1
|
Yan W, Li Y, Yin J, Liu Q, Shi Y, Tan J, Wang Y, Zhang S, Zhang J, Li J, Yan S. Protective effect of human epicardial adipose-derived stem cells on myocardial injury driven by poly-lactic acid nanopillar array. Biotechnol Appl Biochem 2024; 71:110-122. [PMID: 37904285 DOI: 10.1002/bab.2525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/07/2023] [Indexed: 11/01/2023]
Abstract
We investigated if poly-lactic acid (PLA) nanopillar array can trigger the differentiation of human epicardial (ADSCs) (heADSCs) into cardiomyocyte-like cells and explored the effects of these cardiomyocyte-like cells on myocardial infarction (MI) in vivo. PLA nanopillar array (200 nm diameter) and plain PLA film (PLA planar) induced heADSCs were marked with carboxyfluorescein. After 7 days, the expressions of myocardiocyte-specific genes were significantly enhanced in cells seeded on PLA nanopillar array compared with that on PLA planar, especially CACNA1C, KCNH2, and MYL2 genes (p < 0.05). However, the expressions of cardiac troponin T (cTNT), KCNQ1, and KCNA5 were lower than those in PLA planar-induced heADSCs (p < 0.05), whereas GATA4 tended to increase with time. The cells with positively stained α-actinin and cTNT were elevated in heADSCs induced by PLA nanopillar array compared with those induced by PLA planar only (p < 0.05). In vivo experiments showed that cardiac function was improved after injecting PLA-nanopillar array-induced heADSCs into the ischemic heart (p < 0.05, compared with PLA planar + MI group). Furthermore, tyrosine hydroxylase density was significantly lower (p < 0.05). PLA nanopillar array directly drives the differentiation of heADSCs into cardiomyocyte-like cells, and the induced heADSCs exhibit a protective effect on ischemic myocardium by improving cardiac function in MI rats.
Collapse
Affiliation(s)
- Wenju Yan
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
- Department of Vasculocardiology, Taian City Central Hospital, Taian, China
| | - Yan Li
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jie Yin
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qian Liu
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
| | - Yugen Shi
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiayu Tan
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yu Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Junyi Zhang
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
| | - Jingxin Li
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Suhua Yan
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
2
|
Zhao T, Li X, Li H, Deng H, Li J, Yang Z, He S, Jiang S, Sui X, Guo Q, Liu S. Advancing drug delivery to articular cartilage: From single to multiple strategies. Acta Pharm Sin B 2023; 13:4127-4148. [PMID: 37799383 PMCID: PMC10547919 DOI: 10.1016/j.apsb.2022.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022] Open
Abstract
Articular cartilage (AC) injuries often lead to cartilage degeneration and may ultimately result in osteoarthritis (OA) due to the limited self-repair ability. To date, numerous intra-articular delivery systems carrying various therapeutic agents have been developed to improve therapeutic localization and retention, optimize controlled drug release profiles and target different pathological processes. Due to the complex and multifactorial characteristics of cartilage injury pathology and heterogeneity of the cartilage structure deposited within a dense matrix, delivery systems loaded with a single therapeutic agent are hindered from reaching multiple targets in a spatiotemporal matched manner and thus fail to mimic the natural processes of biosynthesis, compromising the goal of full cartilage regeneration. Emerging evidence highlights the importance of sequential delivery strategies targeting multiple pathological processes. In this review, we first summarize the current status and progress achieved in single-drug delivery strategies for the treatment of AC diseases. Subsequently, we focus mainly on advances in multiple drug delivery applications, including sequential release formulations targeting various pathological processes, synergistic targeting of the same pathological process, the spatial distribution in multiple tissues, and heterogeneous regeneration. We hope that this review will inspire the rational design of intra-articular drug delivery systems (DDSs) in the future.
Collapse
Affiliation(s)
- Tianyuan Zhao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Hao Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Haoyuan Deng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jianwei Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhen Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Songlin He
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuangpeng Jiang
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Khaledi M, Ahmadi MH, Owlia P, Saderi H. Antimicrobial Effects of Mouse Adipose-Derived Mesenchymal Stem Cells Encapsulated in Collagen-Fibrin Hydrogel Scaffolds on Bacteroides fragilis Wound Infection in vivo. IRANIAN BIOMEDICAL JOURNAL 2023; 27:257-68. [PMID: 37873638 PMCID: PMC10707812 DOI: 10.61186/ibj.27.5.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/25/2023] [Indexed: 12/17/2023]
Abstract
Background Anaerobes are the causative agents of many wound infections. B. fragilis is the most prevalent endogenous anaerobic bacterium causes a wide range of diseases, including wound infections. This study aimed to assess the antibacterial effect of mouse adipocyte derived-mesenchymal stem cell (AD-MSCs) encapsulated in collagen-fibrin (CF) hydrogel scaffolds on B. fragilis wound infection in an animal model. Methods Stem cells were extracted from mouse adipose tissue and confirmed by surface markers using flow cytometry analysis. The possibility of differentiation of stem cells into osteoblast and adipocyte cells was also assessed. The extracted stem cells were encapsulated in the CF scaffold. B. fragilis wound infection was induced in rats, and then following 24 h, collagen and fibrin-encapsulated mesenchymal stem cells (MSCs) were applied to dress the wound. One week later, a standard colony count test monitored the bacterial load in the infected rats. Results MSCs were characterized as positive for CD44, CD90, and CD105 markers and negative for CD34, which were able to differentiate into osteoblast and adipocyte cells. AD-MSCs encapsulated with collagen and fibrin scaffolds showed ameliorating effects on B. fragilis wound infection. Additionally, AD-MSCs with a collagen scaffold (54 CFU/g) indicated a greater effect on wound infection than AD-MSCs with a fibrin scaffold (97 CFU/g). The combined CF scaffold demonstrated the highest reduction in colony count (the bacteria load down to 29 CFU/g) in the wound infection. Conclusion Our findings reveal that the use of collagen and fibrin scaffold in combination with mouse AD-MSCs is a promising alternative treatment for B. fragilis.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Parviz Owlia
- Molecular Microbiology Research Center, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Horieh Saderi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
4
|
