1
|
Liang G, Ma Y, Deng P, Li S, He C, He H, Liu H, Fan Y, Li Z. Role of cell-based therapies in digestive disorders: Obstacles and opportunities. Regen Ther 2025; 29:1-18. [PMID: 40124469 PMCID: PMC11925584 DOI: 10.1016/j.reth.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Stem cell-based therapies have emerged as a promising frontier in the treatment of gastrointestinal disorders, offering potential solutions for challenges posed by conventional treatments. This review comprehensively examines recent advancements in cell-based therapeutic strategies, particularly focusing on stem cell applications, immunotherapy, and cellular therapies for digestive diseases. It highlights the successful differentiation of enteric neural progenitors from pluripotent stem cells and their application in animal models, such as Hirschsprung disease. Furthermore, the review evaluates clinical trials and experimental studies demonstrating the potential of stem cells in regenerating damaged tissues, modulating immune responses, and promoting healing in conditions like Crohn's disease and liver failure. By addressing challenges, such as scalability, immunogenicity, and ethical considerations, the review underscores the translational opportunities and obstacles in realizing the clinical potential of these therapies. Concluding with an emphasis on future directions, the study provides insights into optimizing therapeutic efficacy and fostering innovations in personalized medicine for digestive disorders.
Collapse
Affiliation(s)
- Guodong Liang
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yuehan Ma
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ping Deng
- Medical Department, Jilin Cancer Hospital, Changchun 130012, China
| | - Shufeng Li
- First Department of Gynecological Tumor, Jilin Cancer Hospital, Changchun 130012, China
| | - Chunyan He
- Department of Anaesthesia, Jilin Cancer Hospital, Changchun 130012, China
| | - Haihang He
- Department of Otorhinolaryngology, Oral Maxillofacial, Head and Neck, Jilin Cancer Hospital, Changchun 130012, China
| | - Hairui Liu
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yunda Fan
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ze Li
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| |
Collapse
|
2
|
Smallbone P, Mehta RS, Alousi A. Steroid Refractory Acute GVHD: The Hope for a Better Tomorrow. Am J Hematol 2025; 100 Suppl 3:14-29. [PMID: 40123554 DOI: 10.1002/ajh.27592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 03/25/2025]
Abstract
Steroid-refractory acute graft-versus-host disease (SR-AGVHD) presents a significant barrier to successful outcomes following allogeneic hematopoietic cell transplantation (HCT), despite advancements in GVHD prophylaxis and management. While ruxolitinib therapy has shown improved response rates, survival benefits remain elusive. This review explores the definitions and proposed distinct pathophysiology and treatment landscape of SR-AGVHD. Emerging therapies offer potential, yet further research is critical to better define steroid-refractory populations, improve treatment precision with biomarkers, and overcome resistance, particularly in ruxolitinib-refractory cases.
Collapse
Affiliation(s)
- Portia Smallbone
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rohtesh S Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amin Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Farge D, Biard L, Weil B, Girault V, Lansiaux P, Munia I, Loisel S, Charles C, Saout J, Resche-Rigon M, Korganow AS, Beuvon C, Pugnet G, Cacciatore C, Abisror N, Taupin JL, Cras A, Lowdell MW, Tarte K. Allogeneic umbilical cord-derived mesenchymal stromal cells as treatment for systemic lupus erythematosus: a single-centre, open-label, dose-escalation, phase 1 study. THE LANCET. RHEUMATOLOGY 2025; 7:e261-e273. [PMID: 39706212 DOI: 10.1016/s2665-9913(24)00298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE) with inadequate responses to standard therapies have unmet therapeutic needs. The immunomodulatory, proangiogenic, and antifibrotic properties of mesenchymal stromal cells support their use in treating patients with SLE. We aimed to assess the safety of a single intravenous infusion of allogeneic umbilical cord-derived mesenchymal stromal cells in patients with severe SLE. METHODS This prospective, single-centre, open-label, dose-escalation, Bayesian phase 1 study was done at the Saint-Louis University Hospital (Paris, France). Eligible patients were aged 18-70 years, were diagnosed with SLE according to American College of Rheumatology criteria with positive antinuclear antibodies, had a baseline Safety of Estrogens in Lupus Erythematosus National Assessment-SLE Disease Activity Index (SELENA-SLEDAI) score of 6 or more, and had disease that was refractory to first and second line SLE therapies. Patients were to receive a single intravenous infusion of 1 × 106, 2 × 106, or 4 × 106 umbilical cord-derived mesenchymal stromal cells per kg (manufactured from a single umbilical cord) in cohorts of five patients per dose, starting at 2 × 106 cells per kg. The primary endpoint was the rate of treatment-related severe adverse events (grade ≥3) in the first 10 days after infusion of umbilical cord-derived mesenchymal stromal cells. People with lived experience were involved in study design, patient enrolment, and dissemination of the study findings. This study is registered with ClinicalTrials.gov, NCT03562065, and the EU Clinical Trials Register, EudraCT2017-001400-29. FINDINGS From May 14, 2019, to March 6, 2023, 29 patients were screened for eligibility, eight of whom were enrolled in the study. Enrolment was terminated early after inclusion of eight patients and no patients received the 1 × 106 dose of umbilical cord-derived mesenchymal stromal cells. Seven (88%) of eight participants were cisgender women and one (13%) was a cisgender man. The median age was 35 years (range 26-57) and the median SLE disease duration was 12 years (5-19). All patients received at least 2 × 106 cells per kg (range 2 × 106 to 4 × 106). No severe adverse events and three infusion-related adverse events (two grade 1 and one grade 2) occurred in two patients in the first 10 days after infusion. After 12·4 months (range 12-13) of follow-up, no treatment-related severe adverse events and three non-treatment-related severe adverse events occurred in one patient after relapse. INTERPRETATION Our results suggest that a single infusion of 2 × 106 cells per kg or 4 × 106 cells per kg of allogeneic umbilical cord-derived mesenchymal stromal cells was safe in patients with severe SLE. Placebo-controlled trials are needed to confirm clinical efficacy and the role of B-cell modifications in clinical benefit. FUNDING Fondation du Rein, Alliance Maladies Rares AFM-Téléthon, Direction de la Recherche Clinique et de l'Innovation AP-HP, and ANR eCellFrance.
Collapse
Affiliation(s)
- Dominique Farge
- Unité de Médecine Interne (UF 04) CRMR MATHEC, Maladies Auto-Immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-Immunes Systémiques Rares d'Ile-de-France MATHEC, AP-HP, Hôpital St-Louis, Paris, France; Université Paris Cité, IRSL, Recherche Clinique en Hématologie, Immunologie et Transplantation, URP3518, Paris, France; Department of Medicine, McGill University, Montreal, QC, Canada.
| | - Lucie Biard
- Université Paris Cité, AP-HP, Hôpital Saint Louis, Service de Biostatistique et Information Médicale (DMU PRISME), INSERM U1153 Team ECSTRRA, Paris, France
| | - Ben Weil
- Royal Free London NHS Foundation Trust, London, UK
| | - Virginie Girault
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France; INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Pauline Lansiaux
- Unité de Médecine Interne (UF 04) CRMR MATHEC, Maladies Auto-Immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-Immunes Systémiques Rares d'Ile-de-France MATHEC, AP-HP, Hôpital St-Louis, Paris, France; Université Paris Cité, IRSL, Recherche Clinique en Hématologie, Immunologie et Transplantation, URP3518, Paris, France
| | - Ingrid Munia
- Unité de Médecine Interne (UF 04) CRMR MATHEC, Maladies Auto-Immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-Immunes Systémiques Rares d'Ile-de-France MATHEC, AP-HP, Hôpital St-Louis, Paris, France; Université Paris Cité, IRSL, Recherche Clinique en Hématologie, Immunologie et Transplantation, URP3518, Paris, France
| | - Séverine Loisel
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France; INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Catney Charles
- Unité de Médecine Interne (UF 04) CRMR MATHEC, Maladies Auto-Immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-Immunes Systémiques Rares d'Ile-de-France MATHEC, AP-HP, Hôpital St-Louis, Paris, France; Université Paris Cité, IRSL, Recherche Clinique en Hématologie, Immunologie et Transplantation, URP3518, Paris, France
| | - Judikael Saout
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France; INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Matthieu Resche-Rigon
- Université Paris Cité, AP-HP, Hôpital Saint Louis, Service de Biostatistique et Information Médicale (DMU PRISME), INSERM U1153 Team ECSTRRA, Paris, France
| | - Anne Sophie Korganow
- Hôpitaux Universitaires de Strasbourg, Département d'Immunologie Clinique, Centre National de Reference pour les Maladies Autoimmunes RESO, Université de Strasbourg, INSERM U1109, Strasbourg, France
| | - Clément Beuvon
- CHU de Poitiers, Service de Médecine Interne, 2, Rue de La Miletrie, Poitiers, France
| | - Grégory Pugnet
- Service de Médecine Interne et Immunologie Clinique Pôle Hospitalo-Universitaire des Maladies Digestives, CHU Rangueil, Toulouse, France
| | - Carlotta Cacciatore
- Unité de Médecine Interne (UF 04) CRMR MATHEC, Maladies Auto-Immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-Immunes Systémiques Rares d'Ile-de-France MATHEC, AP-HP, Hôpital St-Louis, Paris, France; Université Paris Cité, IRSL, Recherche Clinique en Hématologie, Immunologie et Transplantation, URP3518, Paris, France
| | - Noémie Abisror
- Sorbonne Université, Service de Médecine Interne, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Jean Luc Taupin
- INSERM U976 HIPI IRSL, Université Paris Cité, Laboratory of Immunology and Histocompatibility Hôpital Saint-Louis APHP, Paris, France
| | - Audrey Cras
- Cell Therapy Unit, AP-HP, Saint Louis Hospital, Paris, France; Université Paris Cité, INSERM UMR1140, Paris, France; INSERM, CIC de Biothérapies CBT501, Paris, France
| | | | - Karin Tarte
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France; INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.
| |
Collapse
|
4
|
Riazuelo L, Planat-Bénard V, Vinel A, Laurencin S, Casteilla L, Kémoun P, Marty M, Monsarrat P. Acceptability of Allogeneic Mesenchymal Stromal Cell-Based Tissue Engineering for the Treatment of Periodontitis: A Qualitative Study in France. Int Dent J 2025; 75:840-848. [PMID: 39245621 PMCID: PMC11976543 DOI: 10.1016/j.identj.2024.07.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION AND AIMS Periodontitis, the main cause of tooth loss in adults, is a public health concern; its incidence increases with age, and its prevalence increases with increasing life expectancy of the population. Innovative therapies such as cell therapy represent promising future solutions for guided tissue regeneration. However, these therapies may be associated with fears and mistrust from the general public. The aim of this study was to estimate the acceptability of an advanced therapy medicinal product combining allogeneic mesenchymal stromal cells from adipose tissue with a natural fibrin hydrogel in the treatment of periodontitis. METHODS The methodology was based on a qualitative study conducted through semi-structured interviews with patients followed for periodontitis in the Oral Medicine Department of the Toulouse University Hospital, Toulouse, France. Qualitative studies are essential methodologies to understand the patterns of health behaviours, describe illness experiences, and design health interventions in a humanistic and person-centred way of discovering. RESULTS Eleven interviews (with 4 men and 7 women) were required to reach thematic saturation. Analysis allowed 4 main themes to emerge: (1) perception of new treatments, science, and caregivers; (2) conditions that the treatment must meet; (3) patient perception of the disease; and (4) factors related to the content of the treatment. CONCLUSIONS Patients find cell therapy for periodontitis to be acceptable. If they express a need to be informed about the benefit/risk ratio, they are not particularly worried about side effects of the treatment, for either allogeneic or blood-derived products. Periodontitis is a prototypical model of chronic inflammatory pathology and is multitissular, with hard- and soft-tissue lesions. In a patient-centred approach, the success of cell therapy will require a bilateral, informed decision, taking into account potential therapeutic effectiveness and patient expectations for regeneration.
