1
|
Marvi MV, Evangelisti C, Cerchier CB, Fazio A, Neri I, Koufi FD, Blalock W, Cenni V, Zoli M, Asioli S, Morandi L, Franceschi E, Manzoli L, Capanni C, Ratti S. Combining prelamin A accumulation and oxidative stress: A strategy to target glioblastoma. Eur J Cell Biol 2025; 104:151491. [PMID: 40305992 DOI: 10.1016/j.ejcb.2025.151491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Glioblastoma is the most aggressive and prevalent tumor of the Central Nervous System (CNS) with limited treatment options and poor patient outcomes. Standard therapies, including surgery, radiation, and chemotherapy, provide only modest survival benefits, highlighting the need for innovative therapeutic approaches. This study investigates a novel strategy targeting prelamin A processing in glioblastoma cells. By inhibiting the farnesyltransferase enzyme using SCH66336 (Lonafarnib), we promote the accumulation of lamin A precursor (prelamin A) in glioblastoma cells, thereby increasing their susceptibility to oxidative stress induced by Menadione administration, while sparing normal human astrocytes. Notably, the combined SCH66336-Menadione treatment reduced cell proliferation, modified the expression of stemness markers, and decreased viability in patient-derived glioblastoma stem cells, which represent the population responsible for tumor aggressiveness and recurrence. These findings indicate that inhibiting prelamin A processing could be a potential strategy to reduce glioblastoma aggressiveness and enhance therapeutic outcomes, particularly for treatment-resistant glioblastoma stem cell populations. This approach shows potential for integrating prelamin A processing disruption as a complementary strategy in glioblastoma therapy.
Collapse
Affiliation(s)
- Maria Vittoria Marvi
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Camilla Bruna Cerchier
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Irene Neri
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Foteini-Dionysia Koufi
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - William Blalock
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Neurochirurgia Ipofisi-Pituitary Unit, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy; Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Rizzoli Orthopedic Institute, Bologna, Italy.
| | - Stefano Ratti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Upadhayay S, Soni D, Dhureja M, Temgire P, Kumar V, Arthur R, Kumar P. Role of Fibroblast Growth Factors in Neurological Disorders: Insight into Therapeutic Approaches and Molecular Mechanisms. Mol Neurobiol 2025:10.1007/s12035-025-04962-x. [PMID: 40281300 DOI: 10.1007/s12035-025-04962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
In the last few decades, the incidence and progression of neurological disorders have consistently increased, which mainly occur due to environmental pollution, genetic abnormalities, and modern lifestyles. Several case reports suggested that these factors enhanced oxidative stress, mitochondrial dysfunction, inflammation, and apoptosis, leading to neurological disease. The pathophysiology of neurological disorders is still not understood, mainly due to the diversity within affected populations. Existing treatment options primarily provide symptomatic relief but frequently come with considerable side effects, including depression, anxiety, and restlessness. Fibroblast growth factors (FGFs) are key signalling molecules regulating various cellular functions, including cell proliferation, differentiation, electrical excitability, and injury responses. Hence, several investigations claimed a relationship between FGFs and neurological disorders, and their findings indicated that they could be used as therapeutic targets for neurological disorders. The FGFs are reported to activate various signalling pathways, including Ras/MAPK/PI3k/Akt, and downregulate the GSK-3β/NF-κB pathways responsible for anti-oxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, researchers are interested in developing novel treatment options for neurological disorders. The emergence of unreported FGFs contributes to our understanding of their involvement in these conditions and encourages further exploration of innovative therapeutic approaches. All the data were obtained from published articles using PubMed, Web of Science, and Scopus databases using the search terms Fibroblast Growth Factor, PD, HD, AD, ALS, signalling pathways, and neurological disorders.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Vishal Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
3
|
Luo Z, Shangguan Z, Cao L, Zhang Y, Li Q, Shi X, Fu J, Wang C, Dou X, Tan W, Li Q. Cerebrospinal fluid-contacting neurons: a promising source for adult neural stem cell transplantation in spinal cord injury treatment. Front Cell Dev Biol 2025; 13:1549194. [PMID: 40143967 PMCID: PMC11936957 DOI: 10.3389/fcell.2025.1549194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Transplantation of adult neural stem cells (NSCs) is regarded as one of the most promising approaches for treating spinal cord injury (SCI). However, securing a sufficient and reliable source of adult NSCs remains one of the primary challenges in applying this method for SCI treatment. Cerebrospinal fluid-contacting neurons (CSF-cNs) act as adult NSCs and can be substantially expanded in vitro while maintaining their NSC characteristics even after 60 passages. When CSF-cNs are transplanted into the injury sites of SCI mice, they demonstrate high survival rates along with the ability to proliferate and differentiate into neurons, astrocytes, and oligodendrocytes. Additionally, significant improvements in motor function have been observed in SCI mice following the transplantation of CSF-cNs. These results suggest that CSF-cNs may represent a promising source of adult NSCs for transplantation therapy in SCI.
Collapse
Affiliation(s)
- Zhangrong Luo
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Traumatic Orthopedics, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zeyu Shangguan
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Liang Cao
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yi Zhang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qizhe Li
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xuexing Shi
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jiangquan Fu
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chunqing Wang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaowei Dou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Tan
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qing Li
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Koh LWH, Pang QY, Novera W, Lim SW, Chong YK, Liu J, Ang SYL, Loh RWY, Shao H, Ching J, Wang Y, Yip S, Tan P, Li S, Low DCY, Phelan A, Rosser G, Tan NS, Tang C, Ang BT. EZH2 functional dichotomy in reactive oxygen species-stratified glioblastoma. Neuro Oncol 2025; 27:398-414. [PMID: 39373211 PMCID: PMC11812038 DOI: 10.1093/neuonc/noae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2), well known for its canonical methyltransferase activity in transcriptional repression in many cancers including glioblastoma (GBM), has an understudied noncanonical function critical for sustained tumor growth. Recent GBM consortial efforts reveal complex molecular heterogeneity for which therapeutic vulnerabilities correlated with subtype stratification remain relatively unexplored. Current enzymatic EZH2 inhibitors (EZH2inh) targeting its canonical su(var)3-9, enhancer-of-zeste and trithorax domain show limited efficacy and lack durable response, suggesting that underlying differences in the noncanonical pathway may yield new knowledge. Here, we unveiled dual roles of the EZH2 CXC domain in therapeutically distinct, reactive oxygen species (ROS)-stratified tumors. METHODS We analyzed differentially expressed genes between ROS classes by examining cis-regulatory elements as well as clustering of activities and pathways to identify EZH2 as the key mediator in ROS-stratified cohorts. Pull-down assays and CRISPR knockout of EZH2 domains were used to dissect the distinct functions of EZH2 in ROS-stratified GBM cells. The efficacy of NF-κB-inducing kinase inhibitor (NIKinh) and standard-of-care temozolomide was evaluated using orthotopic patient-derived GBM xenografts. RESULTS In ROS(+) tumors, CXC-mediated co-interaction with RelB drives constitutive activation of noncanonical NF-κB2 signaling, sustaining the ROS(+) chemoresistant phenotype. In contrast, in ROS(-) subtypes, Polycomb Repressive Complex 2 methyltransferase activity represses canonical NF-κB. Addressing the lack of EZH2inh targeting its nonmethyltransferase roles, we utilized a brain-penetrant NIKinh that disrupts EZH2-RelB binding, consequently prolonging survival in orthotopic ROS(+)-implanted mice. CONCLUSIONS Our findings highlight the functional dichotomy of the EZH2 CXC domain in governing ROS-stratified therapeutic resistance, thereby advocating for the development of therapeutic approaches targeting its noncanonical activities and underscoring the significance of patient stratification methodologies.
Collapse
Affiliation(s)
- Lynnette Wei Hsien Koh
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Qing You Pang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Wisna Novera
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - See Wee Lim
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Yuk Kien Chong
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Jinyue Liu
- Laboratory of Single-Cell Spatial Neuromics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Samantha Ya Lyn Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- SingHealth Duke-NUS Neuroscience Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore, Singapore
| | | | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianhong Ching
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- KK Research Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Chyi Yeu Low
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- SingHealth Duke-NUS Neuroscience Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore, Singapore
| | | | | | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carol Tang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Enabling Village, SG Enable, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Beng Ti Ang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- SingHealth Duke-NUS Neuroscience Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
5
|
Horiguchi K, Tsukada T, Yoshida S, Fujiwara K, Nakakura T, Azuma M, Shindo A, Hasegawa R, Takigami S. Three-dimensional cell culture using CD9-positive cells isolated from marginal cell layer of intermediate lobe of rats sustains in vivo-like primary niche environment. J Reprod Dev 2024; 70:343-347. [PMID: 39135241 PMCID: PMC11461522 DOI: 10.1262/jrd.2024-033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/19/2024] [Indexed: 10/04/2024] Open
Abstract
The adenohypophysis is composed of the anterior and intermediate lobes (AL and IL, respectively), and secretes hormones that play an important role in reproduction. CD9- and SOX2-double (CD9/SOX2) positive cells located in the marginal cell layer (MCL) facing the Rathke's cleft in the AL and IL form the primary stem cell niche in the adult adenohypophysis of rats. In this study, we successfully obtained 3-dimensional (3D) cell aggregates that closely resembled the primary niche of MCL in vivo. After incubation in a Matrigel containing several growth factors, approximately 20% of the cells in the CD9/SOX2-positive cell aggregates were differentiated into hormone-producing cells. The cell aggregates generated in this study may provide insight into the regulation of the pituitary stem/progenitor cell niche and the turnover of hormone-producing cells.
