1
|
Neira JA, Conrad JV, Rusteika M, Chu LF. The progress of induced pluripotent stem cells derived from pigs: a mini review of recent advances. Front Cell Dev Biol 2024; 12:1371240. [PMID: 38979033 PMCID: PMC11228285 DOI: 10.3389/fcell.2024.1371240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
Pigs (Sus scrofa) are widely acknowledged as an important large mammalian animal model due to their similarity to human physiology, genetics, and immunology. Leveraging the full potential of this model presents significant opportunities for major advancements in the fields of comparative biology, disease modeling, and regenerative medicine. Thus, the derivation of pluripotent stem cells from this species can offer new tools for disease modeling and serve as a stepping stone to test future autologous or allogeneic cell-based therapies. Over the past few decades, great progress has been made in establishing porcine pluripotent stem cells (pPSCs), including embryonic stem cells (pESCs) derived from pre- and peri-implantation embryos, and porcine induced pluripotent stem cells (piPSCs) using a variety of cellular reprogramming strategies. However, the stabilization of pPSCs was not as straightforward as directly applying the culture conditions developed and optimized for murine or primate PSCs. Therefore, it has historically been challenging to establish stable pPSC lines that could pass stringent pluripotency tests. Here, we review recent advances in the establishment of stable porcine PSCs. We focus on the evolving derivation methods that eventually led to the establishment of pESCs and transgene-free piPSCs, as well as current challenges and opportunities in this rapidly advancing field.
Collapse
Affiliation(s)
- Jaime A Neira
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Li-Fang Chu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
2
|
Conrad JV, Meyer S, Ramesh PS, Neira JA, Rusteika M, Mamott D, Duffin B, Bautista M, Zhang J, Hiles E, Higgins EM, Steill J, Freeman J, Ni Z, Liu S, Ungrin M, Rancourt D, Clegg DO, Stewart R, Thomson JA, Chu LF. Efficient derivation of transgene-free porcine induced pluripotent stem cells enables in vitro modeling of species-specific developmental timing. Stem Cell Reports 2023; 18:2328-2343. [PMID: 37949072 PMCID: PMC10724057 DOI: 10.1016/j.stemcr.2023.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sus scrofa domesticus (pig) has served as a superb large mammalian model for biomedical studies because of its comparable physiology and organ size to humans. The derivation of transgene-free porcine induced pluripotent stem cells (PiPSCs) will, therefore, benefit the development of porcine-specific models for regenerative biology and its medical applications. In the past, this effort has been hampered by a lack of understanding of the signaling milieu that stabilizes the porcine pluripotent state in vitro. Here, we report that transgene-free PiPSCs can be efficiently derived from porcine fibroblasts by episomal vectors along with microRNA-302/367 using optimized protocols tailored for this species. PiPSCs can be differentiated into derivatives representing the primary germ layers in vitro and can form teratomas in immunocompromised mice. Furthermore, the transgene-free PiPSCs preserve intrinsic species-specific developmental timing in culture, known as developmental allochrony. This is demonstrated by establishing a porcine in vitro segmentation clock model that, for the first time, displays a specific periodicity at ∼3.7 h, a timescale recapitulating in vivo porcine somitogenesis. We conclude that the transgene-free PiPSCs can serve as a powerful tool for modeling development and disease and developing transplantation strategies. We also anticipate that they will provide insights into conserved and unique features on the regulations of mammalian pluripotency and developmental timing mechanisms.
Collapse
Affiliation(s)
- J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pranav S Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jaime A Neira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Daniel Mamott
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bret Duffin
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Monica Bautista
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Emily Hiles
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Eve M Higgins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - John Steill
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jack Freeman
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Zijian Ni
- Department of Statistics, University of Wisconsin, Madison, WI 53706, USA
| | - Shiying Liu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mark Ungrin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Derrick Rancourt
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
3
|
Tu CF, Peng SH, Chuang CK, Wong CH, Yang TS. - Invited Review - Reproductive technologies needed for the generation of precise gene-edited pigs in the pathways from laboratory to farm. Anim Biosci 2023; 36:339-349. [PMID: 36397683 PMCID: PMC9899582 DOI: 10.5713/ab.22.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Gene editing (GE) offers a new breeding technique (NBT) of sustainable value to animal agriculture. There are 3 GE working sites covering 5 feasible pathways to generate GE pigs along with the crucial intervals of GE/genotyping, microinjection/electroporation, induced pluripotent stem cells, somatic cell nuclear transfer, cryopreservation, and nonsurgical embryo transfer. The extension of NBT in the new era of pig breeding depends on the synergistic effect of GE and reproductive biotechnologies; the outcome relies not only on scientific due diligence and operational excellence but also on the feasibility of application on farms to improve sustainability.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan,Corresponding Author: Ching-Fu Tu, Tel: +886-37-585815, E-mail:
| | - Shu-Hui Peng
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Chin-kai Chuang
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Chi-Hong Wong
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan,Department of Biotechnology and Animal Science, National Ilan University, Yilan 260007,
Taiwan
| |
Collapse
|
4
|
Ren Y, Zhang S, Liang Y, Gong Z, Cui Y, Song W. Feeder cells treated with ethanol can be used to maintain self-renewal and pluripotency of human pluripotent stem cells. FEBS Open Bio 2023; 13:279-292. [PMID: 36537760 PMCID: PMC9900095 DOI: 10.1002/2211-5463.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Feeder cells play an important role in the culture of human pluripotent stem cells (hPSCs) in vitro. Previously, we used methanol as a fixative to prepare feeder cells for the cultivation of pluripotent stem cells (PSCs), and this method could maintain the self-renewal and pluripotency of PSCs. However, methanol is toxic, and so here we examined whether ethanol could be used to prepare feeder cells as a fixative for hPSC culturing. Primed, naïve, and extended human embryonic stem cells and induced pluripotent stem cells can maintain self-renewal and undifferentiated potential on feeder cells treated with ethanol for an extended period. RNA sequencing analysis showed that the expression of collagen-related genes in hPSCs cultured on feeder cells treated with ethanol was significantly lower as compared with hPSCs cultured on feeder cells treated with mitomycin C. Therefore, we speculate that the signaling pathway mediated by collagen-related genes may, at least in part, contribute to the maintenance of self-renewal and pluripotency of PSCs induced by feeder cells treated with chemicals.
Collapse
Affiliation(s)
- Yahui Ren
- School of Life Science and EngineeringHenan University of Urban ConstructionPingdingshanChina
| | - Sijin Zhang
- School of Life Science and EngineeringHenan University of Urban ConstructionPingdingshanChina
| | - Yun Liang
- School of Life Science and EngineeringHenan University of Urban ConstructionPingdingshanChina
| | - Zichao Gong
- School of Life Science and EngineeringHenan University of Urban ConstructionPingdingshanChina
| | - Yongyi Cui
- School of Life Science and EngineeringHenan University of Urban ConstructionPingdingshanChina
| | - Wei Song
- School of Life Science and EngineeringHenan University of Urban ConstructionPingdingshanChina
| |
Collapse
|
5
|
Jiao H, Lee MS, Sivapatham A, Leiferman EM, Li WJ. Epigenetic regulation of BAF60A determines efficiency of miniature swine iPSC generation. Sci Rep 2022; 12:9039. [PMID: 35641537 PMCID: PMC9156668 DOI: 10.1038/s41598-022-12919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/18/2022] [Indexed: 02/08/2023] Open
Abstract
Miniature pigs are an ideal animal model for translational research to evaluate stem cell therapies and regenerative applications. While the derivation of induced pluripotent stem cells (iPSCs) from miniature pigs has been demonstrated, there is still a lack of a reliable method to generate and maintain miniature pig iPSCs. In this study, we derived iPSCs from fibroblasts of Wisconsin miniature swine (WMS), Yucatan miniature swine (YMS), and Göttingen minipigs (GM) using our culture medium. By comparing cells of the different pig breeds, we found that YMS fibroblasts were more efficiently reprogrammed into iPSCs, forming colonies with well-defined borders, than WMS and GM fibroblasts. We also demonstrated that YMS iPSC lines with a normal pig karyotype gave rise to cells of the three germ layers in vitro and in vivo. Mesenchymal stromal cells expressing phenotypic characteristics were derived from established iPSC lines as an example of potential applications. In addition, we found that the expression level of the switch/sucrose nonfermentable component BAF60A regulated by STAT3 signaling determined the efficiency of pig iPSC generation. The findings of this study provide insight into the underlying mechanism controlling the reprogramming efficiency of miniature pig cells to develop a viable strategy to enhance the generation of iPSCs for biomedical research.
Collapse
Affiliation(s)
- Hongli Jiao
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA
| | - Ming-Song Lee
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Athillesh Sivapatham
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA
| | - Ellen M Leiferman
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA
| | - Wan-Ju Li
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Martínez-Falguera D, Iborra-Egea O, Gálvez-Montón C. iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams. Biomedicines 2021; 9:1836. [PMID: 34944652 PMCID: PMC8698445 DOI: 10.3390/biomedicines9121836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction is the main driver of heart failure due to ischemia and subsequent cell death, and cell-based strategies have emerged as promising therapeutic methods to replace dead tissue in cardiovascular diseases. Research in this field has been dramatically advanced by the development of laboratory-induced pluripotent stem cells (iPSCs) that harbor the capability to become any cell type. Like other experimental strategies, stem cell therapy must meet multiple requirements before reaching the clinical trial phase, and in vivo models are indispensable for ensuring the safety of such novel therapies. Specifically, translational studies in large animal models are necessary to fully evaluate the therapeutic potential of this approach; to empirically determine the optimal combination of cell types, supplementary factors, and delivery methods to maximize efficacy; and to stringently assess safety. In the present review, we summarize the main strategies employed to generate iPSCs and differentiate them into cardiomyocytes in large animal species; the most critical differences between using small versus large animal models for cardiovascular studies; and the strategies that have been pursued regarding implanted cells' stage of differentiation, origin, and technical application.
