1
|
Lin H, Wang X, Chung M, Cai S, Pan Y. Direct fibroblast reprogramming: an emerging strategy for treating organic fibrosis. J Transl Med 2025; 23:240. [PMID: 40016790 PMCID: PMC11869441 DOI: 10.1186/s12967-024-06060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/26/2024] [Indexed: 03/01/2025] Open
Abstract
Direct reprogramming has garnered considerable attention due to its capacity to directly convert differentiated cells into desired cells. Fibroblasts are frequently employed in reprogramming studies due to their abundance and accessibility. However, they are also the key drivers in the progression of fibrosis, a pathological condition characterized by excessive extracellular matrix deposition and tissue scarring. Furthermore, the initial stage of reprogramming typically involves deactivating fibrotic pathways. Hence, direct reprogramming offers a valuable method to regenerate target cells for tissue repair while simultaneously reducing fibrotic tendencies. Understanding the link between reprogramming and fibrosis could help develop effective strategies to treat damaged tissue with a potential risk of fibrosis. This review summarizes the advances in direct reprogramming and reveals their anti-fibrosis effects in various organs such as the heart, liver, and skin. Furthermore, we dissect the mechanisms of reprogramming influenced by fibrotic molecules including TGF-β signaling, mechanical signaling, inflammation signaling, epigenetic modifiers, and metabolic regulators. Innovative methods for fibroblast reprogramming like small molecules, CRISPRa, modified mRNA, and the challenges of cellular heterogeneity and senescence faced by in vivo direct reprogramming, are also discussed.
Collapse
Affiliation(s)
- Haohui Lin
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Xia Wang
- School of Medicine, The Chinese University of Hong Kong Shenzhen, Shenzhen, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sa Cai
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China.
| | - Yu Pan
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Santos F, Correia M, Dias R, Bola B, Noberini R, Ferreira RS, Trigo D, Domingues P, Teixeira J, Bonaldi T, Oliveira PJ, Bär C, de Jesus BB, Nóbrega‐Pereira S. Age-associated metabolic and epigenetic barriers during direct reprogramming of mouse fibroblasts into induced cardiomyocytes. Aging Cell 2025; 24:e14371. [PMID: 39540462 PMCID: PMC11822649 DOI: 10.1111/acel.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Heart disease is the leading cause of mortality in developed countries, and novel regenerative procedures are warranted. Direct cardiac conversion (DCC) of adult fibroblasts can create induced cardiomyocytes (iCMs) for gene and cell-based heart therapy, and in addition to holding great promise, still lacks effectiveness as metabolic and age-associated barriers remain elusive. Here, by employing MGT (Mef2c, Gata4, Tbx5) transduction of mouse embryonic fibroblasts (MEFs) and adult (dermal and cardiac) fibroblasts from animals of different ages, we provide evidence that the direct reprogramming of fibroblasts into iCMs decreases with age. Analyses of histone posttranslational modifications and ChIP-qPCR revealed age-dependent alterations in the epigenetic landscape of DCC. Moreover, DCC is accompanied by profound mitochondrial metabolic adaptations, including a lower abundance of anabolic metabolites, network remodeling, and reliance on mitochondrial respiration. In vitro metabolic modulation and dietary manipulation in vivo improve DCC efficiency and are accompanied by significant alterations in histone marks and mitochondrial homeostasis. Importantly, adult-derived iCMs exhibit increased accumulation of oxidative stress in the mitochondria and activation of mitophagy or dietary lipids; they improve DCC and revert mitochondrial oxidative damage. Our study provides evidence that metaboloepigenetics plays a direct role in cell fate transitions driving DCC, highlighting the potential use of metabolic modulation to improve cardiac regenerative strategies.
Collapse
Affiliation(s)
- Francisco Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Magda Correia
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Rafaela Dias
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Bárbara Bola
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Roberta Noberini
- Department of Experimental OncologyEuropean Institute of Oncology (IEO), IRCCSMilanItaly
| | - Rita S. Ferreira
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Diogo Trigo
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Pedro Domingues
- Mass Spectrometry Center, Department of ChemistryUniversity of AveiroAveiroPortugal
- LAQV/REQUIMTEUniversity of AveiroAveiroPortugal
| | - José Teixeira
- CNC‐UC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB, Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCantanhedePortugal
| | - Tiziana Bonaldi
- Department of Experimental OncologyEuropean Institute of Oncology (IEO), IRCCSMilanItaly
- Department of Oncology and Hematology‐OncologyUniversity of MilanoMilanItaly
| | - Paulo J. Oliveira
- CNC‐UC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB, Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCantanhedePortugal
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS)Hannover Medical School (MHH)HannoverGermany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)HannoverGermany
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Sandrina Nóbrega‐Pereira
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| |
Collapse
|
3
|
Piven OO, Vaičiulevičiūtė R, Bernotiene E, Dobrzyn P. Cardiomyocyte engineering: The meeting point of transcription factors, signaling networks, metabolism and function. Acta Physiol (Oxf) 2025; 241:e14271. [PMID: 39801134 DOI: 10.1111/apha.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/22/2024] [Accepted: 01/01/2025] [Indexed: 05/02/2025]
Abstract
Direct cardiac reprogramming or transdifferentiation is a relatively new and promising area in regenerative therapy, cardiovascular disease modeling, and drug discovery. Effective reprogramming of fibroblasts is limited by their plasticity, that is, their ability to reprogram, and depends on solving several levels of tasks: inducing cardiomyocyte-like cells and obtaining functionally and metabolically mature cardiomyocytes. Currently, in addition to the use of more classical approaches such as overexpression of exogenous transcription factors, activation of endogenous cardiac transcription factors via controlled nucleases, such as CRISPR, represents another interesting way to obtain cardiomyocytes. Therefore, special attention is given to the potential of synthetic biology, in particular the CRISPR system, for the targeted conversion of only certain subpopulations of fibroblasts into cardiomyocytes. However, obtaining functionally and metabolically mature cardiomyocytes remains a challenge despite the range of recently developed approaches. In this review, we summarized current knowledge on the function and diversity of human cardiac fibroblasts and alternative cell sources for in vitro human cardiomyocyte models. We examined in detail the transcription factors that initiate cardiomyogenic reprogramming and their interactions. Additionally, we critically analyzed the strategies used for the metabolic and physiological maturation of induced cardiomyocytes.
Collapse
Affiliation(s)
- Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Raminta Vaičiulevičiūtė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Faculty of Fundamental Sciences, VilniusTech University, Vilnius, Lithuania
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Huang P, Xu J, Keepers B, Xie Y, Near D, Xu Y, Hua JR, Spurlock B, Ricketts S, Liu J, Wang L, Qian L. Direct cardiac reprogramming via combined CRISPRa-mediated endogenous Gata4 activation and exogenous Mef2c and Tbx5 expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102390. [PMID: 39720701 PMCID: PMC11666955 DOI: 10.1016/j.omtn.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/12/2024] [Indexed: 12/26/2024]
Abstract
Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) can be achieved by ectopic expression of cardiac transcription factors (TFs) via viral vectors. However, risks like genomic mutations, viral toxicity, and immune response limited its clinical application. Transactivation of endogenous TFs emerges as an alternative approach that may partially mitigate some of the risks. In this study, we utilized a modified CRISPRa/dCas9 strategy to transactivate endogenous reprogramming factors MEF2C, GATA4, and TBX5 (MGT) to induce iCMs from both mouse and human fibroblasts. We identified single-guide RNAs (sgRNAs) targeting promoters and enhancers of the TFs capable of activating various degrees of endogenous gene expression. CRISPRa-mediated Gata4 activation, combined with exogenous expression of Mef2c and Tbx5, successfully converted fibroblasts into iCMs. Despite extensive sgRNA screening, transactivation of Mef2c and Tbx5 via CRISPRa remained less effective, potentially due to de novo epigenetic barriers. While future work and refined technologies are needed to determine whether cardiac reprogramming could be achieved solely through CRISPRa activation of endogenous factors, our findings provide proof of concept that reliance on exogenous TFs for reprogramming can be reduced through CRISPRa-mediated activation of endogenous factors, particularly Gata4, offering a novel strategy to convert scar-forming fibroblasts into iCMs for regenerative purposes.