Collapse
Affiliation(s)
- Lucas Riazuelo
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France
| | - Valérie Planat-Bénard
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Alexia Vinel
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; I2MC, INSERM UMR 1297, University of Toulouse III, Toulouse, France
| | - Sara Laurencin
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; Center for Epidemiology and Research in POPulation Health (CERPOP), UMR 1295, Paul Sabatier University, Toulouse, France
| | - Louis Casteilla
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Philippe Kémoun
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Mathieu Marty
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; LIRDEF, Faculty of Educational Sciences, Paul Valery University, Montpellier, France
| | - Paul Monsarrat
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France; Artificial and Natural Intelligence Toulouse Institute ANITI, Toulouse, France.
| |
Collapse
|
5
|
Bahrani Fard MR, Chan J, Read AT, Li G, Cheng L, Safa BN, Siadat SM, Jhunjhunwala A, Grossniklaus HE, Emelianov SY, Stamer WD, Kuehn MH, Ethier CR. MAGNETICALLY STEERED CELL THERAPY FOR REDUCTION OF INTRAOCULAR PRESSURE AS A TREATMENT STRATEGY FOR OPEN-ANGLE GLAUCOMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.13.593917. [PMID: 38798683 PMCID: PMC11118342 DOI: 10.1101/2024.05.13.593917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Trabecular meshwork (TM) cell therapy has been proposed as a next-generation treatment for elevated intraocular pressure (IOP) in glaucoma, the most common cause of irreversible blindness. Using a magnetic cell steering technique with excellent efficiency and tissue-specific targeting, we delivered two types of cells into a mouse model of glaucoma: either human adipose-derived mesenchymal stem cells (hAMSCs) or induced pluripotent cell derivatives (iPSC-TM cells). We observed a 4.5 [3.1, 6.0] mmHg or 27% reduction in intraocular pressure (IOP) for nine months after a single dose of only 1500 magnetically-steered hAMSCs, explained by increased outflow through the conventional pathway and associated with an higher TM cellularity. iPSC-TM cells were also effective, but less so, showing only a 1.9 [0.4, 3.3] mmHg or 13% IOP reduction and increased risk of tumorigenicity. In both cases, injected cells remained detectable in the iridocorneal angle three weeks post-transplantation. Based on the locations of the delivered cells, the mechanism of IOP lowering is most likely paracrine signaling. We conclude that magnetically-steered hAMSC cell therapy has potential for long-term treatment of ocular hypertension in glaucoma. One Sentence Summary A novel magnetic cell therapy provided effective intraocular pressure reduction in a mouse model, motivating future translational studies.
Collapse
|
6
|
Mbaye EHA, Scott EA, Burke JA. From Edmonton to Lantidra and beyond: immunoengineering islet transplantation to cure type 1 diabetes. FRONTIERS IN TRANSPLANTATION 2025; 4:1514956. [PMID: 40182604 PMCID: PMC11965681 DOI: 10.3389/frtra.2025.1514956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing β cells within pancreatic islets, the specialized endocrine cell clusters of the pancreas. Islet transplantation has emerged as a β cell replacement therapy, involving the infusion of cadaveric islets into a patient's liver through the portal vein. This procedure offers individuals with T1D the potential to restore glucose control, reducing or even eliminating the need for exogenous insulin therapy. However, it does not address the underlying autoimmune condition responsible for T1D. The need for systemic immunosuppression remains the primary barrier to making islet transplantation a more widespread therapy for patients with T1D. Here, we review recent progress in addressing the key limitations of islet transplantation as a viable treatment for T1D. Concerns over systemic immunosuppression arise from its potential to cause severe side effects, including opportunistic infections, malignancies, and toxicity to transplanted islets. Recognizing the risks, the Edmonton protocol (2000) marked a shift away from glucocorticoids to prevent β cell damage specifically. This transition led to the development of combination immunosuppressive therapies and the emergence of less toxic immunosuppressive and anti-inflammatory drugs. More recent advances in islet transplantation derive from islet encapsulation devices, biomaterial platforms releasing immunomodulatory compounds or surface-modified with immune regulating ligands, islet engineering and co-transplantation with accessory cells. While most of the highlighted studies in this review remain at the preclinical stage using mouse and non-human primate models, they hold significant potential for clinical translation if a transdisciplinary research approach is prioritized.
Collapse
Affiliation(s)
- El Hadji Arona Mbaye
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, VA, United States
| | | |
Collapse
|
7
|
Wiest EF, Zubair AC. Generation of Current Good Manufacturing Practices-Grade Mesenchymal Stromal Cell-Derived Extracellular Vesicles Using Automated Bioreactors. BIOLOGY 2025; 14:313. [PMID: 40136569 PMCID: PMC11940689 DOI: 10.3390/biology14030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Interest in Current Good Manufacturing Practices (cGMP)-grade extracellular vesicles (EVs) is expanding. Some obstacles in this new but rapidly growing field include a lack of standardization and scalability. This review focuses on automated biomanufacturing of EVs in conditioned media collected from cultured mesenchymal stromal cells (MSCs). Different automated cell culture systems are discussed, including factors affecting EV quantity and quality, isolating EVs manufactured in an automated system, and validations needed. The ultimate goal when manufacturing cGMP-grade EVs is to identify a specific application and characterize the EV population in detail. This is achieved by validating every step of the process, choosing appropriate release criteria, and assuring batch-to-batch consistency. Due to the lack of standards in the field, it is critical to ensure that the cGMP-grade EVs meet FDA standards pertaining to identity, reproducibility, sterility, safety, purity, and potency. A closed-system automated bioreactor can be a valuable tool to generate cGMP-EVs in a scalable, economical, and reproducible manner.
Collapse
Affiliation(s)
- Elani F. Wiest
- Department of Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Abba C. Zubair
- Department of Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL 32224, USA;
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
8
|
Cui C, Lin F, Xia L, Zhang X. Mesenchymal stem cells therapy for the treatment of non-union fractures: a systematic review and meta-analysis. BMC Musculoskelet Disord 2025; 26:245. [PMID: 40069694 PMCID: PMC11900535 DOI: 10.1186/s12891-025-08365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND This meta-analysis aimed to pool the existing evidence to determine the clinical efficacy and safety of mesenchymal stem cells (MSC) in patients with non-unions. METHODS A systematic search in PubMed and Scopus was performed until October 2024 to gather pertinent studies. The inclusion criteria included participants with non-unions, the intervention of MSC administration, a comparator of standard treatment (bone graft), and outcomes focused on healing rate, healing time, or side effects. The Jadad score Newcastle-Ottawa Scale (NOS) was used to assess the risk of bias in randomized and non-randomized studies, respectively. Moreover, GRADE criteria were used to assess the quality of evidence. Using a random effects model, odds ratios (OR) with 95% confidence intervals (CIs) were calculated for healing and complication rates, while standardized mean differences (SMD) with their 95% CIs were used to assess the impact of MSC therapy on bone union time. RESULTS Twenty-one studies, with 866 patients, were included. The bone healing rates were 44% at 3 months, 73% at 6 months, 90% at 9 months, and 86% at 12 months, eventually reaching 91% after 12 months of follow-up. MSC therapy, with or without scaffolds, was linked to higher odds of bone healing rate at 3 and 6 months, compared to bone grafts as the standard care (OR = 1.69). The time to union following the treatment was 6.30 months (95%CI: 86-96%), with patients treated with MSC/Scaffold experiencing a shorter time compared to MSC alone (5.85 vs. 6.36 months). MSC therapy significantly decreased bone union time (SMD:-0.54 months, 95% CI: -0.75 to -0.33). The complication rate was 1% (MSC/Scaffold: 0%, MSC alone: 2%), with MSC alone or MSC/Scaffold showing a lower risk than the standard care (OR = 0.41, 95% CI: 0.22-0.78). CONCLUSION MSC is a potential adjunct therapy for patients with non-union fractures. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Cunbao Cui
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, NO. 105, Jiefang Road, Jinan, 250013, China
| | - Feng Lin
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, NO. 105, Jiefang Road, Jinan, 250013, China
| | - Liang Xia
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, NO. 105, Jiefang Road, Jinan, 250013, China
| | - Xinguang Zhang
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, NO. 105, Jiefang Road, Jinan, 250013, China.
| |
Collapse
|
9
|
Fenger Carlander AL, Jakobsen KK, Todsen T, Paaske N, Østergaard Madsen AK, Bendtsen SK, Kastrup J, Friborg J, Duch Lynggaard C, Hauge AW, Christensen R, Grønhøj C, von Buchwald C. Long-term Effectiveness and Safety of Mesenchymal Stromal Cell Therapy for Radiation-Induced Hyposalivation in Head and Neck Cancer Survivors: A Randomized Phase II Trial. Clin Cancer Res 2025; 31:824-831. [PMID: 39751638 DOI: 10.1158/1078-0432.ccr-24-2663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE The long-term effect of adipose-derived mesenchymal stromal cells (ASC) on restoring radiation-induced salivary gland hypofunction in patients with previous head and neck cancer has not been validated in larger settings. PATIENTS AND METHODS The study was a 12-month follow-up of a randomized trial, including patients with hyposalivation. Patients were randomized to receive allogeneic ASC or placebo in the submandibular glands. The primary endpoint was unstimulated whole saliva (UWS) followed by stimulated whole saliva, patient-reported outcomes (European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire, Head and Neck Module, and the xerostomia questionnaire), and safety. RESULTS Of the 120 enrolled patients, 117 (97.5%) were assessed at 12 months. Treatment with ASC did not increase UWS compared with placebo: Increase in UWS was 0.02 mL/minute [95% confidence interval (CI), 0.01-0.04] in the ASC group and 0.02 mL/minute (95% CI, 0-0.03) in the placebo group (P = 0.56). ASC reduced the symptom burden for dry mouth with -10.07 units (95% CI, -13.39 to -6.75) compared with -4.15 units (95% CI, -7.46 to -0.84) in the placebo group (P = 0.01). Compared with placebo, ASC did not improve sticky saliva (-9.27 vs. -4.55 units; P = 0.13), swallowing (-4.50 vs. 3.49 units; P = 0.5), or xerostomia (-3.12 vs. -2.74 units; P = 0.82). Treatment was safe and associated with a transient immune response. CONCLUSIONS Intraglandular ACS therapy in the submandibular glands significantly relieved subjective dry mouth symptoms. Both ASC and placebo increased UWS, but ASC did not prove superior to placebo in restoring salivary gland function, based on the salivary flow rate.
Collapse
Affiliation(s)
- Amanda-Louise Fenger Carlander
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Section for Biostatistics and Evidence-Based Research, The Parker Institute, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Kathrine Kronberg Jakobsen
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Tobias Todsen
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Natasja Paaske
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anne Kathrine Østergaard Madsen
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Simone Kloch Bendtsen
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Jeppe Friborg
- Department of Oncology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Duch Lynggaard
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anne Werner Hauge
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, The Parker Institute, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Research, Research Unit of Rheumatology, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Christian Grønhøj
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
10
|
Fang C, Zeng Z, Ye J, Ni B, Zou J, Zhang G. Progress of mesenchymal stem cells affecting extracellular matrix metabolism in the treatment of female stress urinary incontinence. Stem Cell Res Ther 2025; 16:95. [PMID: 40001265 PMCID: PMC11863768 DOI: 10.1186/s13287-025-04220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Stress urinary incontinence (SUI) is a prevalent pelvic floor dysfunction in women post-pregnancy. Currently, conservative treatment options have low success rates, while surgical interventions often result in multiple complications. The altered state of the extracellular matrix (ECM) is a pivotal factor in the onset of various diseases and likely plays a significant role in the pathogenesis of SUI, particularly through changes in collagen and elastin levels. Recent advances in mesenchymal stem cells (MSCs) therapy have shown considerable promise in treating SUI by modulating ECM remodeling, thereby enhancing the supportive tissues of the female pelvic floor. MSCs exhibit substantial potential in enhancing urethral sphincter function, modulating connective tissue architecture, and stimulating fibroblast activity. They play a pivotal role in the reconstruction and functional recovery of the ECM by influencing various signaling pathways, including TGF-β/SMAD, JAK/STAT, Wnt/β-catenin, PI3K/AKT, and ERK/MAPK. We have reviewed the advancements in MSC-mediated ECM metabolism in SUI and, by integrating the functions of ECM in other diseases and how MSCs can ameliorate conditions through their impact on ECM metabolism, we have projected the future trajectory of SUI treatment development.
