1
|
Elías-Llumbet A, Lira S, Manterola M. Male aging in germ cells: What are we inheriting? Genet Mol Biol 2025; 47Suppl 1:e20240052. [PMID: 39969160 PMCID: PMC11837248 DOI: 10.1590/1678-4685-gmb-2024-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/04/2024] [Indexed: 02/20/2025] Open
Abstract
Aging is a significant risk factor for male fertility and can lead to severe developmental disorders in offspring. It disrupts testicular function and spermatogenesis, resulting in sperm abnormalities and DNA fragmentation. Male aging alters the genome and epigenome of germ cells due to persistent oxidative stress caused by the cumulative effects of environmental factors over a lifetime. At the molecular level, DNA damage occurs and is poorly repaired due to impaired DNA repair pathways, leading to unrepaired lesions and de novo mutations. Aging also creates distinct epigenetic landscapes that modify gene expression in germ cells, affect the DNA damage response, and generate de novo DNA and epigenetic mutations that are transmitted to the sperm and inherited by the offspring. This review discusses current knowledge on the age-associated effects on male germ cells and the genomic and epigenomic mechanisms contributing to altered male reproductive health and outcomes in progeny. We propose a male reproductive aging threshold, where cumulative exposure to risk factors leads to oxidative stress, impaired spermatogenesis, and altered reproductive outcomes. Finally, we discuss novel interventions to prevent premature testicular aging and emphasize the need for public health policies and counseling guidelines for men seeking paternity.
Collapse
Affiliation(s)
- Arturo Elías-Llumbet
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
- University of Chile, Faculty of Medicine, Institute of Biomedical Sciences, Human Genetics Program, Santiago, Chile
| | - Sebastián Lira
- Universidad Andres Bello, Research Center for Sustainability, Santiago, Santiago, Chile
| | - Marcia Manterola
- University of Chile, Faculty of Medicine, Institute of Biomedical Sciences, Human Genetics Program, Santiago, Chile
- University of Valparaíso, Center for Translational Studies in Stress and Mental Health (C-ESTRES), Valparaíso, Chile
| |
Collapse
|
2
|
Vijayraghavan S, Blouin T, McCollum J, Porcher L, Virard F, Zavadil J, Feghali-Bostwick C, Saini N. Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis. Nat Commun 2024; 15:8889. [PMID: 39406724 PMCID: PMC11480385 DOI: 10.1038/s41467-024-53332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic sclerosis is a connective tissue disorder characterized by excessive fibrosis that primarily affects women, and can present as a multisystem pathology. Roughly 4-22% of patients with systemic sclerosis develop cancer, which drastically worsens prognosis. However, the mechanisms underlying systemic sclerosis initiation, propagation, and cancer development are poorly understood. We hypothesize that the inflammation and immune response associated with systemic sclerosis can trigger DNA damage, leading to elevated somatic mutagenesis, a hallmark of pre-cancerous tissues. To test our hypothesis, we culture clonal lineages of fibroblasts from the lung tissues of controls and systemic sclerosis patients and compare their mutation burdens and spectra. We find an overall increase in all major mutation types in systemic sclerosis samples compared to control lung samples, from small-scale events such as single base substitutions and insertions/deletions, to chromosome-level changes, including copy-number changes and structural variants. In the genomes of patients with systemic sclerosis, we find evidence of somatic hypermutation or kategis (typically only seen in cancer genomes), we identify mutation signatures closely resembling the error-prone translesion polymerase Polη activity, and observe an activation-induced deaminase-like mutation signature, which overlaps with genomic regions displaying kataegis.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Blouin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - James McCollum
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - François Virard
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer WHO, Epigenomics and Mechanisms Branch, Lyon, France
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
3
|
Riew TR, Kim YS. Mutational Landscapes of Normal Skin and Their Potential Implications in the Development of Skin Cancer: A Comprehensive Narrative Review. J Clin Med 2024; 13:4815. [PMID: 39200957 PMCID: PMC11355262 DOI: 10.3390/jcm13164815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Recent evidence suggests that physiologically normal skin harbors pervasive mutant clones with cancer drivers. Normal skin has the highest burden of somatic mutations due to persistent ultraviolet exposure throughout life. The mutation burden exponentially increases with age and is further modified by skin site, sun-damage history, and skin phototype. Driver gene profiles in normal skin are similar to those in cutaneous squamous cell carcinoma where NOTCH family, FAT family, and TP53 are consistently reported, while other reported profiles include PPM1D, KMT2D, ASXL1, and RBM10. Normal skin seldom harbors canonical hotspot mutations with therapeutic relevance. The pathologic role of mutant clones with cancer drivers in normal skin is classically considered precursors for skin cancer; however, recent evidence also suggests their putative cancer-protective role. Copy number alterations and other structural variants are rare in normal skin with loss in 9q region encompassing NOTCH1 being the most common. Study methodologies should be carefully designed to obtain an adequate number of cells for sequencing, and a comparable number of cells and read depth across samples. In conclusion, this review provides mutational landscapes of normal skin and discusses their potential implications in the development of skin cancer, highlighting the role of driver genes in early malignant progression.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoon-Seob Kim
- Department of Dermatology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Laughery MF, Wilson HE, Sewell A, Stevison S, Wyrick JJ. The Surprising Diversity of UV-Induced Mutations. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300205. [PMID: 38884048 PMCID: PMC11170076 DOI: 10.1002/ggn2.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Indexed: 06/18/2024]
Abstract
Ultraviolet (UV) light is the most pervasive environmental mutagen and the primary cause of skin cancer. Genome sequencing of melanomas and other skin cancers has revealed that the vast majority of somatic mutations in these tumors are cytosine-to-thymine (C>T) substitutions in dipyrimidine sequences, which, together with tandem CC>TT substitutions, comprise the canonical UV mutation "signature". These mutation classes are caused by DNA damage directly induced by UV absorption, namely cyclobutane pyrimidine dimers (CPDs) or 6-4 pyrimidine-pyrimidone photoproducts (6-4PP), which form between neighboring pyrimidine bases. However, many of the key driver mutations in melanoma do not fit this mutation signature, but instead are caused by T>A, T>C, C>A, or AC>TT substitutions, frequently occurring in non-dipyrimidine sequence contexts. This article describes recent studies indicating that UV light causes a more diverse spectrum of mutations than previously appreciated, including many of the mutation classes observed in melanoma driver mutations. Potential mechanisms for these diverse mutation signatures are discussed, including UV-induced pyrimidine-purine photoproducts and indirect DNA damage induced by UVA light. Finally, the article reviews recent findings indicating that human DNA polymerase eta normally suppresses these non-canonical UV mutation classes, which can potentially explain why canonical C>T substitutions predominate in human skin cancers.
Collapse
Affiliation(s)
- Marian F. Laughery
- School of Molecular BiosciencesWashington State UniversityPullmanWA99164USA
| | - Hannah E. Wilson
- School of Molecular BiosciencesWashington State UniversityPullmanWA99164USA
| | - Allysa Sewell
- School of Molecular BiosciencesWashington State UniversityPullmanWA99164USA
| | - Scott Stevison
- School of Molecular BiosciencesWashington State UniversityPullmanWA99164USA
| | - John J. Wyrick
- School of Molecular BiosciencesWashington State UniversityPullmanWA99164USA
| |
Collapse
|
5
|
Speer RM, Nandi SP, Cooper KL, Zhou X, Yu H, Guo Y, Hudson LG, Alexandrov LB, Liu KJ. Arsenic is a potent co-mutagen of ultraviolet light. Commun Biol 2023; 6:1273. [PMID: 38104187 PMCID: PMC10725444 DOI: 10.1038/s42003-023-05659-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Arsenic enhances the carcinogenicity of ultraviolet radiation (UVR). However, the mechanisms of arsenic-driven oncogenesis are not well understood. Here, we utilize experimental systems to investigate the carcinogenic and mutagenic properties of co-exposure to arsenic and UVR. In vitro and in vivo exposures indicate that, by itself, arsenic is not mutagenic. However, in combination with UVR, arsenic exposure has a synergistic effect leading to an accelerated mouse skin carcinogenesis and to more than 2-fold enrichment of UVR mutational burden. Notably, mutational signature ID13, previously found only in UVR-associated human skin cancers, is observed exclusively in mouse skin tumors and cell lines jointly exposed to arsenic and UVR. This signature was not observed in any model system exposed purely to arsenic or purely to UVR, making ID13, to the best of our knowledge, the first co-exposure signature to be reported using controlled experimental conditions. Analysis of existing skin cancer genomics data reveals that only a subset of cancers harbor ID13 and these exhibit an elevated UVR mutagenesis. Our results report a unique mutational signature caused by a co-exposure to two environmental carcinogens and provide comprehensive evidence that arsenic is a potent co-mutagen and co-carcinogen of UVR.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Shuvro P Nandi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Karen L Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Hui Yu
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Yan Guo
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA.
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA.
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA.
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA.
| |
Collapse
|
6
|
Liang Y, Sun X, Duan C, Tang S, Chen J. Application of patient-derived induced pluripotent stem cells and organoids in inherited retinal diseases. Stem Cell Res Ther 2023; 14:340. [PMID: 38012786 PMCID: PMC10683306 DOI: 10.1186/s13287-023-03564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Inherited retinal diseases (IRDs) can induce severe sight-threatening retinal degeneration and impose a considerable economic burden on patients and society, making efforts to cure blindness imperative. Transgenic animals mimicking human genetic diseases have long been used as a primary research tool to decipher the underlying pathogenesis, but there are still some obvious limitations. As an alternative strategy, patient-derived induced pluripotent stem cells (iPSCs), particularly three-dimensional (3D) organoid technology, are considered a promising platform for modeling different forms of IRDs, including retinitis pigmentosa, Leber congenital amaurosis, X-linked recessive retinoschisis, Batten disease, achromatopsia, and best vitelliform macular dystrophy. Here, this paper focuses on the status of patient-derived iPSCs and organoids in IRDs in recent years concerning disease modeling and therapeutic exploration, along with potential challenges for translating laboratory research to clinical application. Finally, the importance of human iPSCs and organoids in combination with emerging technologies such as multi-omics integration analysis, 3D bioprinting, or microfluidic chip platform are highlighted. Patient-derived retinal organoids may be a preferred choice for more accurately uncovering the mechanisms of human retinal diseases and will contribute to clinical practice.
