, and the expression of TGFBR1 pathway-related proteins was upregulated. Administration of ECs-Exos with TGFβ1 knockdown conspicuously reversed the promoting effects of ECs-Exos on cell proliferation and migration under hypoxia. In summary, hypoxia affected the secretion of extracellular vesicles by endothelial cells, which can be internalized by VSMCs and accelerate the abnormal proliferation and migration of VSMCs by delivering TGFBR1.
Collapse
Affiliation(s)
- Qinggen Xiong
- Intervention Department (Vascular Surgery Department) of The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Fei Lu
- Intervention Department (Vascular Surgery Department) of The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Xiaoming Xie
- Intervention Department (Vascular Surgery Department) of The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Wei Zhou
- Intervention Department (Vascular Surgery Department) of The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| |
Collapse
|
16
|
The Diagnostic and Therapeutic Role of Circular RNA HIPK3 in Human Diseases. Diagnostics (Basel) 2022; 12:diagnostics12102469. [PMID: 36292157 PMCID: PMC9601126 DOI: 10.3390/diagnostics12102469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with closed-loop of single-stranded RNA structure. Although most of the circRNAs do not directly encode proteins, emerging evidence suggests that circRNAs play a pivotal and complex role in multiple biological processes by regulating gene expression. As one of the most popular circRNAs, circular homeodomain-interacting protein kinase 3 (circHIPK3) has frequently gained the interest of researchers in recent years. Accumulating studies have demonstrated the significant impacts on the occurrence and development of multiple human diseases including cancers, cardiovascular diseases, diabetes mellitus, inflammatory diseases, and others. The present review aims to provide a detailed description of the functions of circHIPK3 and comprehensively overview the diagnostic and therapeutic value of circHIPK3 in these certain diseases.
Collapse
|
17
|
Yao J, Cai L, Chen Y, Zhang J, Zhuang W, Liang J, Li H. Exosomes: mediators regulating the phenotypic transition of vascular smooth muscle cells in atherosclerosis. Cell Commun Signal 2022; 20:153. [PMID: 36221105 PMCID: PMC9555104 DOI: 10.1186/s12964-022-00949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of human mortality worldwide, mainly due to atherosclerosis (AS), and the phenotypic transition of vascular smooth muscle cells (VSMCs) is a key event in the development of AS. Exosomes contain a variety of specific nucleic acids and proteins that mediate intercellular communication. The role of exosomes in AS has attracted attention. This review uses the VSMC phenotypic transition in AS as the entry point, introduces the effect of exosomes on AS from different perspectives, and discusses the status quo, deficiencies, and potential future directions in this field to provide new ideas for clinical research and treatment of AS. Video Abstract.
Collapse
Affiliation(s)
- Jiali Yao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Linqian Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingrui Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jie Zhang
- Department of Neurology, Afliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
18
|
Wang S, Shi M, Zhou J, Wang W, Zhang Y, Li Y. Circulating Exosomal miR-181b-5p Promoted Cell Senescence and Inhibited Angiogenesis to Impair Diabetic Foot Ulcer via the Nuclear Factor Erythroid 2-Related Factor 2/Heme Oxygenase-1 Pathway. Front Cardiovasc Med 2022; 9:844047. [PMID: 35528840 PMCID: PMC9067436 DOI: 10.3389/fcvm.2022.844047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Endothelial cell dysfunction is the main contributing factor of diabetic foot ulcer (DFU). Circulating exosomes have been found to play an important role in many processes, such as cell senescence and angiogenesis. However, the underlying roles and mechanism of circulating exosomes in the onset and progression of DFU remain unclear. In this study, we isolated exosomes from the plasma of patients with DFU (DFU-Exos) and non-diabetic foot wounds (NDF-Exos). DFU-Exos promoted cell senescence and inhibited tube formation in Human Umbilical Vein Endothelial Cells (HUVECs), unlike NDF-Exos. Several datasets suggest that miR-181b-5p expression might be enriched in exosomes from DFU; this was verified using quantitative real-time PCR (qRT-PCR). We also found that miR-181b-5p, which was taken up by HUVECs, promoted cell senescence and inhibited tube formation. Dual luciferase reporter assay, qRT-PCR, Western blotting, and immunofluorescence staining confirmed that miR-181b-5p could negatively regulate nuclear factor erythroid 2-related factor 2 (NRF2) expression by binding to its 3′ UTR, thus further suppressing heme oxygenase-1 (HO-1) expression. In addition, NRF2 and HO-1 inhibitors could also rescue the effects of senescence and tube formation exerted by miR-181b-5p inhibitor. In vivo experiments showed that exosomes isolated from HUVECs which inhibited miR-181b-5p expression promoted angiogenesis to further restore the capacity of wound healing. In conclusion, this study indicated that circulating exosomal miR-181b-5p promoted cell senescence and inhibited angiogenesis to impair wound healing in DFU by regulating the NRF2/HO-1 pathway.
Collapse
Affiliation(s)
- Shaohua Wang
- Hebei Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Shi
- Hebei Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjing Wang
- Hebei Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Zhang
- Hebei Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongjun Li
- Hebei Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Yongjun Li,
| |
Collapse
|