Collapse
Affiliation(s)
- Chunyun Fang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zitao Zeng
- First Clinical College of Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bin Ni
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Junrong Zou
- Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, No. 128, Jinling Road, Zhanggong District, Ganzhou, Jiangxi, 341000, China
| | - Guoxi Zhang
- Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, No. 128, Jinling Road, Zhanggong District, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
11
|
Artamonov MY, Pyatakovich FA, Minenko IA. Influence of Super-Low-Intensity Microwave Radiation on Mesenchymal Stem Cells. Int J Mol Sci 2025; 26:1705. [PMID: 40004170 PMCID: PMC11855362 DOI: 10.3390/ijms26041705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising tool for regenerative medicine due to their multipotency and immunomodulatory properties. According to recent research, exposing MSCs to super-low-intensity microwave radiation can have a significant impact on how they behave and operate. This review provides an overview of the most recent studies on the effects of microwave radiation on MSCs with power densities that are much below thermal values. Studies repeatedly show that non-thermal mechanisms affecting calcium signaling, membrane transport, mitochondrial activity, along ion channel activation may increase MSC proliferation, differentiation along mesodermal lineages, paracrine factor secretion, and immunomodulatory capabilities during brief, regulated microwave exposures. These bioeffects greatly enhance MSC regeneration capability in preclinical models of myocardial infarction, osteoarthritis, brain damage, and other diseases. Additional study to understand microwave treatment settings, biological processes, and safety assessments will aid in the translation of this unique, non-invasive strategy of activating MSCs with microwave radiation to improve cell engraftment, survival, and tissue healing results. Microwave-enhanced MSC treatment, if shown safe and successful, might have broad relevance as a novel cell-based approach for a variety of regenerative medicine applications.
Collapse
Affiliation(s)
| | - Felix A. Pyatakovich
- Department of Internal Medicine, Belgorod State University, Belgorod 308015, Russia;
| | - Inessa A. Minenko
- Department of Rehabilitation, Sechenov Medical University, Moscow 119991, Russia;
| |
Collapse
|
12
|
Cao X, Li F, Xie X, Ling G, Tang X, He W, Tian J, Ge Y. Efferocytosis and inflammation: a bibliometric and systematic analysis. Front Med (Lausanne) 2025; 12:1498503. [PMID: 39995691 PMCID: PMC11847848 DOI: 10.3389/fmed.2025.1498503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Objective To visualize and analyze the trends and hotspots of efferocytosis and inflammation via bibliometric methods. Methods Relevant articles and reviews from 2006 to 2023 were retrieved from the Web of Science Core Collection. The data were processed with CiteSpace, and some graphs were generated with Microsoft Excel (version 2016), VOSviewer, Scimago Graphica, Bibliometrix and R Studio. Results A total of 1,003 papers were included, revealing a significant upward trend in efferocytosis and inflammation research. The United States (456, 45.46%), China (164, 16.35%) and the United Kingdom (99, 9.87%) were the three countries with the highest numbers of publications. Harvard University (84, 6.74%) contributes the most out of the top 5 institutions. Among the researchers in this field, Serhan CN was the author with the highest number of articles in the field (35, 3.49%), and deCathelineau AM first named "efferocytosis" in 2003. Keyword analysis identified "activation," "tam receptors," "docosahexaenoic acid" "systemic lupus erythematosus," "myocardial infarction" and "alveolar macrophages" as core topics, indicating a concentrated trend in the mechanism of physiological state and inflammatory diseases such as autoimmune, cardiovascular, and pulmonary diseases. The latest surge words "inflammation resolution" and "cancer" in the keyword heatmap indicate future research directions. Conclusion Research on the association between efferocytosis and inflammation has been a promising field. Key areas of focus include the crucial role of efferocytosis on tissue homeostasis and the pathogenesis of nontumorous inflammatory diseases. Future research will likely continue to explore these frontiers, with an emphasis on understanding efferocytosis in the context of chronic diseases and cancer, as well as developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Xin Cao
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Fen Li
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Xi Xie
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Guanghui Ling
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Xiaoyu Tang
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Tian
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Yan Ge
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| |
Collapse
|
13
|
Zhang W, Zhang Y, Hao Z, Yao P, Bai J, Chen H, Wu X, Zhong Y, Xue D. Synthetic nanoparticles functionalized with cell membrane-mimicking, bone-targeting, and ROS-controlled release agents for osteoporosis treatment. J Control Release 2025; 378:306-319. [PMID: 39694070 DOI: 10.1016/j.jconrel.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Postmenopausal osteoporosis is a common degenerative disease, with suboptimal clinical outcomes. The targets of current therapeutic agents are both nonspecific and diverse. We synthesized a novel nanoparticle (NP), ALN@BMSCM@PLGA-TK-PEG-SS31. After intravenous injection, the NP evaded immune phagocytosis, targeted bone tissue, and efficiently downregulated bone reactive oxygen species (ROS) generation. The core PLGA-TK-PEG-SS31 NP was ∼100 nm in diameter. The TK chemical bond breaks on exposure to ROS, releasing the novel mitochondrion-targeting peptide SS31. Outer bone marrow mesenchymal stem cell membranes (BMSCMs) were used to coat the NP with surface proteins to ensure membrane functionality. The circulation time was prolonged and immune phagocytosis was evaded. Embedding the DSPE-PEG-ALN lipid within the cell membrane enhanced the bone-targeting ability of the NP. Our results suggest that ALN@BMSCM@PLGA-TK-PEG-SS31 exerted dual effects on bone tissue in vitro, significantly inhibiting RANKL-induced osteoclastogenesis in the presence of H2O2 and promoting osteogenic differentiation in BMSCs. In a mouse model of ovariectomy-induced osteoporosis, ALN@BMSCM@PLGA-TK-PEG-SS31 significantly ameliorated oxidative stress and increased bone mass with no notable systemic side effects. These results suggest that ALN@BMSCM@PLGA-TK-PEG-SS31 is a promising treatment for osteoporosis.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Ye Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zhengan Hao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Pengjie Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Hongyu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Xiaoyong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Yuliang Zhong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Deting Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China.
| |
Collapse
|
14
|
Lu W, Allickson J. Mesenchymal stromal cell therapy: Progress to date and future outlook. Mol Ther 2025:S1525-0016(25)00093-0. [PMID: 39916329 DOI: 10.1016/j.ymthe.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
In clinical trials, mesenchymal stromal/stem cells (MSCs) have consistently demonstrated safety. However, demonstration of efficacy has been inconsistent and many MSC trials have failed to meet their efficacy endpoint. This disappointing reality is reflected by the limited number MSC therapies approved by regulatory agencies, despite the large number of MSC trials registered on clinicaltrials.gov. Notably, there has been a recent approval of an MSC therapy for pediatric graft-vs.-host disease in the United States, marking the first MSC therapy approved by the U.S. Food and Drug Administration. This review provides a background of the history and potential therapeutic value of MSCs, an overview of MSC products with regulatory approval, and a summary of registered MSC trials. It concludes with a discussion on current and ongoing challenges and questions surrounding MSC therapy that remains to be resolved before becoming available for routine clinical use outside of clinical trials.
Collapse
Affiliation(s)
- Wen Lu
- Department of Laboratory Medicine and Pathology, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
| | - Julie Allickson
- Department of Laboratory Medicine and Pathology, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Faircloth TU, Temple S, Parr R, Soma A, Massoumi H, Jalilian E, Djalilian AR, Hematti P, Rajan D, Chinnadurai R. Human cornea-derived mesenchymal stromal cells inhibit T cells through indoleamine 2,3 dioxygenase. Cytotherapy 2025:S1465-3249(25)00032-5. [PMID: 39891632 DOI: 10.1016/j.jcyt.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Defining the mechanism of immune modulation by mesenchymal stromal cells (MSCs) from distinct anatomical tissues is of great translational interest. The human cornea is an immunologically privileged organ, and the mechanism of immunoregulation of cornea-derived MSCs (cMSCs) is currently unknown. We investigated cMSCs derived from the corneas of 5 independent human donorS for their fitness and mechanism of action in suppressing T cells. cMSCs display the immunophenotype CD45-CD73+CD105+CD90+CD44+ and robust in vitro growth. 30-plex secretome analysis identified that cMSCs innately secrete specific molecules in a dose-dependent manner. cMSCs do not express or upregulate costimulatory but do upregulate coinhibitory molecules upon stimulation with interferon γ (IFNγ). cMSCs inhibit T-cell proliferation in contact-dependent co-cultures, which can be predicted by a unique secretome signature. In addition, co-culturing in a 2-chamber transwell system has demonstrated that cMSCs also inhibit T-cell proliferation in a non-contact-dependent manner. Mechanistic analysis has demonstrated that activated T cells effectively induce indoleamine 2,3-dioxygenase (IDO) but not other enzymes of the tryptophan metabolic pathway in cMSCs. Silencing of IDO in cMSCs reduces their fitness to suppress T cells. These results provide evidence that in cMSCs, one of the principal mechanisms of immunosuppression on T cells is through IDO. These results suggest that MSCs derived from the human cornea display immunoregulatory properties and, thus, may play a role in maintaining the immune-privileged niche of the cornea.
Collapse
Affiliation(s)
- Tyler U Faircloth
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Sara Temple
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Rhett Parr
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Alyssa Soma
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Peiman Hematti
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA.
| |
Collapse
|
16
|
Im GI. Clinical updates in mesenchymal stromal cell therapy for osteoarthritis treatment. Expert Opin Biol Ther 2025; 25:187-195. [PMID: 39710894 DOI: 10.1080/14712598.2024.2446612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Osteoarthritis (OA) is a common chronic musculoskeletal disease with heterogeneous clinical manifestations and variable responses to different treatments. Unfortunately, there is no effective disease modifying therapy at present that can alter the natural course of the disease. Cell therapy based on mesenchymal stromal cells (MSCs) may offer an attractive therapeutic option for OA with their multiple modes of action, particularly immune-regulatory and regenerative capacities. AREAS COVERED In this narrative review, updates on mode of action based on patient's data, factors that can influence the efficacy of MSC treatment, current status in clinical application of MSCs as seen from randomized, controlled OA trials are introduced as well as the author's perspectives in the future of MSCs as OA therapeutics. EXPERT OPINION Symptomatic relief is not sufficient to justify the high cost associated with culture-expanded stem cells. Its advantages and efficacy over simple and low risk/cost modalities should be seriously reevaluated. Also, as the short-term strategy, efforts should be made to lower the cost of MSC therapy. In the future, multiomics technology may help to predict that subgroup of patients who will favorably respond to stem cell treatment, which would enhance the cost effectiveness and therapeutic benefit of MSC therapy.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
17
|
Lu X, Wang Y, Piao C, Li P, Cao L, Liu T, Ma Y, Wang H. Exosomes Derived from Adipose Mesenhymal Stem Cells Ameliorate Lipid Metabolism Disturbances Following Liver Ischemia-Reperfusion Injury in Miniature Swine. Int J Mol Sci 2024; 25:13069. [PMID: 39684778 DOI: 10.3390/ijms252313069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The liver plays a crucial role in regulating lipid metabolism. Our study examined the impact of Exosomes derived from adipose mesenchymal stem cells (ADSCs-Exo) on lipid metabolism following liver ischemia-reperfusion injury (IRI) combined with partial hepatectomy. We developed a miniature swine model for a minimally invasive hemi-hepatectomy combined with liver IRI. In this study, we administered PBS, ADSCs-Exo, and adipose-derived stem cells (ADSCs) individually through the portal vein. Before and after surgery, we evaluated various factors including hepatocyte ultrastructure, lipid accumulation in liver tissue, and expression levels of genes and proteins associated with lipid metabolism. In addition, we measured serum and liver tissue levels of high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG), and total cholesterol (CHOL). TEM and oil red O stain indicated a significant reduction in liver steatosis following ADSCs-Exo treatment, which also elevated serum levels of HDL, LDL, TG, and CHOL. Additionally, ADSCs-Exo have been shown to significantly decrease serum concentrations of HDL, LDL, TG, and CHOL in the liver (p < 0.05). Finally, ADSCs-Exo significantly downregulated lipid synthesis-related genes and proteins, including SREBP-1, SREBP-2, ACC1, and FASN (p < 0.05), while upregulating lipid catabolism-related genes and proteins, such as PPAR-α and ACOX1 (p < 0.05). ADSCs-Exo as a cell-free therapy highlights its therapeutic potential in hepatic lipid metabolism abnormalities.
