1
|
Choi HS, Choi AY, Kopp JB, Winkler CA, Cho SK. Review of COVID-19 Therapeutics by Mechanism: From Discovery to Approval. J Korean Med Sci 2024; 39:e134. [PMID: 38622939 PMCID: PMC11018982 DOI: 10.3346/jkms.2024.39.e134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
The global research and pharmaceutical community rapidly mobilized to develop treatments for coronavirus disease 2019 (COVID-19). Existing treatments have been repurposed and new drugs have emerged. Here we summarize mechanisms and clinical trials of COVID-19 therapeutics approved or in development. Two reviewers, working independently, reviewed published data for approved COVID-19 vaccines and drugs, as well as developmental pipelines, using databases from the following organizations: United States Food and Drug Administration (US-FDA), European Medicines Agency (EMA), Japanese Pharmaceutical and Medical Devices Agency (PMDA), and ClinicalTrials.gov. In all, 387 drugs were found for initial review. After removing unrelated trials and drugs, 66 drugs were selected, including 17 approved drugs and 49 drugs under development. These drugs were classified into six categories: 1) drugs targeting the viral life cycle 2) Anti-severe acute respiratory syndrome coronavirus 2 Monoclonal Antibodies, 3) immunomodulators, 4) anti-coagulants, 5) COVID-19-induced neuropathy drugs, and 6) other therapeutics. Among the 49 drugs under development are the following: 6 drugs targeting the viral life cycle, 12 immunosuppression drugs, 2 immunostimulants, 2 HIF-PHD targeting drugs, 3 GM-CSF targeting drugs, 5 anti-coagulants, 2 COVID-19-induced neuropathy drugs, and 17 others. This review provides insight into mechanisms of action, properties, and indications for COVID-19 medications.
Collapse
Affiliation(s)
- Hee Sun Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - A Young Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases, Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cheryl A Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sung Kweon Cho
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
2
|
Arevalo-Romero JA, Chingaté-López SM, Camacho BA, Alméciga-Díaz CJ, Ramirez-Segura CA. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon 2024; 10:e26423. [PMID: 38434363 PMCID: PMC10907543 DOI: 10.1016/j.heliyon.2024.e26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
Collapse
Affiliation(s)
- Jenny Andrea Arevalo-Romero
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Sandra M. Chingaté-López
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Cesar A. Ramirez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| |
Collapse
|
3
|
Huang X, Tan X, Xie X, Jiang T, Xiao Y, Liu Z. Successful salvage of a severe COVID-19 patient previously with lung cancer and radiation pneumonitis by mesenchymal stem cells: a case report and literature review. Front Immunol 2024; 15:1321236. [PMID: 38380312 PMCID: PMC10876893 DOI: 10.3389/fimmu.2024.1321236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
During the COVID-19 pandemic, elderly patients with underlying condition, such as tumors, had poor prognoses after progressing to severe pneumonia and often had poor response to standard treatment. Mesenchymal stem cells (MSCs) may be a promising treatment for patients with severe pneumonia, but MSCs are rarely used for patients with carcinoma. Here, we reported a 67-year-old female patient with lung adenocarcinoma who underwent osimertinib and radiotherapy and suffered from radiation pneumonitis. Unfortunately, she contracted COVID-19 and that rapidly progressed to severe pneumonia. She responded poorly to frontline treatment and was in danger. Subsequently, she received a salvage treatment with four doses of MSCs, and her symptoms surprisingly improved quickly. After a lung CT scan that presented with a significantly improved infection, she was discharged eventually. Her primary disease was stable after 6 months of follow-up, and no tumor recurrence or progression was observed. MSCs may be an effective treatment for hyperactive inflammation due to their ability related to immunomodulation and tissue repair. Our case suggests a potential value of MSCs for severe pneumonia that is unresponsive to conventional therapy after a COVID-19 infection. However, unless the situation is urgent, it needs to be considered with caution for patients with tumors. The safety in tumor patients still needs to be observed.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Hematology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xin Tan
- Department of Rehabilitation Medicine, Southern Theater General Hospital, Guangzhou, China
| | - Xiuwen Xie
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingshu Jiang
- Department of Respiratory and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, China
| | - Zenghui Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Batu ED, Ozen S. Other Immunomodulatory Treatment for Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:601-609. [PMID: 39117842 DOI: 10.1007/978-3-031-59815-9_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cytokine storm syndromes (CSS) include different entities such as macrophage activation syndrome, primary and secondary hemophagocytic lymphohistiocytosis (HLH), and multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19. An effective management strategy is critical in CSS. While biologics have become an essential part of CSS treatment, hematopoietic stem cell transplantation (HSCT) has changed the fate of primary HLH patients. This chapter will focus on the available alternative immunomodulatory therapies in CSS, which include corticosteroids, cyclosporine A, intravenous immunoglobulin, interleukin 18 binding protein, therapeutic plasmapheresis, HSCT, and mesenchymal stromal cell-based therapies.
