1
|
Luo Y, Li JE, Xu S, Zeng H, Zhang Y, Yang S, He X, Liu J. METTL3 promotes human amniotic epithelial stem cells differentiation into insulin-producing cells by regulation of MaFA expression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167904. [PMID: 40374016 DOI: 10.1016/j.bbadis.2025.167904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/23/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
OBJECTIVE Generating mature β-cells from stem cells remains a significant challenge in diabetes cell therapy. Human amniotic epithelial stem cells (hAESCs) have made their mark in regenerative medicine, and provide several advantages compared to other stem cells. Methyltransferase-like 3 (METTL3), an essential RNA methyltransferase participating in N6-methyladenosine (m6A) mRNA methylation, plays a critical role in the normal development of β-cells, yet its deletion in β-cells leads to β-cell dysfunction and hyperglycemia. METHODS In this study, we isolated and characterized hAESCs from human amniotic membranes, differentiated these hAESCs into insulin-producing cells (IPCs), and explored the role of METTL3 in such differentiation. We examined the expression of METTL3 and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2, a decodes m6A methylation "reader") in the generated IPCs. Subsequently, we suppressed METTL3 using an inhibitor (STM2457) and overexpressed METTL3 via plasmid transfection (METTL3-OE). The differentiated STM2457 and METTL3-OE IPCs were compared to normal induction (WT) IPCs regarding the expression of β-cell markers by RT-qPCR and western blotting, immunofluorescence, C-peptide release, and glucose-stimulated insulin secretion (GSIS). Methylated RNA immunoprecipitation (MeRIP)-qPCR was used to examine the molecular mechanism underlying METTL3/m6A signaling axis in MaFA (endocrine pancreatic β-cells marker) expression. We examined the potential therapeutic uses and efficacy of IPCs through streptozotocin (STZ)-induced C57BL/6 DM. RESULTS Isolated hAESCs displayed all characteristics of ESCs and could generate IPCs. METTL3 and IGF2BP2 were elevated during differentiation. Overexpressing METTL3 improved the expression of β-cell markers in the final differentiated IPCs, improved C-peptide release, and demonstrated increased insulin secretion upon challenging with high glucose conditions, whereas inhibiting METTL3 attenuated these effects. Moreover, METTL3 modulated the MaFA expression in an m6A-dependent manner. CONCLUSIONS These findings suggest METTL3 as a promoting factor of IPCs generation, with its up-regulation potentially generating more mature IPCs for hAESCs therapy of diabetes mellitus.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; School of basic medicine, Nanchang Medical College, Nanchang City, Jiangxi Province, China
| | - Jin-E Li
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Shan Xu
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Haixia Zeng
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Yuying Zhang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Shiqi Yang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xiaoju He
- Department of Obstetrics and Gynecology of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang City, Jiangxi Province, China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
2
|
Ding N, Luo R, Zhang Q, Li H, Zhang S, Chen H, Hu R. Current Status and Progress in Stem Cell Therapy for Intracerebral Hemorrhage. Transl Stroke Res 2025; 16:512-534. [PMID: 38001353 DOI: 10.1007/s12975-023-01216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Intracerebral hemorrhage is a highly prevalent and prognostically poor disease, imposing immeasurable harm on human life and health. However, the treatment options for intracerebral hemorrhage are severely limited, particularly in terms of improving the microenvironment of the lesion, promoting neuronal cell survival, and enhancing neural function. This review comprehensively discussed the application of stem cell therapy for intracerebral hemorrhage, providing a systematic summary of its developmental history, types of transplants, transplantation routes, and transplantation timing. Moreover, this review presented the latest research progress in enhancing the efficacy of stem cell transplantation, including pretransplantation preconditioning, genetic modification, combined therapy, and other diverse strategies. Furthermore, this review pioneeringly elaborated on the barriers to clinical translation for stem cell therapy. These discussions were of significant importance for promoting stem cell therapy for intracerebral hemorrhage, facilitating its clinical translation, and improving patient prognosis.
Collapse
Affiliation(s)
- Ning Ding
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ran Luo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huanhuan Li
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shuixian Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huanran Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
3
|
Festinese VG, Faydaver M, Nardinocchi D, Di Giacinto O, El Khatib M, Mauro A, Turriani M, Canciello A, Berardinelli P, Russo V, Barboni B. Neural Markers Predict Tendon Healing Outcomes in an Ovine Achilles Tendon Injury Model: Spontaneous Repair Versus Amniotic Epithelial Cell-Induced Regeneration. Int J Mol Sci 2025; 26:2445. [PMID: 40141090 PMCID: PMC11942428 DOI: 10.3390/ijms26062445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Tendon injuries pose a clinical challenge due to tendons' limited recovery. Emerging evidence points to the nervous system's critical role in tendon healing, with neural markers NGF, NF-200, NPY, CGRP, and GAL modulating inflammation, cell proliferation, and extracellular matrix (ECM) remodeling. This study investigates the predictive role of selected neural markers in a validated ovine Achilles tendon injury model, comparing spatio-temporal expression patterns in regenerating tendons transplanted with amniotic epithelial stem cells (AECs) versus spontaneous healing (CTR) 14 and 28 days post-injury (p.i.). AEC-treated tissues showed a spatio-temporal modulation of NF-200, NGF, NPY, CGRP, GAL, and enhanced ECM remodeling, with greater cell alignment, lower angle deviation, and accelerated collagen maturation, with a favorable Collagen type 1 (COL1) to Collagen type 3 (COL3) ratio. Pearson's matrix analysis revealed significant positive correlations between NGF, CGRP, and GAL expression, along a positive correlation between the three neural markers and cell alignment and angle deviation. As opposed to CTR, in AEC-treated tendons, lower levels of NGF, CGRP, and GAL correlated positively with improved tissue organization, suggesting these markers may predict successful tendon regeneration. The findings highlight the neuro-mediated activity of AECs in tendon regeneration, with NGF, CGRP, and GAL emerging as key predictive biomarkers for tendon healing.
Collapse
Affiliation(s)
- Valeria Giovanna Festinese
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
- School of Advanced Studies, Center for Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Melisa Faydaver
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Delia Nardinocchi
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Maura Turriani
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Angelo Canciello
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| |
Collapse
|
4
|
Gao Y, Zhang Y, Mi N, Miao W, Zhang J, Liu Y, Li Z, Song J, Li X, Guan W, Bai C. Exploring the link between M1 macrophages and EMT of amniotic epithelial cells: implications for premature rupture of membranes. J Nanobiotechnology 2025; 23:163. [PMID: 40033278 PMCID: PMC11877754 DOI: 10.1186/s12951-025-03192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Despite increasing evidence supporting the role of an amniotic epithelial-mesenchymal transition (EMT) in the premature rupture of membranes (PROMs), it remains unclear if extracellular vesicle (EV) derived from M1 macrophages play a critical role in triggering the EMT of amniotic epithelial cells (AECs). RESULTS This study revealed that under inflammatory conditions, EV-miR-146a/155 from M1 macrophages could trigger EMTs and MMP-9 transcription in AECs, elevating the risk of PROM in both mice and humans. Introduction of EV-miR-155 led to inhibition of Ehf expression and reduced E-cadherin transcription in AECs. Meanwhile, EV-miR-146a activated the β-catenin/Tcf7 complex to promote the transcription of Snail, MMP-9, and miR-146a/155, inducing EMTs. Subsequently, EMT induction in AECs is associated with a loss of epithelial characteristics, disruption of cellular junctions, widening of intercellular spaces, and diminished biomechanical properties of the amniotic membrane. CONCLUSION Inflammatory stimulation prompts the polarization of macrophages in amniotic fluid into the M1 type, which subsequently secrete EVs laden with inflammatory miRNAs. These EVs trigger the EMT of AECs, causing the loss of their epithelial phenotype. Consequently, the biomechanical properties of the amnion deteriorate, ultimately leading to its rupture, posing risks relevant to pregnancy complications such as premature rupture of membranes. The results of this study provide insights into the pathogenesis of PROM and will aid in treatment development.
Collapse
Affiliation(s)
- Yuhua Gao
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, No.133 Hehua Road, Jining, Shandong, 272067, P. R. China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Street, Haidian District, Beijing, 100193, P. R. China
| | - Yanan Zhang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining, 272000, P. R. China
| | - Ningning Mi
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, No. 666, Wusu Road, Lin'an, 311300, P. R. China
| | - Wang Miao
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, No.133 Hehua Road, Jining, Shandong, 272067, P. R. China
| | - Jingmiao Zhang
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, No.133 Hehua Road, Jining, Shandong, 272067, P. R. China
| | - Yize Liu
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, No.133 Hehua Road, Jining, Shandong, 272067, P. R. China
| | - Zhikun Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, No.133 Hehua Road, Jining, Shandong, 272067, P. R. China
| | - Jiaxun Song
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, No.133 Hehua Road, Jining, Shandong, 272067, P. R. China
| | - Xiangchen Li
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, No. 666, Wusu Road, Lin'an, 311300, P. R. China.
| | - Weijun Guan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Street, Haidian District, Beijing, 100193, P. R. China.
| | - Chunyu Bai
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, No.133 Hehua Road, Jining, Shandong, 272067, P. R. China.
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Street, Haidian District, Beijing, 100193, P. R. China.
| |
Collapse
|
5
|
Hao W, Luo Y, Tian J, Lu Y, Cui Y, Zhang Y, Jin X, Ye H, Lu M, Song J, Zhou W, Zhang W, He Z. Scale-Up of Human Amniotic Epithelial Cells Through Regulation of Epithelial-Mesenchymal Plasticity Under Defined Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408581. [PMID: 39804851 PMCID: PMC11923953 DOI: 10.1002/advs.202408581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Indexed: 01/16/2025]
Abstract
Human amniotic epithelial cells (hAECs) have shown excellent efficacy in clinical research and have prospective applications in the treatment of many diseases. However, the properties of the hAECs and their proliferative mechanisms remain unclear. Here, single-cell RNA sequencing (scRNA-seq) is performed on hAECs obtained from amniotic tissues at different gestational ages and passages during in vitro culture. The results showed that the proliferation of hAECs is associated with epithelial-mesenchymal plasticity (EMP) during amniogenesis. Freshly isolated, full-term hAECs are identified as mature epithelial cells. Once cultured in vitro, they are observed to rapidly undergo epithelial-mesenchymal transition (EMT) and enter a partial epithelial-mesenchymal transition (pEMT) state to regain their EMP properties and proliferation capacities. With the continuous development of EMT, hAECs eventually enter a senescent state. The addition of SB431542 and microcarrier screening enabled the effective 3D expansion of hAECs by 50 fold while maintaining the EMP status in hAECs for further proliferation. This study not only elucidated the central proliferation mechanism of hAECs during development and expansion but also optimized the in vitro culture system so that it is sufficient to generate hAECs for 50 patients from a single donor amniotic membrane.