Collapse
Affiliation(s)
- Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Yue Wang
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| | - Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Pujun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Lei Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| |
Collapse
|
18
|
McDowall S, Bagda V, Hodgetts S, Mastaglia F, Li D. Controversies and insights into PTBP1-related astrocyte-neuron transdifferentiation: neuronal regeneration strategies for Parkinson's and Alzheimer's disease. Transl Neurodegener 2024; 13:59. [PMID: 39627843 PMCID: PMC11613593 DOI: 10.1186/s40035-024-00450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Promising therapeutic strategies are being explored to replace or regenerate the neuronal populations that are lost in patients with neurodegenerative disorders. Several research groups have attempted direct reprogramming of astrocytes into neurons by manipulating the expression of polypyrimidine tract-binding protein 1 (PTBP1) and claimed putative converted neurons to be functional, which led to improved disease outcomes in animal models of several neurodegenerative disorders. However, a few other studies reported data that contradict these claims, raising doubt about whether PTBP1 suppression truly reprograms astrocytes into neurons and the therapeutic potential of this approach. This review discusses recent advances in regenerative therapeutics including stem cell transplantations for central nervous system disorders, with a particular focus on Parkinson's and Alzheimer's diseases. We also provide a perspective on this controversy by considering that astrocyte heterogeneity may be the key to understanding the discrepancy in published studies, and that certain subpopulations of these glial cells may be more readily converted into neurons.
Collapse
Affiliation(s)
- Simon McDowall
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, Australia
- Department of Anatomy and Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Vaishali Bagda
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Stuart Hodgetts
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, Australia
| | - Frank Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
| | - Dunhui Li
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.
- Centre for Neuromuscular and Neurological Disorders, Nedlands, WA, Australia.
- Department of Neurology and Stephen and Denise Adams Center for Parkinson's Disease Research, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Sagar R, David AL. Fetal therapies - (Stem cell transplantation; enzyme replacement therapy; in utero genetic therapies). Best Pract Res Clin Obstet Gynaecol 2024; 97:102542. [PMID: 39298891 DOI: 10.1016/j.bpobgyn.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Advances in ultrasound and prenatal diagnosis are leading an expansion in the options for parents whose fetus is identified with a congenital disease. Obstetric diseases such as pre-eclampsia and fetal growth restriction may also be amenable to intervention to improve maternal and neonatal outcomes. Advanced Medicinal Therapeutic Products such as stem cell, gene, enzyme and protein therapies are most commonly being investigated as the trajectory of treatment for severe genetic diseases moves toward earlier intervention. Theoretical benefits include prevention of in utero damage, smaller treatment doses compared to postnatal intervention, use of fetal circulatory shunts and induction of immune tolerance. New systematic terminology can capture adverse maternal and fetal adverse events to improve safe trial conduct. First-in-human clinical trials are now beginning to generate results with a focus on safety first and efficacy second. If successful, these trials will transform the care of fetuses with severe early-onset congenital disease.
Collapse
Affiliation(s)
- Rachel Sagar
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6AU, UK.
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6AU, UK; National Institute for Health and Care Research, University College London Hospitals NHS Foundation Trust Biomedical Research Centre, 149 Tottenham Court Road, London, W1T 7DN, UK.
| |
Collapse
|
20
|
Edström D, Niroomand A, Stenlo M, Broberg E, Hirdman G, Ghaidan H, Hyllén S, Pierre L, Olm F, Lindstedt S. Amniotic fluid-derived mesenchymal stem cells reduce inflammation and improve lung function following transplantation in a porcine model. J Heart Lung Transplant 2024; 43:2018-2030. [PMID: 39182800 DOI: 10.1016/j.healun.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Lung transplantation is hindered by low donor lung utilization rates. Infectious complications are reasons to decline donor grafts due to fear of post-transplant primary graft dysfunction. Mesenchymal stem cells are a promising therapy currently investigated in treating lung injury. Full-term amniotic fluid-derived lung-specific mesenchymal stem cell treatment may regenerate damaged lungs. These cells have previously demonstrated inflammatory mediation in other respiratory diseases, and we hypothesized that treatment would improve donor lung quality and postoperative outcomes. METHODS In a transplantation model, donor pigs were stratified to either the treated or the nontreated group. Acute respiratory distress syndrome was induced in donor pigs and harvested lungs were placed on ex vivo lung perfusion (EVLP) before transplantation. Treatment consisted of 3 doses of 2 × 106 cells/kg: one during EVLP and 2 after transplantation. Donors and recipients were assessed on clinically relevant parameters and recipients were followed for 3 days before evaluation for primary graft dysfunction (PGD). RESULTS Repeated injection of the cell treatment showed reductions in inflammation seen through lowered immune cell counts, reduced histology signs of inflammation, and decreased cytokines in the plasma and bronchoalveolar lavage fluid. Treated recipients showed improved pulmonary function, including increased PaO2/FiO2 ratios and reduced incidence of PGD. CONCLUSIONS Repeated injection of lung-specific cell treatment during EVLP and post transplant was associated with improved function of previously damaged lungs. Cell treatment may be considered as a potential therapy to increase the number of lungs available for transplantation and the improvement of postoperative outcomes.
Collapse
Affiliation(s)
- Dag Edström
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, New York
| | - Martin Stenlo
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Ellen Broberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Gabriel Hirdman
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Haider Ghaidan
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllén
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Leif Pierre
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
21
|
Athiel Y, Cariot L, Jouannic JM, Maillet C, Mauffré V, Adam C, Huet H, Larghero J, Nasone J, Guilbaud L. Safety and efficacy of human umbilical cord-derived mesenchymal stromal cells in fetal ovine myelomeningocele repair. Stem Cell Res Ther 2024; 15:444. [PMID: 39568021 PMCID: PMC11580231 DOI: 10.1186/s13287-024-03991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The aim of this study was to assess the safety and efficacy of human umbilical cord mesenchymal stromal cells (hUC-MSCs) patch used as an adjuvant therapy in fetal myelomeningocele (MMC) surgery in the ovine model. METHODS hUC-MSCs were isolated from human umbilical cords (UC) using the explant method, cultured and characterized. hUC-MSCs were then embedded in a fibrin patch. MMC were surgically created at 75 days of gestation and repaired at 89 days of gestation in sheep fetuses. Two groups were compared: the hUC-MSCs group in which MMC was repaired using a cellular patch and the control group, in which MMC was repaired using an acellular patch. Safety was evaluated by clinical ewes' monitoring during gestation, and clinical and histological examinations of lambs after birth. Efficacy was assessed by clinical neurological evaluation at 2 and 24 h of life using the sheep locomotor rating scale and by histological analyses. RESULTS Among the 17 operated lambs, nine were born alive: six in the hUC-MSCs group and three in the control group. Overall fetal loss was 47% (8/17) without differences between the two groups. No fever was reported in ewes. No tumors were detected in clinical and histological examinations in the lambs. At 24 h of life, mean Sheep Locomotor Rating score was higher in the hUC-MSCs group than in the control group: 15.0 versus 2.0 (p = 0.07). Histological analyses showed a higher large neurons density in the hUC-MSCs group in comparison with the control group: 9.9 versus 6.3/mm2 of gray matter (p = 0.04). Lambs in the hUC-MSCs group had lower fibrosis around the spinal cord and at the level of the MMC scar: 70.9 versus 253.7 μm (p = 0.10) and 691.3 versus 1684.4 μm (p = 0,18), respectively. CONCLUSIONS Ovine fetal repair of MMC using human UC-MSCs seems to be an effective and safe procedure.
Collapse
Affiliation(s)
- Yoann Athiel
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Laura Cariot
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Jean-Marie Jouannic
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France
| | - Corentin Maillet
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Vincent Mauffré
- École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Clovis Adam
- Service d'anatomopathologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Hélène Huet
- École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Jérôme Larghero
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Justine Nasone
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Lucie Guilbaud
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France.
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France.
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France.
| |
Collapse
|
22
|
Lee GB, Park SM, Jung UJ, Kim SR. The Potential of Mesenchymal Stem Cells in Treating Spinocerebellar Ataxia: Advances and Future Directions. Biomedicines 2024; 12:2507. [PMID: 39595073 PMCID: PMC11591855 DOI: 10.3390/biomedicines12112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous disorder characterized by impaired balance and coordination caused by cerebellar dysfunction. The absence of treatments approved by the U.S. Food and Drug Administration for SCA has driven the investigation of alternative therapeutic strategies, including stem cell therapy. Mesenchymal stem cells (MSCs), known for their multipotent capabilities, have demonstrated significant potential in treating SCA. This review examines how MSCs may promote neuronal growth, enhance synaptic connectivity, and modulate brain inflammation. Recent findings from preclinical and clinical studies are also reviewed, emphasizing the promise of MSC therapy in addressing the unmet needs of SCA patients. Furthermore, ongoing clinical trials and future directions are proposed to address the limitations of the current approaches.
Collapse
Affiliation(s)
- Gi Beom Lee
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Se Min Park
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
23
|
Trapana J, Weinerman J, Lee D, Sedani A, Constantinescu D, Best TM, Hornicek FJ, Hare JM. Cell-based therapy in the treatment of musculoskeletal diseases. Stem Cells Transl Med 2024; 13:959-978. [PMID: 39226104 PMCID: PMC11465182 DOI: 10.1093/stcltm/szae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/21/2024] [Indexed: 09/04/2024] Open
Abstract
A limited number of tissues can spontaneously regenerate following injury, and even fewer can regenerate to a state comparable to mature, healthy adult tissue. Mesenchymal stem cells (MSCs) were first described in the 1960s-1970s by Friedenstein et al as a small population of bone marrow cells with osteogenic potential and abilities to differentiate into chondrocytes. In 1991, Arnold Caplan coined the term "mesenchymal cells" after identifying these cells as a theoretical precursor to bone, cartilage, tendon, ligament, marrow stroma, adipocyte, dermis, muscle, and connective tissues. MSCs are derived from periosteum, fat, and muscle. Another attractive property of MSCs is their immunoregulatory and regenerative properties, which result from crosstalk with their microenvironment and components of the innate immune system. Collectively, these properties make MSCs potentially attractive for various therapeutic purposes. MSCs offer potential in sports medicine, aiding in muscle recovery, meniscal tears, and tendon and ligament injuries. In joint disease, MSCs have the potential for chondrogenesis and reversing the effects of osteoarthritis. MSCs have also demonstrated potential application to the treatment of degenerative disc disease of the cervical, thoracic, and lumbar spine.