Collapse
Affiliation(s)
- Yuqin Liang
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xihao Sun
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunwen Duan
- Aier Eye Institute, Changsha, 410015, China
- Changsha Aier Eye Hospital, Changsha, 410015, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
| | - Jiansu Chen
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Cho E, Swartz CD, Williams A, V Rivas M, Recio L, Witt KL, Schmidt EK, Yaplee J, Smith TH, Van P, Lo FY, Valentine CC, Salk JJ, Marchetti F, Smith-Roe SL, Yauk CL. Error-corrected duplex sequencing enables direct detection and quantification of mutations in human TK6 cells with strong inter-laboratory consistency. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503649. [PMID: 37491114 PMCID: PMC10395007 DOI: 10.1016/j.mrgentox.2023.503649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 07/27/2023]
Abstract
Error-corrected duplex sequencing (DS) enables direct quantification of low-frequency mutations and offers tremendous potential for chemical mutagenicity assessment. We investigated the utility of DS to quantify induced mutation frequency (MF) and spectrum in human lymphoblastoid TK6 cells exposed to a prototypical DNA alkylating agent, N-ethyl-N-nitrosourea (ENU). Furthermore, we explored appropriate experimental parameters for this application, and assessed inter-laboratory reproducibility. In two independent experiments in two laboratories, TK6 cells were exposed to ENU (25-200 µM) and DNA was sequenced 48, 72, and 96 h post-exposure. A DS mutagenicity panel targeting twenty 2.4-kb regions distributed across the genome was used to sample diverse, genome-representative sequence contexts. A significant increase in MF that was unaffected by time was observed in both laboratories. Concentration-response in the MF from the two laboratories was strongly positively correlated (r = 0.97). C:G>T:A, T:A>C:G, T:A>A:T, and T:A>G:C mutations increased in consistent, concentration-dependent manners in both laboratories, with high proportions of C:G>T:A at all time points. The consistent results across the three time points suggest that 48 h may be sufficient for mutation analysis post-exposure. The target sites responded similarly between the two laboratories and revealed a higher average MF in intergenic regions. These results, demonstrating remarkable reproducibility across time and laboratory for both MF and spectrum, support the high value of DS for characterizing chemical mutagenicity in both research and regulatory evaluation.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | | | - Leslie Recio
- Inotiv-RTP, Research Triangle Park, NC, USA; Scitovation, Research Triangle Park, NC, USA
| | - Kristine L Witt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Stephanie L Smith-Roe
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada; Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Delhomme TM, Munteanu M, Buonanno M, Grilj V, Biayna J, Supek F. Proton and alpha radiation-induced mutational profiles in human cells. Sci Rep 2023; 13:9791. [PMID: 37328655 PMCID: PMC10275862 DOI: 10.1038/s41598-023-36845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
Ionizing radiation is known to be DNA damaging and mutagenic, however less is known about which mutational footprints result from exposures of human cells to different types of radiation. We were interested in the mutagenic effects of particle radiation exposures on genomes of various human cell types, in order to gauge the genotoxic risks of galactic cosmic radiation, and of certain types of tumor radiotherapy. To this end, we exposed cultured cell lines from the human blood, breast and lung to fractionated proton and alpha particle (helium nuclei) beams at doses sufficient to considerably affect cell viability. Whole-genome sequencing revealed that mutation rates were not overall markedly increased upon proton and alpha exposures. However, there were modest changes in mutation spectra and distributions, such as the increases in clustered mutations and of certain types of indels and structural variants. The spectrum of mutagenic effects of particle beams may be cell-type and/or genetic background specific. Overall, the mutational effects of repeated exposures to proton and alpha radiation on human cells in culture appear subtle, however further work is warranted to understand effects of long-term exposures on various human tissues.
Collapse
Affiliation(s)
- Tiffany M Delhomme
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maia Munteanu
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuela Buonanno
- Radiological Research Accelerator Facility (RARAF), Columbia University, New York, USA
| | - Veljko Grilj
- Radiological Research Accelerator Facility (RARAF), Columbia University, New York, USA
| | - Josep Biayna
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
9
|
Degtyareva NP, Placentra VC, Gabel SA, Klimczak LJ, Gordenin DA, Wagner BA, Buettner GR, Mueller GA, Smirnova TI, Doetsch PW. Changes in metabolic landscapes shape divergent but distinct mutational signatures and cytotoxic consequences of redox stress. Nucleic Acids Res 2023; 51:5056-5072. [PMID: 37078607 PMCID: PMC10250236 DOI: 10.1093/nar/gkad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Mutational signatures discerned in cancer genomes, in aging tissues and in cells exposed to toxic agents, reflect complex processes underlying transformation of cells from normal to dysfunctional. Due to its ubiquitous and chronic nature, redox stress contributions to cellular makeover remain equivocal. The deciphering of a new mutational signature of an environmentally-relevant oxidizing agent, potassium bromate, in yeast single strand DNA uncovered a surprising heterogeneity in the mutational signatures of oxidizing agents. NMR-based analysis of molecular outcomes of redox stress revealed profound dissimilarities in metabolic landscapes following exposure to hydrogen peroxide versus potassium bromate. The predominance of G to T substitutions in the mutational spectra distinguished potassium bromate from hydrogen peroxide and paraquat and mirrored the observed metabolic changes. We attributed these changes to the generation of uncommon oxidizing species in a reaction with thiol-containing antioxidants; a nearly total depletion of intracellular glutathione and a paradoxical augmentation of potassium bromate mutagenicity and toxicity by antioxidants. Our study provides the framework for understanding multidimensional processes triggered by agents collectively known as oxidants. Detection of increased mutational loads associated with potassium bromate-related mutational motifs in human tumors may be clinically relevant as a biomarker of this distinct type of redox stress.
Collapse
Affiliation(s)
- Natalya P Degtyareva
- Mutagenesis and DNA Repair Regulation Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | - Victoria C Placentra
- Mutagenesis and DNA Repair Regulation Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | - Scott A Gabel
- Nuclear Magnetic Resonance Research Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | - Dmitry A Gordenin
- Mechanisms of Genome Dynamics Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology, ESR Facility, Department of Radiation Oncology, The University of Iowa, Iowa City, IA52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology, ESR Facility, Department of Radiation Oncology, The University of Iowa, Iowa City, IA52242, USA
| | - Geoffrey A Mueller
- Nuclear Magnetic Resonance Research Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | | | - Paul W Doetsch
- Mutagenesis and DNA Repair Regulation Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| |
Collapse
|
10
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
11
|
Ji X, Wang E, Cui Q. Deciphering gene contributions and etiologies of somatic mutational signatures of cancer. Brief Bioinform 2023; 24:6995381. [PMID: 36682004 DOI: 10.1093/bib/bbad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/23/2023] Open
Abstract
Somatic mutational signatures (MSs) identified by genome sequencing play important roles in exploring the cause and development of cancer. Thus far, many such signatures have been identified, and some of them do imply causes of cancer. However, a major bottleneck is that we do not know the potential meanings (i.e. carcinogenesis or biological functions) and contributing genes for most of them. Here, we presented a computational framework, Gene Somatic Genome Pattern (GSGP), which can decipher the molecular mechanisms of the MSs. More importantly, it is the first time that the GSGP is able to process MSs from ribonucleic acid (RNA) sequencing, which greatly extended the applications of both MS analysis and RNA sequencing (RNAseq). As a result, GSGP analyses match consistently with previous reports and identify the etiologies for a number of novel signatures. Notably, we applied GSGP to RNAseq data and revealed an RNA-derived MS involved in deficient deoxyribonucleic acid mismatch repair and microsatellite instability in colorectal cancer. Researchers can perform customized GSGP analysis using the web tools or scripts we provide.
Collapse
Affiliation(s)
- Xiangwen Ji
- Department of Biomedical Informatics, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| |
Collapse
|
12
|
Speer RM, Nandi SP, Cooper KL, Zhou X, Yu H, Guo Y, Hudson LG, Alexandrov LB, Liu KJ. Arsenic is a potent co-mutagen of ultraviolet light. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529578. [PMID: 36865271 PMCID: PMC9980120 DOI: 10.1101/2023.02.22.529578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Environmental co-exposures are widespread and are major contributors to carcinogenic mechanisms. Two well-established environmental agents causing skin cancer are ultraviolet radiation (UVR) and arsenic. Arsenic is a known co-carcinogen that enhances UVR's carcinogenicity. However, the mechanisms of arsenic co-carcinogenesis are not well understood. In this study, we utilized primary human keratinocytes and a hairless mouse model to investigate the carcinogenic and mutagenic properties of co-exposure to arsenic and UVR. In vitro and in vivo exposures revealed that, on its own, arsenic is neither mutagenic nor carcinogenic. However, in combination with UVR, arsenic exposure has a synergistic effect leading to an accelerated mouse skin carcinogenesis as well as to more than 2-fold enrichment of UVR mutational burden. Notably, mutational signature ID13, previously found only in UVR-associated human skin cancers, was observed exclusively in mouse skin tumors and cell lines jointly exposed to arsenic and UVR. This signature was not observed in any model system exposed purely to arsenic or purely to UVR, making ID13 the first co-exposure signature to be reported using controlled experimental conditions. Analysis of existing genomics data from basal cell carcinomas and melanomas revealed that only a subset of human skin cancers harbor ID13 and, consistent with our experimental observations, these cancers exhibited an elevated UVR mutagenesis. Our results provide the first report of a unique mutational signature caused by a co-exposure to two environmental carcinogens and the first comprehensive evidence that arsenic is a potent co-mutagen and co-carcinogen of UVR. Importantly, our findings suggest that a large proportion of human skin cancers are not formed purely due to UVR exposure but rather due to a co-exposure of UVR and other co-mutagens such as arsenic.
Collapse
Affiliation(s)
- Rachel M. Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Shuvro P. Nandi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Karen L. Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Hui Yu
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico, Albuquerque, NM 87106, USA
| | - Yan Guo
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico, Albuquerque, NM 87106, USA
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook NY 11794, USA
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
13
|
Gerdes P, Lim SM, Ewing AD, Larcombe MR, Chan D, Sanchez-Luque FJ, Walker L, Carleton AL, James C, Knaupp AS, Carreira PE, Nefzger CM, Lister R, Richardson SR, Polo JM, Faulkner GJ. Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells. Nat Commun 2022; 13:7470. [PMID: 36463236 PMCID: PMC9719517 DOI: 10.1038/s41467-022-35180-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can in principle differentiate into any cell of the body, and have revolutionized biomedical research and regenerative medicine. Unlike their human counterparts, mouse iPSCs (miPSCs) are reported to silence transposable elements and prevent transposable element-mediated mutagenesis. Here we apply short-read or Oxford Nanopore Technologies long-read genome sequencing to 38 bulk miPSC lines reprogrammed from 10 parental cell types, and 18 single-cell miPSC clones. While single nucleotide variants and structural variants restricted to miPSCs are rare, we find 83 de novo transposable element insertions, including examples intronic to Brca1 and Dmd. LINE-1 retrotransposons are profoundly hypomethylated in miPSCs, beyond other transposable elements and the genome overall, and harbor alternative protein-coding gene promoters. We show that treatment with the LINE-1 inhibitor lamivudine does not hinder reprogramming and efficiently blocks endogenous retrotransposition, as detected by long-read genome sequencing. These experiments reveal the complete spectrum and potential significance of mutations acquired by miPSCs.