Collapse
Affiliation(s)
- Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Saishu Yoshida
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Ken Fujiwara
- Department of Biological Science, Faculty of Science, Kanagawa University, Kanagawa 259-1293, Japan
| | - Takashi Nakakura
- Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Morio Azuma
- Department of Pharmacology, Graduate School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Ayano Shindo
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Rumi Hasegawa
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Shu Takigami
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| |
Collapse
|
6
|
Giammello F, Biella C, Priori EC, Filippo MADS, Leone R, D'Ambrosio F, Paterno' M, Cassioli G, Minetti A, Macchi F, Spalletti C, Morella I, Ruberti C, Tremonti B, Barbieri F, Lombardi G, Brambilla R, Florio T, Galli R, Rossi P, Brandalise F. Modulating voltage-gated sodium channels to enhance differentiation and sensitize glioblastoma cells to chemotherapy. Cell Commun Signal 2024; 22:434. [PMID: 39251990 PMCID: PMC11382371 DOI: 10.1186/s12964-024-01819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) stands as the most prevalent and aggressive form of adult gliomas. Despite the implementation of intensive therapeutic approaches involving surgery, radiation, and chemotherapy, Glioblastoma Stem Cells contribute to tumor recurrence and poor prognosis. The induction of Glioblastoma Stem Cells differentiation by manipulating the transcriptional machinery has emerged as a promising strategy for GBM treatment. Here, we explored an innovative approach by investigating the role of the depolarized resting membrane potential (RMP) observed in patient-derived GBM sphereforming cell (GSCs), which allows them to maintain a stemness profile when they reside in the G0 phase of the cell cycle. METHODS We conducted molecular biology and electrophysiological experiments, both in vitro and in vivo, to examine the functional expression of the voltage-gated sodium channel (Nav) in GSCs, particularly focusing on its cell cycle-dependent functional expression. Nav activity was pharmacologically manipulated, and its effects on GSCs behavior were assessed by live imaging cell cycle analysis, self-renewal assays, and chemosensitivity assays. Mechanistic insights into the role of Nav in regulating GBM stemness were investigated through pathway analysis in vitro and through tumor proliferation assay in vivo. RESULTS We demonstrated that Nav is functionally expressed by GSCs mainly during the G0 phase of the cell cycle, suggesting its pivotal role in modulating the RMP. The pharmacological blockade of Nav made GBM cells more susceptible to temozolomide (TMZ), a standard drug for this type of tumor, by inducing cell cycle re-entry from G0 phase to G1/S transition. Additionally, inhibition of Nav substantially influenced the self-renewal and multipotency features of GSCs, concomitantly enhancing their degree of differentiation. Finally, our data suggested that Nav positively regulates GBM stemness by depolarizing the RMP and suppressing the ERK signaling pathway. Of note, in vivo proliferation assessment confirmed the increased susceptibility to TMZ following pharmacological blockade of Nav. CONCLUSIONS This insight positions Nav as a promising prognostic biomarker and therapeutic target for GBM patients, particularly in conjunction with temozolomide treatment.
Collapse
Affiliation(s)
- Francesca Giammello
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
- PhD Program in Genetics, Molecular and Cellular Biology, University of Pavia, Pavia, Italy
| | - Chiara Biella
- IRCCS San Raffaele Hospital, Via Olgettina 58, Milan, 20132, Italy
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
| | | | - Roberta Leone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
| | | | - Martina Paterno'
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Giulia Cassioli
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Antea Minetti
- CNR Neuroscience Institute of Pisa, Via Giuseppe Moruzzi, 1, Pisa (PI), 56124, Italy
| | - Francesca Macchi
- CNR Neuroscience Institute of Pisa, Via Giuseppe Moruzzi, 1, Pisa (PI), 56124, Italy
| | - Cristina Spalletti
- CNR Neuroscience Institute of Pisa, Via Giuseppe Moruzzi, 1, Pisa (PI), 56124, Italy
| | - Ilaria Morella
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
| | - Cristina Ruberti
- Advanced Technology Platform, Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Beatrice Tremonti
- Pharmacology Unit, Department of Internal Medicine, University of Genova, Genova, 16132, Italy
| | - Federica Barbieri
- Pharmacology Unit, Department of Internal Medicine, University of Genova, Genova, 16132, Italy
| | - Giuseppe Lombardi
- Department of Oncology 1, Oncology, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, Padua, 35128, Italy
| | - Riccardo Brambilla
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
| | - Tullio Florio
- Pharmacology Unit, Department of Internal Medicine, University of Genova, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, 16132, Italy
| | - Rossella Galli
- IRCCS San Raffaele Hospital, Via Olgettina 58, Milan, 20132, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
| | | |
Collapse
|
7
|
Glotzbach K, Stamm N, Weberskirch R, Faissner A. Cationic Hydrogels Modulate Neural Stem and Progenitor Cell Proliferation and Differentiation Behavior in Dependence of Cationic Moiety Concentration in 2D Cell Culture. ACS Biomater Sci Eng 2024; 10:3148-3163. [PMID: 38227432 DOI: 10.1021/acsbiomaterials.3c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The central nervous system (CNS) has a limited regenerative capacity because a hostile environment prevents tissue regeneration after damage or injury. Neural stem/progenitor cells (NSPCs) are considered a potential resource for CNS repair, which raises the issue of adequate cultivation and expansion procedures. Cationic charge supports the survival and adhesion of NSPCs. Typically, tissue culture plates with cationic coatings, such as poly-l-ornithine (PLO), have been used to culture these cell types (NSPCs). Yet presently, little is known about the impact of cationic charge concentration on the viability, proliferation, and differentiation capacity of NSPCs. Therefore, we have recently developed well-defined, fully synthetic hydrogel systems G1 (gel 1) to G6 (gel 6) that allow for the precise control of the concentration of the cationic trimethylaminoethyl acrylate (TMAEA) molecule associated with the polymer in a range from 0.06 to 0.91 μmol/mg. When murine NSPCs were cultured on these gels under differentiation conditions, we observed a strong correlation of cationic charge concentration with NSPC survival. In particular, neurons were preferentially formed on gels with a higher cationic charge concentration, whereas astrocytes and oligodendrocytes favored weakly charged or even neutral gel surfaces. To test the properties of the gels under proliferative conditions, the NSPCs were cultivated in the presence of fibroblast growth factor 2 (FGF2). The cytokine significantly increased the number of NSPCs but delayed the differentiation toward neurons and glia cells. Thus, the hydrogels are compatible with the survival, expansion, and differentiation of NSPCs and may be useful to create supportive environments in transplantation approaches.
Collapse
Affiliation(s)
- Kristin Glotzbach
- Department of Cell Morphology and Molecular Neurobiology, Ruhr Universität Bochum, Bochum 44801, Germany
| | - Nils Stamm
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Ralf Weberskirch
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr Universität Bochum, Bochum 44801, Germany
| |
Collapse
|
8
|
Deepti A, Chackochan BK, Sadanandan S, Menon AS, Mohandas K, Vengellur A, Sivan U, Chakrapani PSB. An easy and cost-effective method for the isolation and culturing of neural stem/progenitor cells from the subventricular (SVZ) and dentate gyrus (DG) of adult mouse brain. J Neurosci Methods 2024; 404:110060. [PMID: 38244848 DOI: 10.1016/j.jneumeth.2024.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/31/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Isolation of adult Neural Stem/Progenitor Cells (NSPCs) from their neurogenic niches, is a prerequisite for studies involving culturing of NSPCs as neurospheres or attached monolayers in vitro. The currently available protocols involve the use of multiple animals and expensive reagents to establish the NSPCs culture. NEW METHOD This unit describes a method to isolate and culture NSPCs from the two neurogenic niches in the mouse brain, the Subventricular Zone (SVZ) and Dentate gyrus (DG)/subgranular zone (SGZ), in an easy and cost-effective manner. RESULTS NSPCs from SVZ and DG regions of adult mouse brains were isolated and cultured up to passage 15 without losing their stem/progenitor characteristics. These NSPCs could be differentiated into neurons, astrocytes, and oligodendrocytes, revealing its trilineage potential. COMPARISON WITH EXISTING METHODS This protocol eliminates the need for multiple animals as well as the use of many expensive reagents mentioned in previous protocols, adding to the cost-effectiveness of experiments. In addition, we have effectively reduced the number of steps involved in isolation and propagation, thereby minimizing the chances of contamination. CONCLUSION Our simplified protocol for the isolation and culturing of adult NSPCs from the SVZ and DG demonstrates a cost-effective and efficient alternative to existing methods, reducing the need for sacrificing many animals and the usage of expensive reagents. This method permits the long-term maintenance of NSPCs' stem/progenitor characteristics and their effective differentiation into the major types of cells in the brain, making it a valuable resource for researchers in the field. BASIC PROTOCOL Isolation and Culturing of Neural Stem/Progenitor cells from the Sub ventricular Zone and the Dentate Gyrus of the adult mouse brain. SUPPORT PROTOCOL 1: Cryopreservation, and revival of frozen NSPCs. SUPPORT PROTOCOL 2: Preparation of adherent monolayer cultures of neural stem/progenitor cells for the differentiation into multiple lineages SUPPORT PROTOCOL 3: Differentiation of NSPCs to neuronal and glial lineages SUPPORT PROTOCOL 4: Characterization of differentiated cells by immunocytochemistry.
Collapse
Affiliation(s)
- Ayswaria Deepti
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, India; Department of Biotechnology, Cochin University of Science and Technology, Cochin, India
| | - Bins Kathanadan Chackochan
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, India; Department of Biotechnology, Cochin University of Science and Technology, Cochin, India
| | - Sreelakshmi Sadanandan
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, India; Department of Biotechnology, Cochin University of Science and Technology, Cochin, India
| | - Anagha Sunilkumar Menon
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, India; Department of Biotechnology, Cochin University of Science and Technology, Cochin, India
| | - Krishnakumar Mohandas
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, India; Department of Biotechnology, Cochin University of Science and Technology, Cochin, India
| | - Ajith Vengellur
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, India; Department of Biotechnology, Cochin University of Science and Technology, Cochin, India
| | - Unnikrishnan Sivan
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, India; Department of Biotechnology, Cochin University of Science and Technology, Cochin, India; FFE, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - Pulikkaparambil Sasidharan Baby Chakrapani
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, India; Department of Biotechnology, Cochin University of Science and Technology, Cochin, India; Centre of Excellence in Neurodegeneration and Brain Health, Cochin, India.
| |
Collapse
|
9
|
Wood JA, Chaparala S, Bantang C, Chattopadhyay A, Wesesky MA, Kinchington PR, Nimgaonkar VL, Bloom DC, D'Aiuto L. RNA-Seq time-course analysis of neural precursor cell transcriptome in response to herpes simplex Virus-1 infection. J Neurovirol 2024; 30:131-145. [PMID: 38478163 PMCID: PMC11371869 DOI: 10.1007/s13365-024-01198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 09/04/2024]
Abstract
The neurogenic niches within the central nervous system serve as essential reservoirs for neural precursor cells (NPCs), playing a crucial role in neurogenesis. However, these NPCs are particularly vulnerable to infection by the herpes simplex virus 1 (HSV-1). In the present study, we investigated the changes in the transcriptome of NPCs in response to HSV-1 infection using bulk RNA-Seq, compared to those of uninfected samples, at different time points post infection and in the presence or absence of antivirals. The results showed that NPCs upon HSV-1 infection undergo a significant dysregulation of genes playing a crucial role in aspects of neurogenesis, including genes affecting NPC proliferation, migration, and differentiation. Our analysis revealed that the CREB signaling, which plays a crucial role in the regulation of neurogenesis and memory consolidation, was the most consistantly downregulated pathway, even in the presence of antivirals. Additionally, cholesterol biosynthesis was significantly downregulated in HSV-1-infected NPCs. The findings from this study, for the first time, offer insights into the intricate molecular mechanisms that underlie the neurogenesis impairment associated with HSV-1 infection.