Collapse
Affiliation(s)
- Justin Trapana
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Jonathan Weinerman
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Danny Lee
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Anil Sedani
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - David Constantinescu
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Thomas M Best
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Francis J Hornicek
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| |
Collapse
|
24
|
Liu C, Liu M, Liu X, Li B, Gao L, Wu S, Ji Q, Zhang Z, Zhang S, Xiao P, Lu J, Li J, Hu S. The efficacy and safety of third-party umbilical blood/umbilical cord mesenchymal stem cell assisted related haploid hematopoietic stem cell transplantation in pediatric patients with acute leukemia: an observational study. Ther Adv Hematol 2024; 15:20406207241277549. [PMID: 39372558 PMCID: PMC11452895 DOI: 10.1177/20406207241277549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/25/2024] [Indexed: 10/08/2024] Open
Abstract
Background There is limited data on third-party umbilical cord blood (UCB) or mesenchymal stem cell (MSC) transplantation-assisted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) in pediatric patients. Objective To evaluate the efficacy and safety of UCB and MSC transplantation-assisted haplo-HSCT in pediatric patients with acute leukemia (AL). Design Observational study. Methods Clinical data of 152 children with AL undergoing haplo-HSCT at the Children's Hospital of Soochow University between January 2020 and June 2022 were collected. The patients were divided into the haplo-HSCT + UCB group (n = 76), haplo-HSCT + MSC group (n = 31), and haplo-HSCT group (n = 45). Hematopoietic reconstruction time, complications within 30 days after transplantation, and survival and recurrence at 3 years after transplantation were compared among the groups. Results Multivariate analysis revealed that haplo-HSCT with MSC and human leukocyte antigen (HLA) matching ⩾6/10 were independent factors reducing engraftment syndrome (ES) incidence. There were no significant differences among the groups in the hematopoietic reconstruction time or incidence of complications within 30 days after transplantation (p > 0.05). Overall survival, relapse-free survival, cumulative incidence of relapse, cumulative incidence of hematological relapse, and 3-year transplant-related mortality were not significantly different (p > 0.05). The incidence of adverse reactions in the haplo-HSCT + UCB group was 97.3% within 4 h after UCB infusion, with a particularly high occurrence rate of 94.7% for hypertension. No transfusion-related adverse reactions occurred after the transfusion of umbilical cord MSC in the haplo-HSCT + MSC group. Conclusion MSC-assisted haplo-HSCT can reduce ES incidence after transplantation in pediatric patients with AL. UCB infusion is associated with a high incidence of reversible hypertension. However, no adverse reactions were observed in umbilical cord MSC transfusion.
Collapse
Affiliation(s)
- Chang Liu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Minyuan Liu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Xin Liu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Bohan Li
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Li Gao
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Shuiyan Wu
- Department of Hematological Intensive Care Unit, Children’s Hospital of Soochow University, Suzhou, China
| | - Qi Ji
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Zhiqi Zhang
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Senlin Zhang
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Peifang Xiao
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Jie Li
- Department of Hematology, Children’s Hospital of Soochow University, No.92 Zhongnan Street, Industrial Park, Suzhou 215003, China
| | - Shaoyan Hu
- Department of Hematology, Children’s Hospital of Soochow University, No. 92 Zhongnan Street, Industrial Park, Suzhou 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, China
| |
Collapse
|
25
|
Dadfar S, Yazdanpanah E, Pazoki A, Nemati MH, Eslami M, Haghmorad D, Oksenych V. The Role of Mesenchymal Stem Cells in Modulating Adaptive Immune Responses in Multiple Sclerosis. Cells 2024; 13:1556. [PMID: 39329740 PMCID: PMC11430382 DOI: 10.3390/cells13181556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, leading to significant disability through neurodegeneration. Despite advances in the understanding of MS pathophysiology, effective treatments remain limited. Mesenchymal stem cells (MSCs) have gained attention as a potential therapeutic option due to their immunomodulatory and regenerative properties. This review examines MS pathogenesis, emphasizing the role of immune cells, particularly T cells, in disease progression, and explores MSCs' therapeutic potential. Although preclinical studies in animal models show MSC efficacy, challenges such as donor variability, culture conditions, migratory capacity, and immunological compatibility hinder widespread clinical adoption. Strategies like genetic modification, optimized delivery methods, and advanced manufacturing are critical to overcoming these obstacles. Further research is needed to validate MSCs' clinical application in MS therapy.
Collapse
Affiliation(s)
- Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hossein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
26
|
Chmiel J, Stasiak M, Skrzypkowska M, Samson L, Łuczkiewicz P, Trzonkowski P. Regulatory T lymphocytes as a treatment method for rheumatoid arthritis - Superiority of allogeneic to autologous cells. Heliyon 2024; 10:e36512. [PMID: 39319132 PMCID: PMC11419861 DOI: 10.1016/j.heliyon.2024.e36512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Cellular therapies utilizing regulatory T cells (Tregs) have flourished in the autoimmunity space as a new pillar of medicine. These cells have shown a great promise in the treatment of such devastating conditions as type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE) and graft versus host disease (GVHD). Novel treatment protocols, which utilize Tregs-mediated suppressive mechanisms, are based on the two main strategies: administration of immunomodulatory factors affecting Tregs or adoptive cell transfer (ACT). ACT involves extraction, in vitro expansion and subsequent administration of Tregs that could be either of autologous or allogeneic origin. Rheumatoid arthritis (RA) is another autoimmune candidate where this treatment approach is being considered. RA remains an especially challenging adversary since it is one of the most frequent and debilitating conditions among all autoaggressive disorders. Noteworthy, Tregs circulating in RA patients' blood have been proven defective and unable to suppress inflammation and joint destruction. With this knowledge, adoptive transfer of compromised autologous Tregs in the fledgling clinical trials involving RA patients should be reconsidered. In this article we hypothesize that incorporation of healthy donor allogeneic Tregs may provide more lucid and beneficial results.
Collapse
Affiliation(s)
- Joanna Chmiel
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Mariusz Stasiak
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Maria Skrzypkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Lucjan Samson
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| |
Collapse
|
27
|
Freitag J, Chamberlain M, Wickham J, Shah K, Cicuttini F, Wang Y, Solterbeck A. Safety and efficacy of an allogeneic adipose-derived mesenchymal stem cell preparation in the treatment of knee osteoarthritis: A Phase I/IIa randomised controlled trial. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100500. [PMID: 39161739 PMCID: PMC11331931 DOI: 10.1016/j.ocarto.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
Objectives To assess the safety and efficacy of an allogeneic adipose-derived mesenchymal stem cell preparation (MAG200) in the treatment of knee osteoarthritis over 12 months. Design A single-centre, double-blind, ascending dose, randomised controlled trial. 40 participants with moderate knee osteoarthritis were randomised to receive a single intra-articular injection of MAG200 (dose cohorts:10, 20, 50, 100 × 106 cells) or placebo. Primary objectives were safety and efficacy according to a compound responder analysis of minimal clinically important difference in pain (numerical pain rating scale [NPRS]) and function (Knee Injury and Osteoarthritis Outcome Score - Function in Daily Living subscale [KOOSADL]) at month 12. Secondary efficacy outcomes included changes from baseline in patient reported outcome measures and evaluation of disease-modification using quantitative MRI. Results Treatment was well tolerated with no treatment-related serious adverse events. MAG200 cohorts reported a greater proportion of responders than placebo and demonstrated clinical and statistically significant improvement in pain and clinically relevant improvement in all KOOS subscales. MAG200 demonstrated a reproducible treatment effect over placebo, which was clinically relevant for pain in the 10 × 106 dose cohort (mean difference NPRS:-2.25[95%CI:-4.47,-0.03, p = 0.0468]) and for function in the 20 × 106 and 100 × 106 dose cohorts (mean difference KOOSADL:10.12[95%CI:-1.51,21.76, p = 0.0863] and 10.81[95%CI:-1.42,23.04, p = 0.0810] respectively). A trend in disease-modification was observed with improvement in total knee cartilage volume in MAG200 10, 20, and 100 × 106 dose cohorts, with progression of osteoarthritis in placebo, though this was not statistically significant. No clear dose response was observed. Conclusion This early-phase study provides supportive safety and efficacy evidence to progress MAG200 to later-stage trial development. Trial registration ACTRN12617001095358/ACTRN12621000622808.
Collapse
Affiliation(s)
- Julien Freitag
- School of Rural Medicine, Charles Sturt University, Orange, NSW, 2800, Australia
- Melbourne Stem Cell Centre Research, Box Hill, VIC, 3128, Australia
- Magellan Stem Cells, 9A Sugar Gum Court, Braeside, VIC, 3195, Australia
| | | | - James Wickham
- School of Dentistry & Medical Sciences, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Kiran Shah
- Magellan Stem Cells, 9A Sugar Gum Court, Braeside, VIC, 3195, Australia
| | - Flavia Cicuttini
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
- Department of Rheumatology, Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Yuanyuan Wang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ann Solterbeck
- Statistical Revelations Pty Ltd, Ocean Grove, VIC, 3226, Australia
| |
Collapse
|
28
|
Swain HN, Boyce PD, Bromet BA, Barozinksy K, Hance L, Shields D, Olbricht GR, Semon JA. Mesenchymal stem cells in autoimmune disease: A systematic review and meta-analysis of pre-clinical studies. Biochimie 2024; 223:54-73. [PMID: 38657832 DOI: 10.1016/j.biochi.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Mesenchymal Stem Cells (MSCs) are of interest in the clinic because of their immunomodulation capabilities, capacity to act upstream of inflammation, and ability to sense metabolic environments. In standard physiologic conditions, they play a role in maintaining the homeostasis of tissues and organs; however, there is evidence that they can contribute to some autoimmune diseases. Gaining a deeper understanding of the factors that transition MSCs from their physiological function to a pathological role in their native environment, and elucidating mechanisms that reduce their therapeutic relevance in regenerative medicine, is essential. We conducted a Systematic Review and Meta-Analysis of human MSCs in preclinical studies of autoimmune disease, evaluating 60 studies that included 845 patient samples and 571 control samples. MSCs from any tissue source were included, and the study was limited to four autoimmune diseases: multiple sclerosis, rheumatoid arthritis, systemic sclerosis, and lupus. We developed a novel Risk of Bias tool to determine study quality for in vitro studies. Using the International Society for Cell & Gene Therapy's criteria to define an MSC, most studies reported no difference in morphology, adhesion, cell surface markers, or differentiation into bone, fat, or cartilage when comparing control and autoimmune MSCs. However, there were reported differences in proliferation. Additionally, 308 biomolecules were differentially expressed, and the abilities to migrate, invade, and form capillaries were decreased. The findings from this study could help to explain the pathogenic mechanisms of autoimmune disease and potentially lead to improved MSC-based therapeutic applications.
Collapse
Affiliation(s)
- Hailey N Swain
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Parker D Boyce
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Bradley A Bromet
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Kaiden Barozinksy
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Lacy Hance
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Dakota Shields
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, USA.
| |
Collapse
|
29
|
Mintoft A, Vallatos A, Robertson NJ. Mesenchymal Stromal Cell therapy for Hypoxic Ischemic Encephalopathy: Future directions for combination therapy with hypothermia and/or melatonin. Semin Perinatol 2024; 48:151929. [PMID: 38902120 DOI: 10.1016/j.semperi.2024.151929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hypoxic ischemic encephalopathy (HIE) remains a leading cause of neonatal mortality and lifelong disability across the world. While therapeutic hypothermia (HT) is beneficial, it is only partially protective and adjuvant treatments that further improve outcomes are urgently needed. In high-income countries where HT is standard care, novel treatments are tested in conjunction with HT. Mesenchymal stromal cells (MSC) represent a paradigm shift in brain protection, uniquely adapting to the host cellular microenvironment. MSC have low immunogenicity and potent paracrine effects stimulating the host tissue repair and regeneration and reducing inflammation and apoptosis. Preclinical studies in perinatal brain injury suggest that MSC are beneficial after hypoxia-ischemia (HI) and most preclinical studies of MSC with HT show protection. Preclinical and early phase clinical trials have shown that allogenic administration of MSC to neonates with perinatal stroke and HIE is safe and feasible but further safety and efficacy studies of HT with MSC in these populations are needed. Combination therapies that target all stages of the evolution of injury after HI (eg HT, melatonin and MSC) show promise for improving outcomes in HIE.