Barbon S, Stocco E, Rajendran S, Zardo L, Macchi V, Grandi C, Tagariello G, Porzionato A, Radossi P, De Caro R, Parnigotto PP. In Vitro Conditioning of Adipose-Derived Mesenchymal Stem Cells by the Endothelial Microenvironment: Modeling Cell Responsiveness towards Non-Genetic Correction of Haemophilia A. Int J Mol Sci 2022; 23:ijms23137282. [PMID: 35806285 PMCID: PMC9266329 DOI: 10.3390/ijms23137282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In recent decades, the use of adult multipotent stem cells has paved the way for the identification of new therapeutic approaches for the treatment of monogenic diseases such as Haemophilia A. Being already studied for regenerative purposes, adipose-derived mesenchymal stem cells (Ad-MSCs) are still poorly considered for Haemophilia A cell therapy and their capacity to produce coagulation factor VIII (FVIII) after proper stimulation and without resorting to gene transfection. In this work, Ad-MSCs were in vitro conditioned towards the endothelial lineage, considered to be responsible for coagulation factor production. The cells were cultured in an inductive medium enriched with endothelial growth factors for up to 21 days. In addition to significantly responding to the chemotactic endothelial stimuli, the cell populations started to form capillary-like structures and up-regulated the expression of specific endothelial markers (CD34, PDGFRα, VEGFR2, VE-cadherin, CD31, and vWF). A dot blot protein study detected the presence of FVIII in culture media collected from both unstimulated and stimulated Ad-MSCs. Remarkably, the activated partial thromboplastin time test demonstrated that the clot formation was accelerated, and FVIII activity was enhanced when FVIII deficient plasma was mixed with culture media from the untreated/stimulated Ad-MSCs. Overall, the collected evidence supported a possible Ad-MSC contribution to HA correction via specific stimulation by the endothelial microenvironment and without any need for gene transfection.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35124 Padova, Italy;
| | - Lorena Zardo
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
| | - Claudio Grandi
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Giuseppe Tagariello
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Paolo Radossi
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
- Correspondence:
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| |
Collapse
|
5
|
Anudeep TC, Jeyaraman M, Muthu S, Rajendran RL, Gangadaran P, Mishra PC, Sharma S, Jha SK, Ahn BC. Advancing Regenerative Cellular Therapies in Non-Scarring Alopecia. Pharmaceutics 2022; 14:pharmaceutics14030612. [PMID: 35335987 PMCID: PMC8953616 DOI: 10.3390/pharmaceutics14030612] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Alopecia or baldness is a common diagnosis in clinical practice. Alopecia can be scarring or non-scarring, diffuse or patchy. The most prevalent type of alopecia is non-scarring alopecia, with the majority of cases being androgenetic alopecia (AGA) or alopecia areata (AA). AGA is traditionally treated with minoxidil and finasteride, while AA is treated with immune modulators; however, both treatments have significant downsides. These drawbacks compel us to explore regenerative therapies that are relatively devoid of adverse effects. A thorough literature review was conducted to explore the existing proven and experimental regenerative treatment modalities in non-scarring alopecia. Multiple treatment options compelled us to classify them into growth factor-rich and stem cell-rich. The growth factor-rich group included platelet-rich plasma, stem cell-conditioned medium, exosomes and placental extract whereas adult stem cells (adipose-derived stem cell-nano fat and stromal vascular fraction; bone marrow stem cell and hair follicle stem cells) and perinatal stem cells (umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs), Wharton jelly-derived MSCs (WJ-MSCs), amniotic fluid-derived MSCs (AF-MSCs), and placental MSCs) were grouped into the stem cell-rich group. Because of its regenerative and proliferative capabilities, MSC lies at the heart of regenerative cellular treatment for hair restoration. A literature review revealed that both adult and perinatal MSCs are successful as a mesotherapy for hair regrowth. However, there is a lack of standardization in terms of preparation, dose, and route of administration. To better understand the source and mode of action of regenerative cellular therapies in hair restoration, we have proposed the "À La Mode Classification". In addition, available evidence-based cellular treatments for hair regrowth have been thoroughly described.
Collapse
Affiliation(s)
- Talagavadi Channaiah Anudeep
- Department of Plastic Surgery, Topiwala National Medical College and BYL Nair Ch. Hospital, Mumbai 400008, India;
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- À La Mode Esthétique Studio, Mysuru 570011, India
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (P.G.); (B.-C.A.)
| | - Prabhu Chandra Mishra
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
| | - Shilpa Sharma
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (P.G.); (B.-C.A.)
| |
Collapse
|
6
|
Dumbleton J, Shamul JG, Jiang B, Agarwal P, Huang H, Jia X, He X. Oxidation and RGD Modification Affect the Early Neural Differentiation of Murine Embryonic Stem Cells Cultured in Core-Shell Alginate Hydrogel Microcapsules. Cells Tissues Organs 2022; 211:294-303. [PMID: 34038907 PMCID: PMC8617071 DOI: 10.1159/000514580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Directed neural differentiation of embryonic stem cells (ESCs) has been studied extensively to improve the treatment of neurodegenerative disorders. This can be done through stromal-cell derived inducing activity (SDIA), by culturing ESCs directly on top of a layer of feeder stromal cells. However, the stem cells usually become mixed with the feeder cells during the differentiation process, making it difficult to obtain a pure population of the differentiated cells for further use. To address this issue, a non-planar microfluidic device is used here to encapsulate murine ESCs (mESCs) in the 3D liquid core of microcapsules with an alginate hydrogel shell of different sizes for early neural differentiation through SDIA, by culturing mESC-laden microcapsules over a feeder layer of PA6 cells. Furthermore, the alginate hydrogel shell of the microcapsules is modified via oxidation or RGD peptide conjugation to examine the mechanical and chemical effects on neural differentiation of the encapsulated mESC aggregates. A higher expression of Nestin is observed in the aggregates encapsulated in small (∼300 μm) microcapsules and cultured over the PA6 cell feeder layer. Furthermore, the modification of the alginate with RGD facilitates early neurite extension within the microcapsules. This study demonstrates that the presence of the RGD peptide, the SDIA effect of the PA6 cells, and the absence of leukemia inhibition factor from the medium can lead to the early differentiation of mESCs with extensive neurites within the 3D microenvironment of the small microcapsules. This is the first study to investigate the effects of cell adhesion and degradation of the encapsulation materials for directed neural differentiation of mESCs. The simple modifications (i.e., oxidation and RGD incorporation) of the miniaturized 3D environment for improved early neural differentiation of mESCs may potentially enhance further downstream differentiation of the mESCs into more specialized neurons for therapeutic use and drug screening.