Collapse
Affiliation(s)
- Joel A Wood
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Srilakshmi Chaparala
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Cecilia Bantang
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Maribeth A Wesesky
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Suite 820, Eye & Ear Building, 203 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Vishwajit L Nimgaonkar
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare system at U.S. Department of Veterans Affairs, Pittsburgh, PA, USA
| | - David C Bloom
- Academic Research Building, Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, R2-231, 32610, Gainesville, FL, USA
| | - Leonardo D'Aiuto
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Queiroz LY, Kageyama R, Cimarosti HI. SUMOylation effects on neural stem cells self-renewal, differentiation, and survival. Neurosci Res 2024; 199:1-11. [PMID: 37742800 DOI: 10.1016/j.neures.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
SUMO (small ubiquitin-like modifier) conjugation or SUMOylation, a post-translational modification, is a crucial regulator of protein function and cellular processes. In the context of neural stem cells (NSCs), SUMOylation has emerged as a key player, affecting their proliferation, differentiation, and survival. By modifying transcription factors, such as SOX1, SOX2, SOX3, SOX6, Bmi1, and Nanog, SUMOylation can either enhance or impair their transcriptional activity, thus impacting on NSCs self-renewal. Moreover, SUMOylation regulates neurogenesis and neuronal differentiation by modulating key proteins, such as Foxp1, Mecp2, MEF2A, and SOX10. SUMOylation is also crucial for the survival and proliferation of NSCs in both developing and adult brains. By regulating the activity of transcription factors, coactivators, and corepressors, SUMOylation acts as a molecular switch, inducing cofactor recruitment and function during development. Importantly, dysregulation of NSCs SUMOylation has been implicated in various disorders, including embryonic defects, ischemic cerebrovascular disease, glioma, and the harmful effects of benzophenone-3 exposure. Here we review the main findings on SUMOylation-mediated regulation of NSCs self-renewal, differentiation and survival. Better understanding NSCs SUMOylation mechanisms and its functional consequences might provide new strategies to promote neuronal differentiation that could contribute for the development of novel therapies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Letícia Yoshitome Queiroz
- Postgraduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Ryoichiro Kageyama
- Graduate School of Medicine, Kyoto University, Kyoto, Japan; RIKEN Center for Brain Science, Wako, Japan
| | - Helena I Cimarosti
- Postgraduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil; Postgraduate Program in Neuroscience, UFSC, Florianopolis, Brazil.
| |
Collapse
|
11
|
Jastrzębski MK, Wójcik P, Stępnicki P, Kaczor AA. Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation. Acta Pharm Sin B 2024; 14:20-37. [PMID: 38239239 PMCID: PMC10793103 DOI: 10.1016/j.apsb.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Neurons are believed to be non-proliferating cells. However, neuronal stem cells are still present in certain areas of the adult brain, although their proliferation diminishes with age. Just as with other cells, their proliferation and differentiation are modulated by various mechanisms. These mechanisms are foundational to the strategies developed to induce neuronal proliferation and differentiation, with potential therapeutic applications for neurodegenerative diseases. The most common among these diseases are Parkinson's disease and Alzheimer's disease, associated with the formation of β -amyloid (Aβ ) aggregates which cause a reduction in the number of neurons. Compounds such as LiCl, 4-aminothiazoles, Pregnenolone, ACEA, harmine, D2AAK1, methyl 3,4-dihydroxybenzoate, and shikonin may induce neuronal proliferation/differentiation through the activation of pathways: MAPK ERK, PI3K/AKT, NFκ B, Wnt, BDNF, and NPAS3. Moreover, combinations of these compounds can potentially transform somatic cells into neurons. This transformation process involves the activation of neuron-specific transcription factors such as NEUROD1, NGN2, ASCL1, and SOX2, which subsequently leads to the transcription of downstream genes, culminating in the transformation of somatic cells into neurons. Neurodegenerative diseases are not the only conditions where inducing neuronal proliferation could be beneficial. Consequently, the impact of pro-proliferative compounds on neurons has also been researched in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Michał K. Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Wójcik
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
- School of Pharmacy, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
12
|
Ávila-González D, Romero-Morales I, Caro L, Martínez-Juárez A, Young LJ, Camacho-Barrios F, Martínez-Alarcón O, Castro AE, Paredes RG, Díaz NF, Portillo W. Increased proliferation and neuronal fate in prairie vole brain progenitor cells cultured in vitro: effects by social exposure and sexual dimorphism. Biol Sex Differ 2023; 14:77. [PMID: 37919790 PMCID: PMC10623709 DOI: 10.1186/s13293-023-00563-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The prairie vole (Microtus ochrogaster) is a socially monogamous rodent that establishes an enduring pair bond after cohabitation, with (6 h) or without (24 h) mating. Previously, we reported that social interaction and mating increased cell proliferation and differentiation to neuronal fate in neurogenic niches in male voles. We hypothesized that neurogenesis may be a neural plasticity mechanism involved in mating-induced pair bond formation. Here, we evaluated the differentiation potential of neural progenitor cells (NPCs) isolated from the subventricular zone (SVZ) of both female and male adult voles as a function of sociosexual experience. Animals were assigned to one of the following groups: (1) control (Co), sexually naive female and male voles that had no contact with another vole of the opposite sex; (2) social exposure (SE), males and females exposed to olfactory, auditory, and visual stimuli from a vole of the opposite sex, but without physical contact; and (3) social cohabitation with mating (SCM), male and female voles copulating to induce pair bonding formation. Subsequently, the NPCs were isolated from the SVZ, maintained, and supplemented with growth factors to form neurospheres in vitro. RESULTS Notably, we detected in SE and SCM voles, a higher proliferation of neurosphere-derived Nestin + cells, as well as an increase in mature neurons (MAP2 +) and a decrease in glial (GFAP +) differentiated cells with some sex differences. These data suggest that when voles are exposed to sociosexual experiences that induce pair bonding, undifferentiated cells of the SVZ acquire a commitment to a neuronal lineage, and the determined potential of the neurosphere is conserved despite adaptations under in vitro conditions. Finally, we repeated the culture to obtain neurospheres under treatments with different hormones and factors (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone); the ability of SVZ-isolated cells to generate neurospheres and differentiate in vitro into neurons or glial lineages in response to hormones or factors is also dependent on sex and sociosexual context. CONCLUSION Social interactions that promote pair bonding in voles change the properties of cells isolated from the SVZ. Thus, SE or SCM induces a bias in the differentiation potential in both sexes, while SE is sufficient to promote proliferation in SVZ-isolated cells from male brains. In females, proliferation increases when mating is performed. The next question is whether the rise in proliferation and neurogenesis of cells from the SVZ are plastic processes essential for establishing, enhancing, maintaining, or accelerating pair bond formation. Highlights 1. Sociosexual experiences that promote pair bonding (social exposure and social cohabitation with mating) induce changes in the properties of neural stem/progenitor cells isolated from the SVZ in adult prairie voles. 2. Social interactions lead to increased proliferation and induce a bias in the differentiation potential of SVZ-isolated cells in both male and female voles. 3. The differentiation potential of SVZ-isolated cells is conserved under in vitro conditions, suggesting a commitment to a neuronal lineage under a sociosexual context. 4. Hormonal and growth factors treatments (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone) affect the generation and differentiation of neurospheres, with dependencies on sex and sociosexual context. 5. Proliferation and neurogenesis in the SVZ may play a crucial role in establishing, enhancing, maintaining, or accelerating pair bond formation.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Italo Romero-Morales
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Lizette Caro
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Alejandro Martínez-Juárez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Emory National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, USA
| | - Francisco Camacho-Barrios
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Omar Martínez-Alarcón
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Analía E Castro
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Raúl G Paredes
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
- Escuela Nacional de Estudios Superiores Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Néstor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico.
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
13
|
Visioli A, Trivieri N, Mencarelli G, Giani F, Copetti M, Palumbo O, Pracella R, Cariglia MG, Barile C, Mischitelli L, Soriano AA, Palumbo P, Legnani F, DiMeco F, Gorgoglione L, Pesole G, Vescovi AL, Binda E. Different states of stemness of glioblastoma stem cells sustain glioblastoma subtypes indicating novel clinical biomarkers and high-efficacy customized therapies. J Exp Clin Cancer Res 2023; 42:244. [PMID: 37735434 PMCID: PMC10512479 DOI: 10.1186/s13046-023-02811-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM. METHODS Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis. RESULTS Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response. CONCLUSIONS In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.
Collapse
Affiliation(s)
| | - Nadia Trivieri
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Gandino Mencarelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | | | - Massimiliano Copetti
- Biostatistical Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Maria Grazia Cariglia
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Chiara Barile
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Luigi Mischitelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Amata Amy Soriano
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Pietro Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Federico Legnani
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
- Department of Neurosurgery, John Hopkins University, Baltimore, Mariland, USA
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Angelo L Vescovi
- Scientific Directorate, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
- Hyperstem SA, Lugano, Switzerland.
| | - Elena Binda
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
14
|
Son B, Kim M, Won H, Jung A, Kim J, Koo Y, Lee NK, Baek SH, Han U, Park CG, Shin H, Gweon B, Joo J, Park HH. Secured delivery of basic fibroblast growth factor using human serum albumin-based protein nanoparticles for enhanced wound healing and regeneration. J Nanobiotechnology 2023; 21:310. [PMID: 37658367 PMCID: PMC10474766 DOI: 10.1186/s12951-023-02053-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Basic fibroblast growth factor (bFGF) is one of the critical components accelerating angiogenesis and tissue regeneration by promoting the migration of dermal fibroblasts and endothelial cells associated with matrix formation and remodeling in wound healing process. However, clinical applications of bFGF are substantially limited by its unstable nature due to rapid decomposition under physiological microenvironment. RESULTS In this study, we present the bFGF-loaded human serum albumin nanoparticles (HSA-bFGF NPs) as a means of enhanced stability and sustained release platform during tissue regeneration. Spherical shape of the HSA-bFGF NPs with uniform size distribution (polydispersity index < 0.2) is obtained via a simple desolvation and crosslinking process. The HSA-bFGF NPs securely load and release the intact soluble bFGF proteins, thereby significantly enhancing the proliferation and migration activity of human dermal fibroblasts. Myofibroblast-related genes and proteins were also significantly down-regulated, indicating decrease in risk of scar formation. Furthermore, wound healing is accelerated while achieving a highly organized extracellular matrix and enhanced angiogenesis in vivo. CONCLUSION Consequently, the HSA-bFGF NPs are suggested not only as a delivery vehicle but also as a protein stabilizer for effective wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Minju Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyosub Won
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Ara Jung
- Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun Kim
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Yonghoe Koo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Na Kyeong Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seung-Ho Baek
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Korea
| | - Uiyoung Han
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Bomi Gweon
- Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- Materials Research Science and Engineering Center, University of California, San Diego, La Jolla, United States.