Collapse
Affiliation(s)
- Patricia Gerdes
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Sue Mei Lim
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Adam D. Ewing
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Michael R. Larcombe
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Dorothy Chan
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Francisco J. Sanchez-Luque
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.418805.00000 0004 0500 8423GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS, Granada, 18016 Spain
| | - Lucinda Walker
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Alexander L. Carleton
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Cini James
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Anja S. Knaupp
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Patricia E. Carreira
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Christian M. Nefzger
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Ryan Lister
- grid.1012.20000 0004 1936 7910Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009 Australia ,grid.431595.f0000 0004 0469 0045Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia
| | - Sandra R. Richardson
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Jose M. Polo
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1010.00000 0004 1936 7304Adelaide Centre for Epigenetics and The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Geoffrey J. Faulkner
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
14
|
Evaluating cancer etiology and risk with a mathematical model of tumor evolution. Nat Commun 2022; 13:7224. [PMID: 36433937 PMCID: PMC9700699 DOI: 10.1038/s41467-022-34760-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Recent evidence arising from DNA sequencing of healthy human tissues has clearly indicated that our organs accumulate a relevant number of somatic mutations due to normal endogenous mutational processes, in addition to those caused by environmental factors. A deeper understanding of the evolution of this endogenous mutational load is critical for understanding what causes cancer. Here we present a mathematical model of tumor evolution that is able to predict the expected number of endogenous somatic mutations present in various tissue types of a patient at a given age. These predictions are then compared to those observed in patients. We also obtain an improved fitting of the variation in cancer incidence across cancer types, showing that the endogenous mutational processes can explain 4/5 of the variation in cancer risk. Overall, these results offer key insights into cancer etiology, by providing further evidence for the major role these endogenous processes play in cancer.
Collapse
|
15
|
Georgoulias G, Zaravinos A. Genomic landscape of the immunogenicity regulation in skin melanomas with diverse tumor mutation burden. Front Immunol 2022; 13:1006665. [PMID: 36389735 PMCID: PMC9650672 DOI: 10.3389/fimmu.2022.1006665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Skin melanoma cells are tightly interconnected with their tumor microenvironment (TME), which influences their initiation, progression, and sensitivity/resistance to therapeutic interventions. An immune-active TME favors patient response to immune checkpoint inhibition (ICI), but not all patients respond to therapy. Here, we assessed differential gene expression in primary and metastatic tumors from the TCGA-SKCM dataset, compared to normal skin samples from the GTEx project and validated key findings across 4 independent GEO datasets, as well as using immunohistochemistry in independent patient cohorts. We focused our attention on examining the expression of various immune receptors, immune-cell fractions, immune-related signatures and mutational signatures across cutaneous melanomas with diverse tumor mutation burdens (TMB). Globally, the expression of most immunoreceptors correlated with patient survival, but did not differ between TMBhigh and TMBlow tumors. Melanomas were enriched in "naive T-cell", "effector memory T-cell", "exhausted T-cell", "resting Treg T-cell" and "Th1-like" signatures, irrespective of their BRAF, NF1 or RAS mutational status. Somatic mutations in IDO1 and HLA-DRA were frequent and could be involved in hindering patient response to ICI therapies. We finally analyzed transcriptome profiles of ICI-treated patients and associated their response with high levels of IFNγ, Merck18, CD274, CD8, and low levels of myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs) and M2 macrophages, irrespective of their TMB status. Overall, our findings highlight the importance of pre-existing T-cell immunity in ICI therapeutic outcomes in skin melanoma and suggest that TMBlow patients could also benefit from such therapies.
Collapse
Affiliation(s)
- George Georgoulias
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| |
Collapse
|
16
|
Rouhani FJ, Zou X, Danecek P, Badja C, Amarante TD, Koh G, Wu Q, Memari Y, Durbin R, Martincorena I, Bassett AR, Gaffney D, Nik-Zainal S. Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells. Nat Genet 2022; 54:1406-1416. [PMID: 35953586 PMCID: PMC9470532 DOI: 10.1038/s41588-022-01147-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/24/2022] [Indexed: 12/27/2022]
Abstract
We explored human induced pluripotent stem cells (hiPSCs) derived from different tissues to gain insights into genomic integrity at single-nucleotide resolution. We used genome sequencing data from two large hiPSC repositories involving 696 hiPSCs and daughter subclones. We find ultraviolet light (UV)-related damage in ~72% of skin fibroblast-derived hiPSCs (F-hiPSCs), occasionally resulting in substantial mutagenesis (up to 15 mutations per megabase). We demonstrate remarkable genomic heterogeneity between independent F-hiPSC clones derived during the same round of reprogramming due to oligoclonal fibroblast populations. In contrast, blood-derived hiPSCs (B-hiPSCs) had fewer mutations and no UV damage but a high prevalence of acquired BCOR mutations (26.9% of lines). We reveal strong selection pressure for BCOR mutations in F-hiPSCs and B-hiPSCs and provide evidence that they arise in vitro. Directed differentiation of hiPSCs and RNA sequencing showed that BCOR mutations have functional consequences. Our work strongly suggests that detailed nucleotide-resolution characterization is essential before using hiPSCs.
Collapse
Affiliation(s)
- Foad J Rouhani
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Cherif Badja
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Tauanne Dias Amarante
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Gene Koh
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Qianxin Wu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yasin Memari
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Inigo Martincorena
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Andrew R Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniel Gaffney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Genomics plc, King Charles House, Oxford, UK
| | - Serena Nik-Zainal
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK.
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK.
| |
Collapse
|
17
|
Katzir R, Rudberg N, Yizhak K. Estimating tumor mutational burden from RNA-sequencing without a matched-normal sample. Nat Commun 2022; 13:3092. [PMID: 35654823 PMCID: PMC9163107 DOI: 10.1038/s41467-022-30753-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
Detection of somatic mutations using patients sequencing data has many clinical applications, including the identification of cancer driver genes, detection of mutational signatures, and estimation of tumor mutational burden (TMB). We have previously developed a tool for detection of somatic mutations using tumor RNA and a matched-normal DNA. Here, we further extend it to detect somatic mutations from RNA sequencing data without a matched-normal sample. This is accomplished via a machine-learning approach that classifies mutations as either somatic or germline based on various features. When applied to RNA-sequencing of >450 melanoma samples high precision and recall are achieved, and both mutational signatures and driver genes are correctly identified. Finally, we show that RNA-based TMB is significantly associated with patient survival, showing similar or higher significance level as compared to DNA-based TMB. Our pipeline can be utilized in many future applications, analyzing novel and existing datasets where only RNA is available.
Collapse
Affiliation(s)
- Rotem Katzir
- Center for Bioinformatics and Computational Biology, Department of Computer Science and the University of Maryland Institute of Advanced Computer Studies (UMIACS), University of Maryland, College Park, MD, 20742, USA
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Noam Rudberg
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Keren Yizhak
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
18
|
Lavoie JM, Csizmok V, Williamson LM, Culibrk L, Wang G, Marra MA, Laskin J, Jones SJM, Renouf DJ, Kollmannsberger CK. Whole-genome and transcriptome analysis of advanced adrenocortical cancer highlights multiple alterations affecting epigenome and DNA repair pathways. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006148. [PMID: 35483882 PMCID: PMC9059790 DOI: 10.1101/mcs.a006148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
Adrenocortical cancer (ACC) is a rare cancer of the adrenal gland. Several driver mutations have been identified in both primary and metastatic ACCs, but the therapeutic options are still limited. We performed whole-genome and transcriptome sequencing on seven patients with metastatic ACC. Integrative analysis of mutations, RNA expression changes, mutation signature, and homologous recombination deficiency (HRD) analysis was performed. Mutations affecting CTNNB1 and TP53 and frequent loss of heterozygosity (LOH) events were observed in our cohort. Alterations affecting genes involved in cell cycle (RB1, CDKN2A, CDKN2B), DNA repair pathways (MUTYH, BRCA2, ATM, RAD52, MLH1, MSH6), and telomere maintenance (TERF2 and TERT) consisting of somatic and germline mutations, structural variants, and expression outliers were also observed. HRDetect, which aggregates six HRD-associated mutation signatures, identified a subset of cases as HRD. Genomic alterations affecting genes involved in epigenetic regulation were also identified, including structural variants (SWI/SNF genes and histone methyltransferases), and copy gains and concurrent high expression of KDM5A, which may contribute to epigenomic deregulation. Findings from this study highlight HRD and epigenomic pathways as potential therapeutic targets and suggest a subgroup of patients may benefit from a diverse array of molecularly targeted therapies in ACC, a rare disease in urgent need of therapeutic strategies.
Collapse
Affiliation(s)
- Jean-Michel Lavoie
- Department of Medical Oncology, BC Cancer, Surrey, British Columbia V3V 1Z2, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Gang Wang
- Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | | |
Collapse
|
19
|
Conte E. Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol Ther 2021; 234:108031. [PMID: 34774879 DOI: 10.1016/j.pharmthera.2021.108031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Over almost 140 years since their identification, the knowledge about macrophages has unbelievably evolved. The 'big eaters' from being thought of as simple phagocytic cells have been recognized as master regulators in immunity, homeostasis, healing/repair and organ development. Long considered to originate exclusively from bone marrow-derived circulating monocytes, macrophages have been also demonstrated to be the first immune cells colonizing tissues in the developing embryo and persisting in adult life by self-renewal, as long-lived tissue resident macrophages. Therefore, heterogeneous populations of macrophages with different ontogeny and functions co-exist in tissues. Macrophages act as sentinels of homeostasis and are intrinsically programmed to lead the wound healing and repair processes that occur after injury. However, in certain pathological circumstances macrophages get dysfunctional, and impaired or aberrant macrophage activities become key features of diseases. For instance, in both fibrosis and cancer, that have been defined 'wounds that do not heal', dysfunctional monocyte-derived macrophages overall play a key detrimental role. On the other hand, due to their plasticity these cells can be 're-educated' and exert anti-fibrotic and anti-cancer functions. Therefore macrophages represent an important therapeutic target in both fibrosis and cancer diseases. The current review will illustrate new insights into the role of monocytes/macrophages in these devastating diseases and summarize new therapeutic strategies and applications of macrophage-targeted drug development in their clinical setting.