Collapse
Affiliation(s)
- Daina Martínez-Falguera
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain;
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Oriol Iborra-Egea
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
7
|
Chakritbudsabong W, Chaiwattanarungruengpaisan S, Sariya L, Pamonsupornvichit S, Ferreira JN, Sukho P, Gronsang D, Tharasanit T, Dinnyes A, Rungarunlert S. Exogenous LIN28 Is Required for the Maintenance of Self-Renewal and Pluripotency in Presumptive Porcine-Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:709286. [PMID: 34354993 PMCID: PMC8329718 DOI: 10.3389/fcell.2021.709286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Porcine species have been used in preclinical transplantation models for assessing the efficiency and safety of transplants before their application in human trials. Porcine-induced pluripotent stem cells (piPSCs) are traditionally established using four transcription factors (4TF): OCT4, SOX2, KLF4, and C-MYC. However, the inefficiencies in the reprogramming of piPSCs and the maintenance of their self-renewal and pluripotency remain challenges to be resolved. LIN28 was demonstrated to play a vital role in the induction of pluripotency in humans. To investigate whether this factor is similarly required by piPSCs, the effects of adding LIN28 to the 4TF induction method (5F approach) on the efficiency of piPSC reprogramming and maintenance of self-renewal and pluripotency were examined. Using a retroviral vector, porcine fetal fibroblasts were transfected with human OCT4, SOX2, KLF4, and C-MYC with or without LIN28. The colony morphology and chromosomal stability of these piPSC lines were examined and their pluripotency properties were characterized by investigating both their expression of pluripotency-associated genes and proteins and in vitro and in vivo differentiation capabilities. Alkaline phosphatase assay revealed the reprogramming efficiencies to be 0.33 and 0.17% for the 4TF and 5TF approaches, respectively, but the maintenance of self-renewal and pluripotency until passage 40 was 6.67 and 100%, respectively. Most of the 4TF-piPSC colonies were flat in shape, showed weak positivity for alkaline phosphatase, and expressed a significantly high level of SSEA-4 protein, except for one cell line (VSMUi001-A) whose properties were similar to those of the 5TF-piPSCs; that is, tightly packed and dome-like in shape, markedly positive for alkaline phosphatase, and expressing endogenous pluripotency genes (pOCT4, pSOX2, pNANOG, and pLIN28), significantly high levels of pluripotent proteins (OCT4, SOX2, NANOG, LIN28, and SSEA-1), and a significantly low level of SSEA-4 protein. VSMUi001-A and all 5F-piPSC lines formed embryoid bodies, underwent spontaneous cardiogenic differentiation with cardiac beating, expressed cardiomyocyte markers, and developed teratomas. In conclusion, in addition to the 4TF, LIN28 is required for the effective induction of piPSCs and the maintenance of their long-term self-renewal and pluripotency toward the development of all germ layers. These piPSCs have the potential applicability for veterinary science.
Collapse
Affiliation(s)
- Warunya Chakritbudsabong
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MOZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MOZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Sirikron Pamonsupornvichit
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MOZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Joao N Ferreira
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Panithi Sukho
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Dulyatad Gronsang
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Andras Dinnyes
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.,College of Life Sciences, Sichuan University, Chengdu, China
| | - Sasitorn Rungarunlert
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
8
|
Pieri NCG, de Souza AF, Botigelli RC, Pessôa LVDF, Recchia K, Machado LS, Glória MH, de Castro RVG, Leal DF, Fantinato Neto P, Martins SMMK, Dos Santos Martins D, Bressan FF, de Andrade AFC. Porcine Primordial Germ Cell-Like Cells Generated from Induced Pluripotent Stem Cells Under Different Culture Conditions. Stem Cell Rev Rep 2021; 18:1639-1656. [PMID: 34115317 DOI: 10.1007/s12015-021-10198-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Culture conditions regulate the process of pluripotency acquisition and self-renewal. This study aimed to analyse the influence of the in vitro environment on the induction of porcine induced pluripotent stem cell (piPSCs) differentiation into primordial germ cell-like cells (pPGCLCs). piPSC culture with different supplementation strategies (LIF, bFGF, or LIF plus bFGF) promoted heterogeneous phenotypic profiles. Continuous bFGF supplementation during piPSCs culture was beneficial to support a pluripotent state and the differentiation of piPSCs into pPGCLCs. The pPGCLCs were positive for the gene and protein expression of pluripotent and germinative markers. This study can provide a suitable in vitro model for use in translational studies and to help answer numerous remaining questions about germ cells.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil.
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Lucas Simões Machado
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo/SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Raquel Vasconcelos Guimarães de Castro
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Diego Feitosa Leal
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | | | - Daniele Dos Santos Martins
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
9
|
Setthawong P, Phakdeedindan P, Techakumphu M, Tharasanit T. Molecular signature and colony morphology affect in vitro pluripotency of porcine induced pluripotent stem cells. Reprod Domest Anim 2021; 56:1104-1116. [PMID: 34013645 DOI: 10.1111/rda.13954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 12/29/2022]
Abstract
Overall efficiency of cell reprogramming for porcine fibroblasts into induced pluripotent stem cells (iPSCs) is currently poor, and few cell lines have been established. This study examined gene expression during early phase of cellular reprogramming in the relationship to the iPSC colony morphology and in vitro pluripotent characteristics. Fibroblasts were reprogrammed with OCT4, SOX2, KLF4 and c-MYC. Two different colony morphologies referred to either compact (n = 10) or loose (n = 10) colonies were further examined for proliferative activity, gene expression and in vitro pluripotency. A total of 1,697 iPSC-like colonies (2.34%) were observed after gene transduction. The compact colonies contained with tightly packed cells with a distinct-clear border between the colony and feeder cells, while loose colonies demonstrated irregular colony boundary. For quantitative expression of genes responsible for early phase cell reprogramming, the Dppa2 and EpCAM were significantly upregulated while NR0B1 was downregulated in compact colonies compared with loose phenotype (p < .05). Higher proportion of compact iPSC phenotype (5 of 10, 50%) could be maintained in undifferentiated state for more than 50 passages compared unfavourably with loose morphology (3 of 10, 30%). All iPS cell lines obtained from these two types of colony morphologies expressed pluripotent genes and proteins (OCT4, NANOG and E-cadherin). In addition, they could aggregate and form three-dimensional structure of embryoid bodies. However, only compact iPSC colonies differentiated into three germ layers. Molecular signature of early phase of cell reprogramming coupled with primary colony morphology reflected the in vitro pluripotency of porcine iPSCs. These findings can be simply applied for pre-screening selection of the porcine iPSC cell line.
Collapse
Affiliation(s)
- Piyathip Setthawong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Praopilas Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Wu XL, Zhu ZS, Xiao X, Zhou Z, Yu S, Shen QY, Zhang JQ, Yue W, Zhang R, He X, Peng S, Zhang SQ, Li N, Liao MZ, Hua JL. LIN28A inhibits DUSP family phosphatases and activates MAPK signaling pathway to maintain pluripotency in porcine induced pluripotent stem cells. Zool Res 2021; 42:377-388. [PMID: 33998185 PMCID: PMC8175949 DOI: 10.24272/j.issn.2095-8137.2020.375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
LIN28A, an RNA-binding protein, plays an important role in porcine induced pluripotent stem cells (piPSCs). However, the molecular mechanism underlying the function of LIN28A in the maintenance of pluripotency in piPSCs remains unclear. Here, we explored the function of LIN28A in piPSCs based on its overexpression and knockdown. We performed total RNA sequencing (RNA-seq) of piPSCs and detected the expression levels of relevant genes by quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis, and immunofluorescence staining. Results indicated that piPSC proliferation ability decreased following LIN28A knockdown. Furthermore, when LIN28A expression in the shLIN28A2 group was lower (by 20%) than that in the negative control knockdown group ( shNC), the pluripotency of piPSCs disappeared and they differentiated into neuroectoderm cells. Results also showed that LIN28A overexpression inhibited the expression of DUSP (dual-specificity phosphatases) family phosphatases and activated the mitogen-activated protein kinase (MAPK) signaling pathway. Thus, LIN28A appears to activate the MAPK signaling pathway to maintain the pluripotency and proliferation ability of piPSCs. Our study provides a new resource for exploring the functions of LIN28A in piPSCs.