Collapse
Affiliation(s)
- Peisen Huang
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jun Xu
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin Keepers
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yifang Xie
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Near
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yangxi Xu
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James Rock Hua
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian Spurlock
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shea Ricketts
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Wang H, Yang J, Cai Y, Zhao Y. Macrophages suppress cardiac reprogramming of fibroblasts in vivo via IFN-mediated intercellular self-stimulating circuit. Protein Cell 2024; 15:906-929. [PMID: 38530808 PMCID: PMC11637486 DOI: 10.1093/procel/pwae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Direct conversion of cardiac fibroblasts (CFs) to cardiomyocytes (CMs) in vivo to regenerate heart tissue is an attractive approach. After myocardial infarction (MI), heart repair proceeds with an inflammation stage initiated by monocytes infiltration of the infarct zone establishing an immune microenvironment. However, whether and how the MI microenvironment influences the reprogramming of CFs remains unclear. Here, we found that in comparison with cardiac fibroblasts (CFs) cultured in vitro, CFs that transplanted into infarct region of MI mouse models resisted to cardiac reprogramming. RNA-seq analysis revealed upregulation of interferon (IFN) response genes in transplanted CFs, and subsequent inhibition of the IFN receptors increased reprogramming efficiency in vivo. Macrophage-secreted IFN-β was identified as the dominant upstream signaling factor after MI. CFs treated with macrophage-conditioned medium containing IFN-β displayed reduced reprogramming efficiency, while macrophage depletion or blocking the IFN signaling pathway after MI increased reprogramming efficiency in vivo. Co-IP, BiFC and Cut-tag assays showed that phosphorylated STAT1 downstream of IFN signaling in CFs could interact with the reprogramming factor GATA4 and inhibit the GATA4 chromatin occupancy in cardiac genes. Furthermore, upregulation of IFN-IFNAR-p-STAT1 signaling could stimulate CFs secretion of CCL2/7/12 chemokines, subsequently recruiting IFN-β-secreting macrophages. Together, these immune cells further activate STAT1 phosphorylation, enhancing CCL2/7/12 secretion and immune cell recruitment, ultimately forming a self-reinforcing positive feedback loop between CFs and macrophages via IFN-IFNAR-p-STAT1 that inhibits cardiac reprogramming in vivo. Cumulatively, our findings uncover an intercellular self-stimulating inflammatory circuit as a microenvironmental molecular barrier of in situ cardiac reprogramming that needs to be overcome for regenerative medicine applications.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junbo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yihong Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Schoettler FI, Fatehi Hassanabad A, Jadli AS, Patel VB, Fedak PWM. Exploring the role of pericardial miRNAs and exosomes in modulating cardiac fibrosis. Cardiovasc Pathol 2024; 73:107671. [PMID: 38906439 DOI: 10.1016/j.carpath.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/26/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
The potential of the pericardial space as a therapeutic delivery tool for cardiac fibrosis and heart failure (HF) treatment has yet to be elucidated. Recently, miRNAs and exosomes have been discovered to be present in human pericardial fluid (PF). Novel studies have shown characteristic human PF miRNA compositions associated with cardiac diseases and higher miRNA expressions in PF compared to peripheral blood. Five key studies found differentially expressed miRNAs in HF, angina pectoris, aortic stenosis, ventricular tachycardia, and congenital heart diseases with either atrial fibrillation or sinus rhythm. As miRNA-based therapeutics for cardiac fibrosis and HF showed promising results in several in vivo studies for multiple miRNAs, we hypothesize a potential role of miRNA-based therapeutics delivered through the pericardial cavity. This is underlined by the favorable results of the first phase 1b clinical trial in this emerging field. Presenting the first human miRNA antisense drug trial, inhibition of miR-132 by intravenous administration of a novel antisense oligonucleotide, CDR132L, established efficacy in reducing miR-132 in plasma samples in a dose-dependent manner. We screened the literature, provided an overview of the miRNAs and exosomes present in PF, and drew a connection to those miRNAs previously elucidated in cardiac fibrosis and HF. Further, we speculate about clinical implications and potential delivery methods.
Collapse
Affiliation(s)
- Friederike I Schoettler
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Fatehi Hassanabad
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anshul S Jadli
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Simmons AD, Baumann C, Zhang X, Kamp TJ, De La Fuente R, Palecek SP. Integrated multi-omics analysis identifies features that predict human pluripotent stem cell-derived progenitor differentiation to cardiomyocytes. J Mol Cell Cardiol 2024; 196:52-70. [PMID: 39222876 PMCID: PMC11534572 DOI: 10.1016/j.yjmcc.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are advancing cardiovascular development and disease modeling, drug testing, and regenerative therapies. However, hPSC-CM production is hindered by significant variability in the differentiation process. Establishment of early quality markers to monitor lineage progression and predict terminal differentiation outcomes would address this robustness and reproducibility roadblock in hPSC-CM production. An integrated transcriptomic and epigenomic analysis assesses how attributes of the cardiac progenitor cell (CPC) affect CM differentiation outcome. Resulting analysis identifies predictive markers of CPCs that give rise to high purity CM batches, including TTN, TRIM55, DGKI, MEF2C, MAB21L2, MYL7, LDB3, SLC7A11, and CALD1. Predictive models developed from these genes provide high accuracy in determining terminal CM purities at the CPC stage. Further, insights into mechanisms of batch failure and dominant non-CM cell types generated in failed batches are elucidated. Namely EMT, MAPK, and WNT signaling emerge as significant drivers of batch divergence, giving rise to off-target populations of fibroblasts/mural cells, skeletal myocytes, epicardial cells, and a non-CPC SLC7A11+ subpopulation. This study demonstrates how integrated multi-omic analysis of progenitor cells can identify quality attributes of that progenitor and predict differentiation outcomes, thereby improving differentiation protocols and increasing process robustness.
Collapse
Affiliation(s)
- Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Kuai Z, Ma Y, Gao W, Zhang X, Wang X, Ye Y, Zhang X, Yuan J. Potential diagnostic value of circulating miRNAs in HFrEF and bioinformatics analysis. Heliyon 2024; 10:e37929. [PMID: 39386873 PMCID: PMC11462209 DOI: 10.1016/j.heliyon.2024.e37929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Background Few studies have compared the performances of those reported miRNAs as biomarkers for heart failure with reduced EF (HFrEF) in a population at high risk. The purpose of this study is to investigate comprehensively the performance of those miRNAs as biomarkers for HFrEF. Methods By using bioinformatics methods, we also examined these miRNAs' target genes and possible signal transduction pathways. We collected serum samples from patients with HFrEF at Zhongshan Hospital. Receiver operating characteristic (ROC) curves were used to evaluate the accuracy of those miRNAs as biomarkers for HFrEF. miRWALK2.0, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to predict the target genes and pathways of selected miRNAs. Results The study included 48 participants, of whom 30 had HFrEF and 18 had hypertension with normal left ventricular ejection fraction (LVEF). MiR-378, miR-195-5p were significantly decreased meanwhile ten miRNAs were remarkably elevated (miR-21-3p, miR-21-5p, miR-106-5p, miR-23a-3p, miR-208a-3p, miR-1-3p, miR-126-5p, miR-133a-3p, miR-133b, miR-223-3p) in the serum of the HFrEF group. Conclusion The combination of miR 133a-3p, miR 378, miR 1-3p, miR 106b-5p, and miR 133b has excellent diagnostic performance for HFrEF, and there is a throng of mechanisms and pathways by which regulation of these miRNAs may affect the risk of HFrEF.
Collapse
Affiliation(s)
- Zheng Kuai
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanji Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoxue Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangli Ye
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyi Zhang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Jun S, Song MH, Choi SC, Noh JM, Kim KS, Park JH, Yoon DE, Kim K, Kim M, Hwang SW, Lim DS. FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2-STAT3 signaling. Exp Mol Med 2024; 56:2231-2245. [PMID: 39349833 PMCID: PMC11541553 DOI: 10.1038/s12276-024-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2-STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2-STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2-STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Schematic showing FA enhances direct cardiac reprogramming and JAK-STAT3 signaling pathways underlying cardiomyocyte maturation.
Collapse
Affiliation(s)
- Seongmin Jun
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
- R&D Center for Companion Diagnostic, SOL Bio Corporation, Seoul, Republic of Korea
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minseok Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Ambroise R, Takasugi P, Liu J, Qian L. Direct Cardiac Reprogramming in the Age of Computational Biology. J Cardiovasc Dev Dis 2024; 11:273. [PMID: 39330331 PMCID: PMC11432431 DOI: 10.3390/jcdd11090273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Heart disease continues to be one of the most fatal conditions worldwide. This is in part due to the maladaptive remodeling process by which ischemic cardiac tissue is replaced with a fibrotic scar. Direct cardiac reprogramming presents a unique solution for restoring injured cardiac tissue through the direct conversion of fibroblasts into induced cardiomyocytes, bypassing the transition through a pluripotent state. Since its inception in 2010, direct cardiac reprogramming using the transcription factors Gata4, Mef2c, and Tbx5 has revolutionized the field of cardiac regenerative medicine. Just over a decade later, the field has rapidly evolved through the expansion of identified molecular and genetic factors that can be used to optimize reprogramming efficiency. The integration of computational tools into the study of direct cardiac reprogramming has been critical to this progress. Advancements in transcriptomics, epigenetics, proteomics, genome editing, and machine learning have not only enhanced our understanding of the underlying mechanisms driving this cell fate transition, but have also driven innovations that push direct cardiac reprogramming closer to clinical application. This review article explores how these computational advancements have impacted and continue to shape the field of direct cardiac reprogramming.
Collapse
Affiliation(s)
- Rachelle Ambroise
- Department of Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paige Takasugi
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Anwar I, Wang X, Pratt RE, Dzau VJ, Hodgkinson CP. The impact of aging on cardiac repair and regeneration. J Biol Chem 2024; 300:107682. [PMID: 39159819 PMCID: PMC11414664 DOI: 10.1016/j.jbc.2024.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
In contrast to neonates and lower organisms, the adult mammalian heart lacks any capacity to regenerate following injury. The vast majority of our understanding of cardiac regeneration is based on research in young animals. Research in aged individuals is rare. This is unfortunate as aging induces many changes in the heart. The first part of this review covers the main technologies being pursued in the cardiac regeneration field and how they are impacted by the aging processes. The second part of the review covers the significant amount of aging-related research that could be used to aid cardiac regeneration. Finally, a perspective is provided to suggest how cardiac regenerative technologies can be improved by addressing aging-related effects.