Collapse
|
20
|
Sugiyama T, Keinard B, Best G, Sanyal MR. Biochemical and photochemical mechanisms that produce different UV-induced mutation spectra. Mutat Res 2021; 823:111762. [PMID: 34563793 DOI: 10.1016/j.mrfmmm.2021.111762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022]
Abstract
Although UV-induced mutagenesis has been studied extensively, the precise mechanisms that convert UV-induced DNA damage into mutations remain elusive. One well-studied mechanism involves DNA polymerase (Pol) η and ζ, which produces C > T transitions during translesion synthesis (TLS) across pyrimidine dimers. We previously proposed another biochemical mechanism that involves multiple UV-irradiations with incubation in the dark in between. The incubation facilitates spontaneous deamination of cytosine in a pyrimidine dimer, and the subsequent UV irradiation induces photolyase-independent (direct) photoreversal that converts cytosine into monomeric uracil residue. In this paper, we first demonstrate that natural sunlight can induce both mutational processes in vitro. The direct photoreversal was also reproduced by monochromatic UVB at 300 nm. We also demonstrate that post-irradiation incubation in the dark is required for both mutational processes, suggesting that cytosine deamination is required for both the Pol η/ζ-dependent and the photoreversal-dependent mechanisms. Another Y-family polymerase Pol ι also mediated a mutagenic TLS on UV-damaged templates when combined with Pol ζ. The Pol ι-dependent mutations were largely independent of post-irradiation incubation, indicating that cytosine deamination was not essential for this mutational process. Sunlight-exposure also induced C > A transversions which were likely caused by oxidation of guanine residues. Finally, we constructed in vitro mutation spectra in a comparable format to cancer mutation signatures. While both Pol η-dependent and photoreversal-dependent spectra showed high similarities to a cancer signature (SBS7a), Pol ι-dependent mutation spectrum has distinct T > A/C substitutions, which are found in another cancer signature (SBS7d). The Pol ι-dependent T > A/C substitutions were resistant to T4 pyrimidine dimer glycosylase-treatment, suggesting that this mutational process is independent of cis-syn pyrimidine dimers. An updated model about multiple mechanisms of UV-induced mutagenesis is discussed.
Collapse
Affiliation(s)
- Tomohiko Sugiyama
- Department of Biological Sciences; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH, 45701, USA.
| | | | | | - Mahima R Sanyal
- Department of Biological Sciences; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
21
|
Osia B, Alsulaiman T, Jackson T, Kramara J, Oliveira S, Malkova A. Cancer cells are highly susceptible to accumulation of templated insertions linked to MMBIR. Nucleic Acids Res 2021; 49:8714-8731. [PMID: 34379776 PMCID: PMC8421209 DOI: 10.1093/nar/gkab685] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023] Open
Abstract
Microhomology-mediated break-induced replication (MMBIR) is a DNA repair pathway initiated by polymerase template switching at microhomology, which can produce templated insertions that initiate chromosomal rearrangements leading to neurological and metabolic diseases, and promote complex genomic rearrangements (CGRs) found in cancer. Yet, how often templated insertions accumulate from processes like MMBIR in genomes is poorly understood due to difficulty in directly identifying these events by whole genome sequencing (WGS). Here, by using our newly developed MMBSearch software, we directly detect such templated insertions (MMB-TIs) in human genomes and report substantial differences in frequency and complexity of MMB-TI events between normal and cancer cells. Through analysis of 71 cancer genomes from The Cancer Genome Atlas (TCGA), we observed that MMB-TIs readily accumulate de novo across several cancer types, with particularly high accumulation in some breast and lung cancers. By contrast, MMB-TIs appear only as germline variants in normal human fibroblast cells, and do not accumulate as de novo somatic mutations. Finally, we performed WGS on a lung adenocarcinoma patient case and confirmed MMB-TI-initiated chromosome fusions that disrupted potential tumor suppressors and induced chromothripsis-like CGRs. Based on our findings we propose that MMB-TIs represent a trigger for widespread genomic instability and tumor evolution.
Collapse
Affiliation(s)
- Beth Osia
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Thamer Alsulaiman
- Department of Computer Science, University of Iowa, Iowa City, IA 52245, USA
| | - Tyler Jackson
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Juraj Kramara
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Suely Oliveira
- Department of Computer Science, University of Iowa, Iowa City, IA 52245, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| |
Collapse
|
22
|
Clinically compatible advances in blood-derived endothelial progenitor cell isolation and reprogramming for translational applications. N Biotechnol 2021; 63:1-9. [PMID: 33588094 DOI: 10.1016/j.nbt.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/27/2021] [Accepted: 02/07/2021] [Indexed: 11/21/2022]
Abstract
The promise of using induced pluripotent stem cells (iPSCs) for cellular therapies has been hampered by the lack of easily isolatable and well characterized source cells whose genomes have undergone minimal changes during their processing. Blood-derived late-outgrowth endothelial progenitor cells (EPCs) are used for disease modeling and have potential therapeutic uses including cell transplantation and the translation of induced pluripotent stem cell (iPSC) derivatives. However, the current isolation of EPCs has been inconsistent and requires at least 40-80 mL of blood, limiting their wider use. In addition, previous EPC reprogramming methods precluded the translation of EPC-derived iPSCs to the clinic. Here a series of clinically-compatible advances in the isolation and reprogramming of EPCs is presented, including a reduction of blood sampling volumes to 10 mL and use of highly efficient RNA-based reprogramming methods together with autologous human serum, resulting in clinically relevant iPSCs carrying minimal copy number variations (CNVs) compared to their parent line.
Collapse
|
23
|
Landi MT, Synnott NC, Rosenbaum J, Zhang T, Zhu B, Shi J, Zhao W, Kebede M, Sang J, Choi J, Mendoza L, Pacheco M, Hicks B, Caporaso NE, Abubakar M, Gordenin DA, Wedge DC, Alexandrov LB, Rothman N, Lan Q, Garcia-Closas M, Chanock SJ. Tracing Lung Cancer Risk Factors Through Mutational Signatures in Never-Smokers. Am J Epidemiol 2021; 190:962-976. [PMID: 33712835 DOI: 10.1093/aje/kwaa234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Epidemiologic studies often rely on questionnaire data, exposure measurement tools, and/or biomarkers to identify risk factors and the underlying carcinogenic processes. An emerging and promising complementary approach to investigate cancer etiology is the study of somatic "mutational signatures" that endogenous and exogenous processes imprint on the cellular genome. These signatures can be identified from a complex web of somatic mutations thanks to advances in DNA sequencing technology and analytical algorithms. This approach is at the core of the Sherlock-Lung study (2018-ongoing), a retrospective case-only study of over 2,000 lung cancers in never-smokers (LCINS), using different patterns of mutations observed within LCINS tumors to trace back possible exposures or endogenous processes. Whole genome and transcriptome sequencing, genome-wide methylation, microbiome, and other analyses are integrated with data from histological and radiological imaging, lifestyle, demographic characteristics, environmental and occupational exposures, and medical records to classify LCINS into subtypes that could reveal distinct risk factors. To date, we have received samples and data from 1,370 LCINS cases from 17 study sites worldwide and whole-genome sequencing has been completed on 1,257 samples. Here, we present the Sherlock-Lung study design and analytical strategy, also illustrating some empirical challenges and the potential for this approach in future epidemiologic studies.
Collapse
|
24
|
Budden T, Gaudy-Marqueste C, Porter A, Kay E, Gurung S, Earnshaw CH, Roeck K, Craig S, Traves V, Krutmann J, Muller P, Motta L, Zanivan S, Malliri A, Furney SJ, Nagore E, Virós A. Ultraviolet light-induced collagen degradation inhibits melanoma invasion. Nat Commun 2021; 12:2742. [PMID: 33980846 PMCID: PMC8115293 DOI: 10.1038/s41467-021-22953-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/08/2021] [Indexed: 01/26/2023] Open
Abstract
Ultraviolet radiation (UVR) damages the dermis and fibroblasts; and increases melanoma incidence. Fibroblasts and their matrix contribute to cancer, so we studied how UVR modifies dermal fibroblast function, the extracellular matrix (ECM) and melanoma invasion. We confirmed UVR-damaged fibroblasts persistently upregulate collagen-cleaving matrix metalloprotein-1 (MMP1) expression, reducing local collagen (COL1A1), and COL1A1 degradation by MMP1 decreased melanoma invasion. Conversely, inhibiting ECM degradation and MMP1 expression restored melanoma invasion. Primary cutaneous melanomas of aged humans show more cancer cells invade as single cells at the invasive front of melanomas expressing and depositing more collagen, and collagen and single melanoma cell invasion are robust predictors of poor melanoma-specific survival. Thus, primary melanomas arising over collagen-degraded skin are less invasive, and reduced invasion improves survival. However, melanoma-associated fibroblasts can restore invasion by increasing collagen synthesis. Finally, high COL1A1 gene expression is a biomarker of poor outcome across a range of primary cancers.
Collapse
Affiliation(s)
- Timothy Budden
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | | | - Andrew Porter
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, UK
| | - Emily Kay
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- CRUK Beatson Institute, Glasgow, UK
| | - Shilpa Gurung
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Charles H Earnshaw
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Katharina Roeck
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Sarah Craig
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Víctor Traves
- Department of Dermatology, Institut Valencià Oncologia, Valencia, Spain
| | - Jean Krutmann
- IUF - Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patricia Muller
- Tumour Suppressors Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Luisa Motta
- Department of Histopathology, Salford Royal NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Sara Zanivan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- CRUK Beatson Institute, Glasgow, UK
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, UK
| | - Simon J Furney
- Genomic Oncology Research Group, Department of Physiology and Medical Physics, Royal College of Surgeons in, Ireland, Dublin, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland Dublin, Dublin, Ireland
| | - Eduardo Nagore
- Department of Dermatology, Institut Valencià Oncologia, Valencia, Spain
| | - Amaya Virós
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.