Collapse
Affiliation(s)
- Xiao-Long Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhen-Shuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xia Xiao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qiao-Yan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ju-Qing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wei Yue
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Rui Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shi-Qiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| | - Ming-Zhi Liao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
11
|
Su Y, Zhu J, Salman S, Tang Y. Induced pluripotent stem cells from farm animals. J Anim Sci 2021; 98:5937369. [PMID: 33098420 DOI: 10.1093/jas/skaa343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The development of the induced pluripotent stem cells (iPSCs) technology has revolutionized the world on the establishment of pluripotent stem cells (PSCs) across a great variety of animal species. Generation of iPSCs from domesticated animals would provide unrestricted cell resources for the study of embryonic development and cell differentiation of these species, for screening and establishing desired traits for sustainable agricultural production, and as veterinary and preclinical therapeutic tools for animal and human diseases. Induced PSCs from domesticated animals thus harbor enormous scientific, economical, and societal values. Although much progress has been made toward the generation of PSCs from these species, major obstacles remain precluding the exclamation of the establishment of bona fide iPSCs. The most prominent of them remain the inability of these cells to silence exogenous reprogramming factors, the obvious reliance on exogenous factors for their self-renewal, and the restricted development potential in vivo. In this review, we summarize the history and current progress in domestic farm animal iPSC generation, with a focus on swine, ruminants (cattle, ovine, and caprine), horses, and avian species (quails and chickens). We also discuss the problems associated with the farm animal iPSCs and potential future directions toward the complete reprogramming of somatic cells from farm animals.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Saleh Salman
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| |
Collapse
|
12
|
Scarfone RA, Pena SM, Russell KA, Betts DH, Koch TG. The use of induced pluripotent stem cells in domestic animals: a narrative review. BMC Vet Res 2020; 16:477. [PMID: 33292200 PMCID: PMC7722595 DOI: 10.1186/s12917-020-02696-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are undifferentiated stem cells characterized by the ability to differentiate into any cell type in the body. iPSCs are a relatively new and rapidly developing technology in many fields of biology, including developmental anatomy and physiology, pathology, and toxicology. These cells have great potential in research as they are self-renewing and pluripotent with minimal ethical concerns. Protocols for their production have been developed for many domestic animal species, which have since been used to further our knowledge in the progression and treatment of diseases. This research is valuable both for veterinary medicine as well as for the prospect of translation to human medicine. Safety, cost, and feasibility are potential barriers for this technology that must be considered before widespread clinical adoption. This review will analyze the literature pertaining to iPSCs derived from various domestic species with a focus on iPSC production and characterization, applications for tissue and disease research, and applications for disease treatment.
Collapse
Affiliation(s)
- Rachel A Scarfone
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Samantha M Pena
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
13
|
Ma Z, Li Y, Zhang Y, Chen J, Tan T, Fan Y. A lncRNA-miRNA-mRNA network for human primed, naive and extended pluripotent stem cells. PLoS One 2020; 15:e0234628. [PMID: 32544168 PMCID: PMC7297305 DOI: 10.1371/journal.pone.0234628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/30/2020] [Indexed: 11/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) represent a promising platform for studying embryonic development, and different states of pluripotency reflect the different stages of embryo development. Here, we successfully converted three in-house-derived primed hPSC lines (H10, H24, and iPS) to a naive state and an expanded pluripotent stem cell (EPS) state. Primed, naive and EPS cells displayed state-specific morphologies and expressed pluripotent markers. The expression of SSEA4 and TRA-1-60 was downregulated in the conversion process. The H3K27me3 expression level also decreased, indicating that global methylation was reduced and that the X chromosome started to reactivate. RNA-sequencing analysis results revealed that differentially expressed genes (DEGs) were significantly enriched in both naive hPSCs and EPS cells when compared to the primed state. However, imprinted gene expression barely changed before and after state reversion. Gene ontology (GO) analyses showed that the upregulated DEGs were mostly enriched in RNA processing, DNA replication and repair, and regulation of cell cycle process, while downregulated DEGs were related to extracellular adhesion and various tissue developmental processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that EPS cells were enriched in the PI3K-Akt and Wnt signaling pathways. Analysis of the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network between primed, naive hPSCs and EPS cells revealed that hsa-miR-424-5p, has-miR-16-5p, has-miR-27b-3p, has-miR-29c-3p, and KCNQ1OT1 were crucial nodes with high degrees of connectivity. Our work may represent new insight into the intrinsic molecular features of different hPSC states.
Collapse
Affiliation(s)
- Zhenglai Ma
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanni Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingying Zhang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaxin Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- * E-mail: (YF); (TT)
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail: (YF); (TT)
| |
Collapse
|
14
|
Cong X, Zhang SM, Ellis MW, Luo J. Large Animal Models for the Clinical Application of Human Induced Pluripotent Stem Cells. Stem Cells Dev 2019; 28:1288-1298. [PMID: 31359827 DOI: 10.1089/scd.2019.0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology offers a practically infinite and ethically acceptable source to obtain a variety of somatic cells. Coupled with the biotechnologies of cell therapy or tissue engineering, iPSC technology will enormously contribute to human regenerative medicine. Before clinical application, such human iPSC (hiPSC)-based therapies should be assessed using large animal models that more closely match biological or biomechanical properties of human patients. Therefore, it is critical to generate large animal iPSCs, obtain their iPSC-derived somatic cells, and preclinically evaluate their therapeutic efficacy and safety in large animals. During the past decade, the establishment of iPSC lines of a series of large animal species has been documented, and the acquisition and preclinical evaluation of iPSC-derived somatic cells has also been reported. Despite this progress, significant obstacles, such as obtaining or preserving the bona fide pluripotency of large animal iPSCs, have been encountered. Simultaneously, studies of large animal iPSCs have been overlooked in comparison with those of mouse and hiPSCs, and this field deserves more attention and support due to its important preclinical relevance. Herein, this review will focus on the large animal models of pigs, dogs, horses, and sheep/goats, and summarize current progress, challenges, and potential future directions of research on large animal iPSCs.
Collapse
Affiliation(s)
- Xiaoqiang Cong
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,Department of Cardiology, Bethune First Hospital of Jilin University, Changchun, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Matthew W Ellis
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Jiesi Luo
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,Yale Stem Cell Center, New Haven, Connecticut
| |
Collapse
|
15
|
Pessôa LVDF, Bressan FF, Freude KK. Induced pluripotent stem cells throughout the animal kingdom: Availability and applications. World J Stem Cells 2019; 11:491-505. [PMID: 31523369 PMCID: PMC6716087 DOI: 10.4252/wjsc.v11.i8.491] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
Up until the mid 2000s, the capacity to generate every cell of an organism was exclusive to embryonic stem cells. In 2006, researchers Takahashi and Yamanaka developed an alternative method of generating embryonic-like stem cells from adult cells, which they coined induced pluripotent stem cells (iPSCs). Such iPSCs possess most of the advantages of embryonic stem cells without the ethical stigma associated with derivation of the latter. The possibility of generating “custom-made” pluripotent cells, ideal for patient-specific disease models, alongside their possible applications in regenerative medicine and reproduction, has drawn a lot of attention to the field with numbers of iPSC studies published growing exponentially. IPSCs have now been generated for a wide variety of species, including but not limited to, mouse, human, primate, wild felines, bovines, equines, birds and rodents, some of which still lack well-established embryonic stem cell lines. The paucity of robust characterization of some of these iPSC lines as well as the residual expression of transgenes involved in the reprogramming process still hampers the use of such cells in species preservation or medical research, underscoring the requirement for further investigations. Here, we provide an extensive overview of iPSC generated from a broad range of animal species including their potential applications and limitations.
Collapse
Affiliation(s)
- Laís Vicari de Figueiredo Pessôa
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-000, São Paulo, Brazil
| | - Kristine Karla Freude
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| |
Collapse
|
16
|
Torizal FG, Horiguchi I, Sakai Y. Physiological Microenvironmental Conditions in Different Scalable Culture Systems for Pluripotent Stem Cell Expansion and Differentiation. Open Biomed Eng J 2019. [DOI: 10.2174/1874120701913010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human Pluripotent Stem Cells (PSCs) are a valuable cell type that has a wide range of biomedical applications because they can differentiate into many types of adult somatic cell. Numerous studies have examined the clinical applications of PSCs. However, several factors such as bioreactor design, mechanical stress, and the physiological environment have not been optimized. These factors can significantly alter the pluripotency and proliferation properties of the cells, which are important for the mass production of PSCs. Nutritional mass transfer and oxygen transfer must be effectively maintained to obtain a high yield. Various culture systems are currently available for optimum cell propagation by maintaining the physiological conditions necessary for cell cultivation. Each type of culture system using a different configuration with various advantages and disadvantages affecting the mechanical conditions in the bioreactor, such as shear stress. These factors make it difficult to preserve the cellular viability and pluripotency of PSCs. Additional limitations of the culture system for PSCs must also be identified and overcome to maintain the culture conditions and enable large-scale expansion and differentiation of PSCs. This review describes the different physiological conditions in the various culture systems and recent developments in culture technology for PSC expansion and differentiation.
Collapse
|
17
|
Fukuda T, Doi K, Donai K, Takahashi K, Kobayashi H, Hirano T, Nishimori K, Yasue H. Global transcriptome analysis of pig induced pluripotent stem cells derived from six and four reprogramming factors. Sci Data 2019; 6:190034. [PMID: 30806635 PMCID: PMC6390709 DOI: 10.1038/sdata.2019.34] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
Pigs are important, both for agriculture and as animal models for human diseases. However, due to the lack of embryonic stem cells, the possibility of genetic modification is quite limited. To overcome this limitation, induced pluripotent stem (iPS) cells have been derived from pigs. Despite the public availability of a large number of expression datasets from mice, rats, and primates-derived iPS cells, the expression profile of pig-derived iPS cells is quite limited. Furthermore, there is no dataset focused on the profiling of pig-derived iPS cell with six reprogramming factors (Oct3/4, Sox2, Klf4, c-Myc, Lin28, and Nanog). Here, we used Illumina RNA sequencing platform to characterize the mRNA expression of four-factor derived and six-factor derived pig iPS cells. We observed that the expression levels of whole genes in our established six factors derived iPS cells and parent fibroblast, and compared with that of iPS cells with four factors in public database. These data are valuable in understanding species difference in the reprogramming process of stem cells, and could help identify the key regulating genes involved in the process.