Collapse
Affiliation(s)
- Iqra Anwar
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Xinghua Wang
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
12
|
Assayag E, Gurt I, Cohen-Kfir E, Stokar J, Zwas DR, Dresner-Pollak R. Cardiac Left Ventricular miRNA-26a Is Downregulated in Ovariectomized Mice, Upregulated upon 17-Beta Estradiol Replacement, and Inversely Correlated with Collagen Type 1 Gene Expression. Int J Mol Sci 2024; 25:5153. [PMID: 38791190 PMCID: PMC11121197 DOI: 10.3390/ijms25105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is more prevalent in post- compared to pre-menopausal women. The underlying mechanisms are not fully understood. Data in humans is confounded by age and co-morbidities. We investigated the effects of ovariectomy and estrogen replacement on the left ventricular (LV) gene expression of pro-inflammatory and pro-fibrotic factors involved in HFpEF and putative regulating miRNAs. Nine-week-old C57BL/6 female mice were subjected to ovariectomy (OVX) or SHAM operation. OVX and SHAM groups were sacrificed 1-, 6-, and 12-weeks post-surgery (T1/SHAM; T1/OVX; T6/SHAM; T6/OVX, T12/SHAM). 17β-estradiol (E2) or vehicle (VEH) was then administered to the OVX groups for 6 weeks (T12/OVX/E2; T12/OVX/VEH). Another SHAM group was sacrificed 12-weeks post-surgery. RNA and miRNAs were extracted from the LV apex. An early 3-fold increase in the gene expression of IL-1α, IL-6, Mmp9, Mmp12, Col1α1, and Col3α1 was observed one-week post-surgery in T1/OVX vs. T1/SHAM, but not at later time points. miRNA-26a was lower in T1/OVX vs. T1/SHAM and was inversely correlated with Col1α1 and Col3α1 expression 1-week post-surgery (r = -0.79 p < 0.001; r = -0.6 p = 0.007). miRNAs-26a, 29b, and 133a were significantly higher, while Col1α1, Col3α1, IL-1α, IL-6, Tnfα, Mmp12, and FasL gene expression was significantly lower in E2- compared to vehicle-treated OVX mice. miRNA-26a was inversely correlated with Col3α1 in T12/OVX/ E2 (r = -0.56 p = 0.02). OVX triggered an early increase in the gene expression of pro-inflammatory and pro-fibrotic factors, highlighting the importance of the early phase post-cessation of ovarian function. E2 replacement therapy, even if it was not immediately initiated after OVX, reversed these unfavorable changes and upregulated cardiac miRNA-26a, previously unknown to be affected by menopausal status.
Collapse
Affiliation(s)
- Elishai Assayag
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.A.); (I.G.); (E.C.-K.)
| | - Irina Gurt
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.A.); (I.G.); (E.C.-K.)
| | - Einav Cohen-Kfir
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.A.); (I.G.); (E.C.-K.)
| | - Joshua Stokar
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.A.); (I.G.); (E.C.-K.)
| | - Donna R. Zwas
- Linda Joy Pollin Cardiovascular Wellness Center for Women, Division of Cardiology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Rivka Dresner-Pollak
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.A.); (I.G.); (E.C.-K.)
| |
Collapse
|
13
|
Lim B, Domsch K, Mall M, Lohmann I. Canalizing cell fate by transcriptional repression. Mol Syst Biol 2024; 20:144-161. [PMID: 38302581 PMCID: PMC10912439 DOI: 10.1038/s44320-024-00014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024] Open
Abstract
Precision in the establishment and maintenance of cellular identities is crucial for the development of multicellular organisms and requires tight regulation of gene expression. While extensive research has focused on understanding cell type-specific gene activation, the complex mechanisms underlying the transcriptional repression of alternative fates are not fully understood. Here, we provide an overview of the repressive mechanisms involved in cell fate regulation. We discuss the molecular machinery responsible for suppressing alternative fates and highlight the crucial role of sequence-specific transcription factors (TFs) in this process. Depletion of these TFs can result in unwanted gene expression and increased cellular plasticity. We suggest that these TFs recruit cell type-specific repressive complexes to their cis-regulatory elements, enabling them to modulate chromatin accessibility in a context-dependent manner. This modulation effectively suppresses master regulators of alternative fate programs and their downstream targets. The modularity and dynamic behavior of these repressive complexes enables a limited number of repressors to canalize and maintain major and minor cell fate decisions at different stages of development.
Collapse
Affiliation(s)
- Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Katrin Domsch
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| | - Ingrid Lohmann
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany.
| |
Collapse
|
14
|
Keshri R, Detraux D, Phal A, McCurdy C, Jhajharia S, Chan TC, Mathieu J, Ruohola-Baker H. Next-generation direct reprogramming. Front Cell Dev Biol 2024; 12:1343106. [PMID: 38371924 PMCID: PMC10869521 DOI: 10.3389/fcell.2024.1343106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024] Open
Abstract
Tissue repair is significantly compromised in the aging human body resulting in critical disease conditions (such as myocardial infarction or Alzheimer's disease) and imposing a tremendous burden on global health. Reprogramming approaches (partial or direct reprogramming) are considered fruitful in addressing this unmet medical need. However, the efficacy, cellular maturity and specific targeting are still major challenges of direct reprogramming. Here we describe novel approaches in direct reprogramming that address these challenges. Extracellular signaling pathways (Receptor tyrosine kinases, RTK and Receptor Serine/Theronine Kinase, RSTK) and epigenetic marks remain central in rewiring the cellular program to determine the cell fate. We propose that modern protein design technologies (AI-designed minibinders regulating RTKs/RSTK, epigenetic enzymes, or pioneer factors) have potential to solve the aforementioned challenges. An efficient transdifferentiation/direct reprogramming may in the future provide molecular strategies to collectively reduce aging, fibrosis, and degenerative diseases.
Collapse
Affiliation(s)
- Riya Keshri
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Damien Detraux
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ashish Phal
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| | - Clara McCurdy
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Samriddhi Jhajharia
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Tung Ching Chan
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
15
|
He X, Dutta S, Liang J, Paul C, Huang W, Xu M, Chang V, Ao I, Wang Y. Direct cellular reprogramming techniques for cardiovascular regenerative therapeutics. Can J Physiol Pharmacol 2024; 102:1-13. [PMID: 37903419 DOI: 10.1139/cjpp-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cardiovascular diseases remain a leading cause of hospitalization affecting approximately 38 million people worldwide. While pharmacological and revascularization techniques can improve the patient's survival and quality of life, they cannot help reversing myocardial infarction injury and heart failure. Direct reprogramming of somatic cells to cardiomyocyte and cardiac progenitor cells offers a new approach to cellular reprogramming and paves the way for translational regenerative medicine. Direct reprogramming can bypass the pluripotent stage with the potential advantage of non-immunogenic cell products, reduced carcinogenic risk, and no requirement for embryonic tissue. The process of directly reprogramming cardiac cells was first achieved through the overexpression of transcription factors such as GATA4, MEF2C, and TBX5. However, over the past decade, significant work has been focused on enhancing direct reprogramming using a mixture of transcription factors, microRNAs, and small molecules to achieve cardiac cell fate. This review discusses the evolution of direct reprogramming, recent progress in achieving efficient cardiac cell fate conversion, and describes the reprogramming mechanisms at a molecular level. We also explore various viral and non-viral delivery methods currently being used to aid in the delivery of reprogramming factors to improve efficiency. However, further studies will be needed to overcome molecular and epigenetic barriers to successfully achieve translational cardiac regenerative therapeutics.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Suchandrima Dutta
- Department of Internal MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Meifeng Xu
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Vivian Chang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Ian Ao
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
16
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
17
|
Wang Q, Spurlock B, Liu J, Qian L. Fibroblast Reprogramming in Cardiac Repair. JACC Basic Transl Sci 2024; 9:145-160. [PMID: 38362341 PMCID: PMC10864899 DOI: 10.1016/j.jacbts.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 02/17/2024]
Abstract
Cardiovascular disease is one of the major causes of death worldwide. Limited proliferative capacity of adult mammalian cardiomyocytes has prompted researchers to exploit regenerative therapy after myocardial injury, such as myocardial infarction, to attenuate heart dysfunction caused by such injury. Direct cardiac reprogramming is a recently emerged promising approach to repair damaged myocardium by directly converting resident cardiac fibroblasts into cardiomyocyte-like cells. The achievement of in vivo direct reprogramming of fibroblasts has been shown, by multiple laboratories independently, to improve cardiac function and mitigate fibrosis post-myocardial infarction, which holds great potential for clinical application. There have been numerous pieces of valuable work in both basic and translational research to enhance our understanding and continued refinement of direct cardiac reprogramming in recent years. However, there remain many challenges to overcome before we can truly take advantage of this technique to treat patients with ischemic cardiac diseases. Here, we review recent progress of fibroblast reprogramming in cardiac repair, including the optimization of several reprogramming strategies, mechanistic exploration, and translational efforts, and we make recommendations for future research to further understand and translate direct cardiac reprogramming from bench to bedside. Challenges relating to these efforts will also be discussed.
Collapse
Affiliation(s)
- Qiaozi Wang
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian Spurlock
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Huang H, Huang GN, Payumo AY. Two decades of heart regeneration research: Cardiomyocyte proliferation and beyond. WIREs Mech Dis 2024; 16:e1629. [PMID: 37700522 PMCID: PMC10840678 DOI: 10.1002/wsbm.1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
Interest in vertebrate cardiac regeneration has exploded over the past two decades since the discovery that adult zebrafish are capable of complete heart regeneration, contrasting the limited regenerative potential typically observed in adult mammalian hearts. Undercovering the mechanisms that both support and limit cardiac regeneration across the animal kingdom may provide unique insights in how we may unlock this capacity in adult humans. In this review, we discuss key discoveries in the heart regeneration field over the last 20 years. Initially, seminal findings revealed that pre-existing cardiomyocytes are the major source of regenerated cardiac muscle, drawing interest into the intrinsic mechanisms regulating cardiomyocyte proliferation. Moreover, recent studies have identified the importance of intercellular interactions and physiological adaptations, which highlight the vast complexity of the cardiac regenerative process. Finally, we compare strategies that have been tested to increase the regenerative capacity of the adult mammalian heart. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Herman Huang
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Guo N. Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Y. Payumo
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| |
Collapse
|
19
|
Inagaki M. Cell Reprogramming and Differentiation Utilizing Messenger RNA for Regenerative Medicine. J Dev Biol 2023; 12:1. [PMID: 38535481 PMCID: PMC10971469 DOI: 10.3390/jdb12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 06/16/2024] Open
Abstract
The COVID-19 pandemic generated interest in the medicinal applications of messenger RNA (mRNA). It is expected that mRNA will be applied, not only to vaccines, but also to regenerative medicine. The purity of mRNA is important for its medicinal applications. However, the current mRNA synthesis techniques exhibit problems, including the contamination of undesired 5'-uncapped mRNA and double-stranded RNA. Recently, our group developed a completely capped mRNA synthesis technology that contributes to the progress of mRNA research. The introduction of chemically modified nucleosides, such as N1-methylpseudouridine and 5-methylcytidine, has been reported by Karikó and Weissman, opening a path for the practical application of mRNA for vaccines and regenerative medicine. Yamanaka reported the production of induced pluripotent stem cells (iPSCs) by introducing four types of genes using a retrovirus vector. iPSCs are widely used for research on regenerative medicine and the preparation of disease models to screen new drug candidates. Among the Yamanaka factors, Klf4 and c-Myc are oncogenes, and there is a risk of tumor development if these are integrated into genomic DNA. Therefore, regenerative medicine using mRNA, which poses no risk of genome insertion, has attracted attention. In this review, the author summarizes techniques for synthesizing mRNA and its application in regenerative medicine.
