1
|
Naghshbandieh A, Naghshbandieh A, Barfi E, Abkhooie L. Assessment of the level of apoptosis in differentiated pseudo-neuronal cells derived from neural stem cells under the influence of various inducers. AMERICAN JOURNAL OF STEM CELLS 2024; 13:250-270. [PMID: 39850017 PMCID: PMC11751472 DOI: 10.62347/bptg6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/25/2025]
Abstract
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others. Developing inventive therapies for neurodegenerative illnesses depends on a knowledge of how these inducers impact mortality in differentiated pseudo-neuronal cells. Using flow cytometry, Western blotting, and fluorescence microscopy among other techniques, the degree of death in many pseudo-neuronal cells is evaluated. Flow cytometry generates dead cell counts from measurements of cell size, granularity, and DNA content. Whereas fluorescence microscopy visualizes dead cells using fluorescent dyes or antibodies, Western blotting detects caspases and Bcl-2 family proteins. This review attempts to offer a thorough investigation of present studies on death in differentiated pseudo-neuronal cells produced from neural stem cells under the effect of different inducers. Through investigating how these inducers influence death, the review aims to provide information that might direct the next studies and support treatment plans for neurodegenerative diseases. With an eye toward inducers like retinoic acid, selegiline, cytokines, valproic acid, and small compounds, we examined research to evaluate death rates. The findings offer important new perspectives on the molecular processes guiding death in these cells. There is still a complete lack of understanding of how different factors affect the molecular processes that lead to death, so understanding these processes can contribute to new therapeutic approaches to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Adele Naghshbandieh
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Atefe Naghshbandieh
- Department of Pharmaceutical Biotechnology and Department of Pharmaceutical and Bimolecular Science, University of MilanMilan, Italy
| | - Elahe Barfi
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical SciencesKhorramabad, Iran
| |
Collapse
|
2
|
Zhang L, Wang J, Xu N, Guo J, Lin Y, Zhang X, Ji R, Ji Y, Li H, Han X, Li W, Cheng X, Qin J, Tian M, Xu M, Zhang X. POU3F4 up-regulates Gli1 expression and promotes neuronal differentiation and synaptic development of hippocampal neural stem cells. Stem Cell Res Ther 2024; 15:440. [PMID: 39563384 PMCID: PMC11577835 DOI: 10.1186/s13287-024-04043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Neural stem cells (NSCs) are considered to be the most promising cell type for cell replacement therapy in neurodegenerative diseases. However, their low neuronal differentiation ratio impedes their application in such conditions. Elucidating the molecular mechanism of NSC differentiation may provide the necessary experimental basis for expanding their application. Previous studies have indicated that POU3F4 can induce neuronal differentiation of NSCs, this study aims to underly the possible exact mechanism of POU3F4 on the NSC differentiation and development. METHODS NSCs were isolated and cultured from the hippocampus of neonatal mice. The frozen hippocampal sections were prepared for immunohistochemical staining. Synaptic development was assessed using electron microscopy. High-throughput sequencing was employed to analyze the gene expression profile following the overexpression of Brn4. Gene expression levels were determined through Western blotting and qRT-PCR. Cell cycle and differentiation were evaluated using flow cytometry and immunofluorescent staining. RESULTS It was found that POU3F4 promoted the neuronal differentiation of hippocampal NSCs and synapse development, and inhibited NSC proliferation. POU3F4-deficient mice exhibited impairments in learning and memory. RNA sequencing and ChIP assays confirmed that Gli1 was downstream of POU3F4. Loss and gain function experiments indicated that Gli1 mediated POU3F4 promoting neuronal differentiation and synapse development. Forced expression of Gli1 in hippocampus improved learning and memory function of animal models. CONCLUSIONS The results suggest that POU3F4 and Gli1 promote neuronal differentiation and synaptic development of NSCs, and that Gli1 partially mediates the effects of POU3F4.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China
| | - Jue Wang
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Naijuan Xu
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jingjing Guo
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yujian Lin
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xunrui Zhang
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruijie Ji
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yaya Ji
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Haoming Li
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China
| | - Xiao Han
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Wen Li
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiang Cheng
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China
| | - Jianbing Qin
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China
| | - Meiling Tian
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China
| | - Min Xu
- Department of Neurosurgery, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China.
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China.
| | - Xinhua Zhang
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China.
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China.
| |
Collapse
|
3
|
Yao D, Li S, You M, Chen Y, Yan S, Li B, Wang Y. Developmental exposure to nonylphenol leads to depletion of the neural precursor cell pool in the hippocampal dentate gyrus. Chem Biol Interact 2024; 401:111187. [PMID: 39111523 DOI: 10.1016/j.cbi.2024.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Developmental exposure to nonylphenol (NP) results in irreversible impairments of the central nervous system (CNS). The neural precursor cell (NPC) pool located in the subgranular zone (SGZ), a substructure of the hippocampal dentate gyrus, is critical for the development of hippocampal circuits and some hippocampal functions such as learning and memory. However, the effects of developmental exposure to NP on this pool remain unclear. Thus, our aim was to clarify the impacts of developmental exposure to NP on this pool and to explore the potential mechanisms. Animal models of developmental exposure to NP were created by treating Wistar rats with NP during pregnancy and lactation. Our data showed that developmental exposure to NP decreased Sox2-and Ki67-positive cells in the SGZ of offspring. Inhibited activation of Shh signaling and decreased levels of its downstream mediators, E2F1 and cyclins, were also observed in pups developmentally exposed to NP. Moreover, we established the in vitro model in the NE-4C cells, a neural precursor cell line, to further investigate the effect of NP exposure on NPCs and the underlying mechanisms. Purmorphamine, a small purine-derived hedgehog agonist, was used to specifically modulate the Shh signaling. Consistent with the in vivo results, exposure to NP reduced cell proliferation by inhibiting the Shh signaling in NE-4C cells, and purmorphamine alleviated this reduction in cell proliferation by restoring this signaling. Altogether, our findings support the idea that developmental exposure to NP leads to inhibition of the NPC proliferation and the NPC pool depletion in the SGZ located in the dentate gyrus. Furthermore, we also provided the evidence that suppressed activation of Shh signaling may contribute to the effects of developmental exposure to NP on the NPC pool.
Collapse
Affiliation(s)
- Dianqi Yao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Siyao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Yin Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Siyu Yan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Bing Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
4
|
Nazari MHD, Heidarian R, Masoudnia M, Dastjerdi RA, Talkhounche PG, Taleahmad S. Targeting GLI1 and BAX by nanonoscapine could impede prostate adenocarcinoma progression. Sci Rep 2024; 14:18977. [PMID: 39152150 PMCID: PMC11329793 DOI: 10.1038/s41598-024-65968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/25/2024] [Indexed: 08/19/2024] Open
Abstract
Prostate cancer as a critical global health issue, requires the exploration of a novel therapeutic approach. Noscapine, an opium-derived phthalide isoquinoline alkaloid, has shown promise in cancer treatment thanks to its anti-tumorigenic properties. However, limitations such as low bioavailability and potential side effects have hindered its clinical application. This study introduces nanonoscapine as a novel medication to overcome these challenges, leveraging the advantages of improved drug delivery and efficacy achieved in nanotechnology. We monitored the effects of nanonoscapine on the androgen-sensitive human prostate adenocarcinoma cell line, LNCaP, investigating its impact on GLI1 and BAX genes' expressions, crucial regulators of cell cycle and apoptosis. Our findings, from MTT assays, flow cytometry, and gene expression analyses, have demonstrated that nanonoscapine effectively inhibits prostate cancer cell proliferation by inducing G2/M phase arrest and apoptosis. Furthermore, through bioinformatics and computational analyses, we have revealed the underlying molecular mechanisms, underscoring the therapeutic potential of nanonoscapine in enhancing patient outcomes. This study highlights the significance of nanonoscapine as an alternative or adjunct treatment to conventional chemotherapy, warranting further investigation in clinical settings.