Collapse
Affiliation(s)
- Ezgi Deniz Batu
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Su P, Wu Y, Xie F, Zheng Q, Chen L, Liu Z, Meng X, Zhou F, Zhang L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206095. [PMID: 37144543 PMCID: PMC10323633 DOI: 10.1002/advs.202206095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing, and has necessitated scientific efforts in disease diagnosis, treatment, and prevention. Interestingly, extracellular vesicles (EVs) have been crucial in these developments. EVs are a collection of various nanovesicles which are delimited by a lipid bilayer. They are enriched in proteins, nucleic acids, lipids, and metabolites, and naturally released from different cells. Their natural material transport properties, inherent long-term recycling ability, excellent biocompatibility, editable targeting, and inheritance of parental cell properties make EVs one of the most promising next-generation drug delivery nanocarriers and active biologics. During the COVID-19 pandemic, many efforts have been made to exploit the payload of natural EVs for the treatment of COVID-19. Furthermore, strategies that use engineered EVs to manufacture vaccines and neutralization traps have produced excellent efficacy in animal experiments and clinical trials. Here, the recent literature on the application of EVs in COVID-19 diagnosis, treatment, damage repair, and prevention is reviewed. And the therapeutic value, application strategies, safety, and biotoxicity in the production and clinical applications of EV agents for COVID-19 treatment, as well as inspiration for using EVs to block and eliminate novel viruses are discussed.
Collapse
Affiliation(s)
- Peng Su
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yuchen Wu
- Department of Clinical MedicineThe First School of MedicineWenzhou Medical UniversityWenzhouZhejiang325035P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qinghui Zheng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Long Chen
- Center for Translational MedicineThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangJiangsu215600China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Xuli Meng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
6
|
Miceli V, Zito G, Bulati M, Gallo A, Busà R, Iannolo G, Conaldi PG. Different priming strategies improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: Potential implications for their clinical use. World J Stem Cells 2023; 15:400-420. [PMID: 37342218 PMCID: PMC10277962 DOI: 10.4252/wjsc.v15.i5.400] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic potential, and have therefore been extensively investigated in preclinical studies of regenerative medicine. However, while MSCs have been shown to be safe as a cellular treatment, they have usually been therapeutically ineffective in human diseases. In fact, in many clinical trials it has been shown that MSCs have moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs. Recently, specific priming strategies have been used to improve the therapeutic properties of MSCs. In this review, we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs. We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes. Particularly, while hypoxic priming can be used primarily for the treatment of acute diseases, inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders. The shift in approach from regeneration to inflammation implies, in MSCs, a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways. The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy.
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Matteo Bulati
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Rosalia Busà
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Gioacchin Iannolo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| |
Collapse
|
7
|
Chen CH, Chang KC, Lin YN, Ho MW, Cheng MY, Shih WH, Chou CH, Lin PC, Chi CY, Lu MC, Tien N, Wu MY, Chang SS, Hsu WH, Shyu WC, Cho DY, Jeng LB. Mesenchymal stem cell therapy on top of triple therapy with remdesivir, dexamethasone, and tocilizumab improves PaO2/FiO2 in severe COVID-19 pneumonia. Front Med (Lausanne) 2022; 9:1001979. [PMID: 36213639 PMCID: PMC9537613 DOI: 10.3389/fmed.2022.1001979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Despite patients with severe coronavirus disease (COVID-19) receiving standard triple therapy, including steroids, antiviral agents, and anticytokine therapy, health condition of certain patients continue to deteriorate. In Taiwan, the COVID-19 mortality has been high since the emergence of previous variants of this disease (such as alpha, beta, or delta). We aimed