Collapse
Affiliation(s)
- Masahito Inagaki
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
20
|
Samidurai A, Olex AL, Ockaili R, Kraskauskas D, Roh SK, Kukreja RC, Das A. Integrated Analysis of lncRNA-miRNA-mRNA Regulatory Network in Rapamycin-Induced Cardioprotection against Ischemia/Reperfusion Injury in Diabetic Rabbits. Cells 2023; 12:2820. [PMID: 38132140 PMCID: PMC10742118 DOI: 10.3390/cells12242820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibition of mammalian target of rapamycin (mTOR) with rapamycin (RAPA) provides protection against myocardial ischemia/reperfusion (I/R) injury in diabetes. Since interactions between transcripts, including long non-coding RNA (lncRNA), microRNA(miRNA) and mRNA, regulate the pathophysiology of disease, we performed unbiased miRarray profiling in the heart of diabetic rabbits following I/R injury with/without RAPA treatment to identify differentially expressed (DE) miRNAs and their predicted targets of lncRNAs/mRNAs. Results showed that among the total of 806 unique miRNAs targets, 194 miRNAs were DE after I/R in diabetic rabbits. Specifically, eight miRNAs, including miR-199a-5p, miR-154-5p, miR-543-3p, miR-379-3p, miR-379-5p, miR-299-5p, miR-140-3p, and miR-497-5p, were upregulated and 10 miRNAs, including miR-1-3p, miR-1b, miR-29b-3p, miR-29c-3p, miR-30e-3p, miR-133c, miR-196c-3p, miR-322-5p, miR-499-5p, and miR-672-5p, were significantly downregulated after I/R injury. Interestingly, RAPA treatment significantly reversed these changes in miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated the participation of miRNAs in the regulation of several signaling pathways related to I/R injury, including MAPK signaling and apoptosis. Furthermore, in diabetic hearts, the expression of lncRNAs, HOTAIR, and GAS5 were induced after I/R injury, but RAPA suppressed these lncRNAs. In contrast, MALAT1 was significantly reduced following I/R injury, with the increased expression of miR-199a-5p and suppression of its target, the anti-apoptotic protein Bcl-2. RAPA recovered MALAT1 expression with its sponging effect on miR-199-5p and restoration of Bcl-2 expression. The identification of novel targets from the transcriptome analysis in RAPA-treated diabetic hearts could potentially lead to the development of new therapeutic strategies for diabetic patients with myocardial infarction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Amy L. Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Sean K. Roh
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Rakesh C. Kukreja
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| |
Collapse
|
21
|
Jiang J, Ni L, Zhang X, Chatterjee E, Lehmann HI, Li G, Xiao J. Keeping the Heart Healthy: The Role of Exercise in Cardiac Repair and Regeneration. Antioxid Redox Signal 2023; 39:1088-1107. [PMID: 37132606 DOI: 10.1089/ars.2023.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Significance: Heart failure is often accompanied by a decrease in the number of cardiomyocytes. Although the adult mammalian hearts have limited regenerative capacity, the rate of regeneration is extremely low and decreases with age. Exercise is an effective means to improve cardiovascular function and prevent cardiovascular diseases. However, the molecular mechanisms of how exercise acts on cardiomyocytes are still not fully elucidated. Therefore, it is important to explore the role of exercise in cardiomyocytes and cardiac regeneration. Recent Advances: Recent advances have shown that the effects of exercise on cardiomyocytes are critical for cardiac repair and regeneration. Exercise can induce cardiomyocyte growth by increasing the size and number. It can induce physiological cardiomyocyte hypertrophy, inhibit cardiomyocyte apoptosis, and promote cardiomyocyte proliferation. In this review, we have discussed the molecular mechanisms and recent studies of exercise-induced cardiac regeneration, with a focus on its effects on cardiomyocytes. Critical Issues: There is no effective way to promote cardiac regeneration. Moderate exercise can keep the heart healthy by encouraging adult cardiomyocytes to survive and regenerate. Therefore, exercise could be a promising tool for stimulating the regenerative capability of the heart and keeping the heart healthy. Future Directions: Although exercise is an important measure to promote cardiomyocyte growth and subsequent cardiac regeneration, more studies are needed on how to do beneficial exercise and what factors are involved in cardiac repair and regeneration. Thus, it is important to clarify the mechanisms, pathways, and other critical factors involved in the exercise-mediated cardiac repair and regeneration. Antioxid. Redox Signal. 39, 1088-1107.
Collapse
Affiliation(s)
- Jizong Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Lingyan Ni
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xinxin Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Emeli Chatterjee
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - H Immo Lehmann
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
22
|
Xie Y, Van Handel B, Qian L, Ardehali R. Recent advances and future prospects in direct cardiac reprogramming. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1148-1158. [PMID: 39196156 DOI: 10.1038/s44161-023-00377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 08/29/2024]
Abstract
Cardiovascular disease remains a leading cause of death worldwide despite important advances in modern medical and surgical therapies. As human adult cardiomyocytes have limited regenerative ability, cardiomyocytes lost after myocardial infarction are replaced by fibrotic scar tissue, leading to cardiac dysfunction and heart failure. To replace lost cardiomyocytes, a promising approach is direct cardiac reprogramming, in which cardiac fibroblasts are transdifferentiated into induced cardiomyocyte-like cells (iCMs). Here we review cardiac reprogramming cocktails (including transcription factors, microRNAs and small molecules) that mediate iCM generation. We also highlight mechanistic studies exploring the barriers to and facilitators of this process. We then review recent progress in iCM reprogramming, with a focus on single-cell '-omics' research. Finally, we discuss obstacles to clinical application.
Collapse
Affiliation(s)
- Yifang Xie
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ben Van Handel
- Department of Orthopedic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reza Ardehali
- Section of Cardiology, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA.
- The Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
23
|
Zhou H, Yang J, Srinath C, Zeng A, Wu I, Leon EC, Qureshi TN, Reid CA, Nettesheim ER, Xu E, Duclos Z, Mohamed TMA, Farshidfar F, Fejes A, Liu J, Jones S, Feathers C, Chung TW, Jing F, Prince WS, Lin J, Yu P, Srivastava D, Hoey T, Ivey KN, Lombardi LM. Improved Cardiac Function in Postischemic Rats Using an Optimized Cardiac Reprogramming Cocktail Delivered in a Single Novel Adeno-Associated Virus. Circulation 2023; 148:1099-1112. [PMID: 37602409 DOI: 10.1161/circulationaha.122.061542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Cardiac reprogramming is a technique to directly convert nonmyocytes into myocardial cells using genes or small molecules. This intervention provides functional benefit to the rodent heart when delivered at the time of myocardial infarction or activated transgenically up to 4 weeks after myocardial infarction. Yet, several hurdles have prevented the advancement of cardiac reprogramming for clinical use. METHODS Through a combination of screening and rational design, we identified a cardiac reprogramming cocktail that can be encoded in a single adeno-associated virus. We also created a novel adeno-associated virus capsid that can transduce cardiac fibroblasts more efficiently than available parental serotypes by mutating posttranslationally modified capsid residues. Because a constitutive promoter was needed to drive high expression of these cell fate-altering reprogramming factors, we included binding sites to a cardiomyocyte-restricted microRNA within the 3' untranslated region of the expression cassette that limits expression to nonmyocytes. After optimizing this expression cassette to reprogram human cardiac fibroblasts into induced cardiomyocyte-like cells in vitro, we also tested the ability of this capsid/cassette combination to confer functional benefit in acute mouse myocardial infarction and chronic rat myocardial infarction models. RESULTS We demonstrated sustained, dose-dependent improvement in cardiac function when treating a rat model 2 weeks after myocardial infarction, showing that cardiac reprogramming, when delivered in a single, clinically relevant adeno-associated virus vector, can support functional improvement in the postremodeled heart. This benefit was not observed with GFP (green fluorescent protein) or a hepatocyte reprogramming cocktail and was achieved even in the presence of immunosuppression, supporting myocyte formation as the underlying mechanism. CONCLUSIONS Collectively, these results advance the application of cardiac reprogramming gene therapy as a viable therapeutic approach to treat chronic heart failure resulting from ischemic injury.
Collapse
Affiliation(s)
- Huanyu Zhou
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Jin Yang
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Chetan Srinath
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Aliya Zeng
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Iris Wu
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Elena C Leon
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Tawny Neal Qureshi
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Christopher A Reid
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Emily R Nettesheim
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Emma Xu
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Zoe Duclos
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Tamer M A Mohamed
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Farshad Farshidfar
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Anthony Fejes
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Jun Liu
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Samantha Jones
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Charles Feathers
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Tae Won Chung
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Frank Jing
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - William S Prince
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - JianMin Lin
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Pengzhi Yu
- Gladstone Institutes, San Francisco, CA (P.Y., D.S.)