Collapse
Affiliation(s)
- Wangping Hao
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200123P. R. China
- Shanghai iCELL Biotechnology Co., LtdShanghai200335P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335P. R. China
| | - Yi Luo
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200123P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335P. R. China
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghai200120P. R. China
| | - Jia Tian
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190P. R. China
- Key Laboratory of Biopharmaceutical Preparation and DeliveryInstitute of Process EngineeringChinese Academy of SciencesBeijing100190P. R. China
- College of Chemical EngineeringUniversity of the Chinese Academy of SciencesBeijing101408P. R. China
| | - Yuefeng Lu
- Shanghai iCELL Biotechnology Co., LtdShanghai200335P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335P. R. China
| | - Yangyang Cui
- Shanghai iCELL Biotechnology Co., LtdShanghai200335P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335P. R. China
| | - Ying Zhang
- Shanghai iCELL Biotechnology Co., LtdShanghai200335P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335P. R. China
| | - Xiao Jin
- Shanghai iCELL Biotechnology Co., LtdShanghai200335P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335P. R. China
| | - Hongjuan Ye
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200123P. R. China
| | - Mengqi Lu
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200123P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335P. R. China
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghai200120P. R. China
- Postgraduate Training Base of Shanghai East HospitalJinzhou Medical UniversityJinzhouLiaoning121001P. R. China
| | - Jinjia Song
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200123P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335P. R. China
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghai200120P. R. China
| | - Weiqing Zhou
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190P. R. China
- Key Laboratory of Biopharmaceutical Preparation and DeliveryInstitute of Process EngineeringChinese Academy of SciencesBeijing100190P. R. China
- College of Chemical EngineeringUniversity of the Chinese Academy of SciencesBeijing101408P. R. China
| | - Wencheng Zhang
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200123P. R. China
- Shanghai iCELL Biotechnology Co., LtdShanghai200335P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335P. R. China
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghai200120P. R. China
| | - Zhiying He
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200123P. R. China
- Shanghai iCELL Biotechnology Co., LtdShanghai200335P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335P. R. China
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghai200120P. R. China
- Postgraduate Training Base of Shanghai East HospitalJinzhou Medical UniversityJinzhouLiaoning121001P. R. China
| |
Collapse
|
6
|
Khalilzad MA, Mohammadi J, Najafi S, Amirsaadat S, Zare S, Khalilzad M, Shamloo A, Khaghani A, Peyrovan A, Khalili SFS, Fayyaz N, Zare S. Harnessing the Anti-Inflammatory Effects of Perinatal Tissue Derived Therapies for the Treatment of Inflammatory Skin Diseases: A Comprehensive Review. Stem Cell Rev Rep 2025; 21:351-371. [PMID: 39531196 DOI: 10.1007/s12015-024-10822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Dealing with chronic inflammatory skin conditions like atopic dermatitis and psoriasis can be extremely difficult. Current treatments, such as topical corticosteroids, often have limitations and side effects. However, researchers have discovered that the placenta's remarkable properties may provide a breakthrough in effectively addressing these skin conditions. The placenta comprises three essential tissues: decidua, placental membrane, and umbilical cord. Placental derivatives have shown significant potential in treating psoriasis by reducing inflammatory cytokines and inhibiting keratinocyte proliferation. In the case of atopic dermatitis, umbilical cord stem cells have demonstrated anti-inflammatory effects by targeting critical factors and promoting anti-inflammatory cytokines. The scope of benefits associated with placental derivatives transcends these specific applications. They also potentially address other inflammatory skin diseases, such as vitiligo, by stimulating melanin production. Moreover, these derivatives have been leveraged in the treatment of pemphigus and epidermolysis bullosa (EB), showcasing potential as a wound dressing that could eliminate the necessity for painful dressing changes in EB patients. In summary, the integration of placental derivatives stands to revolutionize our approach to inflammatory skin conditions owing to their distinct properties and the prospective benefits they offer. This comprehensive review delves into the current applications of placental derivatives in addressing inflammatory skin diseases, presenting a novel treatment approach.
Collapse
Affiliation(s)
- Mohammad Amin Khalilzad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Soumaye Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mitra Khalilzad
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Ayoub Khaghani
- Department of Gynecological Surgery, Tehranpars Hospital, Tehran, Iran
| | - Aysan Peyrovan
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negin Fayyaz
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Zare
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Pierro M, Thébaud B. Cell-based strategies for the treatment of injury to the developing lung. THE LUNG 2025:403-426. [DOI: 10.1016/b978-0-323-91824-4.00020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Yang CJ, Shorey-Kendrick LE, Puy C, Benson AE, Wilmarth PA, Reddy AP, Zientek KD, Kim K, Crosland A, Clendinen CS, Bramer LM, Hagen OL, Vu HH, Aslan JE, McCarty OJ, Shatzel JJ, Scottoline BP, Lo JO. Characterization of the procoagulant phenotype of amniotic fluid across gestation in rhesus macaques and humans. Res Pract Thromb Haemost 2025; 9:102676. [PMID: 40070370 PMCID: PMC11894163 DOI: 10.1016/j.rpth.2024.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 03/14/2025] Open
Abstract
Background Amniotic fluid (AF) plays a key role in fetal development, yet the evolving composition of AF and its effects on hemostasis and thrombosis are poorly understood. Objectives To characterize the procoagulant properties of AF as a function of gestation in humans and nonhuman primates. Methods We analyzed the proteomes, lipidomes, and procoagulant properties of AF obtained by amniocentesis from rhesus macaque and human pregnancies at gestational age-matched time points. Results When added to human plasma, both rhesus and human AF accelerated clotting time and fibrin generation. We identified proteomic modules associated with clotting time and enriched for coagulation-related pathways. Proteins known to be involved in hemostasis were highly correlated with each other, and their intensity of expression varied across gestation in both rhesus and humans. Inhibition of the contact pathway did not affect the procoagulant effect of AF. Blocking tissue factor pathway inhibitor reversed the ability of AF to block the generation of activated factor X. The prothrombinase activity of AF was inhibited by phospholipid inhibitors. The levels of phosphatidylserine in AF were inversely correlated with clotting time. AF promoted platelet activation and secretion in plasma. Conclusion Overall, our findings reveal that the addition of AF to plasma enhances coagulation in a manner dependent on phospholipids as well as the presence of proteases and other proteins that directly regulate coagulation. We describe a correlation between clotting time and expression of coagulation proteins and phosphatidylserine in both rhesus and human AF, supporting the use of rhesus models for future studies of AF biology.
Collapse
Affiliation(s)
- Chih Jen Yang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Emergency Medicine, Tri-Service General Hospital, National Defensive Medical Center, Taipei, Taiwan
| | - Lyndsey E. Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Ashley E. Benson
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| | - Phillip A. Wilmarth
- Proteomics Shared Resources, Oregon Health & Science University, Portland, Oregon, USA
| | - Ashok P. Reddy
- Proteomics Shared Resources, Oregon Health & Science University, Portland, Oregon, USA
| | - Keith D. Zientek
- Proteomics Shared Resources, Oregon Health & Science University, Portland, Oregon, USA
| | - Kilsun Kim
- Proteomics Shared Resources, Oregon Health & Science University, Portland, Oregon, USA
| | - Adam Crosland
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| | - Chaevien S. Clendinen
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Lisa M. Bramer
- Biological Systems Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Olivia L. Hagen
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Helen H. Vu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E. Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph J. Shatzel
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian P. Scottoline
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Jamie O. Lo
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
9
|
Zhao X, Yu Z, Wang X, Li X, Liu Y, Wang L. The administration of human amniotic epithelial cells in premature ovarian insufficiency: From preclinical to clinical. Gynecol Endocrinol 2024; 40:2382818. [PMID: 39039858 DOI: 10.1080/09513590.2024.2382818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Premature ovarian insufficiency (POI) or premature ovarian failure (POF) is a multifactorial disorder occurring in reproductive-age women, characterized by elevated levels of follicle-stimulating hormone (FSH) and irregular or absent menstrual cycles, often accompanied by perimenopausal symptoms and infertility. While assisted reproductive technology can address the reproductive aspirations of some POI-affected women, it is hindered by issues such as exorbitant expenses, substantial risks, and poor rates of conception. Encouragingly, extensive research is exploring novel approaches to enhance fertility, particularly in the realm of stem cell therapy, showcasing both feasibility and significant potential. Human amniotic epithelial cells (hAECs) from discarded placental tissues are crucial in regenerative medicine for their pluripotency, low immunogenicity, non-tumorigenicity, accessibility, and minimal ethical concerns. Preclinical studies highlight the underlying mechanisms and therapeutic effects of hAECs in POI treatment, and current research is focusing on innovative interventions to augment hAECs' efficacy. However, despite these strides, overcoming application challenges is essential for successful clinical translation. This paper conducted a comprehensive analysis of the aforementioned issues, examining the prospects and challenges of hAECs in POI, with the aim of providing some insights for future research and clinical practice.
Collapse
Affiliation(s)
- Xiaojing Zhao
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongna Yu
- Department of Gynecology, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojing Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liang Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Rahmadian R, Adly M, Dilogo IH, Revilla G, Ariliusra Z. Single intra-articular injection of human synovial membrane MSC from grade IV knee osteoarthritis patient improve cartilage repair in OA rat model. J Orthop Surg Res 2024; 19:710. [PMID: 39487527 PMCID: PMC11531201 DOI: 10.1186/s13018-024-05149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024] Open
Abstract
AIM This study aims to assess the effectiveness of therapy of human synovial membrane-derived MSCs (SM-MSC) from OA grade IV patients in treating knee OA. METHODS SM-MSC were isolated from patients undergoing total knee replacement surgery, cultured to the fourth passage, and characterized using flow cytometry. Differentiation potential was assessed through lineage-specific staining. Osteoarthritis was induced in 24 Wistar rats via monosodium iodoacetate (MIA). The rats were divided into three groups: negative control, OA control, and OA treated with SM-MSC. Radiological, histopathological, and molecular analyses were conducted to evaluate cartilage repair and gene expression. RESULTS Flow cytometry confirmed the MSC phenotype of SM-MSC, and successful differentiation was observed. Radiological and histopathological analyses showed significant improvement in the SM-MSC treated group, with reduced cartilage damage and higher Safranin O staining compared to the OA control group. Gene expression analysis indicated increased type-2 collagen (COL-2) expression in the SM-MSC treated group, although MMP-13 levels remained unchanged across all groups. CONCLUSION Human SM-MSCs from OA grade IV patients significantly improved cartilage repair in an OA rat model, demonstrating their potential as a therapeutic option for OA. To enhance long-term efficacy and anti-inflammatory effects, further studies are needed to optimize treatment protocols, including injection frequency and dosage.
Collapse
Affiliation(s)
- Rizki Rahmadian
- Biomedical Sciences Doctoral Program, Faculty of Medicine, Andalas University, Padang, Indonesia.