to evaluate whether adjunctive infusion of human umbilical cord mesenchymal stem cells (MSCs) (hUC-MSCs) on top of dexamethasone, remdesivir, and tocilizumab improves pulmonary oxygenation and suppresses inflammatory cytokines in patients with severe COVID-19. Methods Hospitalized patients with severe or critical COVID-19 pneumonia under standard triple therapy were separated into adjuvant hUC-MSC and non-hUC-MSC groups to compare the changes in the arterial partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio and biological variables. Results Four out of eight patients with severe or critical COVID-19 received either one (n = 2) or two (n = 2) doses of intravenous infusions of hUC-MSCs using a uniform cell dose of 1.0 × 108. Both high-sensitivity C-reactive protein (hs-CRP) level and monocyte distribution width (MDW) were significantly reduced, with a reduction in the levels of interleukin (IL)-6, IL-13, IL-12p70 and vascular endothelial growth factor following hUC-MSC transplantation. The PaO2/FiO2 ratio increased from 83.68 (64.34–126.75) to 227.50 (185.25–237.50) and then 349.56 (293.03–367.92) within 7 days after hUC-MSC infusion (P < 0.001), while the change of PaO2/FiO2 ratio was insignificant in non-hUC-MSC patients (admission day: 165.00 [102.50–237.61]; day 3: 100.00 [72.00–232.68]; day 7: 250.00 [71.00–251.43], P = 0.923). Conclusion Transplantation of hUC-MSCs as adjunctive therapy improves pulmonary oxygenation in patients with severe or critical COVID-19. The beneficial effects of hUC-MSCs were presumably mediated by the mitigation of inflammatory cytokines, characterized by the reduction in both hs-CRP and MDW.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Kuan-Cheng Chang,
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Meng-Yu Cheng
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Hsin Shih
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Huei Chou
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Chang Lin
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yu Chi
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Sheng Chang
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wu-Huei Hsu
- School of Medicine, China Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Woei-Cheang Shyu
- School of Medicine, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Woei-Cheang Shyu,
| | - Der-Yang Cho
- School of Medicine, China Medical University, Taichung, Taiwan
- Stroke Center, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Long-Bin Jeng
- School of Medicine, China Medical University, Taichung, Taiwan
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
- Long-Bin Jeng,
| |
Collapse
|
8
|
Wiercinska E, Bönig H. Zelltherapie in den Zeiten von SARS-CoV-2. TRANSFUSIONSMEDIZIN 2022. [DOI: 10.1055/a-1720-7975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
ZusammenfassungEin breites Spektrum von Disruptionen, aber auch blitzschnelle Innovationen, hat
die SARS-CoV-2 Pandemie gebracht. Dieser Übersichtsartikel betrachtet
die Pandemie aus der Warte der Zelltherapie; konkret werden vier Aspekte
untersucht: Wie unterscheiden sich die Risiken von Zelltherapie-Patienten mit
SARS-CoV-2 Infektion und COVID von denen der Allgemeinbevölkerung? Sind
Empfänger von Zelltherapien, hier speziell autologe und allogene
Stammzelltransplantationsempfänger sowie Empfänger von
CAR-T-Zell-Präparaten, klinisch relevant durch SARS-CoV-2 Vakzine
immunisierbar? Welche Auswirkungen hat die Pandemie mit Spenderausfallrisiko und
Zusammenbruch von Supply Chains auf die Versorgung mit Zelltherapeutika? Gibt es
Zelltherapeutika, die bei schwerem COVID therapeutisch nutzbringend eingesetzt
werden können? In aller Kürze, das erwartete massiv
erhöhte Risiko von Zelltherapie-Patienten, im Infektionsfall einen
schweren Verlauf zu erleiden oder zu sterben, wurde bestätigt. Die
Vakzine induziert jedoch bei vielen dieser Patienten humorale und
zelluläre Immunität, wenn auch weniger zuverlässig als
bei Gesunden. Dank kreativer Lösungen gelang es, die Versorgung mit
Zelltherapeutika im Wesentlichen uneingeschränkt aufrecht zu erhalten.
SARS-CoV-2-spezifische T-Zell-Präparate für den adoptiven
Immuntransfer wurden entwickelt, eine therapeutische Konstellation diese
anzuwenden ergab sich jedoch nicht. Therapiestudien mit mesenchymalen
Stromazellen beim schweren COVID laufen weltweit; die Frage der Wirksamkeit
bleibt zurzeit offen, bei jedoch substanziellem Optimismus in der Szene. Einige
der Erkenntnisse und Innovationen aus der SARS-CoV-2-Pandemie können
möglicherweise verallgemeinert werden und so auf die Zeit nach ihrem
Ende langfristig nachwirken.