| |
Collapse
|
25
|
Wang Y, Bae T, Thorpe J, Sherman MA, Jones AG, Cho S, Daily K, Dou Y, Ganz J, Galor A, Lobon I, Pattni R, Rosenbluh C, Tomasi S, Tomasini L, Yang X, Zhou B, Akbarian S, Ball LL, Bizzotto S, Emery SB, Doan R, Fasching L, Jang Y, Juan D, Lizano E, Luquette LJ, Moldovan JB, Narurkar R, Oetjens MT, Rodin RE, Sekar S, Shin JH, Soriano E, Straub RE, Zhou W, Chess A, Gleeson JG, Marquès-Bonet T, Park PJ, Peters MA, Pevsner J, Walsh CA, Weinberger DR, Vaccarino FM, Moran JV, Urban AE, Kidd JM, Mills RE, Abyzov A. Comprehensive identification of somatic nucleotide variants in human brain tissue. Genome Biol 2021; 22:92. [PMID: 33781308 PMCID: PMC8006362 DOI: 10.1186/s13059-021-02285-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. RESULTS Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. CONCLUSIONS This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Taejeong Bae
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jeremy Thorpe
- Program in Biochemistry, Cellular and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Maxwell A Sherman
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- MIT Department of Electrical Engineering and Computer Science, Cambridge, MA, USA
| | - Attila G Jones
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sean Cho
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Present Address: Arcus Biosciences, Hayward, CA, 94545, USA
| | | | - Yanmei Dou
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Javier Ganz
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Alon Galor
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Irene Lobon
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, 08003, Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chaggai Rosenbluh
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Simone Tomasi
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Livia Tomasini
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurel L Ball
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Sara Bizzotto
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sarah B Emery
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ryan Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Yeongjun Jang
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - David Juan
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, 08003, Barcelona, Catalonia, Spain
| | - Esther Lizano
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, 08003, Barcelona, Catalonia, Spain
| | - Lovelace J Luquette
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - John B Moldovan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Rujuta Narurkar
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Matthew T Oetjens
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Rachel E Rodin
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Shobana Sekar
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
- Vall d'Hebron Institut de Recerca, 08035, Barcelona, Spain
- Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- ICREA Academia, 08010 Barcelona, Spain
| | - Richard E Straub
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Andrew Chess
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technologies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Tomas Marquès-Bonet
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, 08003, Barcelona, Catalonia, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08036, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Daniel R Weinberger
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT, 06520, USA
- Department of Neuroscience, Yale University, New Haven, 06520, CT, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Tashia and John Morgridge Faculty Scholar, Stanford Child Health Research Institute, Stanford, CA, 94305, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Ryan E Mills
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
26
|
Afsari B, Kuo A, Zhang Y, Li L, Lahouel K, Danilova L, Favorov A, Rosenquist TA, Grollman AP, Kinzler KW, Cope L, Vogelstein B, Tomasetti C. Supervised mutational signatures for obesity and other tissue-specific etiological factors in cancer. eLife 2021; 10:61082. [PMID: 33491650 PMCID: PMC7872524 DOI: 10.7554/elife.61082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/24/2021] [Indexed: 12/21/2022] Open
Abstract
Determining the etiologic basis of the mutations that are responsible for cancer is one of the fundamental challenges in modern cancer research. Different mutational processes induce different types of DNA mutations, providing 'mutational signatures' that have led to key insights into cancer etiology. The most widely used signatures for assessing genomic data are based on unsupervised patterns that are then retrospectively correlated with certain features of cancer. We show here that supervised machine-learning techniques can identify signatures, called SuperSigs, that are more predictive than those currently available. Surprisingly, we found that aging yields different SuperSigs in different tissues, and the same is true for environmental exposures. We were able to discover SuperSigs associated with obesity, the most important lifestyle factor contributing to cancer in Western populations.
Collapse
Affiliation(s)
- Bahman Afsari
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Albert Kuo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - YiFan Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Lu Li
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Kamel Lahouel
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ludmila Danilova
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, RAS, Moscow, Russian Federation
| | - Alexander Favorov
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, RAS, Moscow, Russian Federation
| | | | - Arthur P Grollman
- State University of New York at Stony Brook, Stony Brook, United States
| | - Ken W Kinzler
- Ludwig Center & Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, United States
| | - Leslie Cope
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Bert Vogelstein
- Ludwig Center & Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, United States
| | - Cristian Tomasetti
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| |
Collapse
|
27
|
UV-exposure, endogenous DNA damage, and DNA replication errors shape the spectra of genome changes in human skin. PLoS Genet 2021; 17:e1009302. [PMID: 33444353 PMCID: PMC7808690 DOI: 10.1371/journal.pgen.1009302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Human skin is continuously exposed to environmental DNA damage leading to the accumulation of somatic mutations over the lifetime of an individual. Mutagenesis in human skin cells can be also caused by endogenous DNA damage and by DNA replication errors. The contributions of these processes to the somatic mutation load in the skin of healthy humans has so far not been accurately assessed because the low numbers of mutations from current sequencing methodologies preclude the distinction between sequencing errors and true somatic genome changes. In this work, we sequenced genomes of single cell-derived clonal lineages obtained from primary skin cells of a large cohort of healthy individuals across a wide range of ages. We report here the range of mutation load and a comprehensive view of the various somatic genome changes that accumulate in skin cells. We demonstrate that UV-induced base substitutions, insertions and deletions are prominent even in sun-shielded skin. In addition, we detect accumulation of mutations due to spontaneous deamination of methylated cytosines as well as insertions and deletions characteristic of DNA replication errors in these cells. The endogenously induced somatic mutations and indels also demonstrate a linear increase with age, while UV-induced mutation load is age-independent. Finally, we show that DNA replication stalling at common fragile sites are potent sources of gross chromosomal rearrangements in human cells. Thus, somatic mutations in skin of healthy individuals reflect the interplay of environmental and endogenous factors in facilitating genome instability and carcinogenesis. Skin forms the first barrier against a variety of environmental toxins and DNA damaging agents. Additionally, DNA of skin cells suffer from endogenous damage and errors during replication. Altogether, these lesions cause a variety of genome changes resulting in disease including cancer. However, the accurate measurement of the range and complete spectrum of genome changes in healthy skin was missing due to technical or biological limitations of prior studies. We present here accurate measurements of the various types of somatic genome changes that we found in skin fibroblasts and melanocytes from 21 donors ranging in ages from 25 to 79 years, which allowed to distinguish age related from age independent changes. Our cohort contains both White and African American donors, allowing an estimation of the impacts of skin color on mutagenesis. As a result, we revealed the complete spectrum and determined the range of somatic genome changes and their etiologies in healthy human skin fibroblasts and melanocytes and highlighted molecular mechanisms underlying these changes. Therefore, our study introduces a base line for defining disease levels of genome instability in skin.
Collapse
|
28
|
Wei L, Christensen SR, Fitzgerald ME, Graham J, Hutson ND, Zhang C, Huang Z, Hu Q, Zhan F, Xie J, Zhang J, Liu S, Remenyik E, Gellen E, Colegio OR, Bax M, Xu J, Lin H, Huss WJ, Foster BA, Paragh G. Ultradeep sequencing differentiates patterns of skin clonal mutations associated with sun-exposure status and skin cancer burden. SCIENCE ADVANCES 2021; 7:eabd7703. [PMID: 33523857 PMCID: PMC7775785 DOI: 10.1126/sciadv.abd7703] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/11/2020] [Indexed: 05/02/2023]
Abstract
In ultraviolet (UV) radiation-exposed skin, mutations fuel clonal cell growth. The relationship between UV exposure and the accumulation of clonal mutations (CMs) and the correlation between CMs and skin cancer risk are largely unexplored. We characterized 450 individual-matched sun-exposed (SE) and non-SE (NE) normal human skin samples. The number and relative contribution of CMs were significantly different between SE and NE areas. Furthermore, we identified hotspots in TP53, NOTCH1, and GRM3 where mutations were significantly associated with UV exposure. In the normal skin from patients with cutaneous squamous cell carcinoma, we found that the cancer burden was associated with the UV-induced mutations, with the difference mostly conferred by the low-frequency CMs. These findings provide previously unknown information on UV's carcinogenic effect and pave the road for future development of quantitative assessment of subclinical UV damage and skin cancer risk.
Collapse
Affiliation(s)
- Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Sean R Christensen
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Megan E Fitzgerald
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - James Graham
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nicholas D Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chi Zhang
- School of Biological Sciences Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE, USA
| | - Ziyun Huang
- Department of Computer Science and Software Engineering, Penn State Erie, The Behrend College, Erie, PA, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Fenglin Zhan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- PET/CT Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, P.R. China
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Jianmin Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eva Remenyik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Gellen
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Oscar R Colegio
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michael Bax
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jinhui Xu
- Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Wendy J Huss
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
29
|
Osia B, Elango R, Kramara J, Roberts SA, Malkova A. Investigation of Break-Induced Replication in Yeast. Methods Mol Biol 2021; 2153:307-328. [PMID: 32840789 PMCID: PMC9041317 DOI: 10.1007/978-1-0716-0644-5_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Repair of double-strand DNA breaks (DSBs) is important for preserving genomic integrity and stability. Break-induced replication (BIR) is a mechanism aimed to repair one-ended double-strand DNA breaks, similar to those formed by replication fork collapse or by telomere erosion. Unlike S-phase replication, BIR is carried out by a migrating DNA bubble and is associated with conservative inheritance of newly synthesized DNA. This unusual DNA synthesis leads to high level of mutagenesis and chromosomal rearrangements during BIR. Here, we focus on several genetic and molecular methods to investigate BIR using our system in yeast Saccharomyces cerevisiae where BIR is initiated by a site-specific DNA break, and the repair involves two copies of chromosome III.
Collapse
Affiliation(s)
- Beth Osia
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology, Cancer Research Institute, Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Juraj Kramara
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
30
|
Laughery MF, Brown AJ, Bohm KA, Sivapragasam S, Morris HS, Tchmola M, Washington AD, Mitchell D, Mather S, Malc EP, Mieczkowski PA, Roberts SA, Wyrick JJ. Atypical UV Photoproducts Induce Non-canonical Mutation Classes Associated with Driver Mutations in Melanoma. Cell Rep 2020; 33:108401. [PMID: 33207206 PMCID: PMC7709870 DOI: 10.1016/j.celrep.2020.108401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/28/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Somatic mutations in skin cancers and other ultraviolet (UV)-exposed cells are typified by C>T and CC>TT substitutions at dipyrimidine sequences; however, many oncogenic “driver” mutations in melanoma do not fit this UV signature. Here, we use genome sequencing to characterize mutations in yeast repeatedly irradiated with UV light. Analysis of ~50,000 UV-induced mutations reveals abundant non-canonical mutations, including T>C, T>A, and AC>TT substitutions. These mutations display transcriptional asymmetry that is modulated by nucleotide excision repair (NER), indicating that they are caused by UV photoproducts. Using a sequencing method called UV DNA endonuclease sequencing (UVDE-seq), we confirm the existence of an atypical thymine-adenine photoproduct likely responsible for UV-induced T>A substitutions. Similar non-canonical mutations are present in skin cancers, which also display transcriptional asymmetry and dependence on NER. These include multiple driver mutations, most prominently the recurrent BRAF V600E and V600K substitutions, suggesting that mutations arising from rare, atypical UV photoproducts may play a role in melanomagenesis. UV mutagenesis has been well studied, but many driver mutations in melanoma do not fit the canonical UV signature. Using whole-genome sequencing, Laughery et al. show that UV induces a broader spectrum of mutations than anticipated. Non-canonical UV mutations are likely caused by atypical photoproducts, which may contribute to melanomagenesis.