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA (P.Y., D.S.)
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (D.S.)
- Division of Cardiology, Department of Pediatrics, School of Medicine (D.S.), University of California San Francisco
- Department of Biochemistry and Biophysics (D.S.), University of California San Francisco
| | - Timothy Hoey
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Kathryn N Ivey
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Laura M Lombardi
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| |
Collapse
|
24
|
Dahiya N, Kaur M, Singh V. Potential roles of circulatory microRNAs in the onset and progression of renal and cardiac diseases: a focussed review for clinicians. Acta Cardiol 2023; 78:863-877. [PMID: 37318070 DOI: 10.1080/00015385.2023.2221150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
The signalling mechanisms involving the kidney and heart are a niche of networks causing pathological conditions inducing inflammation, reactive oxidative species, cell apoptosis, and organ dysfunction during the onset of clinical complications. The clinical manifestation of the kidney and heart depends on various biochemical processes that influence organ dysfunction coexistence through circulatory networks, which hold utmost importance. The cells of both organs also influence remote communication, and evidence states that it may be explicitly by circulatory small noncoding RNAs, i.e. microRNAs (miRNAs). Recent developments target miRNAs as marker panels for disease diagnosis and prognosis. Circulatory miRNAs expressed in renal and cardiac disease can reveal relevant information about the niche of networks and gene transcription and regulated networks. In this review, we discuss the pertinent roles of identified circulatory miRNAs regulating signal transduction pathways critical in the onset of renal and cardiac disease, which can hold promising future targets for clinical diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Neha Dahiya
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Manpreet Kaur
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
25
|
Romero-Tejeda M, Fonoudi H, Weddle CJ, DeKeyser JM, Lenny B, Fetterman KA, Magdy T, Sapkota Y, Epting CL, Burridge PW. A novel transcription factor combination for direct reprogramming to a spontaneously contracting human cardiomyocyte-like state. J Mol Cell Cardiol 2023; 182:30-43. [PMID: 37421991 PMCID: PMC10495191 DOI: 10.1016/j.yjmcc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
The reprogramming of somatic cells to a spontaneously contracting cardiomyocyte-like state using defined transcription factors has proven successful in mouse fibroblasts. However, this process has been less successful in human cells, thus limiting the potential clinical applicability of this technology in regenerative medicine. We hypothesized that this issue is due to a lack of cross-species concordance between the required transcription factor combinations for mouse and human cells. To address this issue, we identified novel transcription factor candidates to induce cell conversion between human fibroblasts and cardiomyocytes, using the network-based algorithm Mogrify. We developed an automated, high-throughput method for screening transcription factor, small molecule, and growth factor combinations, utilizing acoustic liquid handling and high-content kinetic imaging cytometry. Using this high-throughput platform, we screened the effect of 4960 unique transcription factor combinations on direct conversion of 24 patient-specific primary human cardiac fibroblast samples to cardiomyocytes. Our screen revealed the combination of MYOCD, SMAD6, and TBX20 (MST) as the most successful direct reprogramming combination, which consistently produced up to 40% TNNT2+ cells in just 25 days. Addition of FGF2 and XAV939 to the MST cocktail resulted in reprogrammed cells with spontaneous contraction and cardiomyocyte-like calcium transients. Gene expression profiling of the reprogrammed cells also revealed the expression of cardiomyocyte associated genes. Together, these findings indicate that cardiac direct reprogramming in human cells can be achieved at similar levels to those attained in mouse fibroblasts. This progress represents a step forward towards the clinical application of the cardiac direct reprogramming approach.
Collapse
Affiliation(s)
- Marisol Romero-Tejeda
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Carly J Weddle
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Lenny
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - Conrad L Epting
- Departments of Pediatrics and Pathology, Northwestern University and Ann & Robert H.Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
26
|
Aalikhani M, Alikhani M, Khajeniazi S, Khosravi A, Bazi Z, Kianmehr A. Positive effect of miR-2392 on fibroblast to cardiomyocyte-like cell fate transition: an in silico and in vitro study. Gene 2023; 879:147598. [PMID: 37393060 DOI: 10.1016/j.gene.2023.147598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION Somatic cell fate transition is now gained great importance in tissue regeneration. Currently, research is focused on heart tissue regeneration by reprogramming diverse cells into cardiomyocyte-like cells. Here, we examined the possible effect of miRNAs on the transdifferentiation of fibroblasts into cardiomyocyte-like cells. METHODS First heart-specific miRNAs were identified by comparing the gene expression profiles of heart tissue to other body tissues using bioinformatic techniques. After identifying heart-specific miRNAs, their cellular and molecular functions were studied using the miRWalk and miRBase databases. Then the candidate miRNA was cloned into a lentiviral vector. Following, human dermal fibroblasts were cultured and treated with compounds forskolin, valproic acid, and CHIR99021. After 24 h, the lentivector harboring miRNA gene was transfected into the cells to initiate the transdifferentiation process. Finally, after a two-week treatment period, the efficiency of transdifferentiation was examined by inspecting the appearance of the cells and measuring the expression levels of cardiac genes and proteins using RT-qPCR and immunocytochemistry techniques. RESULTS Nine miRNAs were identified with higher expression in the heart. The miR-2392 was nominated as the candidate miRNA due to its function and specific expression in the heart. This miRNA has a direct connection with genes involved in cell growth and differentiation; e.g., MAPK and Wnt signaling pathways. According to in vitro results cardiac genes and proteins demonstrated an increase in expression in the fibroblasts that simultaneously received the three chemicals and miR-2392. CONCLUSION Considering the ability of miR-2392 to induce the expression of cardiac genes and proteins in fibroblast cells, it can induce fibroblasts to differentiate into cardiomyocyte-like cells. Therefore, miR-2392 could be further optimized for cardiomyocyte regeneration, tissue repair, and drug design studies.
Collapse
Affiliation(s)
- Mahdi Aalikhani
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Alikhani
- Department of Cardiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safoura Khajeniazi
- Department of Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Bazi
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Anvarsadat Kianmehr
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
27
|
Perveen S, Vanni R, Lo Iacono M, Rastaldo R, Giachino C. Direct Reprogramming of Resident Non-Myocyte Cells and Its Potential for In Vivo Cardiac Regeneration. Cells 2023; 12:1166. [PMID: 37190075 PMCID: PMC10136631 DOI: 10.3390/cells12081166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cardiac diseases are the foremost cause of morbidity and mortality worldwide. The heart has limited regenerative potential; therefore, lost cardiac tissue cannot be replenished after cardiac injury. Conventional therapies are unable to restore functional cardiac tissue. In recent decades, much attention has been paid to regenerative medicine to overcome this issue. Direct reprogramming is a promising therapeutic approach in regenerative cardiac medicine that has the potential to provide in situ cardiac regeneration. It consists of direct cell fate conversion of one cell type into another, avoiding transition through an intermediary pluripotent state. In injured cardiac tissue, this strategy directs transdifferentiation of resident non-myocyte cells (NMCs) into mature functional cardiac cells that help to restore the native tissue. Over the years, developments in reprogramming methods have suggested that regulation of several intrinsic factors in NMCs can help to achieve in situ direct cardiac reprogramming. Among NMCs, endogenous cardiac fibroblasts have been studied for their potential to be directly reprogrammed into both induced cardiomyocytes and induced cardiac progenitor cells, while pericytes can transdifferentiate towards endothelial cells and smooth muscle cells. This strategy has been indicated to improve heart function and reduce fibrosis after cardiac injury in preclinical models. This review summarizes the recent updates and progress in direct cardiac reprogramming of resident NMCs for in situ cardiac regeneration.
Collapse
Affiliation(s)
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | | | | | | |
Collapse
|
28
|
Garry GA, Olson EN. Reprogramming of cardiac cell fate as a therapeutic strategy for ischemic heart disease. J Mol Cell Cardiol 2023; 179:2-6. [PMID: 36997058 DOI: 10.1016/j.yjmcc.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Direct reprogramming of resident cardiac fibroblasts to induced cardiomyocytes is an attractive therapeutic strategy to restore function and remuscularize the injured heart. The cardiac transcription factors Gata4, Mef2c, and Tbx5 have been the mainstay of direct cardiac reprogramming strategies for the past decade. Yet, recent discoveries have identified alternative epigenetic factors capable of reprogramming human cells in the absence of these canonical factors. Further, single-cell genomics evaluating cellular maturation and epigenetics in the setting of injury and heart failure models following reprogramming have continued to inform the mechanistic underpinnings of this process and point toward future areas of discovery for the field. These discoveries and others covered in this review have provided complementary approaches that further enhance the effectiveness of reprogramming as a means of promoting cardiac regeneration following myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Glynnis A Garry
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Eric N Olson
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
29
|
Missinato MA, Murphy S, Lynott M, Yu MS, Kervadec A, Chang YL, Kannan S, Loreti M, Lee C, Amatya P, Tanaka H, Huang CT, Puri PL, Kwon C, Adams PD, Qian L, Sacco A, Andersen P, Colas AR. Conserved transcription factors promote cell fate stability and restrict reprogramming potential in differentiated cells. Nat Commun 2023; 14:1709. [PMID: 36973293 PMCID: PMC10043290 DOI: 10.1038/s41467-023-37256-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Defining the mechanisms safeguarding cell fate identity in differentiated cells is crucial to improve 1) - our understanding of how differentiation is maintained in healthy tissues or altered in a disease state, and 2) - our ability to use cell fate reprogramming for regenerative purposes. Here, using a genome-wide transcription factor screen followed by validation steps in a variety of reprogramming assays (cardiac, neural and iPSC in fibroblasts and endothelial cells), we identified a set of four transcription factors (ATF7IP, JUNB, SP7, and ZNF207 [AJSZ]) that robustly opposes cell fate reprogramming in both lineage and cell type independent manners. Mechanistically, our integrated multi-omics approach (ChIP, ATAC and RNA-seq) revealed that AJSZ oppose cell fate reprogramming by 1) - maintaining chromatin enriched for reprogramming TF motifs in a closed state and 2) - downregulating genes required for reprogramming. Finally, KD of AJSZ in combination with MGT overexpression, significantly reduced scar size and improved heart function by 50%, as compared to MGT alone post-myocardial infarction. Collectively, our study suggests that inhibition of barrier to reprogramming mechanisms represents a promising therapeutic avenue to improve adult organ function post-injury.