Collapse
Affiliation(s)
- Jenna Dumbleton
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 (USA)
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Pranay Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 (USA)
| | - Haishui Huang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 (USA)
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 (USA),Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA,Correspondence should be addressed to: Xiaoming He, Ph.D., Fishell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, Phone: 301-405-7946,
| |
Collapse
|
7
|
Huynh PD, Vu NB, To XHV, Le TM. Culture and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells on Growth Factor-Rich Fibrin Scaffolds to Produce Engineered Cartilages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021:193-208. [PMID: 34739721 DOI: 10.1007/5584_2021_670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION After injuries, the cartilage healing capacity is limited owing to its nature as a particular connective tissue without blood vessels, lymphatics, or nerves. The creation of artificial cartilage tissue mimics the biological properties of native cartilage and can reduce the need for donated tissue. Fibrin is a type of biodegradable scaffold that has great potential in tissue engineering applications. It can become good material for cell adhesion and proliferation in vitro. Therefore, this study aimed to create a cartilage tissue in vitro using umbilical cord-derived mesenchymal stem cells (UCMSC) and growth factor-rich fibrin (GRF) scaffolds. METHODS UCMSCs were isolated and expanded, and platelet-rich plasma (PRP) preparations were performed following previously published protocols. PRP was activated (aPRP) by a 0.45-μm syringe filter to release growth factors inside the platelets. Each 2.105 of the UCMSCs were suspended in 2 ml of aPRP to make the mixture of MSC and PRP (MSC-PRP). Then, Ca2+ solution was added to this mixture to produce the fibril scaffold with UCMSCs inside. UCMSCs' adhesion and proliferation inside the scaffold were evaluated by observation under inverted microscopy, H-E staining, MTT assays, and scanning electron microscopy (SEM). The fibril structure containing UCMSCs was cultured, and chondrogenesis was induced using commercial chondrogenesis media for 21 days (iMSC-GRF). The differentiation in efficacy toward cartilage was evaluated based on the accumulation of aggrecan (acan), glycosaminoglycans (GAGs), and collagen type II (Col II). RESULTS The results showed that we successfully created a cartilage tissue with some characteristics that mimic the properties of natural cartilage. The engineered cartilage tissue was positive with some cartilage protein, such as acan, GAG, and Coll II. In vitro cartilage presented some natural chondrocyte-like cells. The artificial cartilage tissue was positive for CD14, CD34, CD90, CD105, and HLA-DR and negative for CD44, CD45, and CD73. CONCLUSION These results showed that using UCMSCs and growth factor-rich fibril from platelet-rich plasma was feasible to produce engineered cartilage tissue for further experiments or clinical usage.
Collapse
Affiliation(s)
- Phat Duc Huynh
- Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ngoc Bich Vu
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Xuan Hoang-Viet To
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuan Minh Le
- Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Garcia-Ruiz A, Sánchez-Domínguez CN, Moncada-Saucedo NK, Pérez-Silos V, Lara-Arias J, Marino-Martínez IA, Camacho-Morales A, Romero-Diaz VJ, Peña-Martinez V, Ramos-Payán R, Castro-Govea Y, Tuan RS, Lin H, Fuentes-Mera L, Rivas-Estilla AM. Sequential growth factor exposure of human Ad-MSCs improves chondrogenic differentiation in an osteochondral biphasic implant. Exp Ther Med 2021; 22:1282. [PMID: 34630637 PMCID: PMC8461520 DOI: 10.3892/etm.2021.10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Joint cartilage damage affects 10-12% of the world's population. Medical treatments improve the short-term quality of life of affected individuals but lack a long-term effect due to injury progression into fibrocartilage. The use of mesenchymal stem cells (MSCs) is one of the most promising strategies for tissue regeneration due to their ability to be isolated, expanded and differentiated into metabolically active chondrocytes to achieve long-term restoration. For this purpose, human adipose-derived MSCs (Ad-MSCs) were isolated from lipectomy and grown in xeno-free conditions. To establish the best differentiation potential towards a stable chondrocyte phenotype, isolated Ad-MSCs were sequentially exposed to five differentiation schemes of growth factors in previously designed three-dimensional biphasic scaffolds with incorporation of a decellularized cartilage matrix as a bioactive ingredient, silk fibroin and bone matrix, to generate a system capable of being loaded with pre-differentiated Ad-MSCs, to be used as a clinical implant in cartilage lesions for tissue regeneration. Chondrogenic and osteogenic markers were analyzed by reverse transcription-quantitative PCR and cartilage matrix generation by histology techniques at different time points over 40 days. All groups had an increased expression of chondrogenic markers; however, the use of fibroblast growth factor 2 (10 ng/ml) followed by a combination of insulin-like growth factor 1 (100 ng/ml)/TGFβ1 (10 ng/ml) and a final step of exposure to TGFβ1 alone (10 ng/ml) resulted in the most optimal chondrogenic signature towards chondrocyte differentiation and the lowest levels of osteogenic expression, while maintaining stable collagen matrix deposition until day 33. This encourages their possible use in osteochondral lesions, with appropriate properties for use in clinical patients.