Collapse
Affiliation(s)
- Marian F Laughery
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Alexander J Brown
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Kaitlynne A Bohm
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Haley S Morris
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Mila Tchmola
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Angelica D Washington
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Debra Mitchell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Stephen Mather
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Ewa P Malc
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
31
|
Sekar S, Tomasini L, Proukakis C, Bae T, Manlove L, Jang Y, Scuderi S, Zhou B, Kalyva M, Amiri A, Mariani J, Sedlazeck FJ, Urban AE, Vaccarino FM, Abyzov A. Complex mosaic structural variations in human fetal brains. Genome Res 2020; 30:1695-1704. [PMID: 33122304 PMCID: PMC7706730 DOI: 10.1101/gr.262667.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/12/2020] [Indexed: 11/24/2022]
Abstract
Somatic mosaicism, manifesting as single nucleotide variants (SNVs), mobile element insertions, and structural changes in the DNA, is a common phenomenon in human brain cells, with potential functional consequences. Using a clonal approach, we previously detected 200-400 mosaic SNVs per cell in three human fetal brains (15-21 wk postconception). However, structural variation in the human fetal brain has not yet been investigated. Here, we discover and validate four mosaic structural variants (SVs) in the same brains and resolve their precise breakpoints. The SVs were of kilobase scale and complex, consisting of deletion(s) and rearranged genomic fragments, which sometimes originated from different chromosomes. Sequences at the breakpoints of these rearrangements had microhomologies, suggesting their origin from replication errors. One SV was found in two clones, and we timed its origin to ∼14 wk postconception. No large scale mosaic copy number variants (CNVs) were detectable in normal fetal human brains, suggesting that previously reported megabase-scale CNVs in neurons arise at later stages of development. By reanalysis of public single nuclei data from adult brain neurons, we detected an extrachromosomal circular DNA event. Our study reveals the existence of mosaic SVs in the developing human brain, likely arising from cell proliferation during mid-neurogenesis. Although relatively rare compared to SNVs and present in ∼10% of neurons, SVs in developing human brain affect a comparable number of bases in the genome (∼6200 vs. ∼4000 bp), implying that they may have similar functional consequences.
Collapse
Affiliation(s)
- Shobana Sekar
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Livia Tomasini
- Child Study Center and Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London NW3 2PF, United Kingdom
| | - Taejeong Bae
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Logan Manlove
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Yeongjun Jang
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Soraya Scuderi
- Child Study Center and Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Bo Zhou
- Departments of Psychiatry and Genetics, Stanford University, Palo Alto, California 94305, USA
| | - Maria Kalyva
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London NW3 2PF, United Kingdom
| | - Anahita Amiri
- Child Study Center and Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Jessica Mariani
- Child Study Center and Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Alexander E Urban
- Departments of Psychiatry and Genetics, Stanford University, Palo Alto, California 94305, USA
| | - Flora M Vaccarino
- Child Study Center and Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
32
|
Klimczak LJ, Randall TA, Saini N, Li JL, Gordenin DA. Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes accumulated during the COVID-19 pandemic. PLoS One 2020; 15:e0237689. [PMID: 33006981 PMCID: PMC7531822 DOI: 10.1371/journal.pone.0237689] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Genomes of tens of thousands of SARS-CoV2 isolates have been sequenced across the world and the total number of changes (predominantly single base substitutions) in these isolates exceeds ten thousand. We compared the mutational spectrum in the new SARS-CoV-2 mutation dataset with the previously published mutation spectrum in hypermutated genomes of rubella-another positive single stranded (ss) RNA virus. Each of the rubella virus isolates arose by accumulation of hundreds of mutations during propagation in a single subject, while SARS-CoV-2 mutation spectrum represents a collection events in multiple virus isolates from individuals across the world. We found a clear similarity between the spectra of single base substitutions in rubella and in SARS-CoV-2, with C to U as well as A to G and U to C being the most prominent in plus strand genomic RNA of each virus. Of those, U to C changes universally showed preference for loops versus stems in predicted RNA secondary structure. Similarly, to what was previously reported for rubella virus, C to U changes showed enrichment in the uCn motif, which suggested a subclass of APOBEC cytidine deaminase being a source of these substitutions. We also found enrichment of several other trinucleotide-centered mutation motifs only in SARS-CoV-2-likely indicative of a mutation process characteristic to this virus. Altogether, the results of this analysis suggest that the mutation mechanisms that lead to hypermutation of the rubella vaccine virus in a rare pathological condition may also operate in the background of the SARS-CoV-2 viruses currently propagating in the human population.
Collapse
Affiliation(s)
- Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Thomas A. Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Natalie Saini
- Mechanisms of Genome Dynamics Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Dmitry A. Gordenin
- Mechanisms of Genome Dynamics Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| |
Collapse
|
33
|
Miao X, Li Y, Zheng C, Wang L, Jin C, Chen L, Mi S, Zhai W, Wang QF, Cai J. A promising iPS-based single-cell cloning strategy revealing signatures of somatic mutations in heterogeneous normal cells. Comput Struct Biotechnol J 2020; 18:2326-2335. [PMID: 32994891 PMCID: PMC7493045 DOI: 10.1016/j.csbj.2020.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
Single-cell genomics has advanced rapidly as trace-DNA amplification technologies evolved. However, current technologies are subject to a variety of pitfalls such as contamination, uneven genomic coverage, and amplification errors. Even for the "golden" strategy of single stem cell-derived clonal formation, high-fidelity amplification is applicable merely to single stem cells. It's still challenging to accurately define somatic mutations of a single cell in various cell types. Herein, we provided evidence, for the first time, to prove that induced pluripotent stem cells (iPS cells or iPSC), being a single somatic cell-derived clone, are recording almost identical (>90%) mutational profile of the initial cell progenitor. This finding demonstrates iPS technique, applicable to any cell type, can be utilized as a cell cloning strategy favorable for single-cell genomic amplification. This novel strategy is not limited by cell-type constraints or amplification artifacts, and thus enables our detailed investigation on the characteristics of somatic mutations in heterogeneous normal cells.
Collapse
Affiliation(s)
- Xuexia Miao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Yueying Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Lifei Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Jin
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangli Mi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Zhai
- Department of Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Cai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Singh VK, Rastogi A, Hu X, Wang Y, De S. Mutational signature SBS8 predominantly arises due to late replication errors in cancer. Commun Biol 2020; 3:421. [PMID: 32747711 PMCID: PMC7400754 DOI: 10.1038/s42003-020-01119-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Although a majority of somatic mutations in cancer are passengers, their mutational signatures provide mechanistic insights into mutagenesis and DNA repair processes. Mutational signature SBS8 is common in most cancers, but its etiology is debated. Incorporating genomic, epigenomic, and cellular process features for multiple cell-types we develop genome-wide composite epigenomic context-maps relevant for mutagenesis and DNA repair. Analyzing somatic mutation data from multiple cancer types in their epigenomic contexts, we show that SBS8 preferentially occurs in gene-poor, lamina-proximal, late replicating heterochromatin domains. While SBS8 is uncommon among mutations in non-malignant tissues, in tumor genomes its proportions increase with replication timing and speed, and checkpoint defects further promote this signature - suggesting that SBS8 probably arises due to uncorrected late replication errors during cancer progression. Our observations offer a potential reconciliation among different perspectives in the debate about the etiology of SBS8 and its relationship with other mutational signatures.
Collapse
Affiliation(s)
- Vinod Kumar Singh
- Rutgers Cancer Institute, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Arnav Rastogi
- Rutgers Cancer Institute, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Xiaoju Hu
- Rutgers Cancer Institute, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Yaqun Wang
- Rutgers Cancer Institute, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Subhajyoti De
- Rutgers Cancer Institute, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
35
|
Klimczak LJ, Randall TA, Saini N, Li JL, Gordenin DA. Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes accumulated during the COVID-19 pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.03.234005. [PMID: 32793907 PMCID: PMC7418721 DOI: 10.1101/2020.08.03.234005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Genomes of tens of thousands of SARS-CoV2 isolates have been sequenced across the world and the total number of changes (predominantly single base substitutions) in these isolates exceeds ten thousand. We compared the mutational spectrum in the new SARS-CoV-2 mutation dataset with the previously published mutation spectrum in hypermutated genomes of rubella - another positive single stranded (ss) RNA virus. Each of the rubella isolates arose by accumulation of hundreds of mutations during propagation in a single subject, while SARS-CoV-2 mutation spectrum represents a collection events in multiple virus isolates from individuals across the world. We found a clear similarity between the spectra of single base substitutions in rubella and in SARS-CoV-2, with C to U as well as A to G and U to C being the most prominent in plus strand genomic RNA of each virus. Of those, U to C changes universally showed preference for loops versus stems in predicted RNA secondary structure. Similarly, to what was previously reported for rubella, C to U changes showed enrichment in the uCn motif, which suggested a subclass of APOBEC cytidine deaminase being a source of these substitutions. We also found enrichment of several other trinucleotide-centered mutation motifs only in SARS-CoV-2 - likely indicative of a mutation process characteristic to this virus. Altogether, the results of this analysis suggest that the mutation mechanisms that lead to hypermutation of the rubella vaccine virus in a rare pathological condition may also operate in the background of the SARS-CoV-2 viruses currently propagating in the human population.
Collapse
|
36
|
Hodel KP, Sun MJS, Ungerleider N, Park VS, Williams LG, Bauer DL, Immethun VE, Wang J, Suo Z, Lu H, McLachlan JB, Pursell ZF. POLE Mutation Spectra Are Shaped by the Mutant Allele Identity, Its Abundance, and Mismatch Repair Status. Mol Cell 2020; 78:1166-1177.e6. [PMID: 32497495 PMCID: PMC8177757 DOI: 10.1016/j.molcel.2020.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
Human tumors with exonuclease domain mutations in the gene encoding DNA polymerase ε (POLE) have incredibly high mutation burdens. These errors arise in four unique mutation signatures occurring in different relative amounts, the etiologies of which remain poorly understood. We used CRISPR-Cas9 to engineer human cell lines expressing POLE tumor variants, with and without mismatch repair (MMR). Whole-exome sequencing of these cells after defined numbers of population doublings permitted analysis of nascent mutation accumulation. Unlike an exonuclease active site mutant that we previously characterized, POLE cancer mutants readily drive signature mutagenesis in the presence of functional MMR. Comparison of cell line and human patient data suggests that the relative abundance of mutation signatures partitions POLE tumors into distinct subgroups dependent on the nature of the POLE allele, its expression level, and MMR status. These results suggest that different POLE mutants have previously unappreciated differences in replication fidelity and mutagenesis.