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Zhou QZ, Feng XL, Jia XF, Mohd Nor NHB, Harun MHB, Feng DX, Wan Sulaiman WA. Culture and identification of neonatal rat brain-derived neural stem cells. World J Stem Cells 2023; 15:607-616. [PMID: 37424948 PMCID: PMC10324507 DOI: 10.4252/wjsc.v15.i6.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Timing of passaging, passage number, passaging approaches and methods for cell identification are critical factors influencing the quality of neural stem cells (NSCs) culture. How to effectively culture and identify NSCs is a continuous interest in NSCs study while these factors are comprehensively considered.
AIM To establish a simplified and efficient method for culture and identification of neonatal rat brain-derived NSCs.
METHODS First, curved tip operating scissors were used to dissect brain tissues from new born rats (2 to 3 d) and the brain tissues were cut into approximately 1 mm3 sections. Filter the single cell suspension through a nylon mesh (200-mesh) and culture the sections in suspensions. Passaging was conducted with TrypLTM Express combined with mechanical tapping and pipetting techniques. Second, identify the 5th generation of passaged NSCs as well as the revived NSCs from cryopreservation. BrdU incorporation method was used to detect self-renew and proliferation capabilities of cells. Different NSCs specific antibodies (anti-nestin, NF200, NSE and GFAP antibodies) were used to identify NSCs specific surface markers and muti-differentiation capabilities by immunofluorescence staining.
RESULTS Brain derived cells from newborn rats (2 to 3 d) proliferate and aggregate into spherical-shaped clusters with sustained continuous and stable passaging. When BrdU was incorporated into the 5th generation of passaged cells, positive BrdU cells and nestin cells were observed by immunofluorescence staining. After induction of dissociation using 5% fetal bovine serum, positive NF200, NSE and GFAP cells were observed by immunofluorescence staining.
CONCLUSION This is a simplified and efficient method for neonatal rat brain-derived neural stem cell culture and identification.
Collapse
Affiliation(s)
- Qing-Zhong Zhou
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Xiao-Lan Feng
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xu-Feng Jia
- Department of Orthopedics, The Peoples’ Hospital of Jianyang City, Jianyang 641400, Sichuan Province, China
| | - Nurul Huda Binti Mohd Nor
- Department of Human Anatomi, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang Selangor, 43400, Malaysia
| | - Mohd Hezery Bin Harun
- Department of Orthopedics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Da-Xiong Feng
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
16
|
Goutam RS, Kumar V, Lee U, Kim J. Exploring the Structural and Functional Diversity among FGF Signals: A Comparative Study of Human, Mouse, and Xenopus FGF Ligands in Embryonic Development and Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24087556. [PMID: 37108717 PMCID: PMC10146080 DOI: 10.3390/ijms24087556] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) encode a large family of growth factor proteins that activate several intracellular signaling pathways to control diverse physiological functions. The human genome encodes 22 FGFs that share a high sequence and structural homology with those of other vertebrates. FGFs orchestrate diverse biological functions by regulating cellular differentiation, proliferation, and migration. Dysregulated FGF signaling may contribute to several pathological conditions, including cancer. Notably, FGFs exhibit wide functional diversity among different vertebrates spatiotemporally. A comparative study of FGF receptor ligands and their diverse roles in vertebrates ranging from embryonic development to pathological conditions may expand our understanding of FGF. Moreover, targeting diverse FGF signals requires knowledge regarding their structural and functional heterogeneity among vertebrates. This study summarizes the current understanding of human FGF signals and correlates them with those in mouse and Xenopus models, thereby facilitating the identification of therapeutic targets for various human disorders.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si 13522, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
17
|
Zhang Q, Chen Z, Zhang K, Zhu J, Jin T. FGF/FGFR system in the central nervous system demyelinating disease: Recent progress and implications for multiple sclerosis. CNS Neurosci Ther 2023; 29:1497-1511. [PMID: 36924298 PMCID: PMC10173727 DOI: 10.1111/cns.14176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND With millions of victims worldwide, multiple sclerosis is the second most common cause of disability among young adults. Although formidable advancements have been made in understanding the disease, the neurodegeneration associated with multiple sclerosis is only partially counteracted by current treatments, and effective therapy for progressive multiple sclerosis remains an unmet need. Therefore, new approaches are required to delay demyelination and the resulting disability and to restore neural function by promoting remyelination and neuronal repair. AIMS The article reviews the latest literature in this field. MATERIALS AND METHODS The fibroblast growth factor (FGF) signaling pathway is a promising target in progressive multiple sclerosis. DISCUSSION FGF signal transduction contributes to establishing the oligodendrocyte lineage, neural stem cell proliferation and differentiation, and myelination of the central nervous system. Furthermore, FGF signaling is implicated in the control of neuroinflammation. In recent years, interventions targeting FGF, and its receptor (FGFR) have been shown to ameliorate autoimmune encephalomyelitis symptoms in multiple sclerosis animal models moderately. CONCLUSION Here, we summarize the recent findings and investigate the role of FGF/FGFR signaling in the onset and progression, discuss the potential therapeutic advances, and offer fresh insights into managing multiple sclerosis.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Kaili Zhang
- Stomatology College of Inner Mongolia Medical University, Hohhot, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Radoszkiewicz K, Hribljan V, Isakovic J, Mitrecic D, Sarnowska A. Critical points for optimizing long-term culture and neural differentiation capacity of rodent and human neural stem cells to facilitate translation into clinical settings. Exp Neurol 2023; 363:114353. [PMID: 36841464 DOI: 10.1016/j.expneurol.2023.114353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Despite several decades of research on the nature and functional properties of neural stem cells, which brought great advances in regenerative medicine, there is still a plethora of ambiguous protocols and interpretations linked to their applications. Here, we present a whole spectrum of protocol elements that should be standardized in order to obtain viable cell cultures and facilitate their translation into clinical settings. Additionally, this review also presents outstanding limitations and possible problems to be encountered when dealing with protocol optimization. Most importantly, we also outline the critical points that should be considered before starting any experiments utilizing neural stem cells or interpreting their results.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, 02-106 Warsaw, Poland
| | - Valentina Hribljan
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia
| | - Jasmina Isakovic
- Omnion Research International Ltd, Heinzelova 4, 10000 Zagreb, Croatia
| | - Dinko Mitrecic
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, 02-106 Warsaw, Poland.
| |
Collapse
|
19
|
Radoszkiewicz K, Jezierska-Woźniak K, Waśniewski T, Sarnowska A. Understanding Intra- and Inter-Species Variability in Neural Stem Cells' Biology Is Key to Their Successful Cryopreservation, Culture, and Propagation. Cells 2023; 12:cells12030488. [PMID: 36766833 PMCID: PMC9914787 DOI: 10.3390/cells12030488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Although clinical trials on human neural stem cells (hNSCs) have already been implemented in the treatment of neurological diseases and they have demonstrated their therapeutic effects, many questions remain in the field of preclinical research regarding the biology of these cells, their therapeutic properties, and their neurorestorative potential. Unfortunately, scientific reports are inconsistent and much of the NSCs research has been conducted on rodents rather than human cells for ethical reasons or due to insufficient cell material. Therefore, a question arises as to whether or which conclusions drawn on the isolation, cell survival, proliferation, or cell fate observed in vitro in rodent NSCs can be introduced into clinical applications. This paper presents the effects of different spatial, nutritional, and dissociation conditions on NSCs' functional properties, which are highly species-dependent. Our study confirmed that the discrepancies in the available literature on NSCs survival, proliferation, and fate did not only depend on intra-species factors and applied environmental conditions, but they were also affected by significant inter-species variability. Human and rodent NSCs share one feature, i.e., the necessity to be cultured immediately after isolation, which significantly maintains their survival. Additionally, in the absence of experiments on human cells, rat NSCs biology (neurosphere formation potential and neural differentiation stage) seems closer to that of humans rather than mice in response to environmental factors.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Katarzyna Jezierska-Woźniak
- Department of Neurosurgery, Laboratory for Regenerative Medicine, Stem Cells Bank, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Obstetrics and Gynaecology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-561 Olsztyn, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-608-6598
| |
Collapse
|
20
|
Lee S, Nam H, Joo KM, Lee SH. Advances in Neural Stem Cell Therapy for Spinal Cord Injury: Safety, Efficacy, and Future Perspectives. Neurospine 2022; 19:946-960. [PMID: 36351442 PMCID: PMC9816608 DOI: 10.14245/ns.2244658.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating central nervous system injury that leads to severe disabilities in motor and sensory functions, causing significant deterioration in patients' quality of life. Owing to the complexity of SCI pathophysiology, there has been no effective treatment for reversing neural tissue damage and recovering neurological functions. Several novel therapies targeting different stages of pathophysiological mechanisms of SCI have been developed. Among these, treatments using stem cells have great potential for the regeneration of damaged neural tissues. In this review, we have summarized recent preclinical and clinical studies focusing on neural stem cells (NSCs). NSCs are multipotent cells with specific differentiation capabilities for neural lineage. Several preclinical studies have demonstrated the regenerative effects of transplanted NSCs in SCI animal models through both paracrine effects and direct neuronal differentiation, restoring synaptic connectivity and neural networks. Based on the positive results of several preclinical studies, phase I and II clinical trials using NSCs have been performed. Despite several hurdles and issues that need to be addressed in the clinical use of NSCs in patients with SCI, gradual progress in the technical development and therapeutic efficacy of NSCs treatments has enhanced the prospects for cell-based treatments in SCI.
Collapse
Affiliation(s)
- Sungjoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea,Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea,Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Kyeung-Min Joo
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea,Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea,Corresponding Author Kyeung-Min Joo Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
| | - Sun-Ho Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea,Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea,Co-corresponding Author Sun-Ho Lee Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| |
Collapse
|
21
|
Enteric Neural Network Assembly Was Promoted by Basic Fibroblast Growth Factor and Vitamin A but Inhibited by Epidermal Growth Factor. Cells 2022; 11:cells11182841. [PMID: 36139415 PMCID: PMC9496868 DOI: 10.3390/cells11182841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Extending well beyond the original use of propagating neural precursors from the central nervous system and dorsal root ganglia, neurosphere medium (NSM) and self-renewal medium (SRM) are two distinct formulas with widespread popularity in enteric neural stem cell (ENSC) applications. However, it remains unknown what growth factors or nutrients are crucial to ENSC development, let alone whether the discrepancy in their components may affect the outcomes of ENSC culture. Dispersed enterocytes from murine fetal gut were nurtured in NSM, SRM or their modifications by selective component elimination or addition to assess their effects on ENSC development. NSM generated neuriteless neurospheres, whereas SRM, even deprived of chicken embryo extract, might wire ganglia together to assemble neural networks. The distinct outcomes came from epidermal growth factor, which inhibited enteric neuronal wiring in NSM. In contrast, basic fibroblast growth factor promoted enteric neurogenesis, gangliogenesis, and neuronal wiring. Moreover, vitamin A derivatives might facilitate neuronal maturation evidenced by p75 downregulation during ENSC differentiation toward enteric neurons to promote gangliogenesis and network assembly. Our results might help to better manipulate ENSC propagation and differentiation in vitro, and open a new avenue for the study of enteric neuronal neuritogenesis and synaptogenesis.