Collapse
Affiliation(s)
- Alejandro Garcia-Ruiz
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Celia N Sánchez-Domínguez
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Nidia K Moncada-Saucedo
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Vanessa Pérez-Silos
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Jorge Lara-Arias
- Orthopedics and Traumatology Service, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Iván A Marino-Martínez
- Pathology Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico.,Experimental Therapies Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Alberto Camacho-Morales
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Víktor J Romero-Diaz
- Histology Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Víctor Peña-Martinez
- Orthopedics and Traumatology Service, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Rosalío Ramos-Payán
- Microbiology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa 80040, Mexico
| | - Yanko Castro-Govea
- Plastic Surgery Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hang Lin
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lizeth Fuentes-Mera
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Ana María Rivas-Estilla
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| |
Collapse
|
9
|
Khoei SG, Dermani FK, Malih S, Fayazi N, Sheykhhasan M. The Use of Mesenchymal Stem Cells and their Derived Extracellular Vesicles in Cardiovascular Disease Treatment. Curr Stem Cell Res Ther 2021; 15:623-638. [PMID: 32357818 DOI: 10.2174/1574888x15666200501235201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD), including disorders of cardiac muscle and vascular, is the major cause of death globally. Many unsuccessful attempts have been made to intervene in the disease's pathogenesis and treatment. Stem cell-based therapies, as a regeneration strategy, cast a new hope for CVD treatment. One of the most well-known stem cells is mesenchymal stem cells (MSCs), classified as one of the adult stem cells and can be obtained from different tissues. These cells have superior properties, such as proliferation and highly specialized differentiation. On the other hand, they have the potential to modulate the immune system and anti-inflammatory activity. One of their most important features is the secreting the extracellular vesicles (EVs) like exosomes (EXOs) as an intercellular communication system mediating the different physiological and pathophysiological affairs. METHODS In this review study, the importance of MSC and its secretory exosomes for the treatment of heart disease has been together and specifically addressed and the use of these promising natural and accessible agents is predicted to replace the current treatment modalities even faster than we imagine. RESULTS MSC derived EXOs by providing a pro-regenerative condition allowing innate stem cells to repair damaged tissues successfully. As a result, MSCs are considered as the appropriate cellular source in regenerative medicine. In the plethora of experiments, MSCs and MSC-EXOs have been used for the treatment and regeneration of heart diseases and myocardial lesions. CONCLUSION Administration of MSCs has been provided a replacement therapeutic option for heart regeneration, obtaining great attention among the basic researcher and the medical doctors.
Collapse
Affiliation(s)
- Saeideh Gholamzadeh Khoei
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fateme Karimi Dermani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nashmin Fayazi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Sheykhhasan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran,Department of Mesenchymal Stem Cell, the Academic Center for Education, Culture and Research, Qom, Iran
| |
Collapse
|
10
|
Sawadkar P, Mandakhbayar N, Patel KD, Buitrago JO, Kim TH, Rajasekar P, Lali F, Kyriakidis C, Rahmani B, Mohanakrishnan J, Dua R, Greco K, Lee JH, Kim HW, Knowles J, García-Gareta E. Three dimensional porous scaffolds derived from collagen, elastin and fibrin proteins orchestrate adipose tissue regeneration. J Tissue Eng 2021; 12:20417314211019238. [PMID: 34104389 PMCID: PMC8165536 DOI: 10.1177/20417314211019238] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Current gold standard to treat soft tissue injuries caused by trauma and pathological condition are autografts and off the shelf fillers, but they have inherent weaknesses like donor site morbidity, immuno-compatibility and graft failure. To overcome these limitations, tissue-engineered polymers are seeded with stem cells to improve the potential to restore tissue function. However, their interaction with native tissue is poorly understood so far. To study these interactions and improve outcomes, we have fabricated scaffolds from natural polymers (collagen, fibrin and elastin) by custom-designed processes and their material properties such as surface morphology, swelling, wettability and chemical cross-linking ability were characterised. By using 3D scaffolds, we comprehensive assessed survival, proliferation and phenotype of adipose-derived stem cells in vitro. In vivo, scaffolds were seeded with adipose-derived stem cells and implanted in a rodent model, with X-ray microtomography, histology and immunohistochemistry as read-outs. Collagen-based materials showed higher cell adhesion and proliferation in vitro as well as higher adipogenic properties in vivo. In contrast, fibrin demonstrated poor cellular and adipogenesis properties but higher angiogenesis. Elastin formed the most porous scaffold, with cells displaying a non-aggregated morphology in vitro while in vivo elastin was the most degraded scaffold. These findings of how polymers present in the natural polymers mimicking ECM and seeded with stem cells affect adipogenesis in vitro and in vivo can open avenues to design 3D grafts for soft tissue repair.
Collapse
Affiliation(s)
- Prasad Sawadkar
- Regenerative Biomaterials Group, The RAFT Institute and The Griffin Institute, Northwick Park & Saint Mark's Hospital, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Kapil D Patel
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Jennifer Olmas Buitrago
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tae Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,R&D Center, TE Bios Co, Osong, Republic of Korea
| | - Poojitha Rajasekar
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Ferdinand Lali
- Division of Surgery and Interventional Science, University College London, London, UK.,The Griffin Institute, Northwick Park and St Mark's Hospital, London, UK
| | - Christos Kyriakidis
- Regenerative Biomaterials Group, The RAFT Institute and The Griffin Institute, Northwick Park & Saint Mark's Hospital, London, UK
| | - Benyamin Rahmani
- Department of Mechanical Engineering, University College London, London, UK
| | - Jeviya Mohanakrishnan
- Regenerative Biomaterials Group, The RAFT Institute and The Griffin Institute, Northwick Park & Saint Mark's Hospital, London, UK
| | - Rishbha Dua
- Regenerative Biomaterials Group, The RAFT Institute and The Griffin Institute, Northwick Park & Saint Mark's Hospital, London, UK
| | - Karin Greco
- Division of Surgery and Interventional Science, University College London, London, UK.,The Griffin Institute, Northwick Park and St Mark's Hospital, London, UK
| | - Jung-Hwan Lee
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Jonathan Knowles
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, The RAFT Institute and The Griffin Institute, Northwick Park & Saint Mark's Hospital, London, UK.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
11
|
Seims KB, Hunt NK, Chow LW. Strategies to Control or Mimic Growth Factor Activity for Bone, Cartilage, and Osteochondral Tissue Engineering. Bioconjug Chem 2021; 32:861-878. [PMID: 33856777 DOI: 10.1021/acs.bioconjchem.1c00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Growth factors play a critical role in tissue repair and regeneration. However, their clinical success is limited by their low stability, short half-life, and rapid diffusion from the delivery site. Supraphysiological growth factor concentrations are often required to demonstrate efficacy but can lead to adverse reactions, such as inflammatory complications and increased cancer risk. These issues have motivated the development of delivery systems that enable sustained release and controlled presentation of growth factors. This review specifically focuses on bioconjugation strategies to enhance growth factor activity for bone, cartilage, and osteochondral applications. We describe approaches to localize growth factors using noncovalent and covalent methods, bind growth factors via peptides, and mimic growth factor function with mimetic peptide sequences. We also discuss emerging and future directions to control spatiotemporal growth factor delivery to improve functional tissue repair and regeneration.