Collapse
Affiliation(s)
- Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551 Japan.,Soft Path Engineering Research Center (SPERC), Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551 Japan
| | - Koji Doi
- Tsukuba Gene Technology Laboratories Inc., Tsuchiura, 6-320 Arakawaoki, 300-0873 Japan
| | - Kenichiro Donai
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572 Japan
| | - Kouhei Takahashi
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551 Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502 Japan.,Department of Embryology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521 Japan
| | - Takashi Hirano
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi-shi, Kanagawa, 243-0034 Japan
| | - Katsuhiko Nishimori
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572 Japan
| | - Hiroshi Yasue
- Tsukuba Gene Technology Laboratories Inc., Tsuchiura, 6-320 Arakawaoki, 300-0873 Japan
| |
Collapse
|
18
|
Setthawong P, Phakdeedindan P, Tiptanavattana N, Rungarunlert S, Techakumphu M, Tharasanit T. Generation of porcine induced-pluripotent stem cells from Sertoli cells. Theriogenology 2018; 127:32-40. [PMID: 30639694 DOI: 10.1016/j.theriogenology.2018.12.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/04/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are generated by reprogramming of somatic cells using four transcription factors: OCT4, SOX2, KLF-4, and c-MYC (OSKM). However, reprogramming efficiency of iPSCs is currently poor. In this study, we used the Sertoli line as a novel cell source for somatic cell reprogramming. Neonatal testes were collected from 1-week-old piglets. The testes were digested by a two-step enzymatic method to isolate Sertoli cells. The latter were transfected with retroviral vectors expressing OSKM. The Sertoli iPSC-like colonies were subjected to morphological analysis, alkaline phosphatase staining, RT-PCR, G-banding karyotyping, in vitro differentiation, and in vivo differentiation. Primary Sertoli cells had polygon-shaped morphology and manifested phagocytic activity as determined by a fluorescent bead assay. Sertoli cells also expressed the anti-Müllerian hormone protein in the cytoplasm. According to RT-PCR results, these cells expressed Sertoli cell markers (FSHR, KRT18, and GATA6) and endogenous transcription factors genes (KLF4 and c-MYC). A total of 240 colonies (0.3% efficiency) were detected by day 7 after viral transduction of 72500 cells. The Sertoli iPSC-like colonies contained small cells with a high nucleus-to-cytoplasm ratio. These colonies tested positive for alkaline phosphatase staining, expressed endogenous pluripotency genes, and had a normal karyotype. All these cell lines could form in vitro three-dimensional aggregates that represented three germ layers of embryonic-like cells. A total of two cell lines used for in vivo differentiation produced high-efficiency teratoma. In conclusion, Sertoli cells can efficiently serve as a novel cell source for iPSC reprogramming.
Collapse
Affiliation(s)
- Piyathip Setthawong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Praopilas Phakdeedindan
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narong Tiptanavattana
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sasitorn Rungarunlert
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73710, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
19
|
Xie Y, Cao H, Zhang Z, Zhang S, Wang H. Molecular network of miR-1343 regulates the pluripotency of porcine pluripotent stem cells via repressing OTX2 expression. RNA Biol 2018; 16:82-92. [PMID: 30567463 DOI: 10.1080/15476286.2018.1559688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Porcine OTX2 was found to be highly activated in porcine iPS cells (piPSCs) that were reported by different laboratories worldwide. To reveal the regulatory function of OTX2 in porcine reprogrammed cells, we screened porcine miRNA-seq databases and found two miRNAs, miR-1343 and miR-545, that could specifically bind to 3'UTR of OTX2 and suppress endogenous OTX2 expression in piPSCs. Knockdown of OTX2 by miR-1343 and miR-545 could significantly increase the expression of SOX2 and ESRRB, but did not alter the expressions of OCT4 and KLF4, and improve the pluripotency of piPSCs. The promoter-based assays showed that OTX2 potentially bound to the promoter region of SOX2 and ESRRB and suppressed their expression. On the other hand, SOX2 could interact with OTX2 promoter. Ectopic expression of SOX2 could significantly decrease OTX2 promoter activity, showing that there is a negative feedback loop between SOX2 and OTX2. Additionally, SOX2 and ESRRB significantly stimulated miR-1343 expression in piPSCs, but OTX2 down regulated the expression of miR-1343 in either direct or indirect manners. In summary, this study demonstrates that there is a regulatory network mediated by miR-1343, in which downregulation of OTX2 by miR-1343 can elevate the expression of pluripotent genes that were then sustain the pluripotency of piPSCs.
Collapse
Affiliation(s)
- Youlong Xie
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Hongxia Cao
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Zhiyi Zhang
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Shiqiang Zhang
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Huayan Wang
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| |
Collapse
|
20
|
Ren Y, Ma Z, Yu T, Ling M, Wang H. Methanol fixed fibroblasts serve as feeder cells to maintain stem cells in the pluripotent state in vitro. Sci Rep 2018; 8:7780. [PMID: 29773904 PMCID: PMC5958091 DOI: 10.1038/s41598-018-26238-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Abstract
Preparation of mouse embryonic fibroblast (MEF) feeder cells to maintain pluripotent stem cells (PSCs) is time consuming and involved in animal issues. Here, we demonstrated a novel method to prepare feeder cells with high efficiency, timesaving, and low costs. MEFs in 3 × 104 cell/cm2 were fixed by methanol for 5 min and air drying for 5 min. Thereafter, the methanol fixed MEF cells (MT-MEF) were able to be used directly to culture PSCs or stored at room temperature for the future usage. PSCs cultured on MT-MEF could be continuously expanded for over 40 passages with the naïve pluripotency. MT-MEFs could also be used to maintain human and pig iPSCs. Moreover, methanol fixed MEFs’ culture dish was able to be reused for at least 4 times, and to be applied for antibiotic resistant screening assay to establishing stable transfected PSC lines. Alternatively, the immortalized cell lines, for instance NIH3T3 cells, could also be fixed by methanol and used as feeder cells to maintain PSCs. Thus, this novel means of methanol fixed feeder cells can completely replace the mitomycin C and gamma radiation treated MEF feeder cells, and be used to maintain PSCs derived from mouse as well as other animal species.
Collapse
Affiliation(s)
- Yahui Ren
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziyu Ma
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tong Yu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Ling
- Department of Innovation Experimental College, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
21
|
Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines. Cell Death Discov 2018. [PMID: 29531818 PMCID: PMC5841441 DOI: 10.1038/s41420-017-0015-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Derivation of bona fide porcine pluripotent stem cells is still a critical issue because porcine embryonic stem cells (ESCs) are not available yet, and most of the culture conditions to maintain porcine induced pluripotent stem cells (piPSCs) are based on conditions for mouse and human iPS cells. In this study, we generated a doxycycline-inducible porcine iPS cell line (DOX-iPSCs) and used it to screen the optimal culture condition to sustain the self-renewal of piPSCs. We found that LIF and b-FGF were required for porcine cell reprogramming, but were not essential cytokines for maintaining the self-renewal and pluripotency of piPSCs. A serum-free 3i medium, which includes three inhibitors CHIR99021, SB431542, and PD0325901, three cytokines BMP4, SCF, and IL-6, and human platelet lysates (PL), was made through serious selections. In 3i condition, the doxycycline-inducible iPSCs could be passaged for a long term without the addition of doxycycline, and the flattened morphology of intermediate state piPSCs could convert to the naïve-like morphology with the increase in endogenous pluripotent gene expressions. Additionally, pPSC cell line isolated from 5.5 days blastocysts could be sustained in 3i medium and the expression of endogenous pluripotent genes OCT4, ESRRB, and STELLA was significantly increased. Our finding directed a new reprogramming strategy by using 3i condition to maintain and convert primed piPSCs into naïve-like pluripotent state. A combination of traditional LIF/b-FGF conditions and 3i condition may help us to find out an appropriate reprogramming approach to generate the naïve state of porcine iPSCs.