Collapse
|
22
|
D’Aurizio R, Catona O, Pitasi M, Li YE, Ren B, Nicolis SK. Bridging between Mouse and Human Enhancer-Promoter Long-Range Interactions in Neural Stem Cells, to Understand Enhancer Function in Neurodevelopmental Disease. Int J Mol Sci 2022; 23:7964. [PMID: 35887306 PMCID: PMC9322198 DOI: 10.3390/ijms23147964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding variation in complex human disease has been well established by genome-wide association studies, and is thought to involve regulatory elements, such as enhancers, whose variation affects the expression of the gene responsible for the disease. The regulatory elements often lie far from the gene they regulate, or within introns of genes differing from the regulated gene, making it difficult to identify the gene whose function is affected by a given enhancer variation. Enhancers are connected to their target gene promoters via long-range physical interactions (loops). In our study, we re-mapped, onto the human genome, more than 10,000 enhancers connected to promoters via long-range interactions, that we had previously identified in mouse brain-derived neural stem cells by RNApolII-ChIA-PET analysis, coupled to ChIP-seq mapping of DNA/chromatin regions carrying epigenetic enhancer marks. These interactions are thought to be functionally relevant. We discovered, in the human genome, thousands of DNA regions syntenic with the interacting mouse DNA regions (enhancers and connected promoters). We further annotated these human regions regarding their overlap with sequence variants (single nucleotide polymorphisms, SNPs; copy number variants, CNVs), that were previously associated with neurodevelopmental disease in humans. We document various cases in which the genetic variant, associated in humans to neurodevelopmental disease, affects an enhancer involved in long-range interactions: SNPs, previously identified by genome-wide association studies to be associated with schizophrenia, bipolar disorder, and intelligence, are located within our human syntenic enhancers, and alter transcription factor recognition sites. Similarly, CNVs associated to autism spectrum disease and other neurodevelopmental disorders overlap with our human syntenic enhancers. Some of these enhancers are connected (in mice) to homologs of genes already associated to the human disease, strengthening the hypothesis that the gene is indeed involved in the disease. Other enhancers are connected to genes not previously associated with the disease, pointing to their possible pathogenetic involvement. Our observations provide a resource for further exploration of neural disease, in parallel with the now widespread genome-wide identification of DNA variants in patients with neural disease.
Collapse
Affiliation(s)
- Romina D’Aurizio
- Institute of Informatics and Telematics (IIT), National Research Council (CNR), 56124 Pisa, Italy;
| | - Orazio Catona
- Institute of Informatics and Telematics (IIT), National Research Council (CNR), 56124 Pisa, Italy;
| | - Mattia Pitasi
- Dipartimento di Biotecnologie e Bioscienze, University of Milano-Bicocca, 20126 Milano, Italy; (M.P.); (S.K.N.)
| | - Yang Eric Li
- University of California San Diego, La Jolla, CA 92093, USA; (Y.E.L.); (B.R.)
| | - Bing Ren
- University of California San Diego, La Jolla, CA 92093, USA; (Y.E.L.); (B.R.)
| | - Silvia Kirsten Nicolis
- Dipartimento di Biotecnologie e Bioscienze, University of Milano-Bicocca, 20126 Milano, Italy; (M.P.); (S.K.N.)
| |
Collapse
|
23
|
Endogenous Neural Stem Cell Mediated Oligodendrogenesis in the Adult Mammalian Brain. Cells 2022; 11:cells11132101. [PMID: 35805185 PMCID: PMC9265817 DOI: 10.3390/cells11132101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Oligodendrogenesis is essential for replacing worn-out oligodendrocytes, promoting myelin plasticity, and for myelin repair following a demyelinating injury in the adult mammalian brain. Neural stem cells are an important source of oligodendrocytes in the adult brain; however, there are considerable differences in oligodendrogenesis from neural stem cells residing in different areas of the adult brain. Amongst the distinct niches containing neural stem cells, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are considered the principle areas of adult neurogenesis. In addition to these areas, radial glia-like cells, which are the precursors of neural stem cells, are found in the lining of the third ventricle, where they are called tanycytes, and in the cerebellum, where they are called Bergmann glia. In this review, we will describe the contribution and regulation of each of these niches in adult oligodendrogenesis.
Collapse
|
24
|
Crestani M, Dini T, Gauthier NC, Monzo P. Protocol to assess human glioma propagating cell migration on linear micropatterns mimicking brain invasion tracks. STAR Protoc 2022; 3:101331. [PMID: 35496779 PMCID: PMC9043773 DOI: 10.1016/j.xpro.2022.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM) cells invade the brain by following linear structures like blood vessel walls and white matter tracts by using specific motility modes. In this protocol, we describe two micropatterning techniques allowing recapitulation of these linear tracks in vitro: micro-contact printing and deep UV photolithography. We also detail how to maintain, transfect, and prepare human glioma propagating cells (hGPCs) for migration assays on linear tracks, followed by image acquisition and analysis, to measure key parameters of their motility. For complete details on the use and execution of this protocol, please refer to Monzo et al. (2016) and Monzo et al. (2021a).
Micropatterning of linear tracks on imaging dishes Maintenance and preparation of human glioma propagating cells (hGPC) for transfection Transfection of hGPC by electroporation and preparation for imaging Imaging of hGPC migration on linear tracks, cell tracking, and analysis
Collapse
Affiliation(s)
- Michele Crestani
- IFOM - the Firc Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Tania Dini
- IFOM - the Firc Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Nils C. Gauthier
- IFOM - the Firc Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
- Corresponding author
| | - Pascale Monzo
- IFOM - the Firc Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
- Corresponding author
| |
Collapse
|
25
|
Liu Y, Luan Y, Ma K, Zhang Z, Liu Y, Chen XL. ISL1 promotes human glioblastoma-derived stem cells self-renewal by activation of SHH/GLI1 function. Stem Cells Dev 2022; 31:258-268. [DOI: 10.1089/scd.2021.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yingfei Liu
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Kaige Ma
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Yong Liu
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Xin-lin Chen
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., Xi'an, Shaanxi, China,
| |
Collapse
|
26
|
Singh S, Somvanshi RK, Kumar U. Somatostatin-Mediated Regulation of Retinoic Acid-Induced Differentiation of SH-SY5Y Cells: Neurotransmitters Phenotype Characterization. Biomedicines 2022; 10:biomedicines10020337. [PMID: 35203546 PMCID: PMC8961784 DOI: 10.3390/biomedicines10020337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
During brain development, neurite formation plays a critical role in neuronal communication and cognitive function. In the present study, we compared developmental changes in the expression of crucial markers that govern the functional activity of neurons, including somatostatin (SST), choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), brain nitric oxide synthase (bNOS), gamma-aminobutyric acid (GABA), glutamic acid decarboxylase (GAD-65) and synaptic vesicle protein synaptophysin (SYP) in non-differentiated and retinoic acid (RA)-induced differentiated SH-SY5Y cells. We further determined the role of SST in regulating subcellular distribution and expression of neurotransmitters. Our results indicate that SST potentiates RA-induced differentiation of SH-SY5Y cells and involves regulating the subcellular distribution and expression of neurotransmitter markers and synaptophysin translocation to neurites in a time-dependent manner, anticipating the therapeutic implication of SST in neurodegeneration.
Collapse
|
27
|
New insights into the role of fibroblast growth factors in Alzheimer's disease. Mol Biol Rep 2021; 49:1413-1427. [PMID: 34731369 DOI: 10.1007/s11033-021-06890-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), acknowledged as the most common progressive neurodegenerative disorder, is the leading cause of dementia in the elderly. The characteristic pathologic hallmarks of AD-including the deposition of extracellular senile plaques (SP) formation, intracellular neurofibrillary tangles, and synaptic loss, along with prominent vascular dysfunction and cognitive impairment-have been observed in patients. Fibroblast growth factors (FGFs), originally characterized as angiogenic factors, are a large family of signaling molecules that are implicated in a wide range of biological functions in brain development, maintenance and repair, as well as in the pathogenesis of brain-related disorders including AD. Many studies have focused on the implication of FGFs in AD pathophysiology. In this review, we will provide a summary of recent findings regarding the role of FGFs and their receptors in the pathogenesis of AD, and discuss the possible opportunities for targeting these molecules as novel treatment strategies in AD.
Collapse
|
28
|
Hongjin W, Han C, Baoxiang J, Shiqi Y, Xiaoyu X. Reconstituting neurovascular unit based on the close relations between neural stem cells and endothelial cells: an effective method to explore neurogenesis and angiogenesis. Rev Neurosci 2021; 31:143-159. [PMID: 31539363 DOI: 10.1515/revneuro-2019-0023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
The discovery of neural stem cells (NSCs) and their microenvironment, the NSC niche, brought new therapeutic strategies through neurogenesis and angiogenesis for stroke and most neurodegenerative diseases, including Alzheimer's disease. Based on the close links between NSCs and endothelial cells, the integration of neurogenesis and angiogenesis of the NSC niche is also a promising area to the neurovascular unit (NVU) modeling and is now offering a powerful tool to advance our understanding of the brain. In this review, critical aspects of the NVU and model systems are discussed. First, we briefly describe the interaction of each part in the NSC niche. Second, we introduce the co-culture system, microfluidic platforms, and stem cell-derived 3D reconstitution used in NVU modeling based on the close relations between NSCs and endothelial cells, and various characteristics of cell interactions in these systems are also described. Finally, we address the challenges in modeling the NVU that can potentially be overcome by employing strategies for advanced biomaterials and stem cell co-culture use. Based on these approaches, researchers will continue to develop predictable technologies to control the fate of stem cells, achieve accurate screening of drugs for the nervous system, and advance the clinical application of NVU models.