Collapse
Affiliation(s)
- Mohammad Hossein Derakhshan Nazari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ronak Heidarian
- Department of Developmental Biology, Kharazmi University, Tehran, Iran
| | - Mina Masoudnia
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rana Askari Dastjerdi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Zhou X, He Y, Pan X, Quan H, He B, Li Y, Bai G, Li N, Zhang Z, Zhang H, Li J, Yuan X. DNMT1-mediated lncRNA IFFD controls the follicular development via targeting GLI1 by sponging miR-370. Cell Death Differ 2023; 30:576-588. [PMID: 36566296 PMCID: PMC9950381 DOI: 10.1038/s41418-022-01103-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022] Open
Abstract
DNA methylation and long noncoding RNAs (lncRNAs) exhibit an indispensable role in follicular development. However, the specific mechanisms regarding lncRNAs mediated by DNA methylation in follicular development remain unclearly. In this study, we found that inhibiting the expression of DNMT1 promoted granulosa cells (GCs) apoptosis to inhibit follicular development. A novel follicular development-associated lncRNA named inhibitory factor of follicular development (IFFD) was mediated by DNMT1 and showed to arrest follicular development by inhibiting GCs proliferation and estrogen (E2) secretion but promoting GCs apoptosis. Mechanistically, the deactivated Cas9-TET1 demonstrated that the hypomethylation in -1261/-1254 region of IFFD promoted the transcription of IFFD by recruiting SP1. IFFD induced the expression of GLI family zinc finger 1 through competitive binding miR-370, thereby up-regulating the expression of CASP3 to promote GCs apoptosis, as well as downregulating the expressions of PCNA and CYP19A1 to inhibit GCs proliferation and E2 secretion. Collectively, DNMT1-mediated IFFD might be a novel target for the regulation of follicular development.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hongyan Quan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Bo He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongguang Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guofeng Bai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
7
|
Sultan FA, Sawaya BE. Gadd45 in Neuronal Development, Function, and Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:117-148. [PMID: 35505167 DOI: 10.1007/978-3-030-94804-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Psychiatry, Rush University, Chicago, IL, USA.
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Richardson MF, Truong TTT, Liu ZSJ, Morris G, Gray L, Hyun Kim J, Dean OM, Berk M, Walder K. Transcriptional Modulation of the Hippo Signaling Pathway by Drugs Used to Treat Bipolar Disorder and Schizophrenia. Int J Mol Sci 2021; 22:7164. [PMID: 34281223 PMCID: PMC8268913 DOI: 10.3390/ijms22137164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Recent reports suggest a link between positive regulation of the Hippo pathway with bipolar disorder (BD), and the Hippo pathway is known to interact with multiple other signaling pathways previously associated with BD and other psychiatric disorders. In this study, neuronal-like NT2 cells were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM), or vehicle control for 24 h. Genome-wide mRNA expression was quantified and analyzed using gene set enrichment analysis (GSEA), with genes belonging to Hippo, Wnt, Notch, TGF- β, and Hedgehog retrieved from the KEGG database. Five of the eight drugs downregulated the genes of the Hippo pathway and modulated several genes involved in the interacting pathways. We speculate that the regulation of these genes, especially by aripiprazole, clozapine, and quetiapine, results in a reduction of MAPK and NFκB pro-inflammatory signaling through modulation of Hippo, Wnt, and TGF-β pathways. We also employed connectivity map analysis to identify compounds that act on these pathways in a similar manner to the known psychiatric drugs. Thirty-six compounds were identified. The presence of antidepressants and antipsychotics validates our approach and reveals possible new targets for drug repurposing.
Collapse
Affiliation(s)
- Bruna Panizzutti
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Chiara C. Bortolasci
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Briana Spolding
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Srisaiyini Kidnapillai
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Timothy Connor
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Mark F. Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood 3125, Australia;
| | - Trang T. T. Truong
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Zoe S. J. Liu
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Gerwyn Morris
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Laura Gray
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Jee Hyun Kim
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Olivia M. Dean
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Michael Berk
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville 3052, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville 3052, Australia
- Orygen Youth Health Research Centre, Parkville 3052, Australia
| | - Ken Walder
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| |
Collapse
|
9
|
Galat Y, Gu H, Perepitchka M, Taylor R, Yoon JW, Glukhova XA, Li XN, Beletsky IP, Walterhouse DO, Galat V, Iannaccone PM. CRISPR editing of the GLI1 first intron abrogates GLI1 expression and differentially alters lineage commitment. Stem Cells 2021; 39:564-580. [PMID: 33497498 PMCID: PMC8248124 DOI: 10.1002/stem.3341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
GLI1 is one of three GLI family transcription factors that mediate Sonic Hedgehog signaling, which plays a role in development and cell differentiation. GLI1 forms a positive feedback loop with GLI2 and likely with itself. To determine the impact of GLI1 and its intronic regulatory locus on this transcriptional loop and human stem cell differentiation, we deleted the region containing six GLI binding sites in the human GLI1 intron using CRISPR/Cas9 editing to produce H1 human embryonic stem cell (hESC) GLI1‐edited clones. Editing out this intronic region, without removing the entire GLI1 gene, allowed us to study the effects of this highly complex region, which binds transcription factors in a variety of cells. The roles of GLI1 in human ESC differentiation were investigated by comparing RNA sequencing, quantitative‐real time PCR (q‐rtPCR), and functional assays. Editing this region resulted in GLI1 transcriptional knockdown, delayed neural commitment, and inhibition of endodermal and mesodermal differentiation during spontaneous and directed differentiation experiments. We found a delay in the onset of early osteogenic markers, a reduction in the hematopoietic potential to form granulocyte units, and a decrease in cancer‐related gene expression. Furthermore, inhibition of GLI1 via antagonist GANT‐61 had similar in vitro effects. These results indicate that the GLI1 intronic region is critical for the feedback loop and that GLI1 has lineage‐specific effects on hESC differentiation. Our work is the first study to document the extent of GLI1 abrogation on early stages of human development and to show that GLI1 transcription can be altered in a therapeutically useful way.
Collapse
Affiliation(s)
- Yekaterina Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Haigang Gu
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Mariana Perepitchka
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert Taylor
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Joon Won Yoon
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Xenia A Glukhova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Xiao-Nan Li
- Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Igor P Beletsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - David O Walterhouse
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vasiliy Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,ARTEC Biotech Inc, Chicago, Illinois, USA
| | - Philip M Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Kokkorakis N, Gaitanou M. Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B implication in stem/cancer stem cells biology. World J Stem Cells 2020; 12:1553-1575. [PMID: 33505600 PMCID: PMC7789127 DOI: 10.4252/wjsc.v12.i12.1553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.