Collapse
Affiliation(s)
- Maria A Missinato
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sean Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Michael S Yu
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yu-Ling Chang
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Christopher Lee
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Prashila Amatya
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hiroshi Tanaka
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chun-Teng Huang
- Viral Vector Core Facility Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Peter D Adams
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
30
|
Kuang Z, Wu J, Tan Y, Zhu G, Li J, Wu M. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules 2023; 13:biom13030568. [PMID: 36979503 PMCID: PMC10046787 DOI: 10.3390/biom13030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is widely applied to the treatment of cancer; however, DOX-induced cardiotoxicity (DIC) limits its clinical therapeutic utility. However, it is difficult to monitor and detect DIC at an early stage using conventional detection methods. Thus, sensitive, accurate, and specific methods of diagnosis and treatment are important in clinical practice. MicroRNAs (miRNAs) belong to non-coding RNAs (ncRNAs) and are stable and easy to detect. Moreover, miRNAs are expected to become biomarkers and therapeutic targets for DIC; thus, there are currently many studies focusing on the role of miRNAs in DIC. In this review, we list the prominent studies on the diagnosis and treatment of miRNAs in DIC, explore the feasibility and difficulties of using miRNAs as diagnostic biomarkers and therapeutic targets, and provide recommendations for future research.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Wu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Tan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
31
|
Romero-Tejeda M, Fonoudi H, Weddle CJ, DeKeyser JM, Lenny B, Fetterman KA, Magdy T, Sapkota Y, Epting C, Burridge PW. A Novel Transcription Factor Combination for Direct Reprogramming to a Spontaneously Contracting Human Cardiomyocyte-like State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532629. [PMID: 36993577 PMCID: PMC10055062 DOI: 10.1101/2023.03.14.532629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED The reprogramming of somatic cells to a spontaneously contracting cardiomyocyte-like state using defined transcription factors has proven successful in mouse fibroblasts. However, this process has been less successful in human cells, thus limiting the potential clinical applicability of this technology in regenerative medicine. We hypothesized that this issue is due to a lack of cross-species concordance between the required transcription factor combinations for mouse and human cells. To address this issue, we identified novel transcription factor candidates to induce cell conversion between human fibroblasts and cardiomyocytes, using the network-based algorithm Mogrify. We developed an automated, high-throughput method for screening transcription factor, small molecule, and growth factor combinations, utilizing acoustic liquid handling and high-content kinetic imaging cytometry. Using this high-throughput platform, we screened the effect of 4,960 unique transcription factor combinations on direct conversion of 24 patient-specific primary human cardiac fibroblast samples to cardiomyocytes. Our screen revealed the combination of MYOCD , SMAD6 , and TBX20 (MST) as the most successful direct reprogramming combination, which consistently produced up to 40% TNNT2 + cells in just 25 days. Addition of FGF2 and XAV939 to the MST cocktail resulted in reprogrammed cells with spontaneous contraction and cardiomyocyte-like calcium transients. Gene expression profiling of the reprogrammed cells also revealed the expression of cardiomyocyte associated genes. Together, these findings indicate that cardiac direct reprogramming in human cells can be achieved at similar levels to those attained in mouse fibroblasts. This progress represents a step forward towards the clinical application of the cardiac direct reprogramming approach. HIGHLIGHTS Using network-based algorithm Mogrify, acoustic liquid handling, and high-content kinetic imaging cytometry we screened the effect of 4,960 unique transcription factor combinations. Using 24 patient-specific human fibroblast samples we identified the combination of MYOCD , SMAD6 , and TBX20 (MST) as the most successful direct reprogramming combination. MST cocktail results in reprogrammed cells with spontaneous contraction, cardiomyocyte-like calcium transients, and expression of cardiomyocyte associated genes.
Collapse
|
32
|
Yamada Y, Sadahiro T, Ieda M. Development of direct cardiac reprogramming for clinical applications. J Mol Cell Cardiol 2023; 178:1-8. [PMID: 36918145 DOI: 10.1016/j.yjmcc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The incidence of cardiovascular diseases is increasing worldwide, and cardiac regenerative therapy has great potential as a new treatment strategy, especially for ischemic heart disease. Direct cardiac reprogramming is a promising new cardiac regenerative therapy that uses defined factors to induce transdifferentiation of endogenous cardiac fibroblasts (CFs) into induced cardiomyocyte-like cells (iCMs). In vivo reprogramming is expected to restore lost cardiac function without necessitating cardiac transplantation by converting endogenous CFs that exist abundantly in cardiac tissues directly into iCMs. Indeed, we and other groups have demonstrated that in vivo cardiac reprogramming improves cardiac contractile function and reduces scar area after acute myocardial infarction (MI). Recently, we demonstrated that in vivo cardiac reprogramming is an innovative cardiac regenerative therapy that not only regenerates the myocardium, but also reverses fibrosis by inducing the quiescence of pro-fibrotic fibroblasts, thereby improving heart failure in chronic MI. In this review, we summarize the recent progresses in in vivo cardiac reprogramming, and discuss its prospects for future clinical applications and the challenges of direct human reprogramming, which has been a longstanding issue.
Collapse
Affiliation(s)
- Yu Yamada
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan.
| |
Collapse
|
33
|
Affiliation(s)
- Glynnis A. Garry
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
34
|
Haridhasapavalan KK, Borthakur A, Thummer RP. Direct Cardiac Reprogramming: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:1-18. [PMID: 36662416 DOI: 10.1007/5584_2022_760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in cellular reprogramming articulated the path for direct cardiac lineage conversion, bypassing the pluripotent state. Direct cardiac reprogramming attracts major attention because of the low or nil regenerative ability of cardiomyocytes, resulting in permanent cell loss in various heart diseases. In the field of cardiology, balancing this loss of cardiomyocytes was highly challenging, even in the modern medical world. Soon after the discovery of cell reprogramming, direct cardiac reprogramming also became a promising alternative for heart regeneration. This review mainly focused on the various direct cardiac reprogramming approaches (integrative and non-integrative) for the derivation of induced autologous cardiomyocytes. It also explains the advancements in cardiac reprogramming over the decade with the pros and cons of each approach. Further, the review highlights the importance of clinically relevant (non-integrative) approaches and their challenges for the prospective applications for personalized medicine. Apart from direct cardiac reprogramming, it also discusses the other strategies for generating cardiomyocytes from different sources. The understanding of these strategies could pave the way for the efficient generation of integration-free functional autologous cardiomyocytes through direct cardiac reprogramming for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Atreyee Borthakur
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
35
|
Marzoog BA. Transcription Factors - the Essence of Heart Regeneration: A Potential Novel Therapeutic Strategy. Curr Mol Med 2023; 23:232-238. [PMID: 35170408 DOI: 10.2174/1566524022666220216123650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
Myocardial cell injury and following sequelae are the primary reasons for death globally. Unfortunately, myocardiocytes in adults have limited regeneration capacity. Therefore, the generation of neo myocardiocytes from non-myocardial cells is a surrogate strategy. Transcription factors (TFs) can be recruited to achieve this tremendous goal. Transcriptomic analyses have suggested that GATA, Mef2c, and Tbx5 (GMT cocktail) are master TFs to transdifferentiate/reprogram cell linage of fibroblasts, somatic cells, mesodermal cells into myocardiocytes. However, adding MESP1, MYOCD, ESRRG, and ZFPM2 TFs induces the generation of more efficient and physiomorphological features for induced myocardiocytes. Moreover, the same cocktail of transcription factors can induce the proliferation and differentiation of induced/pluripotent stem cells into myocardial cells. Amelioration of impaired myocardial cells involves the activation of healing transcription factors, which are induced by inflammation mediators; IL6, tumor growth factor β, and IL22. Transcription factors regulate the cellular and subcellular physiology of myocardiocytes to include mitotic cell cycling regulation, karyokinesis and cytokinesis, hypertrophic growth, adult sarcomeric contractile protein gene expression, fatty acid metabolism, and mitochondrial biogenesis and maturation. Cell therapy by transcription factors can be applied to cardiogenesis and ameliorating impaired cardiocytes. Transcription factors are the cornerstone in cell differentiation.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- Department of Normal and Pathological Physiology, National Research Mordovia State University, Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, 430005, Russia
| |
Collapse
|
36
|
Direct cardiac reprogramming: basics and future challenges. Mol Biol Rep 2023; 50:865-871. [PMID: 36308583 DOI: 10.1007/s11033-022-07913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Heart failure is the leading cause of morbidity and mortality worldwide and is characterized by reduced cardiac function. Currently, cardiac transplantation therapy is applied for end-stage heart failure, but it is limited by the number of available donors. METHODS AND RESULTS Following an assessment of available literature, a narrative review was conducted to summarizes the current status and challenges of cardiac reprogramming for clinical application. Scientists have developed different regenerative treatment strategies for curing heart failure, including progenitor cell delivery and pluripotent cell delivery. Recently, a novel strategy has emerged that directly reprograms cardiac fibroblast into a functional cardiomyocyte. In this treatment, transcription factors are first identified to reprogram fibroblast into a cardiomyocyte. After that, microRNA and small molecules show great potential to optimize the reprogramming process. Some challenges regarding cell reprogramming in humans are conversion efficiency, virus utilization, immature and heterogenous induced cardiomyocytes, technical reproducibility issues, and physiological effects of depleted fibroblasts on myocardial tissue. CONCLUSION Several strategies have shown positive results in direct cardiac reprogramming. However, direct cardiac reprogramming still needs improvement if it is used as a mainstay therapy in humans, and challenges need to be overcome before cardiac reprogramming can be considered a viable therapeutic strategy. Further advances in cardiac reprogramming studies are needed in cardiac regenerative therapy.