Collapse
Affiliation(s)
- Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Natasha K Hunt
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
12
|
Sun B, Qu R, Fan T, Yang Y, Jiang X, Khan AU, Zhou Z, Zhang J, Wei K, Ouyang J, Dai J. Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells. Cell Mol Biol Lett 2021; 26:15. [PMID: 33858321 PMCID: PMC8048231 DOI: 10.1186/s11658-021-00259-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. METHODS In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). The hASCs were treated for 7 days with different concentrations (0, 1, 5, 10, 20, and 50 nM) of jasplakinolide (JAS), a reagent that directly polymerizes F-actin. The effects of the actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. RESULTS Cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groups were higher than in the control group and the JAS (50 nM) group. The FAK, vinculin, paxillin, and talin protein expression levels were highest in the JAS (20 nM) group, while zyxin expression was highest in the JAS (50 nM) group. Western blotting showed that osteogenic differentiation in the JAS (0, 1, 5, 10, 20, and 50 nM) group was enhanced compared with that in the control group, and was strongest in the JAS (50 nM) group. CONCLUSIONS In summary, our data suggest that the actin polymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiation in hASCs.
Collapse
Affiliation(s)
- Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xin Jiang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zhitao Zhou
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Jingliao Zhang
- Department of Foot and Ankle Surgery, Henan Luoyang Orthopedic Hospital, Zhengzhou, China
| | - Kuanhai Wei
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Conditioned Medium from Adipose-Derived Stem Cell Inhibits Jurkat Cell Proliferation through TGF- β1 and p38/MAPK Pathway. Anal Cell Pathol (Amst) 2020; 2019:2107414. [PMID: 31934530 PMCID: PMC6942699 DOI: 10.1155/2019/2107414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023] Open
Abstract
Background Since the first report on the immunomodulatory and immunosuppressive properties of Adipose-Derived Stem Cells (ADSCs), many studies have elucidated the underlying molecular mechanism of their suppressive activity on mixed lymphocyte reaction (MLR). However, a gap exists in our understanding of the molecular mechanism of ADSC-conditioned medium (ADSC-CM) on MLR. Methods ADSCs were isolated from Human Adipose Tissues, and Enzyme-linked Immunosorbent Assay (ELISA) was used to identify the concentration of transforming growth factor β1 (TGF-β1) in ADSC-CM. The transcript abundance of TGF-β1, as well as that of insulin-like growth factor binding protein 3 (IGF-BP3), was evaluated using qRT-PCR on Jurkat cells cultured in ADSC-CM for 24 hours. The proliferation of the Jurkat cells was assessed using cell cycle assay. Western blotting was performed to identify potential signaling molecules involved in the ADSC-CM-induced inhibition of Jurkat cell proliferation. Results The findings confirm that the isolated ADSCs demonstrate classic ADSC characteristics. The level of TGF-β1 was found to be low in ADSC-CM, as assessed by ELISA. Jurkat cells grown in ADSC-CM show reduced gene expression of TGF-β1 and IGF-BP3 compared with that of the control group. Furthermore, western blotting of ADSC-CM grown Jurkat cells that were blocked at the G0/G1 stage indicates that ADSC-CM decreases the protein expression of pP38 in a dose-dependent manner. Conclusion ADSC-CM can inhibit Jurkat cell proliferation through the TGF-β1-p38 signaling pathway.
Collapse
|
14
|
de Melo BAG, Jodat YA, Mehrotra S, Calabrese MA, Kamperman T, Mandal BB, Santana MHA, Alsberg E, Leijten J, Shin SR. 3D Printed Cartilage-Like Tissue Constructs with Spatially Controlled Mechanical Properties. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1906330. [PMID: 34108852 PMCID: PMC8186324 DOI: 10.1002/adfm.201906330] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Indexed: 06/12/2023]
Abstract
Developing biomimetic cartilaginous tissues that support locomotion while maintaining chondrogenic behavior is a major challenge in the tissue engineering field. Specifically, while locomotive forces demand tissues with strong mechanical properties, chondrogenesis requires a soft microenvironment. To address this challenge, 3D cartilage-like tissue is bioprinted using two biomaterials with different mechanical properties: a hard biomaterial to reflect the macromechanical properties of native cartilage, and a soft biomaterial to create a chondrogenic microenvironment. To this end, a hard biomaterial (MPa order compressive modulus) composed of an interpenetrating polymer network (IPN) of polyethylene glycol (PEG) and alginate hydrogel is developed as an extracellular matrix (ECM) with self-healing properties, but low diffusive capacity. Within this bath supplemented with thrombin, fibrinogen containing human mesenchymal stem cell (hMSC) spheroids is bioprinted forming fibrin, as the soft biomaterial (kPa order compressive modulus) to simulate cartilage's pericellular matrix and allow a fast diffusion of nutrients. The bioprinted hMSC spheroids improve viability and chondrogenic-like behavior without adversely affecting the macromechanical properties of the tissue. Therefore, the ability to print locally soft and cell stimulating microenvironments inside of a mechanically robust hydrogel is demonstrated, thereby uncoupling the micro- and macromechanical properties of the 3D printed tissues such as cartilage.