Collapse
Affiliation(s)
- Wang Hongjin
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Chen Han
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Jiang Baoxiang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Yu Shiqi
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Xu Xiaoyu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| |
Collapse
|
29
|
Čater M, Majdič G. In Vitro Culturing of Adult Stem Cells: The Importance of Serum and Atmospheric Oxygen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:101-118. [PMID: 34426961 DOI: 10.1007/5584_2021_656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells are undifferentiated cells found in many different tissues in the adult human and animal body and are thought to be important for replacing damaged and dead cells during life. Due to their differentiation abilities, they have significant potential for regeneration and consequently therapeutic potential in various medical conditions. Studies on in vitro cultivation of different types of adult stem cells have shown that they have specific requirements for optimal proliferation and stemness maintenance as well as induced differentiation. The main factors affecting the success of stem cell cultivation are the composition of the growth medium, including the presence of serum, temperature, humidity, and contact with other cells and the composition of the atmosphere in which the cells grow. In this chapter, we review the literature and describe our own experience regarding the influence of the presence of fetal bovine serum in the medium and the oxygen concentration in the atmosphere on the stemness maintenance and survival of adult stem cells from various tissue sources such as adipose tissue, muscle, brain, and testicular tissue.
Collapse
Affiliation(s)
- Maša Čater
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia. .,Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
30
|
Pagin M, Pernebrink M, Giubbolini S, Barone C, Sambruni G, Zhu Y, Chiara M, Ottolenghi S, Pavesi G, Wei CL, Cantù C, Nicolis SK. Sox2 controls neural stem cell self-renewal through a Fos-centered gene regulatory network. Stem Cells 2021; 39:1107-1119. [PMID: 33739574 DOI: 10.1002/stem.3373] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.
Collapse
Affiliation(s)
- Miriam Pagin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Mattias Pernebrink
- Wallenberg Centre for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Simone Giubbolini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Cristiana Barone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Gaia Sambruni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Yanfen Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Matteo Chiara
- Department of Biosciences, University of Milano, Milan, Italy
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milano, Milan, Italy
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
31
|
Soni A, Klütsch D, Hu X, Houtman J, Rund N, McCloskey A, Mertens J, Schafer ST, Amin H, Toda T. Improved Method for Efficient Generation of Functional Neurons from Murine Neural Progenitor Cells. Cells 2021; 10:1894. [PMID: 34440662 PMCID: PMC8392300 DOI: 10.3390/cells10081894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Neuronal culture was used to investigate neuronal function in physiological and pathological conditions. Despite its inevitability, primary neuronal culture remained a gold standard method that requires laborious preparation, intensive training, and animal resources. To circumvent the shortfalls of primary neuronal preparations and efficiently give rise to functional neurons, we combine a neural stem cell culture method with a direct cell type-conversion approach. The lucidity of this method enables the efficient preparation of functional neurons from mouse neural progenitor cells on demand. We demonstrate that induced neurons (NPC-iNs) by this method make synaptic connections, elicit neuronal activity-dependent cellular responses, and develop functional neuronal networks. This method will provide a concise platform for functional neuronal assessments. This indeed offers a perspective for using these characterized neuronal networks for investigating plasticity mechanisms, drug screening assays, and probing the molecular and biophysical basis of neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Abhinav Soni
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| | - Diana Klütsch
- Biohybrid Neuroelectronics (BIONICS), German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (D.K.); (X.H.)
| | - Xin Hu
- Biohybrid Neuroelectronics (BIONICS), German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (D.K.); (X.H.)
| | - Judith Houtman
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| | - Nicole Rund
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| | - Asako McCloskey
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Jerome Mertens
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Tyrol, Austria;
| | - Simon T. Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Hayder Amin
- Biohybrid Neuroelectronics (BIONICS), German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (D.K.); (X.H.)
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| |
Collapse
|
32
|
Stanzani E, Pedrosa L, Bourmeau G, Anezo O, Noguera-Castells A, Esteve-Codina A, Passoni L, Matteoli M, de la Iglesia N, Seano G, Martínez-Soler F, Tortosa A. Dual Role of Integrin Alpha-6 in Glioblastoma: Supporting Stemness in Proneural Stem-Like Cells While Inducing Radioresistance in Mesenchymal Stem-Like Cells. Cancers (Basel) 2021; 13:cancers13123055. [PMID: 34205341 PMCID: PMC8235627 DOI: 10.3390/cancers13123055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Glioblastoma stem-like cells (GSCs) are responsible for most of the malignant characteristics of glioblastoma, including therapeutic resistance, tumour recurrence, and tumour cellular heterogeneity. Therefore, increased understanding of the mechanisms regulating GSCs aggressiveness may help to improve patients’ outcomes. Here, we investigated the role of integrin a6 in controlling stemness and resistance to radiotherapy across proneural and mesenchymal molecular subtypes. We observed that integrin a6 had a clear role in stemness maintenance in proneural but not in mesenchymal GSCs. In addition, we proved a crucial role of integrin a6 in supporting mesenchymal GSCs resistance to ionizing radiation. Finally, we highlighted that integrin a6 may control different stem-associated features in GSCs, depending on the molecular subtype. The inhibition of integrin a6 limits stem-like malignant characteristics in both GSCs subtypes and thus may potentially control tumour relapse following conventional treatment. Abstract Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma (GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like cells (GSCs), strongly correlates with patients’ prognosis and limited response to therapies. Defining the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting, gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6 inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM subtypes in GBM heterogeneous biology and thus may represent a promising target to improve patient outcomes.
Collapse
Affiliation(s)
- Elisabetta Stanzani
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain;
- Correspondence: or (E.S.); (A.T.)
| | - Leire Pedrosa
- Haematology and Oncology Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (L.P.); (N.d.l.I.)
| | - Guillaume Bourmeau
- Tumor Microenvironment Lab., Institut Curie, Université PSL, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (G.B.); (O.A.); (G.S.)
| | - Oceane Anezo
- Tumor Microenvironment Lab., Institut Curie, Université PSL, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (G.B.); (O.A.); (G.S.)
| | - Aleix Noguera-Castells
- Laboratory of Molecular and Translational Oncology, Departament of Medicine, CELLEX Biomedical Research Centre, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain;
| | - Anna Esteve-Codina
- Functional Genomics, Centre for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain;
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Lorena Passoni
- Laboratory of Pharmacology and Brain Pathology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Michela Matteoli
- CNR Institute of Neuroscience, c/o Humanitas, 20089 Rozzano, Italy;
| | - Núria de la Iglesia
- Haematology and Oncology Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (L.P.); (N.d.l.I.)
| | - Giorgio Seano
- Tumor Microenvironment Lab., Institut Curie, Université PSL, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (G.B.); (O.A.); (G.S.)
| | - Fina Martínez-Soler
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain;
- Department of Basic Nursing, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain
| | - Avelina Tortosa
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain;
- Department of Basic Nursing, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain
- Correspondence: or (E.S.); (A.T.)
| |
Collapse
|
33
|
Advances and Perspectives in Dental Pulp Stem Cell Based Neuroregeneration Therapies. Int J Mol Sci 2021; 22:ijms22073546. [PMID: 33805573 PMCID: PMC8036729 DOI: 10.3390/ijms22073546] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types for regenerative therapies given their ability to grow in the absence of serum and their realistic possibility to be used in autologous grafts. In this review, we describe the particular advantages of hDPSCs for neuroregenerative cell therapies. We thoroughly discuss the knowledge about their embryonic origin and characteristics of their postnatal niche, as well as the current status of cell culture protocols to maximize their multilineage differentiation potential, highlighting some common issues when assessing neuronal differentiation fates of hDPSCs. We also review the recent progress on neuroprotective and immunomodulatory capacity of hDPSCs and their secreted extracellular vesicles, as well as their combination with scaffold materials to improve their functional integration on the injured central nervous system (CNS) and peripheral nervous system (PNS). Finally, we offer some perspectives on the current and possible future applications of hDPSCs in neuroregenerative cell therapies.
Collapse
|
34
|
Laporte E, Vennekens A, Vankelecom H. Pituitary Remodeling Throughout Life: Are Resident Stem Cells Involved? Front Endocrinol (Lausanne) 2021; 11:604519. [PMID: 33584539 PMCID: PMC7879485 DOI: 10.3389/fendo.2020.604519] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The pituitary gland has the primordial ability to dynamically adapt its cell composition to changing hormonal needs of the organism throughout life. During the first weeks after birth, an impressive growth and maturation phase is occurring in the gland during which the distinct hormonal cell populations expand. During pubertal growth and development, growth hormone (GH) levels need to peak which requires an adaptive enterprise in the GH-producing somatotrope population. At aging, pituitary function wanes which is associated with organismal decay including the somatopause in which GH levels drop. In addition to these key time points of life, the pituitary's endocrine cell landscape plastically adapts during specific (patho-)physiological conditions such as lactation (need for PRL) and stress (engagement of ACTH). Particular resilience is witnessed after physical injury in the (murine) gland, culminating in regeneration of destroyed cell populations. In many other tissues, adaptive and regenerative processes involve the local stem cells. Over the last 15 years, evidence has accumulated that the pituitary gland houses a resident stem cell compartment. Recent studies propose their involvement in at least some of the cell remodeling processes that occur in the postnatal pituitary but support is still fragmentary and not unequivocal. Many questions remain unsolved such as whether the stem cells are key players in the vivid neonatal growth phase and whether the decline in pituitary function at old age is associated with decreased stem cell fitness. Furthermore, the underlying molecular mechanisms of pituitary plasticity, in particular the stem cell-linked ones, are still largely unknown. Pituitary research heavily relies on transgenic in vivo mouse models. While having proven their value, answers to pituitary stem cell-focused questions may more diligently come from a novel powerful in vitro research model, termed organoids, which grow from pituitary stem cells and recapitulate stem cell phenotype and activation status. In this review, we describe pituitary plasticity conditions and summarize what is known on the involvement and phenotype of pituitary stem cells during these pituitary remodeling events.
Collapse
Affiliation(s)
| | | | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
35
|
Kubota M, Scheibinger M, Jan TA, Heller S. Greater epithelial ridge cells are the principal organoid-forming progenitors of the mouse cochlea. Cell Rep 2021; 34:108646. [PMID: 33472062 PMCID: PMC7847202 DOI: 10.1016/j.celrep.2020.108646] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
In mammals, hearing loss is irreversible due to the lack of regenerative potential of non-sensory cochlear cells. Neonatal cochlear cells, however, can grow into organoids that harbor sensory epithelial cells, including hair cells and supporting cells. Here, we purify different cochlear cell types from neonatal mice, validate the composition of the different groups with single-cell RNA sequencing (RNA-seq), and assess the various groups' potential to grow into inner ear organoids. We find that the greater epithelial ridge (GER), a transient cell population that disappears during post-natal cochlear maturation, harbors the most potent organoid-forming cells. We identified three distinct GER cell groups that correlate with a specific spatial distribution of marker genes. Organoid formation was synergistically enhanced when the cells were cultured at increasing density. This effect is not due to diffusible signals but requires direct cell-to-cell contact. Our findings improve the development of cell-based assays to study culture-generated inner ear cell types.