- Orthopaedic and Traumatology Division, Department of Surgery, M. Djamil General Hospital, Faculty of Medicine, Andalas University, Padang, Indonesia.
| | - Marlina Adly
- Faculty of Pharmacy, Andalas University, Padang, Indonesia
| | - Ismail Hadisoebroto Dilogo
- Department of Orthopaedic and Traumatology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Gusti Revilla
- Department of Anatomy, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Zikril Ariliusra
- Orthopaedic and Traumatology Division, Department of Surgery, M. Djamil General Hospital, Faculty of Medicine, Andalas University, Padang, Indonesia
| |
Collapse
|
11
|
Ingraldi AL, Allen T, Tinghitella JN, Merritt WC, Becker T, Tabor AJ. Characterization of Amnion-Derived Membrane for Clinical Wound Applications. Bioengineering (Basel) 2024; 11:953. [PMID: 39451330 PMCID: PMC11504399 DOI: 10.3390/bioengineering11100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Human amniotic membrane (hAM), the innermost placental layer, has unique properties that allow for a multitude of clinical applications. It is a common misconception that birth-derived tissue products, such as dual-layered dehydrated amnion-amnion graft (dHAAM), are similar regardless of the manufacturing steps. A commercial dHAAM product, Axolotl Biologix DualGraft™, was assessed for biological and mechanical characteristics. Testing of dHAAM included antimicrobial, cellular biocompatibility, proteomics analysis, suture strength, and tensile, shear, and compressive modulus testing. Results demonstrated that the membrane can be a scaffold for fibroblast growth (cellular biocompatibility), containing an average total of 7678 unique proteins, 82,296 peptides, and 96,808 peptide ion variants that may be antimicrobial. Suture strength results showed an average pull force of 0.2 N per dHAAM sample (equating to a pull strength of 8.5 MPa). Tensile modulus data revealed variation, with wet samples showing 5× lower stiffness than dry samples. The compressive modulus and shear modulus displayed differences between donors (lots). This study emphasizes the need for standardized processing protocols to ensure consistency across dHAAM products and future research to explore comparative analysis with other amniotic membrane products. These findings provide baseline data supporting the potential of amniotic membranes in clinical applications.
Collapse
Affiliation(s)
| | - Tim Allen
- Axolotl Biologix, Scottsdale, AZ 85260, USA; (A.L.I.)
| | | | - William C. Merritt
- Mechanical Engineering and Center for Materials Interfaces in Research and Applications (MIRA), Northern Arizona University, Flagstaff, AZ 86011, USA; (W.C.M.)
| | - Timothy Becker
- Mechanical Engineering and Center for Materials Interfaces in Research and Applications (MIRA), Northern Arizona University, Flagstaff, AZ 86011, USA; (W.C.M.)
| | - Aaron J. Tabor
- Axolotl Biologix, Scottsdale, AZ 85260, USA; (A.L.I.)
- Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA;
| |
Collapse
|
12
|
Sekulovski N, Carleton AE, Rengarajan AA, Lin CW, Juga LN, Whorton AE, Schmidt JK, Golos TG, Taniguchi K. Temporally resolved single cell transcriptomics in a human model of amniogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556553. [PMID: 39026707 PMCID: PMC11257495 DOI: 10.1101/2023.09.07.556553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Amniogenesis is triggered in a collection of pluripotent epiblast cells as the human embryo implants. To gain insights into the critical but poorly understood transcriptional machinery governing amnion fate determination, we examined the evolving transcriptome of a developing human pluripotent stem cell-derived amnion model at the single cell level. This analysis revealed several continuous amniotic fate progressing states with state-specific markers, which include a previously unrecognized CLDN10+ amnion progenitor state. Strikingly, we found that expression of CLDN10 is restricted to the amnion-epiblast boundary region in the human post-implantation amniotic sac model as well as in a peri-gastrula cynomolgus macaque embryo, bolstering the growing notion that, at this stage, the amnion-epiblast boundary is a site of active amniogenesis. Bioinformatic analysis of published primate peri-gastrula single cell sequencing data further confirmed that CLDN10 is expressed in cells progressing to amnion. Additionally, our loss of function analysis shows that CLDN10 promotes amniotic but suppresses primordial germ cell-like fate. Overall, this study presents a comprehensive amniogenic single cell transcriptomic resource and identifies a previously unrecognized CLDN10+ amnion progenitor population at the amnion-epiblast boundary of the primate peri-gastrula.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anusha A. Rengarajan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison E. Whorton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
13
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early bone morphogenetic protein-driven transcriptional cascade during human amnion specification. eLife 2024; 12:RP89367. [PMID: 39051990 PMCID: PMC11272160 DOI: 10.7554/elife.89367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Jenna C Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Amber E Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Lauren N Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Linnea E Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
- Versiti Blood Research InstituteMilwaukeeUnited States
| | - Jenna K Schmidt
- Wisconsin National Primate Research CenterMilwaukeeUnited States
| | - Thaddeus G Golos
- Wisconsin National Primate Research CenterMilwaukeeUnited States
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public HealthMadisonUnited States
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary MedicineMadisonUnited States
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
14
|
Sulcanese L, Prencipe G, Canciello A, Cerveró-Varona A, Perugini M, Mauro A, Russo V, Barboni B. Stem-Cell-Driven Chondrogenesis: Perspectives on Amnion-Derived Cells. Cells 2024; 13:744. [PMID: 38727280 PMCID: PMC11083072 DOI: 10.3390/cells13090744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.
Collapse
Affiliation(s)
- Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| |
Collapse
|
15
|
Shih HM, Chen YC, Yeh YT, Peng FS, Wu SC. Assessment of the feasibility of human amniotic membrane stem cell-derived cardiomyocytes in vitro. Heliyon 2024; 10:e28398. [PMID: 38560255 PMCID: PMC10979088 DOI: 10.1016/j.heliyon.2024.e28398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide, resulting in extensive loss of cardiomyocytes and subsequent heart failure. Inducing cardiac differentiation of stem cells is a potential approach for myocardial regeneration therapy to improve post-MI prognosis. Mesenchymal stem cells (MSCs) have several advantages, including immune privilege and multipotent differentiation potential. This study aimed to explore the feasibility of chemically inducing human amniotic membrane MSCs (hAMSCs) to differentiate into cardiomyocytes in vitro. Human amniotic membrane (AM) samples were obtained from routine cesarean sections at Far Eastern Memorial Hospital. The isolated cells exhibited spindle-shaped morphology and expressed surface antigens CD73, CD90, CD105, and CD44, while lacking expression of CD19, CD11b, CD19, CD45, and HLA-DR. The SSEA-1, SSEA-3, and SSEA-4 markers were also positive, and the cells displayed the ability for tri-lineage differentiation into adipocytes, chondrocytes, and osteoblasts. The expression levels of MLC2v, Nkx2.5, and MyoD were analyzed using qPCR after applying various protocols for chemical induction, including BMP4, ActivinA, 5-azacytidine, CHIR99021, and IWP2 on hAMSCs. The group treated with 5 ng/ml BMP4, 10 ng/ml Activin A, 10 μM 5-azacytidine, 7.5 μM CHIR99021, and 5 μM IWP 2 expressed the highest levels of these genes. Furthermore, immunofluorescence staining demonstrated the expression of α-actinin and Troponin T in this group. In conclusion, this study demonstrated that hAMSCs can be chemically induced to differentiate into cardiomyocyte-like cells in vitro. However, to improve the functionality of the differentiated cells, further investigation of inductive protocols and regimens is needed.
Collapse
Affiliation(s)
- Hsiu-Man Shih
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yen-Ting Yeh
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | | | - Shinn-Chih Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early BMP-driven transcriptional cascade during human amnion specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.19.545574. [PMID: 38496419 PMCID: PMC10942271 DOI: 10.1101/2023.06.19.545574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that BMP signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hours after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna C. Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Linnea E. Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226 USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
17
|
Gerli MFM, Calà G, Beesley MA, Sina B, Tullie L, Sun KY, Panariello F, Michielin F, Davidson JR, Russo FM, Jones BC, Lee DDH, Savvidis S, Xenakis T, Simcock IC, Straatman-Iwanowska AA, Hirst RA, David AL, O'Callaghan C, Olivo A, Eaton S, Loukogeorgakis SP, Cacchiarelli D, Deprest J, Li VSW, Giobbe GG, De Coppi P. Single-cell guided prenatal derivation of primary fetal epithelial organoids from human amniotic and tracheal fluids. Nat Med 2024; 30:875-887. [PMID: 38438734 PMCID: PMC10957479 DOI: 10.1038/s41591-024-02807-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 03/06/2024]
Abstract
Isolation of tissue-specific fetal stem cells and derivation of primary organoids is limited to samples obtained from termination of pregnancies, hampering prenatal investigation of fetal development and congenital diseases. Therefore, new patient-specific in vitro models are needed. To this aim, isolation and expansion of fetal stem cells during pregnancy, without the need for tissue samples or reprogramming, would be advantageous. Amniotic fluid (AF) is a source of cells from multiple developing organs. Using single-cell analysis, we characterized the cellular identities present in human AF. We identified and isolated viable epithelial stem/progenitor cells of fetal gastrointestinal, renal and pulmonary origin. Upon culture, these cells formed clonal epithelial organoids, manifesting small intestine, kidney tubule and lung identity. AF organoids exhibit transcriptomic, protein expression and functional features of their tissue of origin. With relevance for prenatal disease modeling, we derived lung organoids from AF and tracheal fluid cells of congenital diaphragmatic hernia fetuses, recapitulating some features of the disease. AF organoids are derived in a timeline compatible with prenatal intervention, potentially allowing investigation of therapeutic tools and regenerative medicine strategies personalized to the fetus at clinically relevant developmental stages.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK.
- Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Giuseppe Calà
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Max Arran Beesley
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Beatrice Sina
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Politecnico di Milano, Milan, Italy
| | - Lucinda Tullie
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Kylin Yunyan Sun
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Francesco Panariello
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Federica Michielin
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Joseph R Davidson
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Francesca Maria Russo
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | - Brendan C Jones
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dani Do Hyang Lee
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Savvas Savvidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Theodoros Xenakis
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ian C Simcock
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | | | - Robert A Hirst
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | | | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Stavros P Loukogeorgakis
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Davide Cacchiarelli
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale, Naples, Italy
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, University College London, London, UK.
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium.
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Medical and Surgical Department of the Fetus, Newborn and Infant, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
18
|
Xu L, Dai Q, Zhang Y, Lin N, Ji L, Song X. Prospects for the Application of Transplantation With Human Amniotic Membrane Epithelial Stem Cells in Systemic Lupus Erythematosus. Cell Transplant 2024; 33:9636897241236586. [PMID: 38469823 PMCID: PMC10935745 DOI: 10.1177/09636897241236586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-organ and systemic autoimmune disease characterized by an imbalance of humoral and cellular immunity. The efficacy and side effects of traditional glucocorticoid and immunosuppressant therapy remain controversial. Recent studies have revealed abnormalities in mesenchymal stem cells (MSCs) in SLE, leading to the application of bone marrow-derived MSCs (BM-MSCs) transplantation technique for SLE treatment. However, autologous transplantation using BM-MSCs from SLE patients has shown suboptimal efficacy due to their dysfunction, while allogeneic mesenchymal stem cell transplantation (MSCT) still faces challenges, such as donor degeneration, genetic instability, and immune rejection. Therefore, exploring new sources of stem cells is crucial for overcoming these limitations in clinical applications. Human amniotic epithelial stem cells (hAESCs), derived from the eighth-day blastocyst, possess strong characteristics including good differentiation potential, immune tolerance with low antigen-presenting ability, and unique immune properties. Hence, hAESCs hold great promise for the treatment of not only SLE but also other autoimmune diseases.