Collapse
Affiliation(s)
- Nikolaos Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece.
| |
Collapse
|
11
|
Differentiation Induction as a Response to Irradiation in Neural Stem Cells In Vitro. Cancers (Basel) 2019; 11:cancers11070913. [PMID: 31261863 PMCID: PMC6678856 DOI: 10.3390/cancers11070913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy plays a significant role in brain cancer treatment; however, the use of this therapy is often accompanied by neurocognitive decline that is, at least partially, a consequence of radiation-induced damage to neural stem cell populations. Our findings describe features that define the response of neural stem cells (NSCs) to ionizing radiation. We investigated the effects of irradiation on neural stem cells isolated from the ventricular-subventricular zone of mouse brain and cultivated in vitro. Our findings describe the increased transcriptional activity of p53 targets and proliferative arrest after irradiation. Moreover, we show that most cells do not undergo apoptosis after irradiation but rather cease proliferation and start a differentiation program. Induction of differentiation and the demonstrated potential of irradiated cells to differentiate into neurons may represent a mechanism whereby damaged NSCs eliminate potentially hazardous cells and circumvent the debilitating consequences of cumulative DNA damage.
Collapse
|
12
|
Foxm1 controls a pro-stemness microRNA network in neural stem cells. Sci Rep 2018; 8:3523. [PMID: 29476172 PMCID: PMC5824884 DOI: 10.1038/s41598-018-21876-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/12/2018] [Indexed: 01/07/2023] Open
Abstract
Cerebellar neural stem cells (NSCs) require Hedgehog-Gli (Hh-Gli) signalling for their maintenance and Nanog expression for their self-renewal. To identify novel molecular features of this regulatory pathway, we used next-generation sequencing technology to profile mRNA and microRNA expression in cerebellar NSCs, before and after induced differentiation (Diff-NSCs). Genes with higher transcript levels in NSCs (vs. Diff-NSCs) included Foxm1, which proved to be directly regulated by Gli and Nanog. Foxm1 in turn regulated several microRNAs that were overexpressed in NSCs: miR-130b, miR-301a, and members of the miR-15~16 and miR-17~92 clusters and whose knockdown significantly impaired the neurosphere formation ability. Our results reveal a novel Hh-Gli-Nanog-driven Foxm1-microRNA network that controls the self-renewal capacity of NSCs.
Collapse
|
13
|
Qin W, Chen S, Yang S, Xu Q, Xu C, Cai J. The Effect of Traditional Chinese Medicine on Neural Stem Cell Proliferation and Differentiation. Aging Dis 2017; 8:792-811. [PMID: 29344417 PMCID: PMC5758352 DOI: 10.14336/ad.2017.0428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are special types of cells with the potential for self-renewal and multi-directional differentiation. NSCs are regulated by multiple pathways and pathway related transcription factors during the process of proliferation and differentiation. Numerous studies have shown that the compound medicinal preparations, single herbs, and herb extracts in traditional Chinese medicine (TCM) have specific roles in regulating the proliferation and differentiation of NSCs. In this study, we investigate the markers of NSCs in various stages of differentiation, the related pathways regulating the proliferation and differentiation, and the corresponding transcription factors in the pathways. We also review the influence of TCM on NSC proliferation and differentiation, to facilitate the development of TCM in neural regeneration and neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Qin
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shiya Chen
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shasha Yang
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qian Xu
- 2College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chuanshan Xu
- 3School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing Cai
- 2College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
14
|
Quijada P, Hariharan N, Cubillo JD, Bala KM, Emathinger JM, Wang BJ, Ormachea L, Bers DM, Sussman MA, Poizat C. Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. J Biol Chem 2015; 290:25411-26. [PMID: 26324717 DOI: 10.1074/jbc.m115.657775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) signaling in the heart regulates cardiomyocyte contractility and growth in response to elevated intracellular Ca(2+). The δB isoform of CaMKII is the predominant nuclear splice variant in the adult heart and regulates cardiomyocyte hypertrophic gene expression by signaling to the histone deacetylase HDAC4. However, the role of CaMKIIδ in cardiac progenitor cells (CPCs) has not been previously explored. During post-natal growth endogenous CPCs display primarily cytosolic CaMKIIδ, which localizes to the nuclear compartment of CPCs after myocardial infarction injury. CPCs undergoing early differentiation in vitro increase levels of CaMKIIδB in the nuclear compartment where the kinase may contribute to the regulation of CPC commitment. CPCs modified with lentiviral-based constructs to overexpress CaMKIIδB (CPCeδB) have reduced proliferative rate compared with CPCs expressing eGFP alone (CPCe). Additionally, stable expression of CaMKIIδB promotes distinct morphological changes such as increased cell surface area and length of cells compared with CPCe. CPCeδB are resistant to oxidative stress induced by hydrogen peroxide (H2O2) relative to CPCe, whereas knockdown of CaMKIIδB resulted in an up-regulation of cell death and cellular senescence markers compared with scrambled treated controls. Dexamethasone (Dex) treatment increased mRNA and protein expression of cardiomyogenic markers cardiac troponin T and α-smooth muscle actin in CPCeδB compared with CPCe, suggesting increased differentiation. Therefore, CaMKIIδB may serve as a novel modulatory protein to enhance CPC survival and commitment into the cardiac and smooth muscle lineages.
Collapse
Affiliation(s)
- Pearl Quijada
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | - Nirmala Hariharan
- Department of Pharmacology, University of California at Davis, Davis, California 95616, and
| | - Jonathan D Cubillo
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | - Kristin M Bala
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | | | - Bingyan J Wang
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | - Lucia Ormachea
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | - Donald M Bers
- Department of Pharmacology, University of California at Davis, Davis, California 95616, and
| | - Mark A Sussman
- From the Department of Biology, San Diego State University, San Diego, California 92182
| | - Coralie Poizat
- From the Department of Biology, San Diego State University, San Diego, California 92182, Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Abstract
Mammals rarely regenerate their lost or injured tissues into adulthood. MRL/MpJ mouse strain initially identified to heal full-thickness ear wounds now represents a classical example of mammalian wound regeneration since it can heal a spectrum of injuries such as skin and cardiac wounds, nerve injuries and knee articular cartilage lesions. In addition to MRL/MpJ, a few other mouse strains such as LG/J (a parent of MRL/MpJ) and LGXSM-6 (arising from an intercross between LG/J and SM/J mouse strains) have now been recognized to possess regenerative/healing abilities for articular cartilage and ear wound injuries that are similar, if not superior, to MRL/MpJ mice. While some mechanisms underlying regenerative potential have been begun to emerge, a complete set of biological processes and pathways still needs to be elucidated. Using a panel of healer and non-healer mouse strains, our recent work has provided some insights into the genes that could potentially be associated with healing potential. Future mechanistic studies can help seek the Holy Grail of regenerative medicine. This review highlights the regenerative capacity of selected mouse strains for articular cartilage, in particular, and lessons from other body tissues, in general.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States.
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States; Department of Cell Biology and Physiology, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States; Department of Biomedical Engineering, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
16
|
Ferent J, Cochard L, Faure H, Taddei M, Hahn H, Ruat M, Traiffort E. Genetic activation of Hedgehog signaling unbalances the rate of neural stem cell renewal by increasing symmetric divisions. Stem Cell Reports 2014; 3:312-23. [PMID: 25254344 PMCID: PMC4175546 DOI: 10.1016/j.stemcr.2014.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 02/08/2023] Open
Abstract
In the adult brain, self-renewal is essential for the persistence of neural stem cells (NSCs) throughout life, but its regulation is still poorly understood. One NSC can give birth to two NSCs or one NSC and one transient progenitor. A correct balance is necessary for the maintenance of germinal areas, and understanding the molecular mechanisms underlying NSC division mode is clearly important. Here, we report a function of the Sonic Hedgehog (SHH) receptor Patched in the direct control of long-term NSC self-renewal in the subependymal zone. We show that genetic conditional activation of SHH signaling in adult NSCs leads to their expansion and the depletion of their direct progeny. These phenotypes are associated in vitro with an increase in NSC symmetric division in a process involving NOTCH signaling. Together, our results demonstrate a tight control of adult neurogenesis and NSC renewal driven by Patched.