Collapse
|
22
|
Secher JO, Ceylan A, Mazzoni G, Mashayekhi K, Li T, Muenthaisong S, Nielsen TT, Li D, Li S, Petkov S, Cirera S, Luo Y, Thombs L, Kadarmideen HN, Dinnyes A, Bolund L, Roelen BAJ, Schmidt M, Callesen H, Hyttel P, Freude KK. Systematic in vitro and in vivo characterization of Leukemia-inhibiting factor- and Fibroblast growth factor-derived porcine induced pluripotent stem cells. Mol Reprod Dev 2017; 84:229-245. [PMID: 28044390 PMCID: PMC6221014 DOI: 10.1002/mrd.22771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to shed more light on the underlying biological mechanisms of porcine pluripotency. LIF‐derived piPSCs were more successful than their FGF‐derived counterparts in the generation of in vitro chimeras and in teratoma formation. When LIF piPSCs chimeras were transferred into surrogate sows and allowed to develop, only their prescence within the embryonic membranes could be detected. Whole‐transcriptome analysis of the piPSCs and porcine neonatal fibroblasts showed that they clustered together, but apart from the two pluripotent cell populations of early porcine embryos, indicating incomplete reprogramming. Indeed, bioinformatic analysis of the pluripotency‐related gene network of the LIF‐ versus FGF‐derived piPSCs revealed that ZFP42 (REX1) expression was absent in both piPSC‐like cells, whereas it was expressed in the porcine inner cell mass at Day 7/8. A second striking difference was the expression of ATOH1 in piPSC‐like cells, which was absent in the inner cell mass. Moreover, our gene expression analyses plus correlation analyses of known pluripotency genes identified unique relationships between pluripotency genes in the inner cell mass, which are to some extent, in the piPSC‐like cells. This deficiency in downstream gene activation and divergent gene expression may be underlie the inability to derive germ line‐transmitting piPSCs, and provides unique insight into which genes are necessary to achieve fully reprogrammed piPSCs. 84: 229–245, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jan O Secher
- Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, Department of Large Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ahmet Ceylan
- Faculty of Veterinary Medicine Ankara University, Department of Histology and Embryology, Diskapi, Ankara, Turkey
| | - Gianluca Mazzoni
- Animal Breeding, Quantitative Genetics and Systems Biology Group, Faculty of Health and Medical Sciences, Department of Large Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kaveh Mashayekhi
- Faculty of Health and Medical Sciences, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.,BioTalentum Ltd., Gödöllő, Hungary.,Faculty of Veterinary Medicine, Departments of Equine Sciences and Farm Animal Health, Utrecht University, Utrecht, Netherlands
| | - Tong Li
- Faculty of Health and Medical Sciences, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.,BioTalentum Ltd., Gödöllő, Hungary.,Faculty of Veterinary Medicine, Departments of Equine Sciences and Farm Animal Health, Utrecht University, Utrecht, Netherlands
| | - Suchitra Muenthaisong
- BioTalentum Ltd., Gödöllő, Hungary.,Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Utrecht, Netherlands
| | - Troels T Nielsen
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dong Li
- Faculty of Health and Medical Sciences, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Shengting Li
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Stoyan Petkov
- Institute for Farm Animal Genetics (FLI), Neustadt, Germany
| | - Susanna Cirera
- Faculty of Health and Medical Sciences, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Lori Thombs
- Department of Statistics, University of Missouri, Columbia, Missouri
| | - Haja N Kadarmideen
- Animal Breeding, Quantitative Genetics and Systems Biology Group, Faculty of Health and Medical Sciences, Department of Large Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Andras Dinnyes
- BioTalentum Ltd., Gödöllő, Hungary.,Faculty of Veterinary Medicine, Departments of Equine Sciences and Farm Animal Health, Utrecht University, Utrecht, Netherlands.,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, Hungary
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Bernard A J Roelen
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Utrecht, Netherlands
| | - Mette Schmidt
- Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, Department of Large Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Poul Hyttel
- Faculty of Health and Medical Sciences, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristine K Freude
- Faculty of Health and Medical Sciences, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
23
|
Ramos-Ibeas P, Nichols J, Alberio R. States and Origins of Mammalian Embryonic Pluripotency In Vivo and in a Dish. Curr Top Dev Biol 2017; 128:151-179. [PMID: 29477162 DOI: 10.1016/bs.ctdb.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse embryonic stem cells (ESC), derived from preimplantation embryos in 1981, defined mammalian pluripotency for many decades. However, after the derivation of human ESC in 1998, comparative studies showed that different types of pluripotency exist in early embryos and that these can be captured in vitro under various culture conditions. Over the past decade much has been learned about the key signaling pathways, growth factor requirements, and transcription factor profiles of pluripotent cells in embryos, allowing improvement of derivation and culture conditions for novel pluripotent stem cell types. More recently, studies using single-cell transcriptomics of embryos from different species provided an unprecedented level of resolution of cellular interactions and cell fate decisions that are informing new ways to understand the emergence of pluripotency in different organisms. These new approaches enhance knowledge of species differences during early embryogenesis and will be instrumental for improving methodologies for generating intra- and interspecies chimeric animals using pluripotent stem cells. Here, we discuss the recent developments in our understanding of early embryogenesis in different mammalian species.
Collapse
Affiliation(s)
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
24
|
Generation of a pig induced pluripotent stem cell (piPSC) line from embryonic fibroblasts by incorporating LIN28 to the four transcriptional factor-mediated reprogramming: VSMUi001-D. Stem Cell Res 2017; 24:21-24. [PMID: 29034889 DOI: 10.1016/j.scr.2017.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022] Open
Abstract
Pig induced pluripotent stem cell (piPSC) line was generated from embryonic fibroblast cells using retroviral transduction approaches carrying human transcriptional factors: OCT4, SOX2, KLF4, c-MYC and LIN28. The generated piPSC line, VSMUi001-D, was positive for alkaline phosphatase activity and expressed the pluripotency associated transcription factors including OCT4, SOX2, NANOG and surface markers SSEA-1, all iPSC hallmarks of authenticity. Furthermore, VSMUi001-D exhibited a normal karyotype and formed embryoid bodies in vitro and teratomas in vivo. Upon cardiac differentiation, VSMUi001-D displayed spontaneous beating and expressed cardiomyocyte markers, like cardiac Troponin T.
Collapse
|
25
|
Yang F, Ren Y, Li H, Wang H. ESRRB plays a crucial role in the promotion of porcine cell reprograming. J Cell Physiol 2017. [PMID: 28636277 DOI: 10.1002/jcp.26063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The estrogen-related receptor b (ESRRB) is an orphan nuclear receptor and targets many genes involved in self-renewal and pluripotency. In mouse ES cells, overexpression of ESRRB can maintain LIF-independent self-renewal in the absence of Nanog. However, the fundamental features of porcine ESRRB remain elusive. In this study, we revealed the expression profiles of ESRRB in both porcine pluripotent stem cells and early stage embryos and dissected the functional domains of ESRRB protein to prove that ESRRB is a key transcription factor that enhanced porcine pluripotent gene activation. Addition of ESRRB into the cocktail of core pluripotent factors Oct4, Sox2, Klf4, and c-Myc (OSKM + E) could significantly enhance the reprograming efficiency and the formation of alkaline phosphatase positive colonies. Conversely, knockdown of ESRRB in piPSCs significantly reduced the expression level of pluripotent genes, minimized the alkaline phosphatase activity, and initiated the porcine induced pluripotent stem cell differentiation. Therefore, porcine ESRRB is a crucial transcription factor to improve the self-renewal of piPSCs.
Collapse
Affiliation(s)
- Fan Yang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yahui Ren
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huan Li
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Li D, Secher JO, Juhl M, Mashayekhi K, Nielsen TT, Holst B, Hyttel P, Freude KK, Hall VJ. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts. Cell Cycle 2017; 16:1070-1084. [PMID: 28426281 DOI: 10.1080/15384101.2017.1315490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore, reprogramming of SSEA-1+ sorted pEFs led to higher reprogramming efficiency. Subsequent transcriptome profiling of the SSEA-1+ vs. the SSEA-1neg cell fraction revealed highly comparable gene signatures. However several genes that were found to be upregulated in the SSEA-1+ cells were similarly expressed in mesenchymal stem cells (MSCs). We therefore termed these cells SSEA-1 Expressing Enhanced Reprogramming (SEER) cells. Interestingly, SEER cells were more effective at differentiating into osteocytes and chondrocytes in vitro. We conclude that SEER cells are more amenable for reprogramming and that the expression of mesenchymal stem cell genes is advantageous in the reprogramming process. This data provides evidence supporting the elite theory and helps to delineate which cell types and specific genes are important for reprogramming in the pig.
Collapse
Affiliation(s)
- Dong Li
- a Department of Veterinary and Animal Sciences , Faculty of Health and Medical Sciences, University of Copenhagen , Denmark
| | - Jan O Secher
- a Department of Veterinary and Animal Sciences , Faculty of Health and Medical Sciences, University of Copenhagen , Denmark
| | - Morten Juhl
- b Cardiology Stem Cell Centre , The Heart Centre, Copenhagen University Hospital , Copenhagen , Denmark
| | - Kaveh Mashayekhi
- a Department of Veterinary and Animal Sciences , Faculty of Health and Medical Sciences, University of Copenhagen , Denmark.,c BioTalentum Ltd. , Gödöllő , Hungary.,d Chief Scientific Officer , Sandor Life Sciences, Sandor Medicaids Group Pvt. Ltd. , Hyderabad , India
| | - Troels T Nielsen
- e Danish Dementia Research Centre , Copenhagen University Hospital , Copenhagen , Denmark
| | | | - Poul Hyttel
- a Department of Veterinary and Animal Sciences , Faculty of Health and Medical Sciences, University of Copenhagen , Denmark
| | - Kristine K Freude
- a Department of Veterinary and Animal Sciences , Faculty of Health and Medical Sciences, University of Copenhagen , Denmark
| | - Vanessa J Hall
- a Department of Veterinary and Animal Sciences , Faculty of Health and Medical Sciences, University of Copenhagen , Denmark
| |
Collapse
|
27
|
Yu T, Ma Y, Wang H. EpCAM Intracellular Domain Promotes Porcine Cell Reprogramming by Upregulation of Pluripotent Gene Expression via Beta-catenin Signaling. Sci Rep 2017; 7:46315. [PMID: 28393933 PMCID: PMC5385527 DOI: 10.1038/srep46315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
Previous study showed that expression of epithelial cell adhesion molecule (EpCAM) was significantly upregulated in porcine induced pluripotent stem cells (piPSCs). However, the regulatory mechanism and the downstream target genes of EpCAM were not well investigated. In this study, we found that EpCAM was undetectable in fibroblasts, but highly expressed in piPSCs. Promoter of EpCAM was upregulated by zygotic activated factors LIN28, and ESRRB, but repressed by maternal factors OCT4 and SOX2. Knocking down EpCAM by shRNA significantly reduced the pluripotent gene expression. Conversely, overexpression of EpCAM significantly increased the number of alkaline phosphatase positive colonies and elevated the expression of endogenous pluripotent genes. As a key surface-to-nucleus factor, EpCAM releases its intercellular domain (EpICD) by a two-step proteolytic processing sequentially. Blocking the proteolytic processing by inhibitors TAPI-1 and DAPT could reduce the intracellular level of EpICD and lower expressions of OCT4, SOX2, LIN28, and ESRRB. We noticed that increasing intracellular EpICD only was unable to improve activity of EpCAM targeted genes, but by blocking GSK-3 signaling and stabilizing beta-catenin signaling, EpICD could then significantly stimulate the promoter activity. These results showed that EpCAM intracellular domain required beta-catenin signaling to enhance porcine cell reprogramming.