Collapse
Affiliation(s)
- Alison Mintoft
- Institute for Women's Health, University College London, London, UK
| | - Antoine Vallatos
- School of Psychology and Neuroscience, University of Glasgow; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
30
|
Zheng L, Chen W, Yao K, Xie Y, Liao C, Zhou T. Clinical and preclinical studies of mesenchymal stem cells to alleviate peritoneal fibrosis. Stem Cell Res Ther 2024; 15:237. [PMID: 39080683 PMCID: PMC11290310 DOI: 10.1186/s13287-024-03849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Peritoneal dialysis is an important part of end-stage kidney disease replacement therapy. However, prolonged peritoneal dialysis can result in peritoneal fibrosis and ultrafiltration failure, forcing patients to withdraw from peritoneal dialysis treatment. Therefore, there is an urgent need for some effective measures to alleviate the occurrence and progression of peritoneal fibrosis. Mesenchymal stem cells play a crucial role in immunomodulation and antifibrosis. Numerous studies have investigated the fact that mesenchymal stem cells can ameliorate peritoneal fibrosis mainly through the paracrine pathway. It has been discovered that mesenchymal stem cells participate in the improvement of peritoneal fibrosis involving the following signaling pathways: TGF-β/Smad signaling pathway, AKT/FOXO signaling pathway, Wnt/β-catenin signaling pathway, TLR/NF-κB signaling pathway. Additionally, in vitro experiments, mesenchymal stem cells have been shown to decrease mesothelial cell death and promote proliferation. In animal models, mesenchymal stem cells can enhance peritoneal function by reducing inflammation, neovascularization, and peritoneal thickness. Mesenchymal stem cell therapy has been demonstrated in clinical trials to improve peritoneal function and reduce peritoneal fibrosis, thus improving the life quality of peritoneal dialysis patients.
Collapse
Affiliation(s)
- Lingqian Zheng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Wenmin Chen
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Kaijin Yao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Yina Xie
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Chunling Liao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China.
| |
Collapse
|
31
|
Salama RAA, Patni MAMF, Ba-Hutair SNM, Wadid NA, Akikwala MS. Exploring Novel Treatment Modalities for Type 1 Diabetes Mellitus: Potential and Prospects. Healthcare (Basel) 2024; 12:1485. [PMID: 39120188 PMCID: PMC11311856 DOI: 10.3390/healthcare12151485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Despite the effectiveness of insulin injections in managing hyperglycemia in type 1 diabetes mellitus (T1DM), they fall short in addressing autoimmunity and regenerating damaged islets. This review aims to explore the potential and prospects of emerging treatment modalities for T1DM, including mesenchymal stem cells (MSCs), MSC-derived exosomes, gene therapy, islet allotransplantation, pancreatic islet cell transplantation, and teplizumab. We review emerging treatment modalities for T1DM, highlighting several promising strategies with varied mechanisms and outcomes. Mesenchymal stem cells demonstrate potential in modulating the immune response and preserving or restoring beta-cell function, although variability in sources and administration routes necessitates further standardization. Similarly, MSC-derived exosomes show promise in promoting beta-cell regeneration and immune regulation, supported by early-stage studies showing improved glucose homeostasis in animal models, albeit with limited clinical data. Gene therapy, utilizing techniques like CRISPR-Cas9, offers targeted correction of genetic defects and immune modulation; however, challenges in precise delivery and ensuring long-term safety persist. Islet allotransplantation and pancreatic islet cell transplantation have achieved some success in restoring insulin independence, yet challenges such as donor scarcity and immunosuppression-related complications remain significant. Teplizumab, an anti-CD3 monoclonal antibody, has demonstrated potential in delaying T1DM onset by modulating immune responses and preserving beta-cell function, with clinical trials indicating prolonged insulin production capability. Despite significant progress, standardization, long-term efficacy, and safety continue to pose challenges across these modalities. Conclusion: While these therapies demonstrate significant potential, challenges persist. Future research should prioritize optimizing these treatments and validating them through extensive clinical trials to enhance T1DM management and improve patient outcomes.
Collapse
Affiliation(s)
- Rasha Aziz Attia Salama
- Department of Community Medicine, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates; (R.A.A.S.); (N.A.W.)
- Kasr El Aini Faculty of Medicine, Cairo University, Giza 12525, Egypt
| | - Mohamed Anas Mohamed Faruk Patni
- Department of Community Medicine, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates; (R.A.A.S.); (N.A.W.)
| | - Shadha Nasser Mohammed Ba-Hutair
- Department of Obstetrics and Gynecology, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Nihal Amir Wadid
- Department of Community Medicine, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates; (R.A.A.S.); (N.A.W.)
| | | |
Collapse
|
32
|
Lanci A, Iacono E, Merlo B. Therapeutic Application of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Domestic Animals. Animals (Basel) 2024; 14:2147. [PMID: 39123673 PMCID: PMC11310970 DOI: 10.3390/ani14152147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, the therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) has been extensively studied in both human and veterinary medicine. EVs are nano-sized particles containing biological components commonly found in other biological materials. For that reason, EV isolation and characterization are critical to draw precise conclusions during their investigation. Research on EVs within veterinary medicine is still considered in its early phases, yet numerous papers were published in recent years. The conventional adult tissues for deriving MSCs include adipose tissue and bone marrow. Nonetheless, alternative sources such as synovial fluid, endometrium, gingiva, and milk have also been intermittently used. Fetal adnexa are amniotic membrane/fluid, umbilical cord and Wharton's jelly. Cells derived from fetal adnexa exhibit an intermediate state between embryonic and adult cells, demonstrating higher proliferative and differentiative potential and longer telomeres compared to cells from adult tissues. Summarized here are the principal and recent preclinical and clinical studies performed in domestic animals such as horse, cattle, dog and cat. To minimize the use of antibiotics and address the serious issue of antibiotic resistance as a public health concern, they will undoubtedly also be utilized in the future to treat infections in domestic animals. A number of concerns, including large-scale production with standardization of EV separation and characterization techniques, must be resolved for clinical application.
Collapse
Affiliation(s)
- Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
33
|
Kotani T, Saito T, Suzuka T, Matsuda S. Adipose-derived mesenchymal stem cell therapy for connective tissue diseases and complications. Inflamm Regen 2024; 44:35. [PMID: 39026275 PMCID: PMC11264739 DOI: 10.1186/s41232-024-00348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) may be effective in treating connective tissue disease and associated organ damage, leveraging their anti-inflammatory and immunoregulatory effects. Moreover, MSCs may possess the ability to produce antiapoptotic, proliferative, growth, angiogenic, and antifibrotic factors. Among MSCs, adipose-derived MSCs (ASCs) stand out for their relative ease of harvesting and abundance. Additionally, studies have indicated that compared with bone marrow-derived MSCs, ASCs have superior immunomodulatory, proangiogenic, antiapoptotic, and antioxidative properties. However, relatively few reviews have focused on the efficacy of ASC therapy in treating connective tissue disease (CTD) and interstitial lung disease (ILD). Therefore, this review aims to evaluate evidence from preclinical studies that investigate the effectiveness of MSC therapy, specifically ASC therapy, in managing CTD and ILD. Moreover, we explore the outcomes of documented clinical trials. We also introduce an innovative approach involving the utilization of pharmacologically primed ASCs in the CTD model to address the current challenges associated with ASC therapy.
Collapse
Affiliation(s)
- Takuya Kotani
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan.
| | - Takashi Saito
- Department of Legal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Takayasu Suzuka
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| | - Shogo Matsuda
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
34
|
Li L, Liu Z, Zhang C, Long Y, Yang T. Rat nasal mucosa-derived ectodermal mesenchymal stem cells: A new therapeutic option for chronic rhinosinusitis. Immun Inflamm Dis 2024; 12:e1337. [PMID: 39023421 PMCID: PMC11256880 DOI: 10.1002/iid3.1337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE To investigate the effect of nasal mucosa-derived ectodermal mesenchymal stem cells (NM-EMSCs) on the inflammatory state of rats with chronic rhinosinusitis (CRS) and the underlying therapeutic mechanism. METHODS NM-EMSCs were isolated and extracted to construct a rat model of CRS. Fifteen Sprague‒Dawley (SD) rats were randomly divided into three groups: CK + NS group rats were injected locally with saline in the nasal mucosa; CRS + NS group rats were injected locally with saline in the nasal mucosa; and CRS + EMSCs group rats were injected locally with NM-EMSCs in the nasal mucosa. One rat from the CRS + EMSCs group was randomly euthanized at 2, 4, and 6 days after injection, and the nasal mucosa tissues were collected for HE staining, Masson's trichrome staining, and periodic acid-Schiff staining. RESULTS NM-EMSCs specifically expressing CD73, CD105, and CD90 were successfully isolated from the nasal mucosa of rats and were able to differentiate into adipocytes, osteoblasts, and chondrocytes. After saline and NM-EMSC injection, compared with those in the blank control CK + NS group, the nasal mucosa in the CRS + NS and CRS + EMSC groups exhibited obvious thickening, a large amount of inflammatory cell infiltration, and increased collagen and mucin distribution. Four days post-NM-EMSC injection, the thickening of the nasal mucosa in the CRS group was gradually alleviated, the inflammatory cell infiltration gradually decreased, and the distribution of collagen and mucin and the collagen-positive area gradually decreased. Moreover, only a small number of inflammatory cells were visible, and the distribution of mucins was limited to 6 days post-NM-EMSC injection. CONCLUSION NM-EMSCs effectively attenuated inflammation in the nasal mucosa of CRS model rats.
Collapse
Affiliation(s)
- Liujin Li
- Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - ZhaoHui Liu
- Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - ChunLin Zhang
- Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - YiLin Long
- Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - TianWen Yang
- Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
35
|
Baig MS, Ahmad A, Pathan RR, Mishra RK. Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics. J Xenobiot 2024; 14:827-872. [PMID: 39051343 PMCID: PMC11270309 DOI: 10.3390/jox14030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam Kalsekar Technical Campus School of Pharmacy, Sector-16, Near Thana Naka, Khandagao, New Panvel, Navi Mumbai 410206, Maharashtra, India;
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rakesh Kumar Mishra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, Uttarakhand, India;
| |
Collapse
|
36
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Yang Y, Li S, Peng Q, Guo Y, Gao Y, Gong Y, Lu J, Zhang Y, Shi X. Human umbilical cord mesenchymal stem cells promoted tumor cell growth associated with increased interleukin-18 in hepatocellular carcinoma. Mol Biol Rep 2024; 51:762. [PMID: 38874690 DOI: 10.1007/s11033-024-09688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is experiencing a concerning rise in both incidence and mortality rates. Current therapeutic strategies are limited in their effectiveness, largely due to the complex causes of the disease and significant levels of drug resistance. Given the latest developments in human umbilical cord mesenchymal stem cells (hUC-MSCs) research, there is a debate over the continued use of stem cell transplantation for treating tumors. Consequently, this study seeks to explore the role of hUC-MSCs in the management of HCC. METHODS AND RESULTS HUC-MSCs increased the number (10.75 ± 1.50) in the DEN/TCPOBOP-induced mice hepatoma model, compared with DMSO group (7.25 ± 1.71). Moreover, the liver index in hUC-MSCs group (0.21 ± 0.06) was greater than that in DMSO group (0.09 ± 0.01). Immunohistochemical (IHC) analysis revealed that while hUC-MSCs did not alter Foxp3 expression, they significantly stimulated Ki67 expression, indicative of increased tumor cellular proliferation. Additionally, immunofluorescence (IF) studies showed that hUC-MSCs increased CD8+ T cell counts without affecting macrophage numbers. Notably, granzyme B expression remained nearly undetectable. We observed that serum IL-18 levels were higher in the hUC-MSCs group (109.66 ± 0.38 pg/ml) compared to the DMSO group (91.14 ± 4.37 pg/ml). Conversely, IL-1β levels decreased in the hUC-MSCs group (63.00 ± 0.53 pg/ml) relative to the DMSO group (97.38 ± 9.08 pg/ml). CONCLUSIONS According to this study, hUC-MSCs promoted the growth of liver tumors. Therefore, we proposed that hUC-MSCs are not suitable for treating HCC, as they exhibit clinically prohibited abnormalities.
Collapse
Affiliation(s)
- Yanguang Yang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shenghao Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuman Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China.