Ptc inactivation in the adult NSCs expands the NSC pool and depletes their progeny Neurogenesis blockade is related to the increase of NSC symmetric division PTC exerts a central role via NOTCH, in the regulation of adult NSC self-renewal
Collapse
Affiliation(s)
- Julien Ferent
- Laboratory of Neurobiology and Development-CNRS, Signal Transduction and Developmental Neuropharmacology Team, Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette 91198, France
| | - Loïc Cochard
- Laboratory of Neurobiology and Development-CNRS, Signal Transduction and Developmental Neuropharmacology Team, Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette 91198, France
| | - Hélène Faure
- Laboratory of Neurobiology and Development-CNRS, Signal Transduction and Developmental Neuropharmacology Team, Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette 91198, France
| | - Maurizio Taddei
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, 53100 Siena, Italy
| | - Heidi Hahn
- Tumor Genetics Group, Institute of Human Genetics, University Medical Center, Göttingen 37073, Germany
| | - Martial Ruat
- Laboratory of Neurobiology and Development-CNRS, Signal Transduction and Developmental Neuropharmacology Team, Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette 91198, France.
| | - Elisabeth Traiffort
- Laboratory of Neurobiology and Development-CNRS, Signal Transduction and Developmental Neuropharmacology Team, Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette 91198, France.
| |
Collapse
|
17
|
Ruat M, Faure H, Daynac M. Smoothened, Stem Cell Maintenance and Brain Diseases. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Heber-Katz E, Zhang Y, Bedelbaeva K, Song F, Chen X, Stocum DL. Cell cycle regulation and regeneration. Curr Top Microbiol Immunol 2013; 367:253-76. [PMID: 23263201 DOI: 10.1007/82_2012_294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Regeneration of ear punch holes in the MRL mouse and amputated limbs of the axolotl show a number of similarities. A large proportion of the fibroblasts of the uninjured MRL mouse ear are arrested in G2 of the cell cycle, and enter nerve-dependent mitosis after injury to form a ring-shaped blastema that regenerates the ear tissue. Multiple cell types contribute to the establishment of the regeneration blastema of the urodele limb by dedifferentiation, and there is substantial reason to believe that the cells of this early blastema are also arrested in G2, and enter mitosis under the influence of nerve-dependent factors supplied by the apical epidermal cap. Molecular analysis reveals other parallels, such as; (1) the upregulation of Evi5, a centrosomal protein that prevents mitosis by stabilizing Emi1, a protein that inhibits the degradation of cyclins by the anaphase promoting complex and (2) the expression of sodium channels by the epidermis. A central feature in the entry into the cell cycle by MRL ear fibroblasts is a natural downregulation of p21, and knockout of p21 in wild-type mice confers regenerative capacity on non-regenerating ear tissue. Whether the same is true for entry into the cell cycle in regenerating urodele limbs is presently unknown.
Collapse
|
19
|
Sultan FA, Sweatt JD. The Role of the Gadd45 Family in the Nervous System: A Focus on Neurodevelopment, Neuronal Injury, and Cognitive Neuroepigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:81-119. [DOI: 10.1007/978-1-4614-8289-5_6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Narayanan G, Poonepalli A, Chen J, Sankaran S, Hariharan S, Yu YH, Robson P, Yang H, Ahmed S. Single-cell mRNA profiling identifies progenitor subclasses in neurospheres. Stem Cells Dev 2012; 21:3351-62. [PMID: 22834539 DOI: 10.1089/scd.2012.0232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neurospheres are widely used to propagate and investigate neural stem cells (NSCs) and neural progenitors (NPs). However, the exact cell types present within neurospheres are still unknown. To identify cell types, we used single-cell mRNA profiling of 48 genes in 187 neurosphere cells. Using a clustering algorithm, we identified 3 discrete cell populations within neurospheres. One cell population [cluster unsorted (US) 1] expresses high Bmi1 and Hes5 and low Myc and Klf12. Cluster US2 shows intermediate expression of most of the genes analyzed. Cluster US3 expresses low Bmi1 and Hes5 and high Myc and Klf12. The mRNA profiles of these 3 cell populations correlate with a developmental timeline of early, intermediate, and late NPs, as seen in vivo from the mouse brain. We enriched the cell population for neurosphere-forming cells (NFCs) using morphological criteria of forward scatter (FSC) and side scatter (SSC). FSC/SSC(high) cells generated 2.29-fold more neurospheres than FSC/SSC(low) cells at clonal density. FSC/SSC(high) cells were enriched for NSCs and Lewis-X(+ve) cells, possessed higher phosphacan levels, and were of a larger cell size. Clustering of both FSC/SSC(high) and FSC/SSC(low) cells identified an NFC cluster. Significantly, the mRNA profile of the NFC cluster drew close resemblance to that of early NPs. Taken together, data suggest that the neurosphere culture system can be used to model central nervous system development, and that early NPs are the cell population that gives rise to neurospheres. In future work, it may be possible to further dissect the NFCs and reveal the molecular signature for NSCs.
Collapse
|
21
|
Bossing T, Barros CS, Fischer B, Russell S, Shepherd D. Disruption of microtubule integrity initiates mitosis during CNS repair. Dev Cell 2012; 23:433-40. [PMID: 22841498 PMCID: PMC3420022 DOI: 10.1016/j.devcel.2012.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 04/18/2012] [Accepted: 06/04/2012] [Indexed: 11/15/2022]
Abstract
Mechanisms of CNS repair have vital medical implications. We show that traumatic injury to the ventral midline of the embryonic Drosophila CNS activates cell divisions to replace lost cells. A pilot screen analyzing transcriptomes of single cells during repair pointed to downregulation of the microtubule-stabilizing GTPase mitochondrial Rho (Miro) and upregulation of the Jun transcription factor Jun-related antigen (Jra). Ectopic Miro expression can prevent midline divisions after damage, whereas Miro depletion destabilizes cortical β-tubulin and increases divisions. Disruption of cortical microtubules, either by chemical depolymerization or by overexpression of monomeric tubulin, triggers ectopic mitosis in the midline and induces Jra expression. Conversely, loss of Jra renders midline cells unable to replace damaged siblings. Our data indicate that upon injury, the integrity of the microtubule cytoskeleton controls cell division in the CNS midline, triggering extra mitosis to replace lost cells. The conservation of the identified molecules suggests that similar mechanisms may operate in vertebrates.