Collapse
Affiliation(s)
- Marie Kubota
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Mirko Scheibinger
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taha A Jan
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology - Head & Neck Surgery, University of California San Francisco, San Francisco, CA 94115, USA
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, Morshead CM, Tator C, Fehlings MG. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med 2020; 9:1509-1530. [PMID: 32691994 PMCID: PMC7695641 DOI: 10.1002/sctm.19-0135] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) are associated with tremendous physical, social, and financial costs for millions of individuals and families worldwide. Rapid delivery of specialized medical and surgical care has reduced mortality; however, long-term functional recovery remains limited. Cell-based therapies represent an exciting neuroprotective and neuroregenerative strategy for SCI. This article summarizes the most promising preclinical and clinical cell approaches to date including transplantation of mesenchymal stem cells, neural stem cells, oligodendrocyte progenitor cells, Schwann cells, and olfactory ensheathing cells, as well as strategies to activate endogenous multipotent cell pools. Throughout, we emphasize the fundamental biology of cell-based therapies, critical features in the pathophysiology of spinal cord injury, and the strengths and limitations of each approach. We also highlight salient completed and ongoing clinical trials worldwide and the bidirectional translation of their findings. We then provide an overview of key adjunct strategies such as trophic factor support to optimize graft survival and differentiation, engineered biomaterials to provide a support scaffold, electrical fields to stimulate migration, and novel approaches to degrade the glial scar. We also discuss important considerations when initiating a clinical trial for a cell therapy such as the logistics of clinical-grade cell line scale-up, cell storage and transportation, and the delivery of cells into humans. We conclude with an outlook on the future of cell-based treatments for SCI and opportunities for interdisciplinary collaboration in the field.
Collapse
Affiliation(s)
- Christopher S. Ahuja
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Andrea Mothe
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Mohamad Khazaei
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Jetan H. Badhiwala
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Emily A. Gilbert
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Derek van der Kooy
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Cindi M. Morshead
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Charles Tator
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| |
Collapse
|
37
|
Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol 2020; 17:673-685. [PMID: 32737460 DOI: 10.1038/s41575-020-0339-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
The classic view portrays Parkinson disease (PD) as a motor disorder resulting from loss of substantia nigra pars compacta dopaminergic neurons. Multiple studies, however, describe prodromal, non-motor dysfunctions that affect the quality of life of patients who subsequently develop PD. These prodromal dysfunctions comprise a wide array of gastrointestinal motility disorders including dysphagia, delayed gastric emptying and chronic constipation. The histological hallmark of PD - misfolded α-synuclein aggregates that form Lewy bodies and neurites - is detected in the enteric nervous system prior to clinical diagnosis, suggesting that the gastrointestinal tract and its neural (vagal) connection to the central nervous system could have a major role in disease aetiology. This Review provides novel insights on the pathogenesis of PD, including gut-to-brain trafficking of α-synuclein as well as the newly discovered nigro-vagal pathway, and highlights how vagal connections from the gut could be the conduit by which ingested environmental pathogens enter the central nervous system and ultimately induce, or accelerate, PD progression. The pathogenic potential of various environmental neurotoxicants and the suitability and translational potential of experimental animal models of PD will be highlighted and appraised. Finally, the clinical manifestations of gastrointestinal involvement in PD and medications will be discussed briefly.
Collapse
|
38
|
Galiakberova AA, Dashinimaev EB. Neural Stem Cells and Methods for Their Generation From Induced Pluripotent Stem Cells in vitro. Front Cell Dev Biol 2020; 8:815. [PMID: 33117792 PMCID: PMC7578226 DOI: 10.3389/fcell.2020.00815] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neural stem cells (NSCs) provide promising approaches for investigating embryonic neurogenesis, modeling of the pathogenesis of diseases of the central nervous system, and for designing drug-screening systems. Such cells also have an application in regenerative medicine. The most convenient and acceptable source of NSCs is pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells). However, there are many different protocols for the induction and differentiation of NSCs, and these result in a wide range of neural cell types. This review is intended to summarize the knowledge accumulated, to date, by workers in this field. It should be particularly useful for researchers who are beginning investigations in this area of cell biology.
Collapse
Affiliation(s)
- Adelya A Galiakberova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem B Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
39
|
Luciani M, Gritti A, Meneghini V. Human iPSC-Based Models for the Development of Therapeutics Targeting Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:224. [PMID: 33062642 PMCID: PMC7530250 DOI: 10.3389/fmolb.2020.00224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 01/30/2023] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of rare genetic conditions. The absence or deficiency of lysosomal proteins leads to excessive storage of undigested materials and drives secondary pathological mechanisms including autophagy, calcium homeostasis, ER stress, and mitochondrial abnormalities. A large number of LSDs display mild to severe central nervous system (CNS) involvement. Animal disease models and post-mortem tissues partially recapitulate the disease or represent the final stage of CNS pathology, respectively. In the last decades, human models based on induced pluripotent stem cells (hiPSCs) have been extensively applied to investigate LSD pathology in several tissues and organs, including the CNS. Neural stem/progenitor cells (NSCs) derived from patient-specific hiPSCs (hiPS-NSCs) are a promising tool to define the effects of the pathological storage on neurodevelopment, survival and function of neurons and glial cells in neurodegenerative LSDs. Additionally, the development of novel 2D co-culture systems and 3D hiPSC-based models is fostering the investigation of neuron-glia functional and dysfunctional interactions, also contributing to define the role of neurodevelopment and neuroinflammation in the onset and progression of the disease, with important implications in terms of timing and efficacy of treatments. Here, we discuss the advantages and limits of the application of hiPS-NSC-based models in the study and treatment of CNS pathology in different LSDs. Additionally, we review the state-of-the-art and the prospective applications of NSC-based therapy, highlighting the potential exploitation of hiPS-NSCs for gene and cell therapy approaches in the treatment of neurodegenerative LSDs.
Collapse
Affiliation(s)
- Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
40
|
Ledesma-Terrón M, Peralta-Cañadas N, Míguez DG. FGF2 modulates simultaneously the mode, the rate of division and the growth fraction in cultures of radial glia. Development 2020; 147:147/14/dev189712. [PMID: 32709691 PMCID: PMC7390635 DOI: 10.1242/dev.189712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/18/2020] [Indexed: 01/16/2023]
Abstract
Radial glial progenitors in the mammalian developing neocortex have been shown to follow a deterministic differentiation program restricted to an asymmetric-only mode of division. This feature seems incompatible with their well-known ability to increase in number when cultured in vitro, driven by fibroblast growth factor 2 and other mitogenic signals. The changes in their differentiation dynamics that allow this transition from in vivo asymmetric-only division mode to an in vitro self-renewing culture have not been fully characterized. Here, we combine experiments of radial glia cultures with numerical models and a branching process theoretical formalism to show that fibroblast growth factor 2 has a triple effect by simultaneously increasing the growth fraction, promoting symmetric divisions and shortening the length of the cell cycle. These combined effects partner to establish and sustain a pool of rapidly proliferating radial glial progenitors in vitro. We also show that, in conditions of variable proliferation dynamics, the branching process tool outperforms other commonly used methods based on thymidine analogs, such as BrdU and EdU, in terms of accuracy and reliability. Highlighted Article: When mode and/or rate of division are changing, a branching process, rather than a thymidine analog method, provides temporal resolution, it is more robust and does not interfere with cell homeostasis.
Collapse
Affiliation(s)
- Mario Ledesma-Terrón
- Departamento de Física de la Materia Condensada, Instituto de Física de la Materia Condensada, IFIMAC, Instituto Nicolas Cabrera, INC, Centro de Biología Molecular Severo Ochoa, CBMSO, Universidad Autónoma de Madrid, Madrid 28012, Spain
| | - Nuria Peralta-Cañadas
- Departamento de Física de la Materia Condensada, Instituto de Física de la Materia Condensada, IFIMAC, Instituto Nicolas Cabrera, INC, Centro de Biología Molecular Severo Ochoa, CBMSO, Universidad Autónoma de Madrid, Madrid 28012, Spain
| | - David G Míguez
- Departamento de Física de la Materia Condensada, Instituto de Física de la Materia Condensada, IFIMAC, Instituto Nicolas Cabrera, INC, Centro de Biología Molecular Severo Ochoa, CBMSO, Universidad Autónoma de Madrid, Madrid 28012, Spain
| |
Collapse
|
41
|
Development and Differentiation of Midbrain Dopaminergic Neuron: From Bench to Bedside. Cells 2020; 9:cells9061489. [PMID: 32570916 PMCID: PMC7349799 DOI: 10.3390/cells9061489] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disorder affecting the motor system. It is primarily due to substantial loss of midbrain dopamine (mDA) neurons in the substantia nigra pars compacta and to decreased innervation to the striatum. Although existing drug therapy available can relieve the symptoms in early-stage PD patients, it cannot reverse the pathogenic progression of PD. Thus, regenerating functional mDA neurons in PD patients may be a cure to the disease. The proof-of-principle clinical trials showed that human fetal graft-derived mDA neurons could restore the release of dopamine neurotransmitters, could reinnervate the striatum, and could alleviate clinical symptoms in PD patients. The invention of human-induced pluripotent stem cells (hiPSCs), autologous source of neural progenitors with less ethical consideration, and risk of graft rejection can now be generated in vitro. This advancement also prompts extensive research to decipher important developmental signaling in differentiation, which is key to successful in vitro production of functional mDA neurons and the enabler of mass manufacturing of the cells required for clinical applications. In this review, we summarize the biology and signaling involved in the development of mDA neurons and the current progress and methodology in driving efficient mDA neuron differentiation from pluripotent stem cells.