Collapse
Affiliation(s)
- Tong Yu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangyang Ma
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
DNA repair and replication links to pluripotency and differentiation capacity of pig iPS cells. PLoS One 2017; 12:e0173047. [PMID: 28253351 PMCID: PMC5333863 DOI: 10.1371/journal.pone.0173047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/14/2017] [Indexed: 01/05/2023] Open
Abstract
Pigs are proposed to be suitable large animal models for test of the efficacy and safety of induced pluripotent stem cells (iPSCs) for stem cell therapy, but authentic pig ES/iPS cell lines with germline competence are rarely produced. The pathways or signaling underlying the defective competent pig iPSCs remain poorly understood. By improving induction conditions using various small chemicals, we generated pig iPSCs that exhibited high pluripotency and differentiation capacity that can contribute to chimeras. However, their potency was reduced with increasing passages by teratoma formation test, and correlated with declined expression levels of Rex1, an important marker for naïve state. By RNA-sequencing analysis, genes related to WNT signaling were upregulated and MAPK signaling and TGFβ pathways downregulated in pig iPSCs compared to fibroblasts, but they were abnormally expressed during passages. Notably, pathways involving in DNA repair and replication were upregulated at early passage, but downregulated in iPSCs during prolonged passage in cluster with fibroblasts. Our data suggests that reduced DNA repair and replication capacity links to the instability of pig iPSCs. Targeting these pathways may facilitate generation of truly pluripotent pig iPSCs, with implication in translational studies.
Collapse
|
29
|
Yang F, Wang N, Wang Y, Yu T, Wang H. Activin-SMAD signaling is required for maintenance of porcine iPS cell self-renewal through upregulation of NANOG and OCT4 expression. J Cell Physiol 2017; 232:2253-2262. [PMID: 27996082 DOI: 10.1002/jcp.25747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
Porcine induced pluripotent stem cells (piPSCs) retain the enormous potential for farm animal reproduction and translational medicine, and have been reported by many laboratories worldwide. Some piPSC lines were bFGF-dependence and showed mouse EpiSC-like morphology; other lines were LIF-dependence and showed mouse ESC-like morphology. Metastable state of piPSC line that required both LIF and bFGF was also reported. Because bona fide pig embryonic stem cells were not available, uncovering piPSC state-specific regulatory circuitries was the most important task. In this study, we explored the function of Activin-SMAD signaling pathway and its downstream activated target genes in piPSCs. Transcriptome analysis showed that genes involved in Activin-SMAD signaling pathway were evidently activated during porcine somatic cell reprogramming, regardless piPSCs were LIF- or bFGF-dependent. Addition of Activin A and overexpression of SMAD2/3 significantly promoted expressions of porcine NANOG and OCT4, whereas inhibition of Activin-SMAD signaling by SB431542 and SMAD7 reduced NANOG and OCT4 expressions, and induced piPSCs differentiation exiting from pluripotent state. Our data demonstrate that activation of Activin-SMAD signaling pathway by addition of Activin A in culture medium is necessary for maintenance of self-renewal in porcine pluripotent stem cells.
Collapse
Affiliation(s)
- Fan Yang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ning Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaxian Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Yu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Evaluation of porcine stem cell competence for somatic cell nuclear transfer and production of cloned animals. Anim Reprod Sci 2017; 178:40-49. [PMID: 28126267 DOI: 10.1016/j.anireprosci.2017.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 12/31/2022]
Abstract
Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3β- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl-iPSCs) and embryonic germ cells (EGCs), which have earlier been characterized as being multipotent. The SCNT efficiencies of these stem cell lines were compared with that of the two fibroblast cell lines from which the iPSC lines were derived. The blastocyst rates for the 2i LIF DOX-iPSCs were 14.7%, for the 2i FGF Pl-iPSC 10.1%, and for the EGCs 34.5% compared with the fibroblast lines yielding 36.7% and 25.2%. The fibroblast- and EGC-derived embryos were used for embryo transfer and produced live offspring at similar low rates of efficiency (3.2 and 4.0%, respectively) and with several instances of malformations. In conclusion, potentially pluripotent porcine stem cells resulted in lower rates of embryonic development upon SCNT than multipotent stem cells and differentiated somatic cells.
Collapse
|
31
|
Wang N, Wang Y, Xie Y, Wang H. OTX2 impedes self-renewal of porcine iPS cells through downregulation of NANOG expression. Cell Death Discov 2016; 2:16090. [PMID: 27924227 PMCID: PMC5136617 DOI: 10.1038/cddiscovery.2016.90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 01/10/2023] Open
Abstract
The transcription factor Otx2 acts as a negative switch in the regulation of transition from naive to primed pluripotency in mouse pluripotent stem cells. However, the molecular features and function of porcine OTX2 have not been well elucidated in porcine-induced pluripotent stem cells (piPSCs). By studying high-throughput transcriptome sequencing and interfering endogenous OTX2 expression, we demonstrate that OTX2 is able to downgrade the self-renewal of piPSCs. OTX2 is highly expressed in porcine brain, reproductive tissues, and preimplantation embryos, but is undetectable in fibroblasts and most somatic tissues. However, the known piPSC lines reported previously produced different levels of OTX2 depending on the induction procedures and culture conditions. Overexpression of porcine OTX2 can reduce the percentage of alkaline phosphatase-positive colonies and downregulate NANOG and OCT4 expression. In contrast, knockdown of OTX2 can significantly increase endogenous expressions of NANOG, OCT4, and ESRRB, and stabilize the pluripotent state of piPSCs. On the other hand, NANOG can directly bind to the OTX2 promoter as shown in ChIP-seq data and repress OTX2 promoter activity in a dose-dependent manner. These observations indicate that OTX2 and NANOG can form a negative feedback circuitry to regulate the pluripotency of porcine iPS cells.
Collapse
Affiliation(s)
- Ning Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Yaxian Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Youlong Xie
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China
| |
Collapse
|
32
|
Construction of a Dual-Fluorescence Reporter System to Monitor the Dynamic Progression of Pluripotent Cell Differentiation. Stem Cells Int 2016; 2016:1390284. [PMID: 27999597 PMCID: PMC5143739 DOI: 10.1155/2016/1390284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/06/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
Oct4 is a crucial germ line-specific transcription factor expressed in different pluripotent cells and downregulated in the process of differentiation. There are two conserved enhancers, called the distal enhancer (DE) and proximal enhancer (PE), in the 5' upstream regulatory sequences (URSs) of the mouse Oct4 gene, which were demonstrated to control Oct4 expression independently in embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). We analyzed the URSs of the pig Oct4 and identified two similar enhancers that were highly consistent with the mouse DE and PE. A dual-fluorescence reporter was later constructed by combining a DE-free-Oct4-promoter-driven EGFP reporter cassette with a PE-free-Oct4-promoter-driven mCherry reporter cassette. Then, it was tested in a mouse ESC-like cell line (F9) and a mouse EpiSC-like cell line (P19) before it is formally used for pig. As a result, a higher red fluorescence was observed in F9 cells, while green fluorescence was primarily detected in P19 cells. This fluorescence expression pattern in the two cell lines was consistent with that in the early naïve pluripotent state and late primed pluripotent state during differentiation of mouse ESCs. Hence, this reporter system will be a convenient tool for screening out ESC-like naïve pluripotent stem cells from other metastable state cells in a heterogenous population.