Collapse
Affiliation(s)
- Liping Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Department of Rheumatology and Immunology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang, China
| | - Qiaoding Dai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Na Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Lina Ji
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinwei Song
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
19
|
Martínez-Herrera SC, Castro-Abrego A, Ávila-Gónzalez D, Martínez-Alarcon O, Molina-Hérnandez A, Flores-Herrera H, Grullón-Bisonó CA, García-López G. Obtaining Tissues of Human Amniotic Membrane and Identification of Pluripotent Markers. Methods Mol Biol 2024; 2781:163-170. [PMID: 38502452 DOI: 10.1007/978-1-0716-3746-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The immunofluorescence technique has been used to identify pluripotent markers in the human amniotic epithelial cells (hAEC). hAEC belonging to human fetal membranes, specificamently to amnion layer, and are arising by epiblast, this sugest that the hAEC have characteristics of epiblast cells, in other words, characteristcs of pluripotent stem cells. Here we describe obtaining human amnion tissue and identifying pluripotent markers by immunofluorescence.
Collapse
Affiliation(s)
- Sayra Cecilia Martínez-Herrera
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de Los Reyes, Mexico City, Mexico
| | - Axel Castro-Abrego
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de Los Reyes, Mexico City, Mexico
| | - Daniela Ávila-Gónzalez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de Los Reyes, Mexico City, Mexico
| | - Omar Martínez-Alarcon
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de Los Reyes, Mexico City, Mexico
| | - Anayansi Molina-Hérnandez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de Los Reyes, Mexico City, Mexico
| | - Héctor Flores-Herrera
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Carlos Alberto Grullón-Bisonó
- Departamento de Ginecología y Obstetricia, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de Los Reyes, Mexico City, Mexico.
| |
Collapse
|
20
|
Jin S, Zhang W, Zeng W, Zhang Y, Feng J, Wang Y, Luo H, Liu T, Lu H. In vitro differentiation of human amniotic epithelial stem cells into keratinocytes regulated by OPN3. Exp Dermatol 2024; 33:e15007. [PMID: 38284195 DOI: 10.1111/exd.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/17/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Human amniotic epithelial stem cells (hAESCs) are regarded as potential alternatives to keratinocytes (KCs) used for skin wound healing. Light is an alternative approach for inducing stem cell differentiation. Opsins (OPNs), a family of light-sensitive, G protein-coupled receptors, play a multitude of light-dependent and light-independent functions in extraocular tissues. However, it remains unclear whether the light sensitivity and function of OPNs are involved in light-induced differentiation of hAESCs to KCs. Herein, we determine the role of OPNs in differentiation of hAESCs into KCs through cell and molecular biology approaches in vitro. It is shown that mRNA expression of OPN3 in the amniotic membrane and hAESCs was higher than the other four primary OPNs by RT-qPCR analysis. Changes in OPN3 gene expression had a significant impact on cell proliferation, stemness and differentiation capability of hAESCs. Furthermore, we found a significant upregulation of OPN3, KRT5 and KRT14 with hAESCs treated at 3 × 33 J/cm2 irradiation from blue-light LED. Taken together, these results suggest that OPN3 acts as a positive regulator of differentiation of hAESCs into KCs. This study provides a novel insight into photosensitive OPNs associated with photobiomodulation(PBM)-induced differentiation in stem cells.
Collapse
Affiliation(s)
- Shuqi Jin
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen Zeng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yulei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianglong Feng
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Huanhuan Luo
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Liu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongguang Lu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
21
|
Keung C, Nguyen TC, Lim R, Gerstenmaier A, Sievert W, Moore GT. Local fistula injection of allogeneic human amnion epithelial cells is safe and well tolerated in patients with refractory complex perianal Crohn's disease: a phase I open label study with long-term follow up. EBioMedicine 2023; 98:104879. [PMID: 38042747 PMCID: PMC10755113 DOI: 10.1016/j.ebiom.2023.104879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Local fistula injection of mesenchymal stromal/stem cells (MSC) is effective for complex perianal Crohn's fistulas but is also expensive and requires specialised facilities for cell revival before administration. Human amnion epithelial cells (hAEC) are non-MSC cells with therapeutic properties. The primary aim of this study was safety of hAEC therapy. Secondary aims included hAEC efficacy, feasibility of the protocol and impact on quality of life. METHODS A phase I open label study of ten adults with active complex Crohn's perianal fistulas refractory to conventional treatment, including anti-tumour necrosis factor alpha therapy, was undertaken. A single dose of hAEC was injected into the fistula tract(s) after surgical closure of the internal opening(s). Study outcomes were assessed at week 24 with follow up for at least 52 weeks. FINDINGS Local injection of hAEC was safe, well tolerated and the injection procedure was feasible. Complete response occurred in 4 patients, and a partial response in an additional 4 patients. There was a mean reduction in the Perianal Disease Activity Index of 6.5 points (95% CI -9.0 to -4.0, p = 0.0002, paired t-test), modified Van Assche MRI Index of 2.3 points (95% CI -3.9 to -0.6, p = 0.012, paired t-test) and a mean improvement of 15.8 points (95% CI 4.9 to 26.8, p = 0.010, paired t-test) in quality of life using the Short IBD-Questionnaire in complete responders. INTERPRETATION Local injection of hAEC therapy for refractory complex perianal fistulising Crohn's disease appears safe, well-tolerated, feasible and demonstrated improvement. Quality of life is improved in those who achieve complete fistula healing. FUNDING This study was funded by competitive research grant funding from the Gastroenterological Society of Australia Seed Grant 2018.
Collapse
Affiliation(s)
- Charlotte Keung
- School of Clinical Sciences, Monash University, Australia; Department of Gastroenterology, Monash Health, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Australia.
| | | | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Australia
| | | | - William Sievert
- School of Clinical Sciences, Monash University, Australia; Department of Gastroenterology, Monash Health, Australia
| | - Gregory T Moore
- School of Clinical Sciences, Monash University, Australia; Department of Gastroenterology, Monash Health, Australia
| |
Collapse
|
22
|
Ingraldi AL, Audet RG, Tabor AJ. The Preparation and Clinical Efficacy of Amnion-Derived Membranes: A Review. J Funct Biomater 2023; 14:531. [PMID: 37888195 PMCID: PMC10607219 DOI: 10.3390/jfb14100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Biological tissues from various anatomical sources have been utilized for tissue transplantation and have developed into an important source of extracellular scaffolding material for regenerative medicine applications. Tissue scaffolds ideally integrate with host tissue and provide a homeostatic environment for cellular infiltration, growth, differentiation, and tissue resolution. The human amniotic membrane is considered an important source of scaffolding material due to its 3D structural architecture and function and as a source of growth factors and cytokines. This tissue source has been widely studied and used in various areas of tissue repair including intraoral reconstruction, corneal repair, tendon repair, microvascular reconstruction, nerve procedures, burns, and chronic wound treatment. The production of amniotic membrane allografts has not been standardized, resulting in a wide array of amniotic membrane products, including single, dual, and tri-layered products, such as amnion, chorion, amnion-chorion, amnion-amnion, and amnion-chorion-amnion allografts. Since these allografts are not processed using the same methods, they do not necessarily produce the same clinical responses. The aim of this review is to highlight the properties of different human allograft membranes, present the different processing and preservation methods, and discuss their use in tissue engineering and regenerative applications.
Collapse
Affiliation(s)
- Alison L. Ingraldi
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Robert G. Audet
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Aaron J. Tabor
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Clinical Operations, Axolotl Biologix, Flagstaff, AZ 86001, USA
| |
Collapse
|
23
|
Yang H, Li Z, Jin W, Yang A. Application progress of human amniotic membrane in vitreoretinopathy: a literature review. Front Med (Lausanne) 2023; 10:1206577. [PMID: 37881631 PMCID: PMC10597697 DOI: 10.3389/fmed.2023.1206577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Recently, the application of the amniotic membrane (AM) in ophthalmology is gradually expanding from the anterior to the posterior segment of the eye. Its characteristics of anti-inflammation, anti-bacterial, anti-vascularization, immune regulation, anti-fibrosis, pro-epithelialization, and so forth have made it a hot topic in ophthalmic research. AM has been confirmed to repair photoreceptors, restore normal retinal structures, and close the abnormal structures in the optic disc. Currently, the application areas mainly include retinal hole, retinal detachment, optic disc pit, retinal degenerative diseases, and choroidal hole. This article reviews the current literature applying AM transplantation in the treatment of various posterior segment diseases while comparing the clinical outcomes with other techniques.
Collapse
Affiliation(s)
- Huawei Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziyue Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
- First Clinical College, Wuhan University, Wuhan, China
| | - Wei Jin
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anhuai Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Hu Z, Luo Y, Ni R, Hu Y, Yang F, Du T, Zhu Y. Biological importance of human amniotic membrane in tissue engineering and regenerative medicine. Mater Today Bio 2023; 22:100790. [PMID: 37711653 PMCID: PMC10498009 DOI: 10.1016/j.mtbio.2023.100790] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
The human amniotic membrane (hAM) is the innermost layer of the placenta. Its distinctive structure and the biological and physical characteristics make it a highly biocompatible material in a variety of regenerative medicine applications. It also acts as a supply of bioactive factors and cells, which indicate the advantages over other tissues. In this review, we firstly discussed the biological properties of hAM-derived cells in vivo or in vitro, along with their stemness of markers, pointing out a promising source of stem cells for regenerative medicine. Then, we systematically summarized current knowledge on the collection, preparation, preservation, and decellularization of hAM, as well as their characteristics helping to improve the understanding of applications in tissue engineering. Finally, we highlighted the recent advances in which hAM has undergone additional modifications to achieve an adequate perspective of regenerative medicine applications. More investigations are required in utilizing appropriate modifications to enhance the therapeutic effectiveness of hAM in the future.