Collapse
Affiliation(s)
- Torsten Bossing
- School of Biological Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK.
| | | | | | | | | |
Collapse
|
22
|
Wang Y, Li M, Xu X, Song M, Tao H, Bai Y. Green tea epigallocatechin-3-gallate (EGCG) promotes neural progenitor cell proliferation and sonic hedgehog pathway activation during adult hippocampal neurogenesis. Mol Nutr Food Res 2012; 56:1292-303. [PMID: 22692966 DOI: 10.1002/mnfr.201200035] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/29/2012] [Accepted: 04/20/2012] [Indexed: 01/31/2023]
Abstract
SCOPE Adult hippocampal neurogenesis is a lifelong feature of brain plasticity that appears to be critically involved in adult brain function and neurological disease. Recent studies suggest that (-)-epigallocatechin-3-gallate (EGCG), which is the main polyphenolic constituent of green tea, may be used for the prevention and treatment of various neurodegenerative diseases. We hypothesized that EGCG promotes adult neurogenesis, which may be beneficial to hippocampus-dependent learning and memory. METHODS AND RESULTS We show that EGCG treatment significantly increased the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in adult hippocampal neural progenitor cell (NPC) cultures and in the dentate gyrus of adult mice. Meanwhile, EGCG markedly improved spatial cognition in mice. These events are associated with the sonic hedgehog (Shh) signaling pathway. We observed that EGCG triggered a robust upregulation of Shh receptor (Patched) mRNA and protein expression in cultured NPCs as well as an upregulation of the downstream Shh transcriptional target Gli1. These changes were further confirmed in the hippocampus of mice administered EGCG. The blockage of the Shh signal with the pharmacological inhibitor cyclopamine attenuated EGCG-induced hippocampal neurogenesis. CONCLUSION Our results provide strong evidence that EGCG enhances adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Medical Genetics, Third Military Medical University, Chongqing, P. R. China
| | | | | | | | | | | |
Collapse
|
23
|
Ruat M, Roudaut H, Ferent J, Traiffort E. Hedgehog trafficking, cilia and brain functions. Differentiation 2012; 83:S97-104. [DOI: 10.1016/j.diff.2011.11.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
|
24
|
Abstract
To determine whether the zinc finger transcription factors GLI1 to GLI3 and suppressor of fused (SUFU) components of the Sonic hedgehog signaling pathway may be prognostic markers and potential therapeutic targets in pediatric medulloblastoma (MB), we investigated the relationship of the expression of these proteins to prognosis in the MB of 124 patients who had undergone surgery at the Hospital for Sick Children (Toronto, Ontario, Canada). The expressions of GLI1 (p = 0.011) and GLI2 (p = 0.003), but not of GLI3 (p = 0.774) or SUFU (p = 0.137), in the MB were associated with a worse overall survival by Kaplan-Meier analysis. Overall survival of patients positive for GLI1 and GLI2 was 6.01 ± 0.85 years and 5.27 ± 1.44 years, respectively, versus 10.11 ± 1.52 years and 10.18 ± 0.22 years for patients negative for GLI1 and GLI2, respectively. Knockdown of GLI2 in 3 MB cell lines resulted in decreased cell number and viability, as determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay; knockdown of GLI1 had no effect. The decrease in cell number with GLI2 knockdown was caused by G0 cell cycle arrest; there was no induction of apoptosis. These results suggest that targeting the Sonic hedgehog pathway in positive patients may be a useful adjuvant therapeutic strategy for MB.
Collapse
|
25
|
Colvin Wanshura LE, Galvin KE, Ye H, Fernandez-Zapico ME, Wetmore C. Sequential activation of Snail1 and N-Myc modulates sonic hedgehog-induced transformation of neural cells. Cancer Res 2011; 71:5336-45. [PMID: 21646478 DOI: 10.1158/0008-5472.can-10-2633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activation of the Sonic hedgehog (Shh) pathway and increased expression of Gli1 play an important role in proliferation and transformation of granule cell progenitors (GCP) in the developing cerebellum. Medulloblastomas arising from cerebellar GCPs are frequently driven by Shh pathway-activating mutations; however, molecular mechanisms of Shh pathway dysregulation and transformation of neural progenitors remain poorly defined. We report that the transcription factor and oncogene Snail1 (Sna1) is directly induced by Shh pathway activity in GCPs, murine medulloblastomas, and human medulloblastoma cells. Enforced expression of Sna1 was sufficient to induce GCPs and medulloblastoma cell proliferation in the absence of Shh/Gli1 exposure. In addition, enforced expression of Sna1 increased transformation of medulloblastoma cells in vitro and in vivo. Analysis of potential Sna1 targets in neural cells revealed a novel Sna1 target, N-Myc, a transcription factor known to play a role in Shh-mediated GCP proliferation and medulloblastoma formation. We found that Sna1 directly induced transcription of N-Myc in human medulloblastoma cells and that depletion of N-Myc ablated the Sna1-induced proliferation and transformation. Taken together, these results provide further insight into the mechanism of Shh-induced transformation of neural progenitor cells and suggest that induction of Sna1 may serve to amplify the oncogenic potential of Shh pathway activation through N-Myc induction.
Collapse
Affiliation(s)
- Leah E Colvin Wanshura
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
26
|
Grachtchouk M, Pero J, Yang SH, Ermilov AN, Michael LE, Wang A, Wilbert D, Patel RM, Ferris J, Diener J, Allen M, Lim S, Syu LJ, Verhaegen M, Dlugosz AA. Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J Clin Invest 2011; 121:1768-81. [PMID: 21519145 DOI: 10.1172/jci46307] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/02/2011] [Indexed: 12/17/2022] Open
Abstract
Uncontrolled Hedgehog (Hh) signaling leads to the development of basal cell carcinoma (BCC), the most common human cancer, but the cell of origin for BCC is unclear. While Hh pathway dysregulation is common to essentially all BCCs, there exist multiple histological subtypes, including superficial and nodular variants, raising the possibility that morphologically distinct BCCs may arise from different cellular compartments in skin. Here we have shown that induction of a major mediator of Hh signaling, GLI2 activator (GLI2ΔN), selectively in stem cells of resting hair follicles in mice, induced nodular BCC development from a small subset of cells in the lower bulge and secondary hair germ compartments. Tumorigenesis was markedly accelerated when GLI2ΔN was induced in growing hair follicles. In contrast, induction of GLI2ΔN in epidermis led to the formation of superficial BCCs. Expression of GLI2ΔN at reduced levels in mice yielded lesions resembling basaloid follicular hamartomas, which have previously been linked to low-level Hh signaling in both mice and humans. Our data show that the cell of origin, tissue context (quiescent versus growing hair follicles), and level of oncogenic signaling can determine the phenotype of Hh/Gli-driven skin tumors, with high-level signaling required for development of superficial BCC-like tumors from interfollicular epidermis and nodular BCC-like tumors from hair follicle stem cells.
Collapse
Affiliation(s)
- Marina Grachtchouk
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Malureanu L, Jeganathan KB, Jin F, Baker DJ, van Ree JH, Gullon O, Chen Z, Henley JR, van Deursen JM. Cdc20 hypomorphic mice fail to counteract de novo synthesis of cyclin B1 in mitosis. ACTA ACUST UNITED AC 2011; 191:313-29. [PMID: 20956380 PMCID: PMC2958469 DOI: 10.1083/jcb.201003090] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Low expression levels of Cdc20 result in chromatin bridging and chromosome misalignment, revealing a requirement for Cdc20 in efficient sister chromosome separation and chromosome–microtubule attachment. Cdc20 is an activator of the anaphase-promoting complex/cyclosome that initiates anaphase onset by ordering the destruction of cyclin B1 and securin in metaphase. To study the physiological significance of Cdc20 in higher eukaryotes, we generated hypomorphic mice that express small amounts of this essential cell cycle regulator. In this study, we show that these mice are healthy and not prone to cancer despite substantial aneuploidy. Cdc20 hypomorphism causes chromatin bridging and chromosome misalignment, revealing a requirement for Cdc20 in efficient sister chromosome separation and chromosome–microtubule attachment. We find that cyclin B1 is newly synthesized during mitosis via cytoplasmic polyadenylation element–binding protein-dependent translation, causing its rapid accumulation between prometaphase and metaphase of Cdc20 hypomorphic cells. Anaphase onset is significantly delayed in Cdc20 hypomorphic cells but not when translation is inhibited during mitosis. These data reveal that Cdc20 is particularly rate limiting for cyclin B1 destruction because of regulated de novo synthesis of this cyclin after prometaphase onset.