Collapse
Affiliation(s)
- Bruna A G de Melo
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Yasamin A Jodat
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Shreya Mehrotra
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Michelle A Calabrese
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tom Kamperman
- Department of Developmental BioEngineering, University of Twente, Enschede, Overijssel 7522 NB, The Netherlands
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Maria H A Santana
- Department of Engineering of Materials and Bioprocesses School of Chemical Engineering, University of Campinas, Campinas, SP 13083-852, Brazil
| | - Eben Alsberg
- Departments of Bioengineering and Orthopaedics, University of Illinois, Chicago, IL 60607, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, University of Twente, Enschede, Overijssel 7522 NB, The Netherlands
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Wu YC, Wang YC, Wang WT, Wang HMD, Lin HH, Su LJ, Kuo YR, Lai CS, Ho ML, Yu J. Fluorescent Nanodiamonds Enable Long-Term Detection of Human Adipose-Derived Stem/Stromal Cells in an In Vivo Chondrogenesis Model Using Decellularized Extracellular Matrices and Fibrin Glue Polymer. Polymers (Basel) 2019; 11:polym11091391. [PMID: 31450801 PMCID: PMC6780225 DOI: 10.3390/polym11091391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
Clinically available materials, including allogeneic irradiated costal cartilage and fibrin glue polymer, were used as scaffolds for in vivo chondrogenic differentiation of human adipose-derived stem/stromal cells (hASCs) in the attempt to develop a more efficient treatment over current methods. Current studies include the use of growth-factor stimulation, tissue engineering, and biocompatible materials; however, most methods involve complicated processes and pose clinical limitations. In this report, the xenografts in the experimental group composed of a diced decellularized cartilage extracellular matrix (ECM), hASCs, and fibrin glue polymer were implanted into the subcutaneous layer of nude mice, and the results were compared with two groups of controls; one control group received implantation of decellularized cartilage ECM and fibrin glue polymer, and the other control group received implantation of hASCs mixed with fibrin glue polymer. To evaluate whether hASCs had in vivo chondrogenesis in the xenografts, hASCs were labeled with fluorescent nanodiamonds (FNDs), a biocompatible and photostable nanomaterial, to allow for long-term detection and histological analysis. Increased cellularity, glycosaminoglycan, and collagen deposition were found by the histological examination in the experimental group compared with control groups. With the background-free detection technique and time-gated fluorescence imaging, the numbers and locations of the FND-labeled hASCs could be detected by confocal microscopy. The chondrocyte-specific markers, such as aggrecan and type II collagen, were colocalized with cells containing signals of FNDs which indicated in vivo chondrogenesis of hASCs. Taken together, functional in vivo chondrogenesis of the hASCs could be achieved by clinically available decellularized cartilage ECM and fibrin glue polymer in the nude mice model without in vitro chondrogenic induction. The fluorescent signals of FNDs in hASCs can be detected in histological analysis, such as hematoxylin and eosin staining (H&E staining) without the interference of the autofluorescence. Our study may warrant future clinical applications of the combination of decellular cartilage ECM, fibrin glue polymer, and hASCs for cartilage repair.
Collapse
Affiliation(s)
- Yi-Chia Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linko, Taoyuan 333, Taiwan
- Ph.D. Program in Translational Medicine, Kaohsiung Medical University, Kaohsiung, and Academia Sinica, Taipei 115, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807 Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center of Teaching and Research, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Ya-Chin Wang
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807 Taiwan
| | - Wei-Ting Wang
- Center of Teaching and Research, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Hui-Min David Wang
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807 Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsin-Hung Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Long-Jyun Su
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Yur-Ren Kuo
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807 Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chung-Sheng Lai
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Mei-Ling Ho
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807 Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linko, Taoyuan 333, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
16
|
In vitro and in vivo effects of insulin-producing cells generated by xeno-antigen free 3D culture with RCP piece. Sci Rep 2019; 9:10759. [PMID: 31341242 PMCID: PMC6656749 DOI: 10.1038/s41598-019-47257-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022] Open
Abstract
To establish widespread cell therapy for type 1 diabetes mellitus, we aimed to develop an effective protocol for generating insulin-producing cells (IPCs) from adipose-derived stem cells (ADSCs). We established a 3D culture using a human recombinant peptide (RCP) petaloid μ-piece with xeno-antigen free reagents. Briefly, we employed our two-step protocol to differentiate ADSCs in 96-well dishes and cultured cells in xeno-antigen free reagents with 0.1 mg/mL RCP μ-piece for 7 days (step 1), followed by addition of histone deacetylase inhibitor for 14 days (step 2). Generated IPCs were strongly stained with dithizone, anti-insulin antibody at day 21, and microstructures resembling insulin secretory granules were detected by electron microscopy. Glucose stimulation index (maximum value, 4.9) and MAFA mRNA expression were significantly higher in 3D cultured cells compared with conventionally cultured cells (P < 0.01 and P < 0.05, respectively). The hyperglycaemic state of streptozotocin-induced diabetic nude mice converted to normoglycaemic state around 14 days after transplantation of 96 IPCs under kidney capsule or intra-mesentery. Histological evaluation revealed that insulin and C-peptide positive structures existed at day 120. Our established xeno-antigen free and RCP petaloid μ-piece 3D culture method for generating IPCs may be suitable for clinical application, due to the proven effectiveness in vitro and in vivo.
Collapse
|
17
|
Hu C, Zhao L, Li L. Current understanding of adipose-derived mesenchymal stem cell-based therapies in liver diseases. Stem Cell Res Ther 2019; 10:199. [PMID: 31287024 PMCID: PMC6613269 DOI: 10.1186/s13287-019-1310-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The liver, the largest organ with multiple synthetic and secretory functions in mammals, consists of hepatocytes, cholangiocytes, hepatic stellate cells (HSCs), sinusoidal endothelial cells, Kupffer cells (KCs), and immune cells, among others. Various causative factors, including viral infection, toxins, autoimmune defects, and genetic disorders, can impair liver function and result in chronic liver disease or acute liver failure. Mesenchymal stem cells (MSCs) from various tissues have emerged as a potential candidate for cell transplantation to promote liver regeneration. Adipose-derived MSCs (ADMSCs) with high multi-lineage potential and self-renewal capacity have attracted great attention as a promising means of liver regeneration. The abundance source and minimally invasive procedure required to obtain ADMSCs makes them superior to bone marrow-derived MSCs (BMMSCs). In this review, we comprehensively analyze landmark studies that address the isolation, proliferation, and hepatogenic differentiation of ADMSCs and summarize the therapeutic effects of ADMSCs in animal models of liver diseases. We also discuss key points related to improving the hepatic differentiation of ADMSCs via exposure of the cells to cytokines and growth factors (GFs), extracellular matrix (ECM), and various physical parameters in in vitro culture. The optimization of culturing methods and of the transplantation route will contribute to the further application of ADMSCs in liver regeneration and help improve the survival rate of patients with liver diseases. To this end, ADMSCs provide a potential strategy in the field of liver regeneration for treating acute or chronic liver injury, thus ensuring the availability of ADMSCs for research, trial, and clinical applications in various liver diseases in the future.