Collapse
|
37
|
Liu M, Liu J, Zhang T, Wang L. Direct cardiac reprogramming: Toward the era of multi-omics analysis. CELL INSIGHT 2022; 1:100058. [PMID: 37193352 PMCID: PMC10120284 DOI: 10.1016/j.cellin.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 05/18/2023]
Abstract
Limited regenerative capacity of adult cardiomyocytes precludes heart repair and regeneration after cardiac injury. Direct cardiac reprograming that converts scar-forming cardiac fibroblasts (CFs) into functional induced-cardiomyocytes (iCMs) offers promising potential to restore heart structure and heart function. Significant advances have been achieved in iCM reprogramming using genetic and epigenetic regulators, small molecules, and delivery strategies. Recent researches on the heterogeneity and reprogramming trajectories elucidated novel mechanisms of iCM reprogramming at single cell level. Here, we review recent progress in iCM reprogramming with a focus on multi-omics (transcriptomic, epigenomic and proteomic) researches to investigate the cellular and molecular machinery governing cell fate conversion. We also highlight the future potential using multi-omics approaches to dissect iCMs conversion for clinal applications.
Collapse
Affiliation(s)
- Mengxin Liu
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Jie Liu
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Tong Zhang
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Li Wang
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
38
|
Ricketts SN, Qian L. The heart of cardiac reprogramming: The cardiac fibroblasts. J Mol Cell Cardiol 2022; 172:90-99. [PMID: 36007393 DOI: 10.1016/j.yjmcc.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide, outpacing pulmonary disease, infectious disease, and all forms of cancer. Myocardial infarction (MI) dominates cardiovascular disease, contributing to four out of five cardiovascular related deaths. Following MI, patients suffer adverse and irreversible myocardial remodeling associated with cardiomyocyte loss and infiltration of fibrotic scar tissue. Current therapies following MI only mitigate the cardiac physiological decline rather than restore damaged myocardium function. Direct cardiac reprogramming is one strategy that has promise in repairing injured cardiac tissue by generating new, functional cardiomyocytes from cardiac fibroblasts (CFs). With the ectopic expression of transcription factors, microRNAs, and small molecules, CFs can be reprogrammed into cardiomyocyte-like cells (iCMs) that display molecular signatures, structures, and contraction abilities similar to endogenous cardiomyocytes. The in vivo induction of iCMs following MI leads to significant reduction in fibrotic cardiac remodeling and improved heart function, indicating reprogramming is a viable option for repairing damaged heart tissue. Recent work has illustrated different methods to understand the mechanisms driving reprogramming, in an effort to improve the efficiency of iCM generation and create an approach translational into clinic. This review will provide an overview of CFs and describe different in vivo reprogramming methods.
Collapse
Affiliation(s)
- Shea N Ricketts
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
39
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
40
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
41
|
Yaping XU, Guotian Y, Dandan J, Jintao D, Xinyi L, Zhikun G. Fibroblast-derived exosomal miRNA-133 promotes cardiomyocyte-like differentiation. Acta Histochem 2022; 124:151931. [PMID: 35930994 DOI: 10.1016/j.acthis.2022.151931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE To investigate the role of exosomal miRNA-133 secreted by cardiac fibroblasts (CFs) in promoting cardiomyocyte differentiation. METHODS Neonatal rat CFs were cultured in vitro, and the cultured CFs were divided into three groups as follows: induction, miRNA-133 high expression, and miRNA-133 inhibition. miRNA-133 was transfected into CFs with lentivirus as a vector. CFs were transfected with the miRNA-133 inhibitor, and the markers of cardiomyocyte were detected through immunofluorescence staining, Western blotting, and real-time quantitative polymerase chain reaction (qRT-PCR) at 3, 8, and 14 days, respectively. The expression levels of cardiac troponin T (cTnT) and cardiac actin (α-actin) were determined, and qRT-PCR was used to detect the expression of miRNA-133 in the fibroblast exosomes. RESULTS CFs subjected to immunofluorescence staining expressed vimentin and discoid domain receptor 2. The exosomes secreted by CFs were observed as small vesicles of 30-100 nm via transmission electron microscopy, and Western blotting was used to detect exosome-specific protein CD63 and CD9 expression. The expression levels of cTnT, α-actin, and exosomal miRNA-133 secreted into the supernatant of the miRNA-133 high-expression group increased gradually at different time points and reached the highest level at 14 days. The expression levels of cTnT, α-actin, and exosome miRNA-133 in the miRNA-133 inhibition group were the lowest. CONCLUSION The exosomal miRNA-133, which is derived from CFs, can promote the differentiation of fibroblasts into cardiomyocyte-like cells.
Collapse
Affiliation(s)
- X U Yaping
- Henan Medical Key Laboratory of Arrhythmia, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan, 450016, PR China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang City, Henan 453003, PR China
| | - Yin Guotian
- Department of Cardiology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang City, Henan 453003, PR China
| | - Jia Dandan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang City, Henan 453003, PR China
| | - Dou Jintao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang City, Henan 453003, PR China
| | - Liu Xinyi
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang City, Henan 453003, PR China
| | - Guo Zhikun
- Henan Medical Key Laboratory of Arrhythmia, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan, 450016, PR China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang City, Henan 453003, PR China.
| |
Collapse
|
42
|
miR-133a-A Potential Target for Improving Cardiac Mitochondrial Health and Regeneration After Injury. J Cardiovasc Pharmacol 2022; 80:187-193. [PMID: 35500168 DOI: 10.1097/fjc.0000000000001279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The various roles of muscle secretory factors and myokines have been well studied, but in recent decades, the role of myocyte-specific microRNAs (myomiRs) has gained momentum. These myomiRs are known to play regulatory roles in muscle health in general, both skeletal muscle and cardiac muscle. In this review, we have focused on the significance of a myomiR termed miR-133a in cardiovascular health. The available literature supports the claim that miR-133a could be helpful in the healing process of muscle tissue after injury. The protective function could be due to its regulatory effect on muscle or stem cell mitochondrial function. In this review, we have shed light on the protective mechanisms offered by miR-133a. Most of the beneficial effects are due to the presence of miR-133a in circulation or tissue-specific expression. We have also reviewed the potential mechanisms by which miR-133a could interact with cell surface receptors and also transcriptional mechanisms by which they offer cardioprotection and regeneration. Understanding these mechanisms will help in finding an ideal strategy to repair cardiac tissue after injury.
Collapse
|
43
|
Tanno B, Novelli F, Leonardi S, Merla C, Babini G, Giardullo P, Kadhim M, Traynor D, Medipally DKR, Meade AD, Lyng FM, Tapio S, Marchetti L, Saran A, Pazzaglia S, Mancuso M. MiRNA-Mediated Fibrosis in the Out-of-Target Heart following Partial-Body Irradiation. Cancers (Basel) 2022; 14:cancers14143463. [PMID: 35884524 PMCID: PMC9323333 DOI: 10.3390/cancers14143463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Recent reports have shown a link between radiation exposure and non-cancer diseases such as radiation-induced heart disease (RIHD). Radiation exposures are often inhomogeneous, and out-of-target effects have been studied in terms of cancer risk, but very few studies have been carried out for non-cancer diseases. Here, the role of miRNAs in the pathogenesis of RIHD was investigated. C57Bl/6J female mice were whole- (WBI) or partial-body-irradiated (PBI) with 2 Gy of X-rays or sham-irradiated (SI). In PBI exposure, the lower third of the mouse body was irradiated, while the upper two-thirds were shielded. From all groups, hearts were collected 15 days or 6 months post-irradiation. The MiRNome analysis at 15 days post-irradiation showed that miRNAs, belonging to the myomiR family, were highly differentially expressed in WBI and PBI mouse hearts compared with SI hearts. Raman spectral data collected 15 days and 6 months post-irradiation showed biochemical differences among SI, WBI and PBI mouse hearts. Fibrosis in WBI and PBI mouse hearts, indicated by the increased deposition of collagen and the overexpression of genes involved in myofibroblast activation, was found 6 months post-irradiation. Using an in vitro co-culture system, involving directly irradiated skeletal muscle and unirradiated ventricular cardiac human cells, we propose the role of miR-1/133a as mediators of the abscopal response, suggesting that miRNA-based strategies could be relevant for limiting tissue-dependent reactions in non-directly irradiated tissues.