Collapse
Affiliation(s)
- Zeming Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
25
|
Cerverò-Varona A, Canciello A, Peserico A, Haidar Montes AA, Citeroni MR, Mauro A, Russo V, Moffa S, Pilato S, Di Giacomo S, Dufrusine B, Dainese E, Fontana A, Barboni B. Graphene oxide accelerates TGFβ-mediated epithelial-mesenchymal transition and stimulates pro-inflammatory immune response in amniotic epithelial cells. Mater Today Bio 2023; 22:100758. [PMID: 37600353 PMCID: PMC10432246 DOI: 10.1016/j.mtbio.2023.100758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
The application of biomaterials on immune regenerative strategies to deal with unsolved pathologies is getting attention in the field of tissue engineering. In this context, graphene oxide (GO) has been proposed as an immune-mimetic material largely used for developing stem cell-based regenerative therapies, since it has shown to influence stem cell behavior and modulate their immune response. Similarly, amniotic epithelial stem cells (AECs) are getting an increasing clinical interest as source of stem cells due to their great plasticity and immunomodulatory paracrine activities, even though GO bio-mimetic effects still remain unknown. To this aim, GO-functionalized glass coverslips have been used for AECs culture. The results demonstrated how GO-coating is able to induce and accelerate the Epithelial-Mesenchymal Transition (EMT), in a process mediated by the intracellular activation of TGFβ1-SMAD2/3 signaling pathway. The trans-differentiation towards mesenchymal phenotype provides AECs of migratory ability and substantially changes the pattern of cytokines secretion upon inflammatory stimulus. Indeed, GO-exposed AECs enhance their pro-inflammatory interleukins production thus inducing a more efficient activation of macrophages and, at the same time, by slightly reducing their inhibitory action on peripheral blood mononuclear cells proliferation. Therefore, the adhesion of AECs on GO-functionalized surfaces might contribute to the generation of a tailored microenvironment useful to face both the phases of the inflammation, thereby fostering the regenerative process.
Collapse
Affiliation(s)
- Adrian Cerverò-Varona
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Angelo Canciello
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Alessia Peserico
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Arlette Alina Haidar Montes
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Maria Rita Citeroni
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Annunziata Mauro
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Valentina Russo
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Samanta Moffa
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Serena Pilato
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Stefano Di Giacomo
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Beatrice Dufrusine
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Enrico Dainese
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Antonella Fontana
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Barbara Barboni
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| |
Collapse
|
26
|
Bhatti JS, Khullar N, Mishra J, Kaur S, Sehrawat A, Sharma E, Bhatti GK, Selman A, Reddy PH. Stem cells in the treatment of Alzheimer's disease – Promises and pitfalls. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166712. [DOI: https:/doi.org/10.1016/j.bbadis.2023.166712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
27
|
Bhatti JS, Khullar N, Mishra J, Kaur S, Sehrawat A, Sharma E, Bhatti GK, Selman A, Reddy PH. Stem cells in the treatment of Alzheimer's disease - Promises and pitfalls. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166712. [PMID: 37030521 DOI: 10.1016/j.bbadis.2023.166712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Alzheimer's disease (AD) is the most widespread form of neurodegenerative disorder that causes memory loss and multiple cognitive issues. The underlying mechanisms of AD include the build-up of amyloid-β and phosphorylated tau, synaptic damage, elevated levels of microglia and astrocytes, abnormal microRNAs, mitochondrial dysfunction, hormonal imbalance, and age-related neuronal loss. However, the etiology of AD is complex and involves a multitude of environmental and genetic factors. Currently, available AD medications only alleviate symptoms and do not provide a permanent cure. Therefore, there is a need for therapies that can prevent or reverse cognitive decline, brain tissue loss, and neural instability. Stem cell therapy is a promising treatment for AD because stem cells possess the unique ability to differentiate into any type of cell and maintain their self-renewal. This article provides an overview of the pathophysiology of AD and existing pharmacological treatments. This review article focuses on the role of various types of stem cells in neuroregeneration, the potential challenges, and the future of stem cell-based therapies for AD, including nano delivery and gaps in stem cell technology.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Eva Sharma
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
28
|
Barreto-Arce LJ, Kim HA, Chan ST, Lim R, Drummond GR, Ma H, Phan TG, Sobey CG, Zhang SR. Protection against brain injury after ischemic stroke by intravenous human amnion epithelial cells in combination with tissue plasminogen activator. Front Neurosci 2023; 17:1157236. [PMID: 37397458 PMCID: PMC10311557 DOI: 10.3389/fnins.2023.1157236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Background Thrombolytic agents such as tissue plasminogen activator (tPA) are the only drug class approved to treat ischemic stroke and are usually administered within 4.5 h. However, only ~20% of ischemic stroke patients are eligible to receive the therapy. We previously demonstrated that early intravenous administration of human amnion epithelial cells (hAECs) can limit brain inflammation and infarct growth in experimental stroke. Here, we have tested whether hAECs exert cerebroprotective effects in combination with tPA in mice. Methods Male C57Bl/6 mice were subjected to middle cerebral artery occlusion for 60 min followed by reperfusion. Immediately following reperfusion, vehicle (saline, n = 31) or tPA (10 mg/kg; n = 73) was administered intravenously. After 30 min of reperfusion, tPA-treated mice were injected intravenously with either hAECs (1×106; n = 32) or vehicle (2% human serum albumin; n = 41). A further 15 sham-operated mice were treated with vehicle (n = 7) or tPA + vehicle (n = 8). Mice were designated to be euthanised at 3, 6 or 24 h post-stroke (n = 21, 31, and 52, respectively), and brains were collected to assess infarct volume, blood-brain barrier (BBB) disruption, intracerebral bleeding and inflammatory cell content. Results There was no mortality within 6 h of stroke onset, but a high mortality occurred in tPA + saline-treated mice between 6 h and 24 h post-stroke in comparison to mice treated with tPA + hAECs (61% vs. 27%, p = 0.04). No mortality occurred within 24 h of sham surgery in mice treated with tPA + vehicle. We focused on early infarct expansion within 6 h of stroke and found that infarction was ~50% larger in tPA + saline- than in vehicle-treated mice (23 ± 3 mm3 vs. 15 ± 2 mm3, p = 0.02) but not in mice receiving tPA + hAECs (13 ± 2 mm3, p < 0.01 vs. tPA + saline) in which intracerebral hAECs were detected. Similar to the profiles of infarct expansion, BBB disruption and intracerebral bleeding in tPA + saline-treated mice at 6 h was 50-60% greater than in vehicle-treated controls (2.6 ± 0.5 vs. 1.6 ± 0.2, p = 0.05) but not after tPA + hAECs treatment (1.7 ± 0.2, p = 0.10 vs. tPA + saline). No differences in inflammatory cell content were detected between treatment groups. Conclusion When administered following tPA in acute stroke, hAECs improve safety and attenuate infarct growth in association with less BBB disruption and lower 24 h mortality.
Collapse
Affiliation(s)
- Liz J. Barreto-Arce
- Department of Microbiology, Anatomy, Physiology, and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Hyun Ah Kim
- Department of Microbiology, Anatomy, Physiology, and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Siow Teng Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Grant R. Drummond
- Department of Microbiology, Anatomy, Physiology, and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Henry Ma
- Clinical Trials, Imaging and Informatics (CTI) Division, Stroke and Ageing Research (STARC), Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Thanh G. Phan
- Clinical Trials, Imaging and Informatics (CTI) Division, Stroke and Ageing Research (STARC), Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Christopher G. Sobey
- Department of Microbiology, Anatomy, Physiology, and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Shenpeng R. Zhang
- Department of Microbiology, Anatomy, Physiology, and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
29
|
Pizzuti V, Paris F, Marrazzo P, Bonsi L, Alviano F. Mitigating Oxidative Stress in Perinatal Cells: A Critical Step toward an Optimal Therapeutic Use in Regenerative Medicine. Biomolecules 2023; 13:971. [PMID: 37371551 DOI: 10.3390/biom13060971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress (OS) occurs when the production of reactive oxygen species (ROS) is not balanced by the body's antioxidant defense system. OS can profoundly affect cellular health and function. ROS can have a profound negative impact on cells that undergo a predestined and time-regulated process of proliferation or differentiation, such as perinatal stem cells. Due to the large-scale employment of these immunotolerant stem cells in regenerative medicine, it is important to reduce OS to prevent them from losing function and increase their application in the regenerative medicine field. This goal can be achieved through a variety of strategies, such as the use of antioxidants and other compounds that can indirectly modulate the antioxidant defense system by enhancing cellular stress response pathways, including autophagy and mitochondrial function, thereby reducing ROS levels. This review aims to summarize information regarding OS mechanisms in perinatal stem cells and possible strategies for reducing their deleterious effects.
Collapse
Affiliation(s)
- Valeria Pizzuti
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesca Paris
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
30
|
Rosner M, Horer S, Feichtinger M, Hengstschläger M. Multipotent fetal stem cells in reproductive biology research. Stem Cell Res Ther 2023; 14:157. [PMID: 37287077 DOI: 10.1186/s13287-023-03379-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Due to the limited accessibility of the in vivo situation, the scarcity of the human tissue, legal constraints, and ethical considerations, the underlying molecular mechanisms of disorders, such as preeclampsia, the pathological consequences of fetomaternal microchimerism, or infertility, are still not fully understood. And although substantial progress has already been made, the therapeutic strategies for reproductive system diseases are still facing limitations. In the recent years, it became more and more evident that stem cells are powerful tools for basic research in human reproduction and stem cell-based approaches moved into the center of endeavors to establish new clinical concepts. Multipotent fetal stem cells derived from the amniotic fluid, amniotic membrane, chorion leave, Wharton´s jelly, or placenta came to the fore because they are easy to acquire, are not associated with ethical concerns or covered by strict legal restrictions, and can be banked for autologous utilization later in life. Compared to adult stem cells, they exhibit a significantly higher differentiation potential and are much easier to propagate in vitro. Compared to pluripotent stem cells, they harbor less mutations, are not tumorigenic, and exhibit low immunogenicity. Studies on multipotent fetal stem cells can be invaluable to gain knowledge on the development of dysfunctional fetal cell types, to characterize the fetal stem cells migrating into the body of a pregnant woman in the context of fetomaternal microchimerism, and to obtain a more comprehensive picture of germ cell development in the course of in vitro differentiation experiments. The in vivo transplantation of fetal stem cells or their paracrine factors can mediate therapeutic effects in preeclampsia and can restore reproductive organ functions. Together with the use of fetal stem cell-derived gametes, such strategies could once help individuals, who do not develop functional gametes, to conceive genetically related children. Although there is still a long way to go, these developments regarding the usage of multipotent fetal stem cells in the clinic should continuously be accompanied by a wide and detailed ethical discussion.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Stefanie Horer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | | | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria.
| |
Collapse
|
31
|
Wang S, Ruan P, Peng L, Wang J. Cytokine-stimulated human amniotic epithelial cells alleviate DSS-induced colitis in mice through anti-inflammation and regulating Th17/Treg balance. Int Immunopharmacol 2023; 120:110265. [PMID: 37196557 DOI: 10.1016/j.intimp.2023.110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/05/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon characterized by immune dysregulation. Restoration of the balance between regulatory T (Tregs) and T helper 17 (Th17) cells improves UC symptoms. Human amniotic epithelial cells (hAECs) have emerged as a promising therapeutic option for UC because of their immunomodulatory properties. In this study, we aimed to optimize and maximize the therapeutic potential of hAECs by pre-treating them with tumor necrosis factor (TNF)-α and interferon (IFN)-γ (pre-hAECs) for UC treatment. We evaluated the efficacy of hAECs and pre-hAECs in treating dextran sulfate sodium (DSS)-induced colitis mice. Compared to hAECs, pre-hAECs were found to be more effective in alleviating colitis in acute DSS mouse models than in the controls. Additionally, pre-hAEC treatment significantly reduced weight loss, shortened the colon length, decreased the disease activity index, and effectively maintained the recovery of colon epithelial cells. Furthermore, pre-hAEC treatment significantly inhibited the production of pro-inflammatory cytokines, such as interleukin (IL)-1β and TNF-α, and promoted the expression of anti-inflammatory cytokines, such as IL-10. Both in vivo and in vitro studies revealed that pre-treatment with hAECs significantly increased the number of Treg cells, decreased the numbers of Th1, Th2, and Th17 cells, and regulated the balance of Th17/Treg cells. In conclusion, our results revealed that hAECs pre-treated with TNF-α and IFN-γ were highly effective in treating UC, suggesting their potential as therapeutic candidates for UC immunotherapy.