Collapse
Affiliation(s)
- Liviu Malureanu
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Di Marcotullio L, Greco A, Mazzà D, Canettieri G, Pietrosanti L, Infante P, Coni S, Moretti M, De Smaele E, Ferretti E, Screpanti I, Gulino A. Numb activates the E3 ligase Itch to control Gli1 function through a novel degradation signal. Oncogene 2011; 30:65-76. [PMID: 20818436 DOI: 10.1038/onc.2010.394] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 07/21/2010] [Accepted: 07/28/2010] [Indexed: 02/07/2023]
Abstract
Hedgehog pathway regulates tissue patterning and cell proliferation. Gli1 transcription factor is the major effector of Hedgehog signaling and its deregulation is often associated to medulloblastoma formation. Proteolytic processes represent a critical mechanism by which this pathway is turned off. Here, we characterize the regulation of an ubiquitin-mediated mechanism of Gli1 degradation, promoted by the coordinated action of the E3 ligase Itch and the adaptor protein Numb. We show that Numb activates the catalytic activity of Itch, releasing it from an inhibitory intramolecular interaction between its homologous to E6-AP C-terminus and WW domains. The consequent activation of Itch, together with the recruitment of Gli1 through direct binding with Numb, allows Gli1 to enter into the complex, resulting in Gli1 ubiquitination and degradation. This process is mediated by a novel Itch-dependent degron, composed of a combination of two PPXYs and a phospho-serine/proline motifs, localized in Gli1 C-terminal region, indicating the role of two different WW docking sites in Gli1 ubiquitination. Remarkably, Gli1 protein mutated in these modules is no longer regulated by Itch and Numb, and determines enhanced Gli1-dependent medulloblastoma growth, migration and invasion abilities, as well as in vitro transforming activity. Our data reveal a novel mechanism of regulation of Gli1 stability and function, which influences Hedgehog/Gli1 oncogenic potential.
Collapse
Affiliation(s)
- L Di Marcotullio
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lauth M, Rohnalter V, Bergström A, Kooshesh M, Svenningsson P, Toftgård R. Antipsychotic drugs regulate hedgehog signaling by modulation of 7-dehydrocholesterol reductase levels. Mol Pharmacol 2010; 78:486-96. [PMID: 20558592 DOI: 10.1124/mol.110.066431] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recently we identified GANT61, a small-molecule antagonist of Gli transcription factors, which are the final effectors of the mammalian Hedgehog (HH) signaling pathway. Here we describe a diamine substructure of GANT61 that carries the biological activity and show that this part of the molecule is structurally related to trans-1,4-bis(2-chlorobenzaminomethyl)cyclohexane dihydrochloride (AY9944), an inhibitor of the enzymatic activity and transcriptional inducer of 7-dehydrocholesterol-reductase (Dhcr7, EC 1.3.1.21). Treatment of cells with the GANT61 diamine, AY9944, or overexpression of DHCR7 results in the attenuation of Smoothened-dependent and -independent HH signaling. Whereas GANT61 function is independent of Dhcr7, AY9944 does require up-regulation of endogenous Dhcr7. In line with these findings, Dhcr7-modulating antipsychotic (clozapine, chlorpromazine, haloperidol) and antidepressant (imipramine) drugs regulate HH signaling in vitro and in vivo. Modulation of HH signaling may represent a hitherto undiscovered biological (side) effect of therapeutics used to treat schizophrenia and depression.
Collapse
Affiliation(s)
- Matthias Lauth
- Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Lauth M, Bergström A, Shimokawa T, Tostar U, Jin Q, Fendrich V, Guerra C, Barbacid M, Toftgård R. DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol 2010; 17:718-25. [PMID: 20512148 DOI: 10.1038/nsmb.1833] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 03/16/2010] [Indexed: 02/07/2023]
Abstract
Synergism between the RAS and Hedgehog (HH) pathways has been suggested for carcinogenesis in the pancreas, lung and colon. We investigated the molecular cross-talk between RAS and HH signaling and found that, although mutant RAS induces or enhances SHH expression and favors paracrine HH signaling, it antagonizes autocrine HH signal transduction. Activated RAS can be found in primary cilia, the central organelle of HH signal transduction, but functions in a cilium-independent manner and interferes with Gli2 function and Gli3 processing. In addition, the cell-autonomous negative regulation of HH signal transduction involves the RAS effector molecule dual specificity tyrosine phosphorylated and regulated kinase 1B (DYRK1B). In line with a redirection of autocrine toward paracrine HH signaling by a KRAS-DYRK1B network, we find high levels of GLI1 expression restricted to the stromal compartment and not to SHH-expressing tumor cells in human pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Matthias Lauth
- Karolinska Institutet, Center for Biosciences, Department of Biosciences and Nutrition, Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The bright and the dark sides of DNA repair in stem cells. J Biomed Biotechnol 2010; 2010:845396. [PMID: 20396397 PMCID: PMC2852612 DOI: 10.1155/2010/845396] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/16/2009] [Accepted: 02/01/2010] [Indexed: 12/22/2022] Open
Abstract
DNA repair is a double-edged sword in stem cells. It protects normal stem cells in both embryonic and adult tissues from genetic damage, thus allowing perpetuation of intact genomes into new tissues. Fast and efficient DNA repair mechanisms have evolved in normal stem and progenitor cells. Upon differentiation, a certain degree of somatic mutations becomes more acceptable and, consequently, DNA repair dims. DNA repair turns into a problem when stem cells transform and become cancerous. Transformed stem cells drive growth of a number of tumours (e.g., high grade gliomas) and being particularly resistant to chemo- and radiotherapeutic agents often cause relapses. The contribution of DNA repair to resistance of these tumour-driving cells is the subject of intense research, in order to find novel agents that may sensitize them to chemotherapy and radiotherapy.
Collapse
|
32
|
Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci U S A 2010; 107:5845-50. [PMID: 20231440 DOI: 10.1073/pnas.1000830107] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Animals capable of regenerating multiple tissue types, organs, and appendages after injury are common yet sporadic and include some sponge, hydra, planarian, and salamander (i.e., newt and axolotl) species, but notably such regenerative capacity is rare in mammals. The adult MRL mouse strain is a rare exception to the rule that mammals do not regenerate appendage tissue. Certain commonalities, such as blastema formation and basement membrane breakdown at the wound site, suggest that MRL mice may share other features with classical regenerators. As reported here, MRL fibroblast-like cells have a distinct cell-cycle (G2/M accumulation) phenotype and a heightened basal and wound site DNA damage/repair response that is also common to classical regenerators and mammalian embryonic stem cells. Additionally, a neutral and alkaline comet assay displayed a persistent level of intrinsic DNA damage in cells derived from the MRL mouse. Similar to mouse ES cells, the p53-target p21 was not expressed in MRL ear fibroblasts. Because the p53/p21 axis plays a central role in the DNA damage response and cell cycle control, we directly tested the hypothesis that p21 down-regulation could functionally induce a regenerative response in an appendage of an otherwise nonregenerating mouse strain. Using the ear hole closure phenotype, a genetically mapped and reliable quantitative indicator of regeneration in the MRL mouse, we show that the unrelated Cdkn1a(tmi/Tyj)/J p21(-/-) mouse (unlike the B6129SF2/J WT control) closes ear holes similar to MRL mice, providing a firm link between cell cycle checkpoint control and tissue regeneration.