Collapse
Affiliation(s)
- Chenxia Hu
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lingfei Zhao
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lanjuan Li
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
18
|
Epstein GK, Epstein JS. Mesenchymal Stem Cells and Stromal Vascular Fraction for Hair Loss: Current Status. Facial Plast Surg Clin North Am 2018; 26:503-511. [PMID: 30213430 DOI: 10.1016/j.fsc.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The current state of the applicability of cell therapy for the treatment of various conditions of hair loss reveals a promising and potentially effective role. Further research, based on published work to date, is indicated to further explore the potential roles of autologous fat grafting, mesenchymal stem cells, and stromal vascular fraction therapy. The authors' evolving experience matches these promising scientific findings.
Collapse
Affiliation(s)
- Gorana Kuka Epstein
- BelPrime Clinic, Department for Hair Restoration "Hair Center Serbia", Brane Crncevica 16, 11000 Belgrade, Serbia; Department of Research, Foundation for Hair Restoration, 6280 Sunset Drive, Suite 504, Miami, FL 33143, USA; Department of Research, Foundation for Hair Restoration, 60e 56th Street, New York, NY 10021, USA.
| | - Jeffrey S Epstein
- Foundation for Hair Restoration, 6280 Sunset Drive, Miami, FL 33143, USA; Foundation for Hair Restoration, 6280 Sunset Drive, Suite 504, Miami, FL 33143, USA; Foundation for Hair Restoration, 60e 56th Street, New York, NY 10021, USA
| |
Collapse
|
19
|
Yin Y, Chen P, Yu Q, Peng Y, Zhu Z, Tian J. The Effects of a Pulsed Electromagnetic Field on the Proliferation and Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Med Sci Monit 2018; 24:3274-3282. [PMID: 29775452 PMCID: PMC5987610 DOI: 10.12659/msm.907815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background A low frequency pulsed electromagnetic field (PEMF) has been confirmed to play an important role in promoting the osteogenic differentiation of human bone marrow stem cells (BMSCs). Adipose-derived stem cells (ASCs) possess some attractive characteristics for clinical application compared to BMSCs, such as abundant stem cells from lipoaspirates, faster growth, less discomfort and morbidity during surgery. ASCs can become adipocytes, osteoblasts, chondrocytes, myocytes, neurocytes, and other cell types. Thus, ASCs might be a good alternative in clinical work involving treatment with PEMF. Material/Methods Human ASCs (hASCs)were divided into a control group (without PEMF exposure) and an experimental group (PEMF for two hours per day). We examined the effect of PEMF on promoting cell proliferation and osteogenic differentiation from several aspects: CCK-8 proliferation assay, RNA extraction, qRT-PCR detection, western blotting, and immunofluorescence staining experiments. Results PEMF could promote cell proliferation of human ASCs (hASCs) at an early stage as determined by CCK-8 assay. A specific intensity (1 mT) and frequency (50 Hz) of PEMF promoted osteogenic differentiation in hASCs in alkaline phosphatase (ALP) staining experiments. In addition, bone-related gene expression increased after two weeks of PEMF exposure, the protein expression of OPN, OCN, and RUNX-2 also increased after a longer period (three weeks) of PEMF treatment as determined by western blotting and immunofluorescence staining. Conclusions We found for the first time that PMEF has a role in stimulating cell proliferation of hASCs at an early period, subsequently promoting bone-related gene expression and inducing the expression of related proteins to stimulate osteogenic differentiation.
Collapse
Affiliation(s)
- Yukun Yin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Ping Chen
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Qiang Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Yan Peng
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - ZeHao Zhu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Jing Tian
- Department of Orthopedics, Zhujiang Hospital,Southern Medical University, Haizhu, Guangzhou, China (mainland)
| |
Collapse
|
20
|
Bagheri-Hosseinabadi Z, Mesbah-Namin SA, Salehinejad P, Seyedi F. Fibrin scaffold could promote survival of the human adipose-derived stem cells during differentiation into cardiomyocyte-like cells. Cell Tissue Res 2018; 372:571-589. [PMID: 29508071 DOI: 10.1007/s00441-018-2799-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022]
Abstract
Human adipose-derived stem cells (hADSCs) are capable of differentiation into many cells including cardiac cells. Different types of scaffolds are used for cell differentiation but the best is yet to be determined. In this study, fibrin scaffold (3D) was fabricated using human plasma fibrinogen and compared with culture plates (2D) for the growth and differentiation of hADSCs into cardiomyocyte-like cells. For this purpose, after obtaining the properties of the isolated hADSCs and fibrin scaffold, four biochemical tests were employed to determine the relative growth rate of hADSCs in 2D and 3D cultures. To examine the effects of two different culture systems on cardiomyogenic differentiation, hADSCs were treated with 10 or 50 μM 5-azacytidine (5-Aza) for 24 h and followed until 10 weeks. The results indicated that the growth of hADSCs in 3D significantly increased after the seventh day (P < 0.05). Western blot, qRT-PCR and immunochemistry assays were used to evaluate the rate of cardiac differentiation, which showed significantly higher expression of special cardiac genes such as NKX2.5, Cx43, MLC2v, βMHC, HAND1, HAND2 and cTnI (P < 0.05) in the treated hADSCs with 50 μM 5-Aza in the 3D group. However, the expression level of the specific cardiac proteins in 3D was not significant using western blot and immunofluorescence staining. In conclusion, this study suggests that the fibrin scaffold with a compressive stress of 107.74 kPa can keep the cells alive for 10 weeks and also allows a higher and sooner differentiation of hADSCs into cardiomyocyte-like cells treated with 50 μM 5-Aza.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box: 14115-111, Tehran, Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box: 14115-111, Tehran, Iran.