Collapse
Affiliation(s)
- Susu Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China; Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Pinglang Ruan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan Province, China
| | - Lin Peng
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Jian Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China; National Engineering and Research Center of Human Stem Cell, Changsha, China.
| |
Collapse
|
32
|
Morandi F, Airoldi I, Faini A, Horenstein A, Malavasi F, Matysiak N, Kopaczka K, Marimpietri D, Gramignoli R. Immune-regulatory properties carried by human amnion epithelial cells: Focus on the role of HLA-G and adenosinergic ectoenzymes. Hum Immunol 2023:S0198-8859(23)00068-X. [PMID: 37169599 DOI: 10.1016/j.humimm.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Human amnion epithelial cells (hAEC) can be efficiently isolated from full-term amnion membrane and have been gaining recognition as advanced medical products. Such cells originate directly from the embryo during the early phase of development and exert a crucial function in the establishment of a tolerogenic environment, to avoid maternal immune rejection. Amnion cell immuno-modulation may be exploited, but additional efforts are required to establish the mechanisms underlying such capacity. The way to fully clarify such an issue is so far long. Here we overview current knowledge on the effects on innate or adaptive immune cells offered by intact hAEC or secreted mediators, pinpointing the mechanisms to date elucidated by our group and others. We move from the description of hAEC general features to molecular intermediaries generating effects directly or indirectly on immune cells. We focus on the role of non-canonical HLA class I molecules, with emphasis on HLA-G, but expand such analysis on adenosinergic mediators, cytokines, and hAEC-derived microvesicles. Finally, we report the ongoing clinical trials exploiting hAEC multipotency and immune modulation.
Collapse
Affiliation(s)
- F Morandi
- UOSD Cell Factory, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy.
| | - I Airoldi
- UOSD Cell Factory, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - A Faini
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - A Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - F Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; Fondazione Ricerca Molinette, Torino, Italy
| | - N Matysiak
- Department of Histology and Cell Pathology in Zabrze, Medical University of Silesia in Katowice, Poland
| | - K Kopaczka
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - D Marimpietri
- UOSD Cell Factory, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - R Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
33
|
Ferdousi F, Sasaki K, Fukumitsu S, Kuwata H, Nakajima M, Isoda H. A Descriptive Whole-Genome Transcriptomics Study in a Stem Cell-Based Tool Predicts Multiple Tissue-Specific Beneficial Potential and Molecular Targets of Carnosic Acid. Int J Mol Sci 2023; 24:ijms24098077. [PMID: 37175790 PMCID: PMC10179098 DOI: 10.3390/ijms24098077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Carnosic acid (CA) is a phenolic diterpene widely distributed in herbal plants, rosemary and sage. Although its medicinal properties, such as antioxidant, antimicrobial, and neuroprotective effects, have been well-documented, its relevant biochemical processes and molecular targets have not been fully explored yet. In the present study, we conducted an untargeted whole-genome transcriptomics analysis to investigate CA-induced early biological and molecular events in human amniotic epithelial stem cells (hAESCs) with the aim of exploring its multiple tissue-specific functionalities and potential molecular targets. We found that seven days of CA treatment in hAESCs could induce mesoderm-lineage-specific differentiation. Tissue enrichment analysis revealed that CA significantly enriched lateral plate mesoderm-originated cardiovascular and adipose tissues. Further tissue-specific PPI analysis and kinase and transcription factor enrichment analyses identified potential upstream regulators and molecular targets of CA in a tissue-specific manner. Gene ontology enrichment analyses revealed the metabolic, antioxidant, and antifibrotic activities of CA. Altogether, our comprehensive whole-genome transcriptomics analyses offer a thorough understanding of the possible underlying molecular mechanism of CA.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
| | - Satoshi Fukumitsu
- NIPPN Corporation, Tokyo 243-0041, Japan
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
| | | | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
- MED R&D Corporation, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- MED R&D Corporation, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
34
|
Riedel RN, Pérez-Pérez A, Sánchez-Margalet V, Varone CL, Maymó JL. Human amniotic epithelial stem cells: Hepatic differentiation and regenerative properties in liver disease treatment. Placenta 2023; 134:39-47. [PMID: 36870301 DOI: 10.1016/j.placenta.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The placenta and the extraembryonic tissues represent a valuable source of cells for regenerative medicine. In particular, the amniotic membrane possesses cells with stem cells characteristics that have attracted research attention. Human amniotic epithelial cells (hAECs) have unique and desirable features that position them over other stem cells, not only because of the unlimited potential supplied of, the easy access to placental tissues, and the minimal ethical and legal barriers associated, but also due to the embryonic stem cells markers expression and their ability to differentiate into the three germ layers. In addition, they are non-tumorigenic and have immunomodulatory and anti-inflammatory properties. Hepatic failure is one of the major causes of morbidity and mortality worldwide. Organ transplantation is the best way to treat acute and chronic liver failure, but there are several associated obstacles. Stem cells have been highlighted as alternative hepatocytes source because of their potential for hepatogenic differentiation. HAECs, in particular, have some properties that make them suitable for hepatocyte differentiation. In this work, we review the general characteristics of the epithelial stem cells isolated from human amniotic membrane as well as their ability to differentiate to hepatic cells. We also revise their regenerative properties, with the focus on their potential application in the liver disease treatment.
Collapse
Affiliation(s)
- Rodrigo N Riedel
- Instituto de Química Biológica (IQUIBICEN), CONICET- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4° piso, 1428, Buenos Aires, Argentina
| | - Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuán 4, 41009, Sevilla, Spain
| | - Víctor Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuán 4, 41009, Sevilla, Spain
| | - Cecilia L Varone
- Instituto de Química Biológica (IQUIBICEN), CONICET- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4° piso, 1428, Buenos Aires, Argentina
| | - Julieta L Maymó
- Instituto de Química Biológica (IQUIBICEN), CONICET- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4° piso, 1428, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Shafritz DA, Ebrahimkhani MR, Oertel M. Therapeutic Cell Repopulation of the Liver: From Fetal Rat Cells to Synthetic Human Tissues. Cells 2023; 12:529. [PMID: 36831196 PMCID: PMC9954009 DOI: 10.3390/cells12040529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Progenitor cells isolated from the fetal liver can provide a unique cell source to generate new healthy tissue mass. Almost 20 years ago, it was demonstrated that rat fetal liver cells repopulate the normal host liver environment via a mechanism akin to cell competition. Activin A, which is produced by hepatocytes, was identified as an important player during cell competition. Because of reduced activin receptor expression, highly proliferative fetal liver stem/progenitor cells are resistant to activin A and therefore exhibit a growth advantage compared to hepatocytes. As a result, transplanted fetal liver cells are capable of repopulating normal livers. Important for cell-based therapies, hepatic stem/progenitor cells containing repopulation potential can be separated from fetal hematopoietic cells using the cell surface marker δ-like 1 (Dlk-1). In livers with advanced fibrosis, fetal epithelial stem/progenitor cells differentiate into functional hepatic cells and out-compete injured endogenous hepatocytes, which cause anti-fibrotic effects. Although fetal liver cells efficiently repopulate the liver, they will likely not be used for human cell transplantation. Thus, utilizing the underlying mechanism of repopulation and developed methods to produce similar growth-advantaged cells in vitro, e.g., human induced pluripotent stem cells (iPSCs), this approach has great potential for developing novel cell-based therapies in patients with liver disease. The present review gives a brief overview of the classic cell transplantation models and various cell sources studied as donor cell candidates. The advantages of fetal liver-derived stem/progenitor cells are discussed, as well as the mechanism of liver repopulation. Moreover, this article reviews the potential of in vitro developed synthetic human fetal livers from iPSCs and their therapeutic benefits.
Collapse
Affiliation(s)
- David A. Shafritz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mo R. Ebrahimkhani
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
36
|
Rezayat F, Esmaeil N, Rezaei A. Potential Therapeutic Effects of Human Amniotic Epithelial Cells on Gynecological Disorders Leading to Infertility or Abortion. Stem Cell Rev Rep 2023; 19:368-381. [PMID: 36331801 DOI: 10.1007/s12015-022-10464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
The induction of feto-maternal tolerance, fetal non-immunogenicity, and the regulation of mother's immune system are essential variables in a successful pregnancy. Fetal membranes have been used as a source of stem cells and biological components in recent decades. Human amniotic epithelial cells (hAEC) have stem/progenitor characteristics like those found in the amniotic membrane. Based on their immunomodulatory capabilities, recent studies have focused on the experimental and therapeutic applications of hAECs in allograft transplantation, autoimmune disorders, and gynecological problems such as recurrent spontaneous abortion (RSA), recurrent implantation failure (RIF), and premature ovarian failure (POF). This review discusses some of the immunomodulatory features and therapeutic potential of hAECs in preventing infertility, miscarriage, and implantation failure by controlling the maternal immune system.
Collapse
Affiliation(s)
- Fatemeh Rezayat
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Immunology, School of Medicine, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran.
| | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Munoz-Torres JR, Martínez-González SB, Lozano-Luján AD, Martínez-Vázquez MC, Velasco-Elizondo P, Garza-Veloz I, Martinez-Fierro ML. Biological properties and surgical applications of the human amniotic membrane. Front Bioeng Biotechnol 2023; 10:1067480. [PMID: 36698632 PMCID: PMC9868191 DOI: 10.3389/fbioe.2022.1067480] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
The amniotic membrane (AM) is the inner part of the placenta. It has been used therapeutically for the last century. The biological proprieties of AM include immunomodulatory, anti-scarring, anti-microbial, pro or anti-angiogenic (surface dependent), and tissue growth promotion. Because of these, AM is a functional tissue for the treatment of different pathologies. The AM is today part of the treatment for various conditions such as wounds, ulcers, burns, adhesions, and skin injury, among others, with surgical resolution. This review focuses on the current surgical areas, including gynecology, plastic surgery, gastrointestinal, traumatology, neurosurgery, and ophthalmology, among others, that use AM as a therapeutic option to increase the success rate of surgical procedures. Currently there are articles describing the mechanisms of action of AM, some therapeutic implications and the use in surgeries of specific surgical areas, this prevents knowing the therapeutic response of AM when used in surgeries of different organs or tissues. Therefore, we described the use of AM in various surgical specialties along with the mechanisms of action, helping to improve the understanding of the therapeutic targets and achieving an adequate perspective of the surgical utility of AM with a particular emphasis on regenerative medicine.