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
38
|
Sagar RL, Åström E, Chitty LS, Crowe B, David AL, DeVile C, Forsmark A, Franzen V, Hermeren G, Hill M, Johansson M, Lindemans C, Lindgren P, Nijhuis W, Oepkes D, Rehberg M, Sahlin NE, Sakkers R, Semler O, Sundin M, Walther-Jallow L, Verweij EJTJ, Westgren M, Götherström C. An exploratory open-label multicentre phase I/II trial evaluating the safety and efficacy of postnatal or prenatal and postnatal administration of allogeneic expanded fetal mesenchymal stem cells for the treatment of severe osteogenesis imperfecta in infants and fetuses: the BOOSTB4 trial protocol. BMJ Open 2024; 14:e079767. [PMID: 38834319 PMCID: PMC11163617 DOI: 10.1136/bmjopen-2023-079767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
INTRODUCTION Severe osteogenesis imperfecta (OI) is a debilitating disease with no cure or sufficiently effective treatment. Mesenchymal stem cells (MSCs) have good safety profile, show promising effects and can form bone. The Boost Brittle Bones Before Birth (BOOSTB4) trial evaluates administration of allogeneic expanded human first trimester fetal liver MSCs (BOOST cells) for OI type 3 or severe type 4. METHODS AND ANALYSIS BOOSTB4 is an exploratory, open-label, multiple dose, phase I/II clinical trial evaluating safety and efficacy of postnatal (n=15) or prenatal and postnatal (n=3, originally n=15) administration of BOOST cells for the treatment of severe OI compared with a combination of historical (1-5/subject) and untreated prospective controls (≤30). Infants<18 months of age (originally<12 months) and singleton pregnant women whose fetus has severe OI with confirmed glycine substitution in COL1A1 or COL1A2 can be included in the trial.Each subject receives four intravenous doses of 3×106/kg BOOST cells at 4 month intervals, with 48 (doses 1-2) or 24 (doses 3-4) hours in-patient follow-up, primary follow-up at 6 and 12 months after the last dose and long-term follow-up yearly until 10 years after the first dose. Prenatal subjects receive the first dose via ultrasound-guided injection into the umbilical vein within the fetal liver (16+0 to 35+6 weeks), and three doses postnatally.The primary outcome measures are safety and tolerability of repeated BOOST cell administration. The secondary outcome measures are number of fractures from baseline to primary and long-term follow-up, growth, change in bone mineral density, clinical OI status and biochemical bone turnover. ETHICS AND DISSEMINATION The trial is approved by Competent Authorities in Sweden, the UK and the Netherlands (postnatal only). Results from the trial will be disseminated via CTIS, ClinicalTrials.gov and in scientific open-access scientific journals. TRIAL REGISTRATION NUMBERS EudraCT 2015-003699-60, EUCT: 2023-504593-38-00, NCT03706482.
Collapse
Affiliation(s)
- Rachel L Sagar
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Eva Åström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Belinda Crowe
- Department of Neurosciences, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Catherine DeVile
- Department of Neurosciences, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | - Göran Hermeren
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Melissa Hill
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mats Johansson
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Caroline Lindemans
- Department of Pediatrics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter Lindgren
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Wouter Nijhuis
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dick Oepkes
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirko Rehberg
- Department of Pediatrics, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Nils-Eric Sahlin
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Ralph Sakkers
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - O Semler
- Department of Pediatrics, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Mikael Sundin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Section of Pediatic Hematology, Immunology and HCT, Karolinska University Hospital, Stockholm, Sweden
| | - Lilian Walther-Jallow
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - E J T Joanne Verweij
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Magnus Westgren
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Shaz BH, Schäfer R, Fontaine MJ, Norris PJ, McKenna DH, Jin P, Reems JA, Stroncek D, Tanashi M, Marks D, Geng H, Pati S. Local manufacturing processes contribute to variability in human mesenchymal stromal cell expansion while growth media supplements contribute to variability in gene expression and cell function: a Biomedical Excellence for Safer Transfusion (BEST) collaborative study. Cytotherapy 2024; 26:531-539. [PMID: 38043052 DOI: 10.1016/j.jcyt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND AIMS Culture-derived mesenchymal stromal cells (MSCs) exhibit variable characteristics when manufactured using different methods, source material and culture media. The purpose of this multicenter study was to assess the impact on MSC expansion, gene expression and other characteristics when different laboratories expanded MSCs from cultures initiated with bone marrow-MSC aliquots derived from the same donor source material yet with different growth media. METHODS Eight centers expanded MSCs using four human platelet lysate (HPL) and one fetal bovine serum (FBS) products as media supplements. The expanded cells were taken through two passages then assessed for cell count, viability, doubling time, immunophenotype, cell function, immunosuppression and gene expression. Results were analyzed by growth media and by center. RESULTS Center methodologies varied by their local seeding density, feeding regimen, inoculation density, base media and other growth media features (antibiotics, glutamine, serum). Doubling times were more dependent on center than on media supplements. Two centers had appropriate immunophenotyping showing all MSC cultures were positive for CD105, CD73, CD90 and negative for CD34, CD45, CD14, HLA-DR. MSCs cultured in media supplemented with FBS compared with HPL featured greater T-cell inhibition potential. Gene expression analysis showed greater impact of the type of media supplement (HPL versus FBS) than the manufacturing center. Specifically, nine genes were decreased in expression and six increased when combining the four HPL-grown MSCs versus FBS (false discovery rate [FDR] <0.01), however, without significant difference between different sources of HPL (FDR <0.01). CONCLUSIONS Local manufacturing process plays a critical role in MSC expansion while growth media may influence function and gene expression. All HPL and FBS products supported cell growth.
Collapse
Affiliation(s)
- Beth H Shaz
- Department of Pathology, Duke University, Durham, North Carolina, USA.
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany; Institute for Transfusion Medicine and Gene Therapy, Medical Center University of Freiburg, Freiburg, Germany
| | - Magali J Fontaine
- University of Maryland School of Medical Science, Baltimore, Maryland, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, California, USA; Department of Lab Medicine, University of California San Francisco, San Francisco, California, USA
| | - David H McKenna
- Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Ping Jin
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center; National Institutes of Health, Bethesda, Maryland, USA
| | - Jo-Anna Reems
- Cell Therapy and Regenerative Medicine Facility, University of Utah, Salt Lake City, Utah, USA
| | - David Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center; National Institutes of Health, Bethesda, Maryland, USA
| | - Minoko Tanashi
- Japanese Red Cross Blood Service Headquarters, Tokyo, Japan
| | - Denese Marks
- Research and Development, Australian Red Cross Lifeblood, Sydney, NSW, Australia
| | - Huimin Geng
- Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Shibani Pati
- Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
40
|
Shikarkhane V, Dodwad V, Bhosale N, Patankar SA, Patankar A, Nair VS. Comparative Evaluation of the Differentiation and Proliferation Potential of Dental Pulp Stem Cells on Hydroxyapatite/Beta-Tricalcium Bone Graft and Bovine Bone Graft: An In Vitro Study. Cureus 2024; 16:e62351. [PMID: 39006559 PMCID: PMC11246762 DOI: 10.7759/cureus.62351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Stem cells of mesenchymal origin have good proliferative capacity when compared to other stem cell types. Dental pulp stem cells (DPSCs) are a variety of mesenchymal cells obtained from the pulpal tissue of teeth and are abundantly available and easy to obtain. DPSCs facilitate and improve the formation of new bone using different bone graft scaffolds. This present study aims to evaluate and compare the osteogenic potential of DPSCs on alloplastic and xenogeneic bone grafts. MATERIALS AND METHODS Hydroxyapatite and beta-tricalcium bone graft and bovine bone graft were used in a triplicate manner in the laboratory. DPSCs were obtained from the pulpal tissue of extracted third molars in the laboratory. The cytotoxicity, osteogenic potential, and difference in the rate of proliferation of mesenchymal cells on the biomaterials were assessed. RESULTS Darker purple staining was seen in the case of hydroxyapatite/beta-tricalcium bone graft on MTT colorimetric assay stating that there was an increase in cell viability in hydroxyapatite/beta-tricalcium bone graft as compared to the bovine bone graft. Hydroxyapatite/beta-tricalcium bone graft showed more osteogenic potential as compared to the bovine bone graft as a higher degree of red staining was seen in Alizarin staining. CONCLUSION Higher cell viability and higher osteogenic proliferation and differentiation were seen on the hydroxyapatite/beta-tricalcium bone graft compared to the bovine bone scaffold.
Collapse
Affiliation(s)
| | - Vidya Dodwad
- Periodontology, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Nishita Bhosale
- Periodontology, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Swapna A Patankar
- Oral Pathology and Microbiology, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Amod Patankar
- Oral and Maxillofacial Surgery, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Vivek S Nair
- Oral and Maxillofacial Surgery, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| |
Collapse
|
41
|
Mello DB, Mesquita FCP, Silva dos Santos D, Asensi KD, Dias ML, Campos de Carvalho AC, Goldenberg RCDS, Kasai-Brunswick TH. Mesenchymal Stromal Cell-Based Products: Challenges and Clinical Therapeutic Options. Int J Mol Sci 2024; 25:6063. [PMID: 38892249 PMCID: PMC11173248 DOI: 10.3390/ijms25116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stromal cell (MSC)-based advanced therapy medicinal products (ATMPs) are being tried in a vast range of clinical applications. These cells can be isolated from different donor tissues by using several methods, or they can even be derived from induced pluripotent stem cells or embryonic stem cells. However, ATMP heterogeneity may impact product identity and potency, and, consequently, clinical trial outcomes. In this review, we discuss these topics and the need to establish minimal criteria regarding the manufacturing of MSCs so that these innovative therapeutics may be better positioned to contribute to the advancement of regenerative medicine.
Collapse
Affiliation(s)
- Debora B. Mello
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
| | | | - Danúbia Silva dos Santos
- Center of Cellular Technology, National Institute of Cardiology, INC, Rio de Janeiro 22240-002, Brazil;
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
| | - Karina Dutra Asensi
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Marlon Lemos Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Antonio Carlos Campos de Carvalho
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Regina Coeli dos Santos Goldenberg
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Tais Hanae Kasai-Brunswick
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
42
|
Guan H, Chen Y, Liu X, Huang L. Research and application of hydrogel-encapsulated mesenchymal stem cells in the treatment of myocardial infarction. Colloids Surf B Biointerfaces 2024; 239:113942. [PMID: 38729022 DOI: 10.1016/j.colsurfb.2024.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Myocardial infarction (MI) stands out as a highly lethal disease that poses a significant threat to global health. Worldwide, heart failure resulting from MI remains a leading cause of human mortality. Mesenchymal stem cell (MSC) therapy has emerged as a promising therapeutic approach, leveraging its intrinsic healing properties. Nevertheless, pervasive issues, including a low cell retention rate, suboptimal survival rate, and incomplete differentiation of MSCs, present formidable challenges for further research. The introduction and advancement of biomaterials have offered a novel avenue for the exploration of MSC therapy in MI, marking considerable progress thus far. Notably, hydrogels, among the representative biomaterials, have garnered extensive attention within the biomedical field. This review delves into recent advancements, specifically focusing on the application of hydrogels to augment MSC therapy for cardiac tissue regeneration in MI.
Collapse
Affiliation(s)
- Haien Guan
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Yuehua Chen
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Xuanyu Liu
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China.
| |
Collapse
|
43
|
Chen Y, Xu Y, Chi Y, Sun T, Gao Y, Dou X, Han Z, Xue F, Li H, Liu W, Liu X, Dong H, Fu R, Ju M, Dai X, Wang W, Ma Y, Song Z, Gu J, Gong W, Yang R, Zhang L. Efficacy and safety of human umbilical cord-derived mesenchymal stem cells in the treatment of refractory immune thrombocytopenia: a prospective, single arm, phase I trial. Signal Transduct Target Ther 2024; 9:102. [PMID: 38653983 PMCID: PMC11039759 DOI: 10.1038/s41392-024-01793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 04/25/2024] Open
Abstract
Patients with refractory immune thrombocytopenia (ITP) frequently encounter substantial bleeding risks and demonstrate limited responsiveness to existing therapies. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) present a promising alternative, capitalizing on their low immunogenicity and potent immunomodulatory effects for treating diverse autoimmune disorders. This prospective phase I trial enrolled eighteen eligible patients to explore the safety and efficacy of UC-MSCs in treating refractory ITP. The research design included administering UC-MSCs at escalating doses of 0.5 × 106 cells/kg, 1.0 × 106 cells/kg, and 2.0 × 106 cells/kg weekly for four consecutive weeks across three cohorts during the dose-escalation phase, followed by a dose of 2.0 × 106 cells/kg weekly for the dose-expansion phase. Adverse events, platelet counts, and changes in peripheral blood immunity were monitored and recorded throughout the administration and follow-up period. Ultimately, 12 (with an addition of three patients in the 2.0 × 106 cells/kg group due to dose-limiting toxicity) and six patients were enrolled in the dose-escalation and dose-expansion phase, respectively. Thirteen patients (13/18, 72.2%) experienced one or more treatment emergent adverse events. Serious adverse events occurred in four patients (4/18, 22.2%), including gastrointestinal hemorrhage (2/4), profuse menstruation (1/4), and acute myocardial infarction (1/4). The response rates were 41.7% in the dose-escalation phase (5/12, two received 1.0 × 106 cells/kg per week, and three received 2.0 × 106 cells/kg per week) and 50.0% (3/6) in the dose-expansion phase. The overall response rate was 44.4% (8/18) among all enrolled patients. To sum up, UC-MSCs are effective and well tolerated in treating refractory ITP (ClinicalTrials.gov ID: NCT04014166).