Collapse
Affiliation(s)
- Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Correspondence: (B.T.); (M.M.)
| | - Flavia Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Caterina Merla
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Gabriele Babini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Paola Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University (OBU), Oxford OX3 0BP, UK;
| | - Damien Traynor
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Dinesh K. R. Medipally
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Aidan D. Meade
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Fiona M. Lyng
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), Institute of Radiation Biology, D-85764 Neuherberg, Germany;
| | - Luca Marchetti
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Department of Agricultural and Forestry Sciences, Università della Tuscia, 01100 Viterbo, Italy
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Department of Radiation Physics, Guglielmo Marconi University, 00193 Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Correspondence: (B.T.); (M.M.)
| |
Collapse
|
44
|
Ko T, Nomura S. Manipulating Cardiomyocyte Plasticity for Heart Regeneration. Front Cell Dev Biol 2022; 10:929256. [PMID: 35898398 PMCID: PMC9309349 DOI: 10.3389/fcell.2022.929256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023] Open
Abstract
Pathological heart injuries such as myocardial infarction induce adverse ventricular remodeling and progression to heart failure owing to widespread cardiomyocyte death. The adult mammalian heart is terminally differentiated unlike those of lower vertebrates. Therefore, the proliferative capacity of adult cardiomyocytes is limited and insufficient to restore an injured heart. Although current therapeutic approaches can delay progressive remodeling and heart failure, difficulties with the direct replenishment of lost cardiomyocytes results in a poor long-term prognosis for patients with heart failure. However, it has been revealed that cardiac function can be improved by regulating the cell cycle or changing the cell state of cardiomyocytes by delivering specific genes or small molecules. Therefore, manipulation of cardiomyocyte plasticity can be an effective treatment for heart disease. This review summarizes the recent studies that control heart regeneration by manipulating cardiomyocyte plasticity with various approaches including differentiating pluripotent stem cells into cardiomyocytes, reprogramming cardiac fibroblasts into cardiomyocytes, and reactivating the proliferation of cardiomyocytes.
Collapse
|
45
|
Pascale E, Caiazza C, Paladino M, Parisi S, Passaro F, Caiazzo M. MicroRNA Roles in Cell Reprogramming Mechanisms. Cells 2022; 11:940. [PMID: 35326391 PMCID: PMC8946776 DOI: 10.3390/cells11060940] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cell reprogramming is a groundbreaking technology that, in few decades, generated a new paradigm in biomedical science. To date we can use cell reprogramming to potentially generate every cell type by converting somatic cells and suitably modulating the expression of key transcription factors. This approach can be used to convert skin fibroblasts into pluripotent stem cells as well as into a variety of differentiated and medically relevant cell types, including cardiomyocytes and neural cells. The molecular mechanisms underlying such striking cell phenotypes are still largely unknown, but in the last decade it has been proven that cell reprogramming approaches are significantly influenced by non-coding RNAs. Specifically, this review will focus on the role of microRNAs in the reprogramming processes that lead to the generation of pluripotent stem cells, neurons, and cardiomyocytes. As highlighted here, non-coding RNA-forced expression can be sufficient to support some cell reprogramming processes, and, therefore, we will also discuss how these molecular determinants could be used in the future for biomedical purposes.
Collapse
Affiliation(s)
- Emilia Pascale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Martina Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
46
|
Kurotsu S, Sadahiro T, Harada I, Ieda M. A biomimetic hydrogel culture system to facilitate cardiac reprogramming. STAR Protoc 2022; 3:101122. [PMID: 35118430 PMCID: PMC8792284 DOI: 10.1016/j.xpro.2022.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Direct cardiac reprogramming, in which fibroblasts are converted into induced cardiomyocytes (iCMs) with cardiogenic transcription factors, may be a promising approach for myocardial regeneration. Here, we present a protocol for cardiac reprogramming using a handmade hydrogel culture system. This system can recapitulate substrate stiffness comparable to that of the native myocardium. This protocol features improved efficiency of cardiac reprogramming by generating threefold more beating iCMs on the Matrigel-based hydrogel culture system compared to that on conventional polystyrene dishes. For complete details on the use and execution of this protocol, please refer to Kurotsu et al. (2020)
Protocol for cardiac reprogramming using a soft hydrogel system Generation of beating iCMs with 3% efficiency on hydrogel culture Detailed approaches for generating Matrigel-based hydrogel culture systems
Collapse
|
47
|
Xie Y, Liu J, Qian L. Direct cardiac reprogramming comes of age: Recent advance and remaining challenges. Semin Cell Dev Biol 2022; 122:37-43. [PMID: 34304993 PMCID: PMC8782931 DOI: 10.1016/j.semcdb.2021.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
The adult human heart has limited regenerative capacity. As such, the massive cardiomyocyte loss due to myocardial infarction leads to scar formation and adverse cardiac remodeling, which ultimately results in chronic heart failure. Direct cardiac reprogramming that converts cardiac fibroblast into functional cardiomyocyte-like cells (also called iCMs) holds great promise for heart regeneration. Cardiac reprogramming has been achieved both in vitro and in vivo by using a variety of cocktails that comprise transcription factors, microRNAs, or small molecules. During the past several years, great progress has been made in improving reprogramming efficiency and understanding the underlying molecular mechanisms. Here, we summarize the direct cardiac reprogramming methods, review the current advances in understanding the molecular mechanisms of cardiac reprogramming, and highlight the novel insights gained from single-cell omics studies. Finally, we discuss the remaining challenges and future directions for the field.
Collapse
|
48
|
Garry GA, Bassel-Duby R, Olson EN. Direct reprogramming as a route to cardiac repair. Semin Cell Dev Biol 2022; 122:3-13. [PMID: 34246567 PMCID: PMC8738780 DOI: 10.1016/j.semcdb.2021.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 02/03/2023]
Abstract
Ischemic heart disease is the leading cause of morbidity, mortality, and healthcare expenditure worldwide due to an inability of the heart to regenerate following injury. Thus, novel heart failure therapies aimed at promoting cardiomyocyte regeneration are desperately needed. In recent years, direct reprogramming of resident cardiac fibroblasts to induced cardiac-like myocytes (iCMs) has emerged as a promising therapeutic strategy to repurpose the fibrotic response of the injured heart toward a functional myocardium. Direct cardiac reprogramming was initially achieved through the overexpression of the transcription factors (TFs) Gata4, Mef2c, and Tbx5 (GMT). However, this combination of TFs and other subsequent cocktails demonstrated limited success in reprogramming adult human and mouse fibroblasts, constraining the clinical translation of this therapy. Over the past decade, significant effort has been dedicated to optimizing reprogramming cocktails comprised of cardiac TFs, epigenetic factors, microRNAs, or small molecules to yield efficient cardiac cell fate conversion. Yet, efficient reprogramming of adult human fibroblasts remains a significant challenge. Underlying mechanisms identified to accelerate this process have been centered on epigenetic remodeling at cardiac gene regulatory regions. Further studies to achieve a refined understanding and directed means of overcoming epigenetic barriers are merited to more rapidly translate these promising therapies to the clinic.
Collapse
Affiliation(s)
- Glynnis A. Garry
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX,Correspondence: Eric N. Olson, Ph.D. 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9148, Tel: 214-648-1187,
| |
Collapse
|
49
|
López-Muneta L, Linares J, Casis O, Martínez-Ibáñez L, González Miqueo A, Bezunartea J, Sanchez de la Nava AM, Gallego M, Fernández-Santos ME, Rodriguez-Madoz JR, Aranguren XL, Fernández-Avilés F, Segovia JC, Prósper F, Carvajal-Vergara X. Generation of NKX2.5GFP Reporter Human iPSCs and Differentiation Into Functional Cardiac Fibroblasts. Front Cell Dev Biol 2022; 9:797927. [PMID: 35127713 PMCID: PMC8815860 DOI: 10.3389/fcell.2021.797927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023] Open
Abstract
Direct cardiac reprogramming has emerged as an interesting approach for the treatment and regeneration of damaged hearts through the direct conversion of fibroblasts into cardiomyocytes or cardiovascular progenitors. However, in studies with human cells, the lack of reporter fibroblasts has hindered the screening of factors and consequently, the development of robust direct cardiac reprogramming protocols.In this study, we have generated functional human NKX2.5GFP reporter cardiac fibroblasts. We first established a new NKX2.5GFP reporter human induced pluripotent stem cell (hiPSC) line using a CRISPR-Cas9-based knock-in approach in order to preserve function which could alter the biology of the cells. The reporter was found to faithfully track NKX2.5 expressing cells in differentiated NKX2.5GFP hiPSC and the potential of NKX2.5-GFP + cells to give rise to the expected cardiac lineages, including functional ventricular- and atrial-like cardiomyocytes, was demonstrated. Then NKX2.5GFP cardiac fibroblasts were obtained through directed differentiation, and these showed typical fibroblast-like morphology, a specific marker expression profile and, more importantly, functionality similar to patient-derived cardiac fibroblasts. The advantage of using this approach is that it offers an unlimited supply of cellular models for research in cardiac reprogramming, and since NKX2.5 is expressed not only in cardiomyocytes but also in cardiovascular precursors, the detection of both induced cell types would be possible. These reporter lines will be useful tools for human direct cardiac reprogramming research and progress in this field.
Collapse
Affiliation(s)
- Leyre López-Muneta
- Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
| | - Javier Linares
- Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
| | - Oscar Casis
- Departament of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Laura Martínez-Ibáñez
- Program of Cardiovascular Diseases, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
| | - Arantxa González Miqueo
- Program of Cardiovascular Diseases, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaione Bezunartea
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, University of Navarra Clinic, Pamplona, Spain
| | - Ana Maria Sanchez de la Nava
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Mónica Gallego
- Departament of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - María Eugenia Fernández-Santos
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan Roberto Rodriguez-Madoz
- Hemato-oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Xabier L. Aranguren
- Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José Carlos Segovia
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Felipe Prósper
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Department of Hematology and Cell Therapy, University of Navarra Clinic, Pamplona, Spain
| | - Xonia Carvajal-Vergara
- Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
- *Correspondence: Xonia Carvajal-Vergara,
| |
Collapse
|
50
|
Zhou Y, Zhang J. Remuscularization of Ventricular Infarcts Using the Existing Cardiac Cells. ADVANCED TECHNOLOGIES IN CARDIOVASCULAR BIOENGINEERING 2022:51-78. [DOI: 10.1007/978-3-030-86140-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|