Collapse
|
38
|
Amniotic stem cells as a source of regenerative medicine to treat female infertility. Hum Cell 2023; 36:15-25. [PMID: 36251241 PMCID: PMC9813167 DOI: 10.1007/s13577-022-00795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023]
Abstract
Impaired reproductive health is a worldwide problem that affects the psychological well-being of a society. Despite the technological developments to treat infertility, the global infertility rate is increasing significantly. Many infertility conditions are currently treated using various advanced clinical approaches such as intrauterine semination (IUI), in vitro fertilization (IVF), and intracytoplasmic injection (ICSI). Nonetheless, clinical management of some conditions such as dysfunctional endometrium, premature ovarian failure, and ovarian physiological aging still pose significant challenges. Stem cells based therapeutic strategies have a long-standing history to treat many infertility conditions, but ethical restrictions do not allow the broad-scale utilization of adult mesenchymal stromal/stem cells (MSCs). Easily accessible, placental derived or amniotic stem cells present an invaluable alternative source of non-immunogenic and non-tumorigenic stem cells that possess multilineage potential. Given these characteristics, placental or amniotic stem cells (ASCs) have been investigated for therapeutic purposes to address infertility in the last decade. This study aims to summarize the current standing and progress of human amniotic epithelial stem cells (hAECs), amniotic mesenchymal stem cells (hAMSCs), and amniotic fluid stem cells (hAFSCs) in the field of reproductive medicine. The therapeutic potential of these cells to restore or enhance normal ovarian function and pregnancy outcomes are highlighted in this study.
Collapse
|
39
|
Expansion of human amniotic epithelial cells using condition cell reprogramming technology. Hum Cell 2023; 36:602-611. [PMID: 36586053 PMCID: PMC9947022 DOI: 10.1007/s13577-022-00849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
Human amniotic epithelial cells (hAECs) are non-immunogenic epithelial cells that can develop into cells of all three germline lineages. However, a refined clinically reliable method is required to optimize the preparation and banking procedures of hAECs for their successful translation into clinical studies. With the goal of establishing standardized clinically applicable hAECs cultured cells, we described the use of a powerful epithelial cell culture technique, termed Conditionally Reprogrammed Cells (CRC) for ex vivo expansion of hAECs. The well-established CRC culture method uses a Rho kinase inhibitor (Y-27632) and J2 mouse fibroblast feeder cells to drive the indefinite proliferation of all known epithelial cell types. In this study, we used an optimized CRC protocol to successfully culture hAECs in a CRC medium supplemented with xenogen-free human serum. We established that hAECs thrive under the CRC conditions for over 5 passages while still expressing pluripotent stem markers (OCT-4, SOX-2 and NANOG) and non-immunogenic markers (CD80, CD86 and HLA-G) suggesting that even late-passage hAECs retain their privileged phenotype. The hAECs-CRC cells were infected with a puromycin-selectable lentivirus expressing luciferase and GFP (green fluorescent protein) and stably selected with puromycin. The hAECs expressing GFP were injected subcutaneously into the flanks of Athymic and C57BL6 mice to check the tolerability and stability of cells against the immune system. Chemiluminescence imaging confirmed the presence and viability of cells at days 2, 5, and 42 without acute inflammation or any tumor formation. Collectively, these data indicate that the CRC approach offers a novel solution to expanding hAECs in humanized conditions for future clinical uses, while retaining their primary phenotype.
Collapse
|
40
|
Campinoti S, Almeida B, Goudarzi N, Bencina S, Grundland Freile F, McQuitty C, Natarajan D, Cox IJ, Le Guennec A, Khati V, Gaudenzi G, Gramignoli R, Urbani L. Rat liver extracellular matrix and perfusion bioreactor culture promote human amnion epithelial cell differentiation towards hepatocyte-like cells. J Tissue Eng 2023; 14:20417314231219813. [PMID: 38143931 PMCID: PMC10748678 DOI: 10.1177/20417314231219813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
Congenital and chronic liver diseases have a substantial health burden worldwide. The most effective treatment available for these patients is whole organ transplantation; however, due to the severely limited supply of donor livers and the side effects associated with the immunosuppressive regimen required to accept allograft, the mortality rate in patients with end-stage liver disease is annually rising. Stem cell-based therapy aims to provide alternative treatments by either cell transplantation or bioengineered construct transplantation. Human amnion epithelial cells (AEC) are a widely available, ethically neutral source of cells with the plasticity and potential of multipotent stem cells and immunomodulatory properties of perinatal cells. AEC have been proven to be able to achieve functional improvement towards hepatocyte-like cells, capable of rescuing animals with metabolic disorders; however, they showed limited metabolic activities in vitro. Decellularised extracellular matrix (ECM) scaffolds have gained recognition as adjunct biological support. Decellularised scaffolds maintain native ECM components and the 3D architecture instrumental of the organ, necessary to support cells' maturation and function. We combined ECM-scaffold technology with primary human AEC, which we demonstrated being equipped with essential ECM-adhesion proteins, and evaluated the effects on AEC differentiation into functional hepatocyte-like cells (HLC). This novel approach included the use of a custom 4D bioreactor to provide constant oxygenation and media perfusion to cells in 3D cultures over time. We successfully generated HLC positive for hepatic markers such as ALB, CYP3A4 and CK18. AEC-derived HLC displayed early signs of hepatocyte phenotype, secreted albumin and urea, and expressed Phase-1 and -2 enzymes. The combination of liver-specific ECM and bioreactor provides a system able to aid differentiation into HLC, indicating that the innovative perfusion ECM-scaffold technology may support the functional improvement of multipotent and pluripotent stem cells, with important repercussions in the bioengineering of constructs for transplantation.
Collapse
Affiliation(s)
- Sara Campinoti
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Bruna Almeida
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Negin Goudarzi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Stefan Bencina
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Solna, Sweden
| | - Fabio Grundland Freile
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Department of Medical and Molecular Genetics, School of Basic and Medical Bioscience, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Claire McQuitty
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Dipa Natarajan
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - I Jane Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Adrien Le Guennec
- Centre for Biomolecular Spectroscopy, Randall Centre for Cell and Molecular Biophysics, Kings College London, London, UK
| | - Vamakshi Khati
- Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Giulia Gaudenzi
- Department of Global Public Health, Karolinska Institutet, Solna, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Solna, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge, Sweden
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
41
|
Ansari A, Denton KM, Lim R. Strategies for immortalisation of amnion-derived mesenchymal and epithelial cells. Cell Biol Int 2022; 46:1999-2008. [PMID: 35998259 DOI: 10.1002/cbin.11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 01/10/2023]
Abstract
Mesenchymal (human amniotic mesenchymal stem cell [HAMSC]) and epithelial cells (human amnion epithelial cell [HAEC]) derived from human amniotic membranes possess characteristics of pluripotency. However, the pluripotency of HAMSC and HAEC are sustained only for a finite period. This in vitro cell growth can be extended by cell immortalisation. Many well-defined immortalisation systems have been used for artificially overexpressing genes such as human telomerase reverse transcriptase in HAMSC and HAEC leading to controlled and prolonged cell proliferation. In recent years, much progress has been made in our understanding of the cellular machinery that regulates the cell cycle when immortalised. This review summarises the current understanding of molecular mechanisms that contribute to cell immortalisation, the strategies that have been employed to immortalise amnion-derived cell types, and their likely applications in regenerative medicine.
Collapse
Affiliation(s)
- Aneesa Ansari
- Department of Physiology, Monash University, Clayton, Australia.,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Kate M Denton
- Department of Physiology, Monash University, Clayton, Australia.,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| |
Collapse
|
42
|
Perinatal Stem Cell Therapy to Treat Type 1 Diabetes Mellitus: A Never-Say-Die Story of Differentiation and Immunomodulation. Int J Mol Sci 2022; 23:ijms232314597. [PMID: 36498923 PMCID: PMC9738084 DOI: 10.3390/ijms232314597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Human term placenta and other postpartum-derived biological tissues are promising sources of perinatal cells with unique stem cell properties. Among the massive current research on stem cells, one medical focus on easily available stem cells is to exploit them in the design of immunotherapy protocols, in particular for the treatment of chronic non-curable human diseases. Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells and perinatal cells can be harnessed both to generate insulin-producing cells for beta cell replenishment and to regulate autoimmune mechanisms via immunomodulation capacity. In this study, the strong points of cells derived from amniotic epithelial cells and from umbilical cord matrix are outlined and their potential for supporting cell therapy development. From a basic research and expert stem cell point of view, the aim of this review is to summarize information regarding the regenerative medicine field, as well as describe the state of the art on possible cell therapy approaches for diabetes.
Collapse
|
43
|
Selection of red fluorescent protein for genetic labeling of mitochondria and intercellular transfer of viable mitochondria. Sci Rep 2022; 12:19841. [PMID: 36400807 PMCID: PMC9674635 DOI: 10.1038/s41598-022-24297-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The phenomenon of intercellular mitochondrial transfer has attracted great attention in various fields of research, including stem cell biology. Elucidating the mechanism of mitochondrial transfer from healthy stem cells to cells with mitochondrial dysfunction may lead to the development of novel stem cell therapies to treat mitochondrial diseases, among other advances. To visually evaluate and analyze the mitochondrial transfer process, dual fluorescent labeling systems are often used to distinguish the mitochondria of donor and recipient cells. Although enhanced green fluorescent protein (EGFP) has been well-characterized for labeling mitochondria, other colors of fluorescent protein have been less extensively evaluated in the context of mitochondrial transfer. Here, we generated different lentiviral vectors with mitochondria-targeted red fluorescent proteins (RFPs), including DsRed, mCherry (both from Discosoma sp.) Kusabira orange (mKOκ, from Verrillofungia concinna), and TurboRFP (from Entacmaea quadricolor). Among these proteins, mitochondria-targeted DsRed and its variant mCherry often generated bright aggregates in the lysosome while other proteins did not. We further validated that TurboRFP-labeled mitochondria were successfully transferred from amniotic epithelial cells, one of the candidates for donor stem cells, to mitochondria-damaged recipient cells without losing the membrane potential. Our study provides new insight into the genetic labeling of mitochondria with red fluorescent proteins, which may be utilized to analyze the mechanism of intercellular mitochondrial transfer.