Collapse
Affiliation(s)
- Eliza Wiercinska
- DRK-Blutspendedienst Baden-Württemberg-Hessen, Institut
Frankfurt, Frankfurt a.M
| | - Halvard Bönig
- DRK-Blutspendedienst Baden-Württemberg-Hessen, Institut
Frankfurt, Frankfurt a.M
- Goethe Universität, Institut für Transfusionsmedizin
und Immunhämatologie, Frankfurt a.M
- University of Washington, Seattle, WA
| |
Collapse
|
9
|
Immunotherapy of multisystem inflammatory syndrome in children (MIS-C) following COVID-19 through mesenchymal stem cells. Int Immunopharmacol 2021. [DOI: oi.org/10.1016/j.intimp.2021.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Suksatan W, Chupradit S, Yumashev AV, Ravali S, Shalaby MN, Mustafa YF, Kurochkin A, Siahmansouri H. Immunotherapy of multisystem inflammatory syndrome in children (MIS-C) following COVID-19 through mesenchymal stem cells. Int Immunopharmacol 2021; 101:108217. [PMID: 34627083 PMCID: PMC8487784 DOI: 10.1016/j.intimp.2021.108217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new type of coronavirus causing coronavirus 2019 (COVID-19) that was first observed in Wuhan, China, in Dec. 2019. An inflammatory immune response targeting children appeared during the pandemic, which was associated with COVID-19 named multisystem inflammatory syndrome in children (MIS-C). Characteristics of MIS-C include the classic inflammation findings, multi-organ dysfunction, and fever as the cardinal feature. Up to now, no specific therapy has been identified for MIS-C. Currently, considerable progress has been obtained in the MIS-C treatment by cell therapy, specially Mesenchymal stem cells (MSCs). Unique properties have been reported for MSCs, such as various resources for purification of cell, high proliferation, self-renewal, non-invasive procedure, tissue regenerator, multidirectional differentiation, and immunosuppression. As indicated by a recent clinical research, MSCs have the ability of reducing disease inflammation and severity in children with MIS-C. In the present review study, the benefits and characteristics of MSCs and exosomes are discussed for treating patients with MIS-C.
Collapse
Affiliation(s)
- Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sahithya Ravali
- Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Chennai, India
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | | | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Suksatan W, Chupradit S, Yumashev AV, Ravali S, Shalaby MN, Mustafa YF, Kurochkin A, Siahmansouri H. Immunotherapy of multisystem inflammatory syndrome in children (MIS-C) following COVID-19 through mesenchymal stem cells. Int Immunopharmacol 2021. [DOI: https://doi.org/10.1016/j.intimp.2021.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Generalić A, Davidović M, Kos I, Vrljičak K, Lamot L. Hematuria as an Early Sign of Multisystem Inflammatory Syndrome in Children: A Case Report of a Boy With Multiple Comorbidities and Review of Literature. Front Pediatr 2021; 9:760070. [PMID: 34778150 PMCID: PMC8579050 DOI: 10.3389/fped.2021.760070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction: While the clinical course of SARS-CoV-2 infection seems to be milder or asymptomatic within the pediatric population, growing attention has been laid to the rare complication elicited by virus, multisystem inflammatory syndrome in children temporarily associated with COVID-19 (MIS-C). Published definition and criteria of MIS-C include persistent fever, multisystem involvement, and elevated markers of inflammation, without obvious microbial inflammation or other plausible diagnosis. However, the aim of this case report is to emphasize the diversity of symptoms of MIS-C, beyond the defined criteria. Case Presentation: We present a 10-year-old boy with 8p23.1 microdeletion syndrome and multiple comorbidities who initially came to our attention due to hematuria, persistent fever, rash, and elevated markers of inflammation. Within the next 2 days, his condition worsened despite the broad-spectrum antibiotic therapy. Assuming his past history of SARS-CoV-2 exposure, MIS-C was suspected. A high level of clinical suspicion was further supported by significant clinical features (vomiting, abdominal pain, conjunctivitis, arrhythmia, and mild left ventricular systolic dysfunction with pleural effusion) along with laboratory findings (elevated ESR, CRP, proBNP, D-dimers and fibrinogen, positive IgG SARS-CoV-2 antibodies, and negative microbiological cultures). The patient was given intravenous immunoglobulin (IVIG) and began to show instantaneous clinical and laboratory improvement. Conclusion: Despite numerous reports of MIS-C cases in children, there are still many uncertainties regarding the clinical presentation and laboratory findings, as well as mechanisms beyond this intriguing disorder. In our case, for the first time hematuria is reported as an early symptom of MIS-C. We strongly believe that reporting various manifestations and outcomes in MIS-C patients will lead to improved diagnosis, treatment, and overall understanding of this novel inflammatory condition.
Collapse
Affiliation(s)
- Ana Generalić
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia.,General Hospital "Dr. Tomislav Bardek", Koprivnica, Croatia
| | - Maša Davidović
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivanka Kos
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Kristina Vrljičak
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia.,Department of Pediatrics, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|