Collapse
|
33
|
Abstract
The discovery of a Sonic Hedgehog (Shh) signaling pathway in the mature vertebrate CNS has paved the way to the characterization of the functional roles of Shh signals in normal and diseased brain. Shh is proposed to participate in the establishment and maintenance of adult neurogenic niches and to regulate the proliferation of neuronal or glial precursors in several brain areas. Consistent with its role during brain development, misregulation of Shh signaling is associated with tumorigenesis while its recruitement in damaged neural tissue might be part of the regenerating process. This review focuses on the most recent data of the Hedgehog pathway in the adult brain and its relevance as a novel therapeutic approach for brain diseases including brain tumors.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- CNRS, Alfred Fessard Institute of Neurobiology, Laboratory of Neurobiology and Development, UPR-3294, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
34
|
Achanta P, Roman NIS, Quiñones-Hinojosa A. Gliomagenesis and the use of neural stem cells in brain tumor treatment. Anticancer Agents Med Chem 2010; 10:121-30. [PMID: 20184546 PMCID: PMC2981502 DOI: 10.2174/187152010790909290] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 12/29/2009] [Indexed: 01/08/2023]
Abstract
The role of neural stem cells (NSCs) in both the physiological and pathological processes in the brain has been refined through recent studies within the neuro-oncological field. Alterations in NSC regulatory mechanisms may be fundamental for the development and progression of malignant gliomas. A subpopulation of cells within the tumor known as brain tumor stem cells (BTSCs) have been shown to share key properties with NSCs. The BTSC hypothesis has significantly contributed to a potential understanding as to why brain tumors hold such dismal prognosis. On the other hand, the normal NSCs possess the capacity to migrate extensively towards the tumor bulk as well as to lingering neoplastic regions of the brain. The tropism of NSCs towards brain tumors may provide an additional tool for the treatment of brain cancer. The creation of potential therapies through the use of NSCs has been studied and includes the delivery of gene products to specific locations of the central nervous system selectively targeting malignant brain tumor cells and maximizing the efficiency of their delivery. Here, the proposed mechanisms of how brain tumors emerge, the molecular pathways interrupted in NSC pathogenesis and the most recent preclinical results in the use of NSCs for glioma treatment are reviewed.
Collapse
Affiliation(s)
- Pragathi Achanta
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, CRB II, Room 272, 1550 Orleans Street, Baltimore, MD, 21231, USA
| | - Neda I Sedora Roman
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, CRB II, Room 272, 1550 Orleans Street, Baltimore, MD, 21231, USA
- University of Puerto Rico School of Medicine, Office A-873, PO BOX 365067, San Juan PR 00936-5067
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, CRB II, Room 272, 1550 Orleans Street, Baltimore, MD, 21231, USA
| |
Collapse
|
35
|
Frosina G. DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res 2009; 7:989-99. [PMID: 19609002 DOI: 10.1158/1541-7786.mcr-09-0030] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The importance of DNA repair as a resistance mechanism in gliomas, the most aggressive form of brain tumor, is a clinically relevant topic. Recent studies show that not all cells are equally malignant in gliomas. Certain subpopulations are particularly prone to drive tumor progression and resist chemo- and radiotherapy. Those cells have been variably named cancer stem cells or cancer-initiating cells or tumor-propagating cells, owing to their possible (but still uncertain) origin from normal stem cells. Although DNA repair reduces the efficacy of chemotherapeutics and ionizing radiation toward bulk gliomas, its contribution to resistance of the rare glioma stem cell subpopulations is less clear. Mechanisms other than DNA repair (in particular low proliferation and activation of the DNA damage checkpoint response) are likely main players of resistance in glioma stem cells and their targeting might yield significant therapeutic gains.
Collapse
Affiliation(s)
- Guido Frosina
- Molecular Mutagenesis & DNA Repair Unit, Istituto Nazionale Ricerca Cancro, Largo Rosanna Benzi n. 10, 16132 Genova, Italy.
| |
Collapse
|
36
|
Ahmed S, Gan HT, Lam CS, Poonepalli A, Ramasamy S, Tay Y, Tham M, Yu YH. Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adh Migr 2009; 3:412-24. [PMID: 19535895 DOI: 10.4161/cam.3.4.8803] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The central nervous system (CNS) is a large network of interconnecting and intercommunicating cells that form functional circuits. Disease and injury of the CNS are prominent features of the healthcare landscape. There is an urgent unmet need to generate therapeutic solutions for CNS disease/injury. To increase our understanding of the CNS we need to generate cellular models that are experimentally tractable. Neural stem cells (NSCs), cells that generate the CNS during embryonic development, have been identified and propagated in vitro. To develop NSCs as a cellular model for the CNS we need to understand more about their genetics and cell biology. In particular, we need to define the mechanisms of self-renewal, proliferation and differentiation--i.e. NSC behavior. The analysis of pluripotency of embryonic stem cells through mapping regulatory networks of transcription factors has proven to be a powerful approach to understanding embryonic development. Here, we discuss the role of transcription factors in NSC behavior.
Collapse
Affiliation(s)
- Sohail Ahmed
- Institute of Medical Biology, Immunos, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Enteric neural crest differentiation in ganglioneuromas implicates Hedgehog signaling in peripheral neuroblastic tumor pathogenesis. PLoS One 2009; 4:e7491. [PMID: 19834598 PMCID: PMC2759000 DOI: 10.1371/journal.pone.0007491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 08/18/2009] [Indexed: 01/11/2023] Open
Abstract
Peripheral neuroblastic tumors (PNTs) share a common origin in the sympathetic nervous system, but manifest variable differentiation and growth potential. Malignant neuroblastoma (NB) and benign ganglioneuroma (GN) stand at opposite ends of the clinical spectrum. We hypothesize that a common PNT progenitor is driven to variable differentiation by specific developmental signaling pathways. To elucidate developmental pathways that direct PNTs along the differentiation spectrum, we compared the expression of genes related to neural crest development in GN and NB. In GNs, we found relatively low expression of sympathetic markers including adrenergic biosynthesis enzymes, indicating divergence from sympathetic fate. In contrast, GNs expressed relatively high levels of enteric neuropeptides and key constituents of the Hedgehog (HH) signaling pathway, including Dhh, Gli1 and Gli3. Predicted HH targets were also differentially expressed in GN, consistent with transcriptional response to HH signaling. These findings indicate that HH signaling is specifically active in GN. Together with the known role of HH activity in enteric neural development, these findings further suggested a role for HH activity in directing PNTs away from the sympathetic lineage toward a benign GN phenotype resembling enteric ganglia. We tested the potential for HH signaling to advance differentiation in PNTs by transducing NB cell lines with Gli1 and determining phenotypic and transcriptional response. Gli1 inhibited proliferation of NB cells, and induced a pattern of gene expression that resembled the differential pattern of gene expression of GN, compared to NB (p<0.00001). Moreover, the transcriptional response of SY5Y cells to Gli1 transduction closely resembled the transcriptional response to the differentiation agent retinoic acid (p<0.00001). Notably, Gli1 did not induce N-MYC expression in neuroblastoma cells, but strongly induced RET, a known mediator of RA effect. The decrease in NB cell proliferation induced by Gli1, and the similarity in the patterns of gene expression induced by Gli1 and by RA, corroborated by closely matched gene sets in GN tumors, all support a model in which HH signaling suppresses PNT growth by promoting differentiation along alternative neural crest pathways.