Collapse
|
42
|
Zhang L, Yu H, Yuan Y, Yu JS, Lou Z, Xue Y, Liu Y. The necessity for standardization of glioma stem cell culture: a systematic review. Stem Cell Res Ther 2020; 11:84. [PMID: 32102678 PMCID: PMC7045630 DOI: 10.1186/s13287-020-01589-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/15/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cancer stem cell hypothesis is an old idea which has been revived in recent years for many cancers, including gliomas. However, this concept has become controversial due to a series of studies with conflicting results. METHODS A systematic literature search was conducted in PubMed and the Web of Science database to analyze studies using serum-free medium and its components in glioma stem cells, glioma stem-like cells, glioma-initiating cells, or glioma neurosphere cultures. All the studies reviewed were published between 1970 and 2019. We found that no standardized culture method was used, and the data were incomparable due to differing culture conditions and the use of media with different components. CONCLUSIONS Here, we review the most commonly used serum-free media and added components for glioma stem cell culture while highlighting the function of each component used in the media. We emphasize the necessity for standardization of glioma stem cell culture and propose a standard culture medium to prevent bias in glioma stem cell research.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, # 36 Sanhao Street, Heping District, Shenyang, China.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA.,Department of Oncology, Mayo Clinic, Rochester, USA
| | - Hongwei Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, # 36 Sanhao Street, Heping District, Shenyang, China
| | - Yuhui Yuan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, # 36 Sanhao Street, Heping District, Shenyang, China
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, USA
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, # 36 Sanhao Street, Heping District, Shenyang, China.
| |
Collapse
|
43
|
Kim Y, Jeong J, Choi D. Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Exp Mol Med 2020; 52:213-226. [PMID: 32080339 PMCID: PMC7062739 DOI: 10.1038/s12276-020-0383-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/01/2019] [Accepted: 12/27/2019] [Indexed: 12/25/2022] Open
Abstract
Techniques for reprogramming somatic cells create new opportunities for drug screening, disease modeling, artificial organ development, and cell therapy. The development of reprogramming techniques has grown exponentially since the discovery of induced pluripotent stem cells (iPSCs) by the transduction of four factors (OCT3/4, SOX2, c-MYC, and KLF4) in mouse embryonic fibroblasts. Initial studies on iPSCs led to direct-conversion techniques using transcription factors expressed mainly in target cells. However, reprogramming transcription factors with a virus risks integrating viral DNA and can be complicated by oncogenes. To address these problems, many researchers are developing reprogramming methods that use clinically applicable small molecules and growth factors. This review summarizes research trends in reprogramming cells using small molecules and growth factors, including their modes of action. The reprogramming of cells using small molecules to generate viable, safe stem-cell populations could transform stem-cell therapies, disease modeling and artificial organ development. Existing ways of reprogramming cells to generate stem cells carry risks, because the methods used often involve using viral DNA components or oncogenes, genes with the potential to turn cells into tumour cells. Safer, inexpensive alternatives are sought by scientists, and the efficient reprogramming of cells using small molecules and growth factors shows promise. Dongho Choi and co-workers at Hanyang University College of Medicine in Seoul, South Korea, reviewed recent research highlighting how small molecules including chemical compounds, plant derivatives and certain approved drugs are being used effectively to create different stem-cell populations. Recent successes are also contributing valuable insights into how stem cells differentiate into different cell types.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Korea. .,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
44
|
Lee JH, Shaker MR, Lee E, Lee B, Sun W. NeuroCore formation during differentiation of neurospheres of mouse embryonic neural stem cells. Stem Cell Res 2020; 43:101691. [PMID: 32018208 DOI: 10.1016/j.scr.2019.101691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
Neural stem cells (NSCs) in the embryonic neocortex have the potential to generate a well-organized laminar architecture of the cerebral cortex through precise regulation of the proliferation, differentiation, and migration of neural cells. NSCs can be isolated in vitro and expanded as cell clusters, called neurospheres, which are primarily related to the proliferation ability of NSCs. Conversely, the tissue-organizing properties of NSCs via regulated differentiation and migration of the cells are not well understood. In this study, we established a three-dimensional (3D) differentiation model of neurospheres, which produce unique neuronal clusters, termed NeuroCore (NC). NC formation was initiated by the aggregation of young neurons. Upon maturation of the neurons and the establishment of radial glia-like structures, the initial organization of the NCs transformed into a glomeruli-like arrangement of cortical neurons. These neurons expressed multiple markers of upper and deep cortical neurons. Taken together, we propose that NSCs in vitro maintain some aspects of their original in vivo tissue-organizing properties, providing an alternative opportunity to explore the fundamental components of brain histogenesis in vitro.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mohammed R Shaker
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Eunsoo Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Boram Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
45
|
Hong YJ, Do JT. Neural Lineage Differentiation From Pluripotent Stem Cells to Mimic Human Brain Tissues. Front Bioeng Biotechnol 2019; 7:400. [PMID: 31867324 PMCID: PMC6908493 DOI: 10.3389/fbioe.2019.00400] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/22/2019] [Indexed: 01/22/2023] Open
Abstract
Recent advances in induced pluripotent stem cell (iPSC) research have turned limitations of prior and current research into possibilities. iPSCs can differentiate into the desired cell types, are easier to obtain than embryonic stem cells (ESCs), and more importantly, in case they are to be used in research on diseases, they can be obtained directly from the patient. With these advantages, differentiation of iPSCs into various cell types has been conducted in the fields of basic development, cell physiology, and cell therapy research. Differentiation of stem cells into nervous cells has been prevalent among all cell types studied. Starting with the monolayer 2D differentiation method where cells were attached to a dish, substantial efforts have been made to better mimic the in vivo environment and produce cells grown in vitro that closely resemble in vivo state cells. Having surpassed the stage of 3D differentiation, we have now reached the stage of creating tissues called organoids that resemble organs, rather than growing simple cells. In this review, we focus on the central nervous system (CNS) and describe the challenges faced in 2D and 3D differentiation research studies and the processes of overcoming them. We also discuss current studies and future perspectives on brain organoid researches.
Collapse
Affiliation(s)
- Yean Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
46
|
Teng YD. Functional multipotency of stem cells: Biological traits gleaned from neural progeny studies. Semin Cell Dev Biol 2019; 95:74-83. [DOI: 10.1016/j.semcdb.2019.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/24/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022]
|
47
|
Tan MSY, Sandanaraj E, Chong YK, Lim SW, Koh LWH, Ng WH, Tan NS, Tan P, Ang BT, Tang C. A STAT3-based gene signature stratifies glioma patients for targeted therapy. Nat Commun 2019; 10:3601. [PMID: 31399589 PMCID: PMC6689009 DOI: 10.1038/s41467-019-11614-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Intratumoral heterogeneity is a hallmark of glioblastoma (GBM) tumors, thought to negatively influence therapeutic outcome. Previous studies showed that mesenchymal tumors have a worse outcome than the proneural subtype. Here we focus on STAT3 as its activation precedes the proneural-mesenchymal transition. We first establish a STAT3 gene signature that stratifies GBM patients into STAT3-high and -low cohorts. STAT3 inhibitor treatment selectively mitigates STAT3-high cell viability and tumorigenicity in orthotopic mouse xenograft models. We show the mechanism underlying resistance in STAT3-low cells by combining STAT3 signature analysis with kinome screen data on STAT3 inhibitor-treated cells. This allows us to draw connections between kinases affected by STAT3 inhibitors, their associated transcription factors and target genes. We demonstrate that dual inhibition of IGF-1R and STAT3 sensitizes STAT3-low cells and improves survival in mice. Our study underscores the importance of serially profiling tumors so as to accurately target individuals who may demonstrate molecular subtype switching.
Collapse
Affiliation(s)
- Melanie Si Yan Tan
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Edwin Sandanaraj
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuk Kien Chong
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - See Wee Lim
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Lynnette Wei Hsien Koh
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wai Hoe Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Singapore
| | - Patrick Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Beng Ti Ang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore. .,Duke-National University of Singapore Medical School, Singapore, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Carol Tang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore. .,Duke-National University of Singapore Medical School, Singapore, Singapore. .,Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore.
| |
Collapse
|
48
|
Derivation of Neural Stem Cells from the Developing and Adult Human Brain. Results Probl Cell Differ 2019. [PMID: 30209653 DOI: 10.1007/978-3-319-93485-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Neural stem cells isolated from the developing and adult brain are an ideal source of cells for use in clinical applications such as cell replacement therapy. The clear advantage of these cells over the more commonly utilised embryonic and pluripotent stem cells is that they are already neurally committed. Of particular importance is the fact that these cells don't require the same level of in vitro culture that can be cost and labour intensive. Foetal neural stem cells can be readily derived from the foetal brain and expand in culture over time. Similarly, adult stem cells have been explored for their potential in vitro and in vivo animal models. In this chapter we identify the progress made in developing these cells as well as the advantages of taking them forward for clinical use.
Collapse
|
49
|
Abazari MF, Soleimanifar F, Enderami SE, Nematzadeh M, Nasiri N, Nejati F, Saburi E, Khodashenas S, Darbasizadeh B, Khani MM, Ghoraeian P. Incorporated‐bFGF polycaprolactone/polyvinylidene fluoride nanocomposite scaffold promotes human induced pluripotent stem cells osteogenic differentiation. J Cell Biochem 2019; 120:16750-16759. [DOI: 10.1002/jcb.28933] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Mohammad Foad Abazari
- Research Center for Clinical Virology Tehran University of Medical Sciences Tehran Iran
| | - Fatemeh Soleimanifar
- Dietary Supplements and Probiotic Research Center Alborz University of Medical Sciences Karaj Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell biology Research Center Faculty of Medicine and Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences Sari Iran
| | - Mahsa Nematzadeh
- Young Researchers and Elit Club, Tehran Medical Sciences Islamic Azad University Tehran Iran
| | - Navid Nasiri
- Department of Biology, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Fatemeh Nejati
- Department of Biology, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Ehsan Saburi
- Immunogenetics and Cell Culture Department, Immunology Research Center, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shabanali Khodashenas
- Department of Medical Biotechnology, Molecular and Cell Biology Research Center, Faculty of Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Behzad Darbasizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, Student Research Committee, School of Pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Pegah Ghoraeian
- Department of Genetics, Tehran Medical Sciences Branch Islamic Azad University Tehran Iran
| |
Collapse
|
50
|
Spontaneously Formed Spheroids from Mouse Compact Bone-Derived Cells Retain Highly Potent Stem Cells with Enhanced Differentiation Capability. Stem Cells Int 2019; 2019:8469012. [PMID: 31191686 PMCID: PMC6525826 DOI: 10.1155/2019/8469012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 02/07/2023] Open
Abstract
The results from our recent study showed the presence of two distinct spheroid-forming mechanisms, i.e., spontaneous and mechanical. In this study, we focused on the spontaneously formed spheroids, and the character of spontaneously formed spheroids from mouse compact bone-derived cells (CBDCs) was explored. Cells from (C57BL/6J) mouse leg bones were isolated, and compact bone-derived cells were cultured after enzymatic digestion. Spontaneous spheroid formation was achieved on a culture plate with specific water contact angle as reported. The expression levels of embryonic stem cell markers were analyzed using immunofluorescence and quantitative reverse transcription polymerase chain reaction. Then, the cells from spheroids were induced into osteogenic and neurogenic lineages. The spontaneously formed spheroids from CBDCs were positive for ES cell markers such as SSEA1, Sox2, Oct4, and Nanog. Additionally, the expressions of fucosyltransferase 4/FUT4 (SSEA1), Sox2, and Nanog were significantly higher than those in monolayer cultured cells. The gene expression of mesenchymal stem cell markers was almost identical in both spheroids and monolayer-cultured cells, but the expression of Sca-1 was higher in spheroids. Spheroid-derived cells showed significantly higher osteogenic and neurogenic marker expression than monolayer-cultured cells after induction. Spontaneously formed spheroids expressed stem cell markers and showed enhanced osteogenic and neurogenic differentiation capabilities than cells from the conventional monolayer culture, which supports the superior stemness.
Collapse
|