| | - Parvin Salehinejad
- Department of Anatomy, Afzalipour School of Medicine and Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Fatemeh Seyedi
- Department of Anatomy, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
21
|
Chen P, Ouyang J, Xiao J, Han Z, Yu Q, Tian J, Zhang L. Co-injection of human adipose stromal cells and rhBMP-2/fibrin gel enhances tendon graft osteointegration in a rabbit anterior cruciate ligament-reconstruction model. Am J Transl Res 2018; 10:535-544. [PMID: 29511448 PMCID: PMC5835819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/29/2017] [Indexed: 06/08/2023]
Abstract
The objective of this study was to investigate whether the co-injection of human adipose stromal cells (hASCs) and rhBMP-2/fibrin gel into the bone tunnels of anterior cruciate-ligament reconstructions can effectively enhance tendon graft osteointegration. We performed bilateral reconstructions using autologous semitendinosus tendons in 45 New Zealand rabbits, which we divided into three groups. We injected the bone tunnels with fibrin gel for group 1, rhBMP-2 (1 μg/ml)/fibrin gel for group 2, and hASCs wrapped in rhBMP-2 (1 μg/ml)/fibrin gel for group 3. We sacrificed five rabbits (two for histological assessment and three for biomechanical tests) from each group at 2, 4, and 8 weeks post surgery. At 2 and 4 weeks post surgery, histological analysis showed that fibro-cartilage had appeared in the tendon-bone interface in group 2. At 4 weeks post surgery, mature bone cells could be seen in group 3. There was new bone formed between the host bone and the graft in groups 2 and 3 at 8 weeks post surgery. Biomechanical testing showed that at 4 and 8 weeks post surgery, the ultimate failure loads in group 3 were significantly higher than those in groups 1 and 2 (both P=0.01). The tendon stiffness in group 3 was significantly higher than that in the other groups at 4 weeks post surgery (P=0.01). Our results indicate that co-injection of hASCs and rhBMP-2/fibrin gel has the potential to promote tendon-bone healing after anterior cruciate-ligament reconstruction.
Collapse
Affiliation(s)
- Ping Chen
- Department of Orthopaedic Centre of Zhu Jiang Hospital, Southern Medical UniversityChina
| | - Jun Ouyang
- Department of Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical UniversityChina
| | - Jiangwei Xiao
- Department of Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical UniversityChina
| | - Zhongyu Han
- Department of Orthopaedic Centre of Zhu Jiang Hospital, Southern Medical UniversityChina
| | - Qiang Yu
- Department of Orthopaedic Centre of Zhu Jiang Hospital, Southern Medical UniversityChina
| | - Jing Tian
- Department of Orthopaedic Centre of Zhu Jiang Hospital, Southern Medical UniversityChina
| | - Li Zhang
- Department of Orthopaedic Centre of Zhu Jiang Hospital, Southern Medical UniversityChina
| |
Collapse
|
22
|
Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: A review. World J Stem Cells 2017; 9:107-117. [PMID: 28928907 PMCID: PMC5583529 DOI: 10.4252/wjsc.v9.i8.107] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
The application of appropriate cell origin for utilizing in regenerative medicine is the major issue. Various kinds of stem cells have been used for the tissue engineering and regenerative medicine. Such as, several stromal cells have been employed as treat option for regenerative medicine. For example, human bone marrow-derived stromal cells and adipose-derived stromal cells (ADSCs) are used in cell-based therapy. Data relating to the stem cell therapy and processes associated with ADSC has developed remarkably in the past 10 years. As medical options, both the stromal vascular and ADSC suggests good opportunity as marvelous cell-based therapeutics. The some biological features are the main factors that impact the regenerative activity of ADSCs, including the modulation of the cellular immune system properties and secretion of bioactive proteins such as cytokines, chemokines and growth factors, as well as their intrinsic anti-ulcer and anti-inflammatory potential. A variety of diseases have been treated by ADSCs, and it is not surprising that there has been great interest in the possibility that ADSCs might be used as therapeutic strategy to improve a wider range of diseases. This is especially important when it is remembered that routine therapeutic methods are not completely effective in treat of diseases. Here, it was discuss about applications of ADSC to colitis, liver failure, diabetes mellitus, multiple sclerosis, orthopaedic disorders, hair loss, fertility problems, and salivary gland damage.
Collapse
Affiliation(s)
- Reza Tabatabaei Qomi
- Department of Stem Cell, the Academic Center for Education, Culture and Research, PO Box QOM-3713189934, Qom, Iran
| | - Mohsen Sheykhhasan
- Department of Stem Cell, the Academic Center for Education, Culture and Research, PO Box QOM-3713189934, Qom, Iran
| |
Collapse
|
23
|
Gong JH, Dong JY, Xie T, Lu SL. The Influence of AGEs Environment on Proliferation, Apoptosis, Homeostasis, and Endothelial Cell Differentiation of Human Adipose Stem Cells. INT J LOW EXTR WOUND 2017; 16:94-103. [PMID: 28682730 DOI: 10.1177/1534734617701575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the changes of proliferation, apoptosis, homeostasis, and differentiation of human adipose-derived stem cells (hASCs) in the simulated diabetic microenvironment and discuss the potential of the mesenchymal stem cell in the treatment of chronic diabetic wound. We simulated diabetic microenvironment with glycation end products (AGEs) in vitro and studied the changes of hASCs in proliferation and apoptosis. We found that AGEs inhibited the proliferation and lead to hASCs apoptosis, and the endothelial cell directed differentiation was also inhibited. AGEs upregulated growth-related oncogene and monocyte chemoattractant protein-1 and downregulated urokinase-type plasminogen activator receptor, which may inhibit the proliferation and transference of endothelial cells. The simulated diabetic microenvironment affects the proliferation, apoptosis, and homeostasis of hASCs, the endothelial cell migration, and the synthesis of collagen protein, leading to delayed wound healing.
Collapse
Affiliation(s)
- Jia-Hong Gong
- Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao-Yun Dong
- Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Xie
- Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Liang Lu
- Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Seyedi F, Farsinejad A, Nematollahi-Mahani SN. Fibrin scaffold enhances function of insulin producing cells differentiated from human umbilical cord matrix-derived stem cells. Tissue Cell 2017; 49:227-232. [DOI: 10.1016/j.tice.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/05/2017] [Indexed: 11/29/2022]
|
25
|
Sheykhhasan M, Ghiasi M, Qomi R, Kalhor N. Adipose-derived stem cells: An optimized protocol for isolation and proliferation. ACTA MEDICA INTERNATIONAL 2016. [DOI: 10.5530/ami.2016.1.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|