Collapse
|
38
|
Mao XG, Zhang X, Zhen HN. Progress on potential strategies to target brain tumor stem cells. Cell Mol Neurobiol 2009; 29:141-55. [PMID: 18781384 PMCID: PMC11505780 DOI: 10.1007/s10571-008-9310-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 08/25/2008] [Indexed: 01/11/2023]
Abstract
The identification of brain tumor stem cells (BTSCs) leads to promising progress on brain tumor treatment. For some brain tumors, BTSCs are the driving force of tumor growth and the culprits that make tumor revive and resistant to radiotherapy and chemotherapy. Therefore, it is specifically significant to eliminate BTSCs for treatment of brain tumors. There are considerable similarities between BTSCs and normal neural stem cells (NSCs), and diverse aspects of BTSCs have been studied to find potential targets that can be manipulated to specifically eradicate BTSCs without damaging normal NSCs, including their surface makers, surrounding niche, and aberrant signaling pathways. Many strategies have been designed to kill BTSCs, and some of them have reached, or are approaching, effective therapeutic results. Here, we will focus on advantages in the issue of BTSCs and emphasize on potential therapeutic strategies targeting BTSCs.
Collapse
Affiliation(s)
- Xing-gang Mao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province People’s Republic of China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province People’s Republic of China
| | - Hai-ning Zhen
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province People’s Republic of China
| |
Collapse
|
39
|
A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J 2009; 28:663-76. [PMID: 19214186 PMCID: PMC2647769 DOI: 10.1038/emboj.2009.16] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 01/09/2009] [Indexed: 01/05/2023] Open
Abstract
How cell numbers are determined is not understood. Hedgehog-Gli activity is involved in precursor cell proliferation and stem cell self-renewal, and its deregulation sustains the growth of many human tumours. However, it is not known whether GLI1, the final mediator of Hh signals, controls stem cell numbers, and how its activity is restricted to curtail tumourigenesis. Here we have altered the levels of GLI1 and p53, the major tumour suppressor, in multiple systems. We show that GLI1 expression in Nestin+ neural progenitors increases precursor and clonogenic stem cell numbers in vivo and in vitro. In contrast, p53 inhibits GLI1-driven neural stem cell self-renewal, tumour growth and proliferation. Mechanistically, p53 inhibits the activity, nuclear localisation and levels of GLI1 and in turn, GLI1 represses p53, establishing an inhibitory loop. We also find that p53 regulates the phosphorylation of a novel N' truncated putative activator isoform of GLI1 in human cells. The balance of GLI1 and p53 functions, thus, determines cell numbers, and prevalence of p53 restricts GLI1-driven stem cell expansion and tumourigenesis.
Collapse
|
40
|
Michael LE, Westerman BA, Ermilov AN, Wang A, Ferris J, Liu J, Blom M, Ellison DW, van Lohuizen M, Dlugosz AA. Bmi1 is required for Hedgehog pathway-driven medulloblastoma expansion. Neoplasia 2008; 10:1343-9, 5p following 1349. [PMID: 19048113 PMCID: PMC2586685 DOI: 10.1593/neo.81078] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 09/01/2008] [Accepted: 09/04/2008] [Indexed: 01/20/2023]
Abstract
Inappropriate Hedgehog (Hh) signaling underlies development of a subset of medulloblastomas, and tumors with elevated HH signaling activity express the stem cell self-renewal gene BMI1. To test whether Bmi1 is required for Hh-driven medulloblastoma development, we varied Bmi1 gene dosage in transgenic mice expressing an oncogenic Hh effector, SmoA1, driven by a glial fibrillary acidic protein (GFAP) promoter. Whereas 100% of SmoA1; Bmi1(+/+) or SmoA1;Bmi1(+/-) mice examined between postnatal (P) days 14 and 26 had typical medulloblastomas (N = 29), tumors were not detected in any of the SmoA1;Bmi1(-/-) animals examined (N = 6). Instead, small ectopic collections of cells were present in the region of greatest tumor load in SmoA1 animals, suggesting that medulloblastomas were initiated but failed to undergo expansion into frank tumors. Cells within these Bmi1(-/-) lesions expressed SmoA1 but were largely nonproliferative, in contrast to cells in Bmi1(+/+) tumors (6.2% vs 81.9% PCNA-positive, respectively). Ectopic cells were negative for the progenitor marker nestin, strongly GFAP-positive, and highly apoptotic, relative to Bmi1(+/+) tumor cells (29.6% vs 6.3% TUNEL-positive). The alterations in proliferation and apoptosis in SmoA1;Bmi1(-/-) ectopic cells are associated with reduced levels of Cyclin D1 and elevated expression of cyclin-dependent kinase inhibitor p19(Arf), two inversely regulated downstream targets of Bmi1. These data provide the first demonstration that Bmi1 is required for spontaneous de novo development of a solid tumor arising in the brain, suggest a crucial role for Bmi1-dependent, nestin-expressing progenitor cells in medulloblastoma expansion, and implicate Bmi1 as a key factor required for Hh pathway-driven tumorigenesis.
Collapse
Affiliation(s)
- Lowell Evan Michael
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109-0932, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mash1 and neurogenin 2 enhance survival and differentiation of neural precursor cells after transplantation to rat brains via distinct modes of action. Mol Ther 2008; 16:1873-82. [PMID: 18781144 DOI: 10.1038/mt.2008.189] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neural precursor cells (NPCs) are regarded as a promising source of donor cells in transplantation-based therapies for neurodegenerative disorders. However, poor survival and limited neuronal differentiation of the transplanted NPCs remain critical limitations for developing therapeutic strategies. In this study, we investigated the effects of the proneural basic helix-loop-helix (bHLH) transcription factors Mash1 and Neurogenin 2 (Ngn2) in neuronal differentiation and survival of NPCs. Induction of Mash1 or Ngn2 expression strikingly enhanced neuronal differentiation of cultured NPCs in vitro. Ngn2-transduced NPCs underwent a rapid cell cycle arrest, which often accompanies differentiation. In contrast, cells continuously expanded upon Mash1 expression during NPC differentiation. Notably, sonic hedgehog (SHH) was upregulated by Mash1 and mediated the proliferative and survival effects of Mash1 on NPCs. Upon transplantation into adult rat brains, Mash1-expressing NPCs yielded large grafts enriched with neurons compared to control LacZ-transduced NPCs. Interestingly, enhancements in neuronal yield, as well as in donor cell survival, were also achieved by transplanting Ngn2-transduced NPCs. We show that a differentiation stage- and cell density-dependent survival effect of Ngn2 involves neurotrophin3 (NT3)/TrkC-mediated signaling. Together, these findings suggest potential benefits of bHLH gene manipulation to develop successful transplantation strategies for brain disorders.
Collapse
|