Collapse
Affiliation(s)
- Karl P Hodel
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Meijuan J S Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Vivian S Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Leonard G Williams
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; BioInnovation Program, Tulane University, New Orleans, LA 70112, USA
| | - David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Victoria E Immethun
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jieqiong Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Zucai Suo
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| |
Collapse
|
37
|
Muyas F, Zapata L, Guigó R, Ossowski S. The rate and spectrum of mosaic mutations during embryogenesis revealed by RNA sequencing of 49 tissues. Genome Med 2020; 12:49. [PMID: 32460841 PMCID: PMC7254727 DOI: 10.1186/s13073-020-00746-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mosaic mutations acquired during early embryogenesis can lead to severe early-onset genetic disorders and cancer predisposition, but are often undetectable in blood samples. The rate and mutational spectrum of embryonic mosaic mutations (EMMs) have only been studied in few tissues, and their contribution to genetic disorders is unknown. Therefore, we investigated how frequent mosaic mutations occur during embryogenesis across all germ layers and tissues. METHODS Mosaic mutation detection in 49 normal tissues from 570 individuals (Genotype-Tissue Expression (GTEx) cohort) was performed using a newly developed multi-tissue, multi-individual variant calling approach for RNA-seq data. Our method allows for reliable identification of EMMs and the developmental stage during which they appeared. RESULTS The analysis of EMMs in 570 individuals revealed that newborns on average harbor 0.5-1 EMMs in the exome affecting multiple organs (1.3230 × 10-8 per nucleotide per individual), a similar frequency as reported for germline de novo mutations. Our multi-tissue, multi-individual study design allowed us to distinguish mosaic mutations acquired during different stages of embryogenesis and adult life, as well as to provide insights into the rate and spectrum of mosaic mutations. We observed that EMMs are dominated by a mutational signature associated with spontaneous deamination of methylated cytosines and the number of cell divisions. After birth, cells continue to accumulate somatic mutations, which can lead to the development of cancer. Investigation of the mutational spectrum of the gastrointestinal tract revealed a mutational pattern associated with the food-borne carcinogen aflatoxin, a signature that has so far only been reported in liver cancer. CONCLUSIONS In summary, our multi-tissue, multi-individual study reveals a surprisingly high number of embryonic mosaic mutations in coding regions, implying novel hypotheses and diagnostic procedures for investigating genetic causes of disease and cancer predisposition.
Collapse
Affiliation(s)
- Francesc Muyas
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Luis Zapata
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Roderic Guigó
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
38
|
Lodato MA, Walsh CA. Genome aging: somatic mutation in the brain links age-related decline with disease and nominates pathogenic mechanisms. Hum Mol Genet 2020; 28:R197-R206. [PMID: 31578549 DOI: 10.1093/hmg/ddz191] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/19/2022] Open
Abstract
Aging is a mysterious process, not only controlled genetically but also subject to random damage that can accumulate over time. While DNA damage and subsequent mutation in somatic cells were first proposed as drivers of aging more than 60 years ago, whether and to what degree these processes shape the neuronal genome in the human brain could not be tested until recent technological breakthroughs related to single-cell whole-genome sequencing. Indeed, somatic single-nucleotide variants (SNVs) increase with age in the human brain, in a somewhat stochastic process that may nonetheless be controlled by underlying genetic programs. Evidence from the literature suggests that in addition to demonstrated increases in somatic SNVs during aging in normal brains, somatic mutation may also play a role in late-onset, sporadic neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. In this review, we will discuss somatic mutation in the human brain, mechanisms by which somatic mutations occur and can be controlled, and how this process can impact human health.
Collapse
Affiliation(s)
- Michael A Lodato
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
39
|
Melki PN, Korenjak M, Zavadil J. Experimental investigations of carcinogen-induced mutation spectra: Innovation, challenges and future directions. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 853:503195. [PMID: 32522347 DOI: 10.1016/j.mrgentox.2020.503195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 11/18/2022]
Abstract
Recent years have witnessed an expansion of mutagenesis research focusing on experimentally modeled genome-scale mutational signatures of carcinogens and of endogenous processes. Experimental mutational signatures can explain etiologic links to patterns found in human tumors that may be linked to same exposures, and can serve as biomarkers of exposure history and may even provide insights on causality. A number of innovative exposure models have been employed and reported, based on cells cultured in monolayers or in 3-D, on organoids, induced pluripotent stem cells, non-mammalian organisms, microorganisms and rodent bioassays. Here we discuss some of the latest developments and pros and cons of these experimental systems used in mutational signature analysis. Integrative designs that bring together multiple exposure systems (in vitro, in vivo and in silico pan-cancer data mining) started emerging as powerful tools to identify robust mutational signatures of the tested cancer risk agents. We further propose that devising a new generation of cell-based models is warranted to streamline systematic testing of carcinogen effects on the cell genomes, while seeking to increasingly supplant animal with non-animal systems to address relevant ethical issues and accentuate the 3R principles. We conclude that the knowledge accumulating from the growing body of signature modelling investigations has considerable power to advance cancer etiology studies and to support cancer prevention efforts through streamlined characterization of cancer-causing agents and the recognition of their specific effects.
Collapse
Affiliation(s)
- Pamela N Melki
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France.
| |
Collapse
|
40
|
Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN, Islam SMA, Lopez-Bigas N, Klimczak LJ, McPherson JR, Morganella S, Sabarinathan R, Wheeler DA, Mustonen V, Getz G, Rozen SG, Stratton MR. The repertoire of mutational signatures in human cancer. Nature 2020; 578:94-101. [PMID: 32025018 PMCID: PMC7054213 DOI: 10.1038/s41586-020-1943-3] [Citation(s) in RCA: 2107] [Impact Index Per Article: 421.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature1. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium2 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses3-15, enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated-but distinct-DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer.
Collapse
Affiliation(s)
- Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, Department of Bioengineering, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Jaegil Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas J Haradhvala
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Mi Ni Huang
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Alvin Wei Tian Ng
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yang Wu
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Arnoud Boot
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Kyle R Covington
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Durham, NC, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, Department of Bioengineering, Moores Cancer Center, University of California, San Diego, CA, USA
| | - S M Ashiqul Islam
- Department of Cellular and Molecular Medicine, Department of Bioengineering, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences (NIEHS), Durham, NC, USA
| | - John R McPherson
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Radhakrishnan Sabarinathan
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ville Mustonen
- Department of Computer Science, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Steven G Rozen
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore.
- SingHealth, Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore.
| | | |
Collapse
|
41
|
Chen B, Shi Z, Chen Q, Shen X, Shibata D, Wen H, Wu CI. Tumorigenesis as the Paradigm of Quasi-neutral Molecular Evolution. Mol Biol Evol 2020; 36:1430-1441. [PMID: 30912799 DOI: 10.1093/molbev/msz075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the absence of both positive and negative selections, coding sequences evolve at a neutral rate (R = 1). Such a high genomic rate is generally not achievable due to the prevalence of negative selection against codon substitutions. Remarkably, somatic evolution exhibits the seemingly neutral rate R ∼ 1 across normal and cancerous tissues. Nevertheless, R ∼ 1 may also mean that positive and negative selections are both strong, but equal in intensity. We refer to this regime as quasi-neutral. Indeed, individual genes in cancer cells often evolve at a much higher, or lower, rate than R ∼ 1. Here, we show that 1) quasi-neutrality is much more likely when populations are small (N < 50); 2) stem-cell populations in single normal tissue niches, from which tumors likely emerge, have a small N (usually <50) but selection at this stage is measurable and strong; 3) when N dips below 50, selection efficacy decreases precipitously; and 4) notably, N is smaller in the stem-cell niche of the small intestine than in the colon. Hence, the ∼70-fold higher rate of phenotypic evolution (observed as cancer risk) in the latter can be explained by the greater efficacy of selection, which then leads to the fixation of more advantageous and fewer deleterious mutations in colon cancers. In conclusion, quasi-neutral evolution sheds a new light on a general evolutionary principle that helps to explain aspects of cancer evolution.
Collapse
Affiliation(s)
- Bingjie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zongkun Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qingjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xu Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Ecology and Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
42
|
Elango R, Osia B, Harcy V, Malc E, Mieczkowski PA, Roberts SA, Malkova A. Repair of base damage within break-induced replication intermediates promotes kataegis associated with chromosome rearrangements. Nucleic Acids Res 2019; 47:9666-9684. [PMID: 31392335 PMCID: PMC6765108 DOI: 10.1093/nar/gkz651] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/12/2019] [Accepted: 08/02/2019] [Indexed: 02/01/2023] Open
Abstract
Break induced replication (BIR) is a double strand break repair pathway that can promote genetic instabilities similar to those observed in cancer. Instead of a replication fork, BIR is driven by a migration bubble where asynchronous synthesis between leading and lagging strands leads to accumulation of single-stranded DNA (ssDNA) that promotes mutation. However, the details of the mechanism of mutagenesis, including the identity of the participating proteins, remain unknown. Using yeast as a model, we demonstrate that mutagenic ssDNA is formed at multiple positions along the BIR track and that Pol ζ is responsible for the majority of both spontaneous and damage-induced base substitutions during BIR. We also report that BIR creates a potent substrate for APOBEC3A (A3A) cytidine deaminase that can promote formation of mutation clusters along the entire track of BIR. Finally, we demonstrate that uracil glycosylase initiates the bypass of DNA damage induced by A3A in the context of BIR without formation of base substitutions, but instead this pathway frequently leads to chromosomal rearrangements. Together, the expression of A3A during BIR in yeast recapitulates the main features of APOBEC-induced kataegis in human cancers, suggesting that BIR might represent an important source of these hyper-mutagenic events.
Collapse
Affiliation(s)
- Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Beth Osia
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Victoria Harcy
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ewa Malc
- Department of Genetics, Lineberger Comprehensive Cancer Center and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven A Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| |
Collapse
|
43
|
Yizhak K, Aguet F, Kim J, Hess JM, Kübler K, Grimsby J, Frazer R, Zhang H, Haradhvala NJ, Rosebrock D, Livitz D, Li X, Arich-Landkof E, Shoresh N, Stewart C, Segrè AV, Branton PA, Polak P, Ardlie KG, Getz G. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 2019; 364:364/6444/eaaw0726. [PMID: 31171663 DOI: 10.1126/science.aaw0726] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
How somatic mutations accumulate in normal cells is poorly understood. A comprehensive analysis of RNA sequencing data from ~6700 samples across 29 normal tissues revealed multiple somatic variants, demonstrating that macroscopic clones can be found in many normal tissues. We found that sun-exposed skin, esophagus, and lung have a higher mutation burden than other tested tissues, which suggests that environmental factors can promote somatic mosaicism. Mutation burden was associated with both age and tissue-specific cell proliferation rate, highlighting that mutations accumulate over both time and number of cell divisions. Finally, normal tissues were found to harbor mutations in known cancer genes and hotspots. This study provides a broad view of macroscopic clonal expansion in human tissues, thus serving as a foundation for associating clonal expansion with environmental factors, aging, and risk of disease.