Collapse
Affiliation(s)
- Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yanmei Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yuchen Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xueqing Dou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhibo Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- National Engineering Research Centre of Cell Products, Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yueshen Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jundong Gu
- National Engineering Research Centre of Cell Products, Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| | - Wei Gong
- National Engineering Research Centre of Cell Products, Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
44
|
Kim M, Kim JY, Rhim WK, Cimaglia G, Want A, Morgan JE, Williams PA, Park CG, Han DK, Rho S. Extracellular vesicle encapsulated nicotinamide delivered via a trans-scleral route provides retinal ganglion cell neuroprotection. Acta Neuropathol Commun 2024; 12:65. [PMID: 38649962 PMCID: PMC11036688 DOI: 10.1186/s40478-024-01777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
The progressive and irreversible degeneration of retinal ganglion cells (RGCs) and their axons is the major characteristic of glaucoma, a leading cause of irreversible blindness worldwide. Nicotinamide adenine dinucleotide (NAD) is a cofactor and metabolite of redox reaction critical for neuronal survival. Supplementation with nicotinamide (NAM), a precursor of NAD, can confer neuroprotective effects against glaucomatous damage caused by an age-related decline of NAD or mitochondrial dysfunction, reflecting the high metabolic activity of RGCs. However, oral supplementation of drug is relatively less efficient in terms of transmissibility to RGCs compared to direct delivery methods such as intraocular injection or delivery using subconjunctival depots. Neither method is ideal, given the risks of infection and subconjunctival scarring without novel techniques. By contrast, extracellular vesicles (EVs) have advantages as a drug delivery system with low immunogeneity and tissue interactions. We have evaluated the EV delivery of NAM as an RGC protective agent using a quantitative assessment of dendritic integrity using DiOlistics, which is confirmed to be a more sensitive measure of neuronal health in our mouse glaucoma model than the evaluation of somatic loss via the immunostaining method. NAM or NAM-loaded EVs showed a significant neuroprotective effect in the mouse retinal explant model. Furthermore, NAM-loaded EVs can penetrate the sclera once deployed in the subconjunctival space. These results confirm the feasibility of using subconjunctival injection of EVs to deliver NAM to intraocular targets.
Collapse
Affiliation(s)
- Myungjin Kim
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical Engineering and Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Jangan-gu, Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Gloria Cimaglia
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Andrew Want
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- School of Medicine, Cardiff University, Cardiff, UK
| | - Pete A Williams
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Chun Gwon Park
- Department of Biomedical Engineering and Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Jangan-gu, Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seungsoo Rho
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
45
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
46
|
Egea V. Caught in action: how MSCs modulate atherosclerotic plaque. Front Cell Dev Biol 2024; 12:1379091. [PMID: 38601079 PMCID: PMC11004314 DOI: 10.3389/fcell.2024.1379091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Atherosclerosis (AS) is a medical condition marked by the stiffening and constriction of the arteries. This is caused by the accumulation of plaque, a substance made up of fat, cholesterol, calcium, and other elements present in the blood. Over time, this plaque solidifies and constricts the arteries, restricting the circulation of oxygen-rich blood to the organs and other body parts. The onset and progression of AS involve a continuous inflammatory response, including the infiltration of inflammatory cells, foam cells derived from monocytes/macrophages, and inflammatory cytokines and chemokines. Mesenchymal stromal cells (MSCs), a type of multipotent stem cells originating from various body tissues, have recently been demonstrated to have a protective and regulatory role in diseases involving inflammation. Consequently, the transplantation of MSCs is being proposed as a novel therapeutic strategy for atherosclerosis treatment. This mini-review intends to provide a summary of the regulatory effects of MSCs at the plaque site to lay the groundwork for therapeutic interventions.
Collapse
Affiliation(s)
- Virginia Egea
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
47
|
Boyalı O, Kabatas S, Civelek E, Ozdemir O, Bahar-Ozdemir Y, Kaplan N, Savrunlu EC, Karaöz E. Allogeneic mesenchymal stem cells may be a viable treatment modality in cerebral palsy. World J Clin Cases 2024; 12:1585-1596. [PMID: 38576742 PMCID: PMC10989435 DOI: 10.12998/wjcc.v12.i9.1585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Cerebral palsy (CP) describes a group of disorders affecting movement, balance, and posture. Disturbances in motor functions constitute the main body of CP symptoms. These symptoms surface in early childhood and patients are affected for the rest of their lives. Currently, treatment involves various pharmacotherapies for different types of CP, including antiepileptics for epilepsy and Botox A for focal spasticity. However, none of these methods can provide full symptom relief. This has prompted researchers to look for new treatment modalities, one of which is mesenchymal stem cell therapy (MSCT). Despite being a promising tool and offering a wide array of possibilities, mesenchymal stem cells (MSCs) still need to be investigated for their efficacy and safety. AIM To analyze the efficacy and safety of MSCT in CP patients. METHODS Our sample consists of four CP patients who cannot stand or walk without external support. All of these cases received allogeneic MSCT six times as 1 × 106/kg intrathecally, intravenously, and intramuscularly using umbilical cord-derived MSCs (UC-MSC). We monitored and assessed the patients pre- and post-treatment using the Wee Functional Independence Measure (WeeFIM), Gross Motor Function Classification System (GMFCS), and Manual Ability Classification Scale (MACS) instruments. We utilized the Modified Ashworth Scale (MAS) to measure spasticity. RESULTS We found significant improvements in MAS scores after the intervention on both sides. Two months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; four months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; 12 months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046. However, there was no significant difference in motor functions based on WeeFIM results (P > 0.05). GMFCS and MACS scores differed significantly at 12 months after the intervention (P = 0.046, P = 0.046). Finally, there was no significant change in cognitive functions (P > 0.05). CONCLUSION In light of our findings, we believe that UC-MSC therapy has a positive effect on spasticity, and it partially improves motor functions.
Collapse
Affiliation(s)
- Osman Boyalı
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Istanbul 34360, Turkey
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Omer Ozdemir
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Yeliz Bahar-Ozdemir
- Department of Physical Medicine and Rehabilitation, Health Sciences University Sultan Abdulhamid Han Training and Research Hospital, Istanbul 34668, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Turkey
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Liv Hospital, Istanbul 34340, Turkey
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, İstanbul 34010, Turkey
- Center for Stem Cell and Tissue Engineering Research and Practice, Istinye University, Istanbul 34340, Turkey
| |
Collapse
|
48
|
Roszkowski S. Therapeutic potential of mesenchymal stem cell-derived exosomes for regenerative medicine applications. Clin Exp Med 2024; 24:46. [PMID: 38427086 PMCID: PMC10907468 DOI: 10.1007/s10238-023-01282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 03/02/2024]
Abstract
Mesenchymal stem cell-derived exosomes have emerged as a promising cell-free therapy for tissue engineering. Compared to intact stem cells, exosomes have advantages like low immunogenicity and ability to carry regenerative cargo. This review examined the potential of exosomes to treat defects in skin, bone and cartilage. In preclinical models, exosomes improved wound healing, stimulated bone regeneration, and enabled cartilage repair by transferring proteins, mRNAs and microRNAs. Their effects were elicited by modulating inflammation, angiogenesis, cell proliferation and matrix synthesis. Exosomes represent a promising cell-free therapy for tissue engineering. However, challenges remain regarding scalable isolation, elucidating mechanisms, and translating this approach to human trials. Understanding these challenges will enable the successful clinical translation of exosomes for regenerative medicine applications.
Collapse
Affiliation(s)
- Szymon Roszkowski
- Division of Biochemistry and Biogerontology, Collegium Medicum, Nicolaus Copernicus University, Debowa St. 3, 85-626, Bydgoszcz, Poland.
| |
Collapse
|
49
|
Mikłosz A, Chabowski A. Efficacy of adipose-derived mesenchymal stem cell therapy in the treatment of chronic micro- and macrovascular complications of diabetes. Diabetes Obes Metab 2024; 26:793-808. [PMID: 38073423 DOI: 10.1111/dom.15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 02/06/2024]
Abstract
Diabetes mellitus is a highly prevalent disease characterized by hyperglycaemia that damages the vascular system, leading to micro- (retinopathy, neuropathy, nephropathy) and macrovascular diseases (cardiovascular disease). There are also secondary complications of diabetes (cardiomyopathy, erectile dysfunction or diabetic foot ulcers). Stem cell-based therapies have become a promising tool targeting diabetes symptoms and its chronic complications. Among all stem cells, adipose-derived mesenchymal stem cells (ADMSCs) are of great importance because of their abundance, non-invasive isolation and no ethical limitations. Characteristics that make ADMSCs good candidates for cell-based therapy are their wide immunomodulatory properties and paracrine activities through the secretion of an array of growth factors, chemokines, cytokines, angiogenic factors and anti-apoptotic molecules. Besides, after transplantation, ADMSCs show great ex vivo expansion capacity and differentiation to other cell types, including insulin-producing cells, cardiomyocytes, chondrocytes, hepatocyte-like cells, neurons, endothelial cells, photoreceptor-like cells, or astrocytes. Preclinical studies have shown that ADMSC-based therapy effectively improved visual acuity, ameliorated polyneuropathy and foot ulceration, arrested the development and progression of diabetic kidney disease, or alleviated the diabetes-induced cardiomyocyte hypertrophy. However, despite the positive results obtained in animal models, there are still several challenges that need to be overcome before the results of preclinical studies can be translated into clinical applications. To date, there are several clinical trials or ongoing trials using ADMSCs in the treatment of diabetic complications, most of them in the treatment of diabetic foot ulcers. This narrative review summarizes the most recent outcomes on the usage of ADMSCs in the treatment of long-term complications of diabetes in both animal models and clinical trials.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
50
|
Bellon A. Comparing stem cells, transdifferentiation and brain organoids as tools for psychiatric research. Transl Psychiatry 2024; 14:127. [PMID: 38418498 PMCID: PMC10901833 DOI: 10.1038/s41398-024-02780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 03/01/2024] Open
Abstract
The inaccessibility of neurons coming directly from patients has hindered our understanding of mental illnesses at the cellular level. To overcome this obstacle, six different cellular approaches that carry the genetic vulnerability to psychiatric disorders are currently available: Olfactory Neuroepithelial Cells, Mesenchymal Stem Cells, Pluripotent Monocytes, Induced Pluripotent Stem Cells, Induced Neuronal cells and more recently Brain Organoids. Here we contrast advantages and disadvantages of each of these six cell-based methodologies. Neuronal-like cells derived from pluripotent monocytes are presented in more detail as this technique was recently used in psychiatry for the first time. Among the parameters used for comparison are; accessibility, need for reprograming, time to deliver differentiated cells, differentiation efficiency, reproducibility of results and cost. We provide a timeline on the discovery of these cell-based methodologies, but, our main goal is to assist researchers selecting which cellular approach is best suited for any given project. This manuscript also aims to help readers better interpret results from the published literature. With this goal in mind, we end our work with a discussion about the differences and similarities between cell-based techniques and postmortem research, the only currently available tools that allow the study of mental illness in neurons or neuronal-like cells coming directly from patients.
Collapse
Affiliation(s)
- Alfredo Bellon
- Penn State Hershey Medical Center, Department of Psychiatry and Behavioral Health, Hershey, PA, USA.
- Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, USA.
| |
Collapse
|