Collapse
|
33
|
Luo J, Cibelli JB. Conserved Role of bFGF and a Divergent Role of LIF for Pluripotency Maintenance and Survival in Canine Pluripotent Stem Cells. Stem Cells Dev 2016; 25:1670-1680. [DOI: 10.1089/scd.2016.0164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jiesi Luo
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Jose B. Cibelli
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Department of Physiology, Michigan State University, East Lansing, Michigan
- LARCEL, Laboratorio Andaluz de Reprogramación Celular, BIONAND, Andalucía, Spain
| |
Collapse
|
34
|
Fukuda T, Tani T, Haraguchi S, Donai K, Nakajima N, Uenishi H, Eitsuka T, Miyagawa M, Song S, Onuma M, Hoshino Y, Sato E, Honda A. Expression of Six Proteins Causes Reprogramming of Porcine Fibroblasts Into Induced Pluripotent Stem Cells With Both Active X Chromosomes. J Cell Biochem 2016; 118:537-553. [DOI: 10.1002/jcb.25727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Tomokazu Fukuda
- United Graduate School of Agricultural Sciences; Iwate University; 4-3-5, Ueda Morioka 020-8551 Iwate Japan
| | - Tetsuya Tani
- Laboratory of Animal Reproduction; Department of Advanced Bioscience; Faculty of Agriculture; Kindai University; 3327-204 Nakamachi Nara 631-8505 Japan
| | - Seiki Haraguchi
- Division of Animal Sciences; Animal Biotechnology Unit; Institute of Agrobiological Sciences; National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki 305-0901 Japan
| | - Kenichiro Donai
- Graduate School of Agricultural Science; Tohoku University; Sendai 981-8555 Japan
| | - Nobuyoshi Nakajima
- Center for Environmental Biology and Ecosystem Studies; National Institute of Environmental Studies; Tsukuba Japan
| | - Hirohide Uenishi
- Animal Bioregulation Unit; Division of Animal Sciences; Institute of Agrobiological Sciences; National Agriculture and Food Research Organization (NARO); 1-2 Owashi Tsukuba Ibaraki 305-8634 Japan
| | - Takahiro Eitsuka
- Faculty of Applied Life Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
| | - Makoto Miyagawa
- Central Experimental Animal Center; Teikyo University School of Medicine; Japan
| | - Sanghoun Song
- Faculty of Life and Environmental Science; Shimane University; Matsue Shimane Japan
| | - Manabu Onuma
- Center for Environmental Biology and Ecosystem Studies; National Institute of Environmental Studies; Tsukuba Japan
| | - Yumi Hoshino
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima, Kagamiyama 1-4-4 Hiroshima 739-8528 Japan
| | - Eimei Sato
- National Livestock Breeding Center; Odakurahara, Odakura, Nishigo-mura, Nishishirakawa-gun Fukushima 961-8511 Japan
| | - Arata Honda
- Organization for Promotion of Tenure Track; University of Miyazaki; 5200 Kihara Kiyotake Miyazaki 889-1692 Japan
| |
Collapse
|
35
|
Kim E, Zheng Z, Jeon Y, Jin YX, Hwang SU, Cai L, Lee CK, Kim NH, Hyun SH. An Improved System for Generation of Diploid Cloned Porcine Embryos Using Induced Pluripotent Stem Cells Synchronized to Metaphase. PLoS One 2016; 11:e0160289. [PMID: 27472781 PMCID: PMC4966966 DOI: 10.1371/journal.pone.0160289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 12/29/2022] Open
Abstract
Pigs provide outstanding models of human genetic diseases due to their striking similarities with human anatomy, physiology and genetics. Although transgenic pigs have been produced using genetically modified somatic cells and nuclear transfer (SCNT), the cloning efficiency was extremely low. Here, we report an improved method to produce diploid cloned embryos from porcine induced pluripotent stem cells (piPSCs), which were synchronized to the G2/M stage using a double blocking method with aphidicolin and nocodazole. The efficiency of this synchronization method on our piPSC lines was first tested. Then, we modified our traditional SCNT protocol to find a workable protocol. In particular, the removal of a 6DMAP treatment post-activation enhanced the extrusion rate of pseudo-second-polar bodies (p2PB) (81.3% vs. 15.8%, based on peak time, 4hpa). Moreover, an immediate activation method yielded significantly more blastocysts than delayed activation (31.3% vs. 16.0%, based on fused embryos). The immunofluorescent results confirmed the effect of the 6DMAP treatment removal, showing remarkable p2PB extrusion during a series of nuclear transfer procedures. The reconstructed embryos from metaphase piPSCs with our modified protocol demonstrated normal morphology at 2-cell, 4-cell and blastocyst stages and a high rate of normal karyotype. This study demonstrated a new and efficient way to produce viable cloned embryos from piPSCs when synchronized to the G2/M phase of the cell cycle, which may lead to opportunities to produce cloned pigs from piPSCs more efficiently.
Collapse
Affiliation(s)
- Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Zhong Zheng
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yubyeol Jeon
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yong-Xun Jin
- Department of Animal Sciences, Agriculture, Life, & Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Agriculture, Life, & Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
36
|
Yang F, Du X, Wang Y, Wang C, Huang C, Xiao Q, Bai X, Wang H. Characterization and functional analysis of porcine estrogen-related receptors and their alternative splicing variants. J Anim Sci 2016; 93:4258-66. [PMID: 26440325 DOI: 10.2527/jas.2015-9188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Estrogen-related receptors (ESRR) are orphan nuclear hormone receptors with unidentified ligands; they play important roles in tissue regulation and development and maintenance of pluripotent cell identity. The splicer variant, genomic organization, and physiological roles of ESRR have been elucidated in the human and the mouse. However, in livestock, they remain elusive. In this study, we cloned porcine ESRR family members , , and . Two alternative splicing variants, and , and a novel were identified. To determine the domain function, we constructed vectors with sequential deletions of the ESRRB coding sequence. The functional analysis showed that the C domain of ESRR plays a core role in promoting the activation of estrogen response elements that are found in all kinds of ESRR-targeting genes, whereas the E domain is not essential for transcription regulation of ESRR unless a specific and identified ligand is applied.
Collapse
|
37
|
Park KM, Lee J, Hussein KH, Hong SH, Yang SR, Lee E, Woo HM. Generation of liver-specific TGF-α/c-Myc-overexpressing porcine induced pluripotent stem-like cells and blastocyst formation using nuclear transfer. J Vet Med Sci 2016; 78:709-13. [PMID: 26725870 PMCID: PMC4873867 DOI: 10.1292/jvms.15-0363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transgenic porcine induced pluripotent stem (iPS) cells are attractive cell sources for
the development of genetically engineered pig models, because they can be expanded without
senescence and have the potential for multiple gene manipulation. They are also useful
cell sources for disease modeling and treatment. However, the generation of transgenic
porcine iPS cells is rare, and their embryonic development after nuclear transfer (NT) has
not yet been reported. We report here the generation of liver-specific oncogenes
(TGF-α/c-Myc)-overexpressing porcine iPS (T/M iPS)-like cells. They
expressed stem cell characteristics and were differentiated into hepatocyte-like cells
that express oncogenes. We also confirmed that NT embryos derived from T/M iPS-like cells
successfully developed blastocysts in vitro. As an initial approach
toward porcine transgenic iPS cell generation and their developmental competence after NT,
this study provides foundations for the efficient generation of genetically modified
porcine iPS cells and animal models.
Collapse
Affiliation(s)
- Kyung-Mee Park
- Stem Cell Institute-KNU, Kangwon National University, Chuncheon, 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Xue B, Li Y, He Y, Wei R, Sun R, Yin Z, Bou G, Liu Z. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo. PLoS One 2016; 11:e0151737. [PMID: 26991423 PMCID: PMC4798268 DOI: 10.1371/journal.pone.0151737] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.
Collapse
Affiliation(s)
- Binghua Xue
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong He
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Zhi Yin
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Gerelchimeg Bou
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
- * E-mail:
| |
Collapse
|
39
|
Ogorevc J, Orehek S, Dovč P. Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species. J Anim Sci Biotechnol 2016; 7:10. [PMID: 26900466 PMCID: PMC4761155 DOI: 10.1186/s40104-016-0070-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/11/2016] [Indexed: 12/19/2022] Open
Abstract
Establishment of embryonic stem cell (ESC) lines has been successful in mouse and human, but not in farm animals. Development of direct reprogramming technology offers an alternative approach for generation of pluripotent stem cells, applicable also in farm animals. Induced pluripotent stem cells (iPSCs) represent practically limitless, ethically acceptable, individuum-specific source of pluripotent cells that can be generated from different types of somatic cells. iPSCs can differentiate to all cell types of an organism’s body and have a tremendous potential for numerous applications in medicine, agriculture, and biotechnology. However, molecular mechanisms behind the reprogramming process remain largely unknown and hamper generation of bona fide iPSCs and their use in human clinical practice. Large animal models are essential to expand the knowledge obtained on rodents and facilitate development and validation of transplantation therapies in preclinical studies. Additionally, transgenic animals with special traits could be generated from genetically modified pluripotent cells, using advanced reproduction techniques. Despite their applicative potential, it seems that iPSCs in farm animals haven’t received the deserved attention. The aim of this review was to provide a systematic overview on iPSC generation in the most important mammalian farm animal species (cattle, pig, horse, sheep, goat, and rabbit), compare protein sequence similarity of pluripotency-related transcription factors in different species, and discuss potential uses of farm animal iPSCs. Literature mining revealed 32 studies, describing iPSC generation in pig (13 studies), cattle (5), horse (5), sheep (4), goat (3), and rabbit (2) that are summarized in a concise, tabular format.
Collapse
Affiliation(s)
- J Ogorevc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - S Orehek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - P Dovč
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
40
|
Pluripotent stem cells and livestock genetic engineering. Transgenic Res 2016; 25:289-306. [PMID: 26894405 DOI: 10.1007/s11248-016-9929-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023]
Abstract
The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.
Collapse
|
41
|
Petkov S, Glage S, Nowak-Imialek M, Niemann H. Long-Term Culture of Porcine Induced Pluripotent Stem-Like Cells Under Feeder-Free Conditions in the Presence of Histone Deacetylase Inhibitors. Stem Cells Dev 2016; 25:386-94. [PMID: 26691930 DOI: 10.1089/scd.2015.0317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a complex process that involves significant epigenetic alterations in the reprogrammed cells. Epigenetic modifiers such as histone deacetylase (HDAC) inhibitors have been shown to increase the efficiency of derivation of iPSCs in humans and mice. In this study, we used three HDAC inhibitors, valproic acid, sodium butyrate, and suberoylanilide hydroxamic acid, together with ascorbic acid, for derivation and long-term feeder-free culture of porcine iPS-like cells. In the absence of exogenous growth factors and/or small molecules, these inhibitors were able to maintain the expression of key pluripotency markers, including genes known to be specific for naive pluripotent state in mouse stem cells, for over 60 passages under feeder-free conditions. Surprisingly, the cells became dependent on HDAC inhibitors for the maintenance of proliferation. Moreover, despite showing successful integration into blastocysts upon injection, the cells were unable to undergo normal differentiation in vitro and in vivo in the form of teratomas. Our results suggest that HDAC inhibitors maintain pluripotency gene expression of porcine iPSC-like cells in long-term culture, but prevent lineage specification, requiring further optimization of culture conditions for porcine iPSC derivation.