Collapse
|
44
|
Sanie-Jahromi F, Mahmoudi A, Khalili MR, Nowroozzadeh MH. A Review on the Application of Stem Cell Secretome in the Protection and Regeneration of Retinal Ganglion Cells; a Clinical Prospect in the Treatment of Optic Neuropathies. Curr Eye Res 2022; 47:1463-1471. [PMID: 35876610 DOI: 10.1080/02713683.2022.2103153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Retinal ganglion cells (RGCs) are one the most specialized neural tissues in the body. They transmit (and further process) chemoelectrical information originating in outer retinal layers to the central nervous system. In fact, the optic nerve is composed of RGC axons. Like other neural cells, RGCs will not completely heal after the injury, leading to irreversible vision loss from disorders such as glaucoma that primarily affect these cells. Several methods have been developed to protect or regenerate RGCs during or after the insult has occurred. This study aims to review the most recent clinical, animal and laboratory experiments designed for the regeneration of RGC that apply the stem cell-derived secretome. METHODS We extracted the studies from Web of Science (ISI), Medline (PubMed), Scopus, Embase, and Google scholar from the first record to the last report registered in 2022, using the following keywords; "secretome" OR "conditioned medium" OR "exosome" OR "extracellular vesicle" AND "stem cell" AND "RGC" OR "optic neuropathy". Any registered clinical trials related to the subject were also extracted from clinicaltrial.gov. All published original studies that express the effect of stem cell secretome on RGC cells in optic neuropathy, whether in vitro, in animal studies, or in clinical trials were included in this survey. RESULTS In this review, we provided an update on the existing reports, and a brief description of the details applied in the procedure. Compared to cell transplant, applying stem cell-derived secretome has the advantage of minimized immunogenicity yet preserving efficacy via its rich content of growth factors. CONCLUSIONS Different sources of stem cell secretomes have distinct implications in the management of RGC injury, which is the main subject of the present article.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Mahmoudi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Bolouri MR, Ghods R, Zarnani K, Vafaei S, Falak R, Zarnani AH. Human amniotic epithelial cells exert anti-cancer effects through secretion of immunomodulatory small extracellular vesicles (sEV). Cancer Cell Int 2022; 22:329. [PMID: 36307848 PMCID: PMC9616706 DOI: 10.1186/s12935-022-02755-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022] Open
Abstract
We identified here mechanism by which hAECs exert their anti-cancer effects. We showed that vaccination with live hAEC conferred effective protection against murine colon cancer and melanoma but not against breast cancer in an orthotopic cancer cell inoculation model. hAEC induced strong cross-reactive antibody response to CT26 cells, but not against B16F10 and 4T1 cells. Neither heterotopic injection of tumor cells in AEC-vaccinated mice nor vaccination with hAEC lysate conferred protection against melanoma or colon cancer. Nano-sized AEC-derived small-extracellular vesicles (sEV) (AD-sEV) induced apoptosis in CT26 cells and inhibited their proliferation. Co-administration of AD-sEV with tumor cells substantially inhibited tumor development and increased CTL responses in vaccinated mice. AD-sEV triggered the Warburg’s effect leading to Arginine consumption and cancer cell apoptosis. Our results clearly showed that it is AD-sEV but not the cross-reactive immune responses against tumor cells that mediate inhibitory effects of hAEC on cancer development. Our results highlight the potential anti-cancer effects of extracellular vesicles derived from hAEC.
Anti-cancer effects of hAEC depend on cancer type. Cross-reactive humoral responses do not mediate anti-cancer effects of hAEC. Anti-cancer effects of hAECs are mainly mediated by small-extracellular vesicles (sEV). hAEC-derived sEV (AD-sEV) trigger the Warburg’s effect leading to Arginine consumption and cancer cell apoptosis. AD-sEV substantially inhibits tumor development and increases survival and CTL responses.
Collapse
|
46
|
Babajani A, Manzari-Tavakoli A, Jamshidi E, Tarasi R, Niknejad H. Anti-cancer effects of human placenta-derived amniotic epithelial stem cells loaded with paclitaxel on cancer cells. Sci Rep 2022; 12:18148. [PMID: 36307463 PMCID: PMC9616866 DOI: 10.1038/s41598-022-22562-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Available therapeutic strategies for cancers have developed side effects, resistance, and recurrence that cause lower survival rates. Utilizing targeted drug delivery techniques has opened up new hopes for increasing the efficacy of cancer treatment. The current study aimed to investigate the appropriate condition of primming human amniotic epithelial cells (hAECs) with paclitaxel as a dual therapeutic approach consisting of inherent anticancer features of hAECs and loaded paclitaxel. The effects of paclitaxel on the viability of hAECs were evaluated to find an appropriate loading period. The possible mechanism of hAECs paclitaxel resistance was assessed using verapamil. Afterward, the loading and releasing efficacy of primed hAECs were evaluated by HPLC. The anti-neoplastic effects and apoptosis as possible mechanism of conditioned media of paclitaxel-loaded hAECs were assessed on breast and cervical cancer cell lines. hAECs are highly resistant to cytotoxic effects of paclitaxel in 24 h. Evaluating the role of P-glycoproteins in hAECs resistance showed that they do not participate in hAECs resistance. The HPLC demonstrated that hAECs uptake/release paclitaxel with optimum efficacy in 8000 ng/ml treatment. Assessing the anti-proliferative effect of primed hAECs condition media on cancer cells showed that the secretome induced 3.3- and 4.8-times more potent effects on MCF-7 and HeLa, respectively, and enhanced the apoptosis process. These results suggest that hAECs could possibly be used as a drug delivery system for cancer treatment. Besides, inherent anticancer effects of hAECs were preserved during the modification process. Synergistic anticancer effects of paclitaxel and hAECs can be translated into clinical practice, which would be evaluated in the future studies.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asma Manzari-Tavakoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Tarasi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Therapeutic Effect of Biomimetic Scaffold Loaded with Human Amniotic Epithelial Cell-Derived Neural-like Cells for Spinal Cord Injury. Bioengineering (Basel) 2022; 9:bioengineering9100535. [PMID: 36290504 PMCID: PMC9598945 DOI: 10.3390/bioengineering9100535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) results in devastating consequences for the motor and sensory function of patients due to neuronal loss and disrupted neural circuits, confronting poor prognosis and lack of effective therapies. A new therapeutic strategy is urgently required. Here, human amniotic epithelial cells (hAEC), featured with immunocompatibility, non-tumorgenicity and no ethical issues, were induced into neural-like cells by a compound cocktail, as evidenced with morphological change and the expression of neural cell markers. Interestingly, the hAEC-neural-like cells maintain the characteristic of low immunogenicity as hAEC. Aiming at SCI treatment in vivo, we constructed a 3D-printed GelMA hydrogel biomimetic spinal cord scaffold with micro-channels, in which hAEC-neural-like cells were well-induced and grown. In a rat full transection SCI model, hAEC-neural-like cell scaffolds that were implanted in the lesion demonstrated significant therapeutic effects; the neural circuit and hindlimb locomotion were partly recovered compared to little affection in the SCI rats receiving an empty scaffold or a sham implantation operation. Thus, the establishment of hAEC-neural-like cell biomimetic scaffolds may provide a safe and effective treatment strategy for SCI.
Collapse
|
48
|
Pozzobon M, D’Agostino S, Roubelakis MG, Cargnoni A, Gramignoli R, Wolbank S, Gindraux F, Bollini S, Kerdjoudj H, Fenelon M, Di Pietro R, Basile M, Borutinskaitė V, Piva R, Schoeberlein A, Eissner G, Giebel B, Ponsaerts P. General consensus on multimodal functions and validation analysis of perinatal derivatives for regenerative medicine applications. Front Bioeng Biotechnol 2022; 10:961987. [PMID: 36263355 PMCID: PMC9574482 DOI: 10.3389/fbioe.2022.961987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Perinatal tissues, such as placenta and umbilical cord contain a variety of somatic stem cell types, spanning from the largely used hematopoietic stem and progenitor cells to the most recently described broadly multipotent epithelial and stromal cells. As perinatal derivatives (PnD), several of these cell types and related products provide an interesting regenerative potential for a variety of diseases. Within COST SPRINT Action, we continue our review series, revising and summarizing the modalities of action and proposed medical approaches using PnD products: cells, secretome, extracellular vesicles, and decellularized tissues. Focusing on the brain, bone, skeletal muscle, heart, intestinal, liver, and lung pathologies, we discuss the importance of potency testing in validating PnD therapeutics, and critically evaluate the concept of PnD application in the field of tissue regeneration. Hereby we aim to shed light on the actual therapeutic properties of PnD, with an open eye for future clinical application. This review is part of a quadrinomial series on functional/potency assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer, anti-inflammation, wound healing, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Stefania D’Agostino
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Maria G. Roubelakis
- Laboratory of Biology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA Trauma Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et plastique, CHU Besançon, Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, University Bourgogne Franche-Comté, Besançon, France
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Halima Kerdjoudj
- University of Reims Champagne Ardenne, EA 4691 BIOS “Biomatériaux et Inflammation en Site Osseux”, UFR d’Odontologie, Reims, France
| | | | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Guenther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
49
|
Takano C, Horie M, Taiko I, Trinh QD, Kanemaru K, Komine-Aizawa S, Hayakawa S, Miki T. Inhibition of Epithelial-Mesenchymal Transition Maintains Stemness in Human Amniotic Epithelial Cells. Stem Cell Rev Rep 2022; 18:3083-3091. [PMID: 35931939 DOI: 10.1007/s12015-022-10420-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 10/15/2022]
Abstract
Human amniotic epithelial cells (hAECs), which are a type of placental stem cell, express stem cell marker genes and are capable of differentiating into all three germ layers under appropriate culture conditions. hAECs are known to undergo TGF-β-dependent epithelial-mesenchymal transition (EMT); however, the impact of EMT on the stemness or differentiation of hAECs has not yet been determined. Here, we first confirmed that hAECs undergo EMT immediately after starting primary culture. Comprehensive transcriptome analysis using RNA-seq revealed that inhibition of TGF-β-dependent EMT maintained the expression of stemness-related genes, including NANOG and POU5F1, in hAECs. Moreover, the maintenance of stemness did not affect the nontumorigenic characteristics of hAECs. We showed for the first time that TGF-β-dependent EMT negatively affected the stemness of hAECs, providing novel insight into cellular processes of placental stem cells.
Collapse
Affiliation(s)
- Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Isamu Taiko
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazunori Kanemaru
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Toshio Miki
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
50
|
Repair of Retinal Degeneration by Human Amniotic Epithelial Stem Cell-Derived Photoreceptor-like Cells. Int J Mol Sci 2022; 23:ijms23158722. [PMID: 35955866 PMCID: PMC9369429 DOI: 10.3390/ijms23158722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The loss of photoreceptors is a major event of retinal degeneration that accounts for most cases of untreatable blindness globally. To date, there are no efficient therapeutic approaches to treat this condition. In the present study, we aimed to investigate whether human amniotic epithelial stem cells (hAESCs) could serve as a novel seed cell source of photoreceptors for therapy. Here, a two–step treatment with combined Wnt, Nodal, and BMP inhibitors, followed by another cocktail of retinoic acid, taurine, and noggin induced photoreceptor–like cell differentiation of hAESCs. The differentiated cells demonstrated the morphology and signature marker expression of native photoreceptor cells and, intriguingly, bore very low levels of major histocompatibility complex (MHC) class II molecules and a high level of non–classical MHC class I molecule HLA–G. Importantly, subretinal transplantation of the hAESCs–derived PR–like cells leads to partial restoration of visual function and retinal structure in Royal College of Surgeon (RCS) rats, the classic preclinical model of retinal degeneration. Together, our results reveal hAESCs as a potential source of functional photoreceptor cells; the hAESCs–derived photoreceptor–like cells could be a promising cell–replacement candidate for therapy of retinal degeneration diseases.
Collapse
|