Collapse
Affiliation(s)
- Stoyan Petkov
- 1 Department of Biotechnology, Institute for Farm Animal Genetics (FLI) , Neustadt, Germany
| | - Silke Glage
- 2 Department of Experimental Pathology, Institute for Laboratory Animal Science , Hannover Medical School (MHH), Hannover, Germany
| | - Monika Nowak-Imialek
- 1 Department of Biotechnology, Institute for Farm Animal Genetics (FLI) , Neustadt, Germany
| | - Heiner Niemann
- 1 Department of Biotechnology, Institute for Farm Animal Genetics (FLI) , Neustadt, Germany
| |
Collapse
|
42
|
Abstract
This review deals with the latest advances in the study of embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) from domesticated species, with a focus on pigs, cattle, sheep, goats, horses, cats, and dogs. Whereas the derivation of fully pluripotent ESC from these species has proved slow, reprogramming of somatic cells to iPSC has been more straightforward. However, most of these iPSC depend on the continued expression of the introduced transgenes, a major drawback to their utility. The persistent failure in generating ESC and the dependency of iPSC on ectopic genes probably stem from an inability to maintain the stability of the endogenous gene networks necessary to maintain pluripotency. Based on work in humans and rodents, achievement of full pluripotency will likely require fine adjustments in the growth factors and signaling inhibitors provided to the cells. Finally, we discuss the future utility of these cells for biomedical and agricultural purposes.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| | - Ye Yuan
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| | - R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| |
Collapse
|
43
|
Secher JO, Callesen H, Freude KK, Hyttel P. Initial embryology and pluripotent stem cells in the pig--The quest for establishing the pig as a model for cell therapy. Theriogenology 2015; 85:162-71. [PMID: 26474684 DOI: 10.1016/j.theriogenology.2015.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 02/07/2023]
Abstract
The quest for porcine pluripotent stem cells (PSCs) was initiated in the early 90s. Initially, it was the intention to benefit from these cells for production of genetically modified pigs using homologous recombination followed by derivation of chimeric offspring; a technology that has been used to produce genetically modified mice since the mid-80s. However, no convincing reports on the generation of bona fide porcine embryonic stem cells or embryonic germ cells resulted from these activities, and with the advent of somatic cell nuclear transfer during the late 90s, alternative methods for creating genetically modified pigs emerged. Over the past years, renewed interest in porcine PSCs has sparked activities in deriving in particular porcine induced pluripotent stem cells to develop the pig as a faithful model for studying the potentials and risks associated with induced pluripotent stem cell-based human therapy. Here, we review the recent data on establishment of porcine PSCs and the differences in embryonic development between pig and mouse, which may be underlying factors for the continuing challenge to culture and maintain porcine PSCs.
Collapse
Affiliation(s)
- Jan O Secher
- Department of Large Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Kristine K Freude
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
44
|
Zhang W, Pei Y, Zhong L, Wen B, Cao S, Han J. Pluripotent and Metabolic Features of Two Types of Porcine iPSCs Derived from Defined Mouse and Human ES Cell Culture Conditions. PLoS One 2015; 10:e0124562. [PMID: 25893435 PMCID: PMC4404361 DOI: 10.1371/journal.pone.0124562] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/16/2015] [Indexed: 02/02/2023] Open
Abstract
The domestic pig is an excellent animal model for stem cell research and clinical medicine. There is still no suitable culture condition to generate authentic porcine embryonic stem cells (pESCs) and high quality porcine induced pluripotent stem cells (piPSCs). In this study, we found that culture conditions affected pluripotent and metabolic features of piPSCs. Using defined human embryonic stem cell (hESC) and mouse ESC (mESC) culture conditions, we generated two types of piPSCs, one of which was morphologically similar to hESCs (here called hpiPSCs), the other resembled mESCs (here called mpiPSCs). Transcriptome analysis and signaling pathway inhibition results suggested that mpiPSCs shared more of mESC signaling pathways, such as the BMP pathway and JAK/STAT pathway and hpiPSCs shared more hESC signaling pathways, such as the FGF pathway. Importantly, the mpiPSCs performed embryonic chimera incorporation more efficiently than the hpiPSCs did. In addition, the mpiPSCs showed mitochondrial features of naive ESCs and lipid droplets accumulation. These evidences may facilitate understanding of the gene regulation network and metabolism in piPSCs and promote derivation of bona fide pESCs for translational medicine.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yangli Pei
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Zhong
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bingqiang Wen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
45
|
Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J Stem Cells 2015; 7:315-328. [PMID: 25815117 PMCID: PMC4369489 DOI: 10.4252/wjsc.v7.i2.315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem (iPS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived iPS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming mRNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of iPS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of iPS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals.
Collapse
|
46
|
Secher JOB, Freude KK, Li R, Callesen H. Optimization of three-dimensional imaging on in vitro produced porcine blastocysts and chimeras for stem cell testing: a technology report. Stem Cells Dev 2015; 24:1141-5. [PMID: 25567670 DOI: 10.1089/scd.2014.0503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Differential staining is an immunocytochemical staining that visualizes trophectoderm (TE) and the inner cell mass (ICM) of the blastocysts. It is used to determine the blastocyst quality, but could also be a useful tool to assess the integration site of injected cells into the early embryo. This is relevant for testing of presumed pluripotent stem cells. The gold standard for pluripotent stem cells is to test if the cells are capable of contributing to germline chimeras. Differential staining can be used to evaluate the possibility of chimeric contribution; if the cells are located in the area of the ICM they are likely to contribute to the fetus and if they are located in the area of the TE they are likely to contribute to the fetal membranes. In this article, we optimize on methods for embryo staining and mounting so that the exact location of injected stem cells within preimplantation porcine embryos can be evaluated.
Collapse
Affiliation(s)
- Jan Ole Bertelsen Secher
- 1 Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, University of Copenhagen , Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
47
|
Yang F, Zhang J, Liu Y, Cheng D, Wang H. Structure and functional evaluation of porcine NANOG that is a single-exon gene and has two pseudogenes. Int J Biochem Cell Biol 2015; 59:142-52. [DOI: 10.1016/j.biocel.2014.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/25/2022]
|
48
|
Wang J, Wei R, Bou G, Liu Z. Tbx3 and Nr5α2 improve the viability of porcine induced pluripotent stem cells after dissociation into single cells by inhibiting RHO-ROCK-MLC signaling. Biochem Biophys Res Commun 2014; 456:743-9. [PMID: 25514039 DOI: 10.1016/j.bbrc.2014.12.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/08/2014] [Indexed: 01/11/2023]
Abstract
Porcine induced pluripotent stem cells (piPSCs) had been reported during the past 5years, but there were few reports on how the cell signaling works in piPSCs. In order to clarify the signaling work that dominated the characteristic difference of two types of piPSCs which were derived from Oct4, Sox2, Klf4 and c-Myc (termed 4F piPSCs) and Oct4, Sox2, Klf4, c-Myc, Tbx3 and Nr5α2 (termed 6F piPSCs) respectively, we performed this study. 4F piPSCs and 6F piPSCs were cultured in medium with or without the ROCK inhibitor Y27632 after dissociating into single cells, the efficiency of a single cell colony and the number of AP positive colonies were assessed. The total RhoA and GTP-bind RhoA were detected in 4F piPSCs and 6F piPSCs before and after digestion into single cells. To explore the relationship between RHO-ROCK-MLC signaling pathway and the two factors Tbx3 and Nr5α2, the 4F piPSCs were infected with lenti-virus Tbx3 and Nr5α2 (termed 4F+TND). Results showed that the viability of cells could be enhanced by Y27632 and the RHO-ROCK-MLC signaling pathway was activated after dissociation into single cells in 4F piPSCs but not in 6F piPSCs. And, the 4F+TND piPSCs could be passaged and keep in high viability after dissociation into single cells, though the morphology of colonies did not change. These results indicated that the Tbx3 and Nr5α2 can improve the viability of piPSCs after dissociation into single cells by inhibiting the RHO-ROCK-MLC signaling pathway. And this provides useful information for establishing porcine pluripotent cells in future study.
Collapse
Affiliation(s)
- Jianyu Wang
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China; Institute of Life Sciences, Chong Qing Medical University, Chong Qing 400016, China.
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China.
| | - Gerelchimeg Bou
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China.
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China.
| |
Collapse
|
49
|
Gu Q, Hao J, Hai T, Wang J, Jia Y, Kong Q, Wang J, Feng C, Xue B, Xie B, Liu S, Li J, He Y, Sun J, Liu L, Wang L, Liu Z, Zhou Q. Efficient generation of mouse ESCs-like pig induced pluripotent stem cells. Protein Cell 2014; 5:338-42. [PMID: 24671760 PMCID: PMC3996154 DOI: 10.1007/s13238-014-0043-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Qi Gu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Intelligent Polymer Research Institute, ARC Center of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Jie Hao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Tang Hai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianyu Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030 China
| | - Yundan Jia
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qingran Kong
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030 China
| | - Juan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030 China
| | - Chunjing Feng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Binghua Xue
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030 China
| | - Bingteng Xie
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030 China
| | - Shichao Liu
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030 China
| | - Jinyu Li
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030 China
| | - Yilong He
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030 China
| | - Jialu Sun
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030 China
| | - Lei Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Liu Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030 China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
50
|
Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo. Anim Reprod Sci 2014; 149:67-79. [DOI: 10.1016/j.anireprosci.2014.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/26/2014] [Indexed: 01/25/2023]
|