Collapse
Affiliation(s)
- Keren Yizhak
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jaegil Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julian M Hess
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kirsten Kübler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jonna Grimsby
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Hailei Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas J Haradhvala
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Xiao Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eila Arich-Landkof
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Noam Shoresh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ayellet V Segrè
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Philip A Branton
- Biorepositories and Biospecimen Research Branch, Cancer Diagnosis Program, National Cancer Institute, Bethesda, MD, USA
| | - Paz Polak
- Oncological Sciences, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | | | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
44
|
Dertinger SD, Totsuka Y, Bielas JH, Doherty AT, Kleinjans J, Honma M, Marchetti F, Schuler MJ, Thybaud V, White P, Yauk CL. High information content assays for genetic toxicology testing: A report of the International Workshops on Genotoxicity Testing (IWGT). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403022. [DOI: 10.1016/j.mrgentox.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
|
45
|
Steichen C, Hannoun Z, Luce E, Hauet T, Dubart-Kupperschmitt A. Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications. World J Stem Cells 2019; 11:729-747. [PMID: 31692979 PMCID: PMC6828592 DOI: 10.4252/wjsc.v11.i10.729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Ten years after the initial generation of induced pluripotent stem cells (hiPSCs) from human tissues, their potential is no longer questioned, with over 15000 publications listed on PubMed, covering various fields of research; including disease modeling, cell therapy strategies, pharmacology/toxicology screening and 3D organoid systems. However, despite evidences that the presence of mutations in hiPSCs should be a concern, publications addressing genomic integrity of these cells represent less than 1% of the literature. After a first overview of the mutation types currently reported in hiPSCs, including karyotype abnormalities, copy number variations, single point mutation as well as uniparental disomy, this review will discuss the impact of reprogramming parameters such as starting cell type and reprogramming method on the maintenance of the cellular genomic integrity. Then, a specific focus will be placed on culture conditions and subsequent differentiation protocols and how their may also trigger genomic aberrations within the cell population of interest. Finally, in a last section, the impact of genomic alterations on the possible usages of hiPSCs and their derivatives will also be exemplified and discussed. We will also discuss which techniques or combination of techniques should be used to screen for genomic abnormalities with a particular focus on the necessary quality controls and the potential alternatives.
Collapse
Affiliation(s)
- Clara Steichen
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Eléanor Luce
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Thierry Hauet
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
- Service de Biochimie, Pôle Biospharm, CHU de Poitiers, Poitiers F-86021, France
- Fédération Hospitalo-Universitaire SUPORT, CHU de Poitiers, Poitiers F-86021, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| |
Collapse
|
46
|
Sakofsky CJ, Saini N, Klimczak LJ, Chan K, Malc EP, Mieczkowski PA, Burkholder AB, Fargo D, Gordenin DA. Repair of multiple simultaneous double-strand breaks causes bursts of genome-wide clustered hypermutation. PLoS Biol 2019; 17:e3000464. [PMID: 31568516 PMCID: PMC6786661 DOI: 10.1371/journal.pbio.3000464] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/10/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022] Open
Abstract
A single cancer genome can harbor thousands of clustered mutations. Mutation signature analyses have revealed that the origin of clusters are lesions in long tracts of single-stranded (ss) DNA damaged by apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases, raising questions about molecular mechanisms that generate long ssDNA vulnerable to hypermutation. Here, we show that ssDNA intermediates formed during the repair of gamma-induced bursts of double-strand breaks (DSBs) in the presence of APOBEC3A in yeast lead to multiple APOBEC-induced clusters similar to cancer. We identified three independent pathways enabling cluster formation associated with repairing bursts of DSBs: 5′ to 3′ bidirectional resection, unidirectional resection, and break-induced replication (BIR). Analysis of millions of mutations in APOBEC-hypermutated cancer genomes revealed that cancer tolerance to formation of hypermutable ssDNA is similar to yeast and that the predominant pattern of clustered mutagenesis is the same as in resection-defective yeast, suggesting that cluster formation in cancers is driven by a BIR-like mechanism. The phenomenon of genome-wide burst of clustered mutagenesis revealed by our study can play an important role in generating somatic hypermutation in cancers as well as in noncancerous cells. This study uses yeast expressing a human cytidine deaminase to reveal simultaneous stretches of long single-strand DNA and multiple vast mutation clusters in a single eukaryotic cell repairing multiple double-strand breaks. This is reminiscent of the phenomenon of “kataegis” or hypermutation observed in cancer genomes, suggesting that a similar mechanism is involved.
Collapse
Affiliation(s)
- Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - Kin Chan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - Ewa P. Malc
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Piotr A. Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Adam B. Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - David Fargo
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
47
|
Divide and conquer: two stem cell populations in squamous epithelia, reserves and the active duty forces. Int J Oral Sci 2019; 11:26. [PMID: 31451683 PMCID: PMC6802623 DOI: 10.1038/s41368-019-0061-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/09/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Stem cells are of great interest to the scientific community due to their potential role in regenerative and rejuvenative medicine. However, their role in the aging process and carcinogenesis remains unclear. Because DNA replication in stem cells may contribute to the background mutation rate and thereby to cancer, reducing proliferation and establishing a relatively quiescent stem cell compartment has been hypothesized to limit DNA replication-associated mutagenesis. On the other hand, as the main function of stem cells is to provide daughter cells to build and maintain tissues, the idea of a quiescent stem cell compartment appears counterintuitive. Intriguing observations in mice have led to the idea of separated stem cell compartments that consist of cells with different proliferative activity. Some epithelia of short-lived rodents appear to lack quiescent stem cells. Comparing stem cells of different species and different organs (comparative stem cell biology) may allow us to elucidate the evolutionary pressures such as the balance between cancer and longevity that govern stem cell biology (evolutionary stem cell biology). The oral mucosa and its stem cells are an exciting model system to explore the characteristics of quiescent stem cells that have eluded biologists for decades.
Collapse
|
48
|
Rogozin IB, Pavlov YI, Goncearenco A, De S, Lada AG, Poliakov E, Panchenko AR, Cooper DN. Mutational signatures and mutable motifs in cancer genomes. Brief Bioinform 2019; 19:1085-1101. [PMID: 28498882 DOI: 10.1093/bib/bbx049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 12/22/2022] Open
Abstract
Cancer is a genetic disorder, meaning that a plethora of different mutations, whether somatic or germ line, underlie the etiology of the 'Emperor of Maladies'. Point mutations, chromosomal rearrangements and copy number changes, whether they have occurred spontaneously in predisposed individuals or have been induced by intrinsic or extrinsic (environmental) mutagens, lead to the activation of oncogenes and inactivation of tumor suppressor genes, thereby promoting malignancy. This scenario has now been recognized and experimentally confirmed in a wide range of different contexts. Over the past decade, a surge in available sequencing technologies has allowed the sequencing of whole genomes from liquid malignancies and solid tumors belonging to different types and stages of cancer, giving birth to the new field of cancer genomics. One of the most striking discoveries has been that cancer genomes are highly enriched with mutations of specific kinds. It has been suggested that these mutations can be classified into 'families' based on their mutational signatures. A mutational signature may be regarded as a type of base substitution (e.g. C:G to T:A) within a particular context of neighboring nucleotide sequence (the bases upstream and/or downstream of the mutation). These mutational signatures, supplemented by mutable motifs (a wider mutational context), promise to help us to understand the nature of the mutational processes that operate during tumor evolution because they represent the footprints of interactions between DNA, mutagens and the enzymes of the repair/replication/modification pathways.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - Youri I Pavlov
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, USA
| | | | | | - Artem G Lada
- Department Microbiology and Molecular Genetics, University of California, Davis, USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Institutes of Health, USA
| | | |
Collapse
|
49
|
Degtyareva NP, Saini N, Sterling JF, Placentra VC, Klimczak LJ, Gordenin DA, Doetsch PW. Mutational signatures of redox stress in yeast single-strand DNA and of aging in human mitochondrial DNA share a common feature. PLoS Biol 2019; 17:e3000263. [PMID: 31067233 PMCID: PMC6527239 DOI: 10.1371/journal.pbio.3000263] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/20/2019] [Accepted: 04/25/2019] [Indexed: 11/18/2022] Open
Abstract
Redox stress is a major hallmark of cancer. Analysis of thousands of sequenced cancer exomes and whole genomes revealed distinct mutational signatures that can be attributed to specific sources of DNA lesions. Clustered mutations discovered in several cancer genomes were linked to single-strand DNA (ssDNA) intermediates in various processes of DNA metabolism. Previously, only one clustered mutational signature had been clearly associated with a subclass of ssDNA-specific apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases. Others remain to be elucidated. We report here deciphering of the mutational spectra and mutational signature of redox stress in ssDNA of budding yeast and the signature of aging in human mitochondrial DNA. We found that the predominance of C to T substitutions is a common feature of both signatures. Measurements of the frequencies of hydrogen peroxide-induced mutations in proofreading-defective yeast mutants supported the conclusion that hydrogen peroxide-induced mutagenesis is not the result of increased DNA polymerase misincorporation errors but rather is caused by direct damage to DNA. Proteins involved in modulation of chromatin status play a significant role in prevention of redox stress-induced mutagenesis, possibly by facilitating protection through modification of chromatin structure. These findings provide an opportunity for the search and identification of the mutational signature of redox stress in cancers and in other pathological conditions and could potentially be used for informing therapeutic decisions. In addition, the discovery of such signatures that may be present in related organisms should also advance our understanding of evolution.
Collapse
Affiliation(s)
- Natalya P. Degtyareva
- Mutagenesis and DNA Repair Regulation Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Natalie Saini
- Mechanisms of Genome Dynamics Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Joan F. Sterling
- Mechanisms of Genome Dynamics Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Victoria C. Placentra
- Mutagenesis and DNA Repair Regulation Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Mechanisms of Genome Dynamics Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Paul W. Doetsch
- Mutagenesis and DNA Repair Regulation Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
Rogozin IB, Roche-Lima A, Lada AG, Belinky F, Sidorenko IA, Glazko GV, Babenko VN, Cooper DN, Pavlov YI. Nucleotide Weight Matrices Reveal Ubiquitous Mutational Footprints of AID/APOBEC Deaminases in Human Cancer Genomes. Cancers (Basel) 2019; 11:cancers11020211. [PMID: 30759888 PMCID: PMC6406962 DOI: 10.3390/cancers11020211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Cancer genomes accumulate nucleotide sequence variations that number in the tens of thousands per genome. A prominent fraction of these mutations is thought to arise as a consequence of the off-target activity of DNA/RNA editing cytosine deaminases. These enzymes, collectively called activation induced deaminase (AID)/APOBECs, deaminate cytosines located within defined DNA sequence contexts. The resulting changes of the original C:G pair in these contexts (mutational signatures) provide indirect evidence for the participation of specific cytosine deaminases in a given cancer type. The conventional method used for the analysis of mutable motifs is the consensus approach. Here, for the first time, we have adopted the frequently used weight matrix (sequence profile) approach for the analysis of mutagenesis and provide evidence for this method being a more precise descriptor of mutations than the sequence consensus approach. We confirm that while mutational footprints of APOBEC1, APOBEC3A, APOBEC3B, and APOBEC3G are prominent in many cancers, mutable motifs characteristic of the action of the humoral immune response somatic hypermutation enzyme, AID, are the most widespread feature of somatic mutation spectra attributable to deaminases in cancer genomes. Overall, the weight matrix approach reveals that somatic mutations are significantly associated with at least one AID/APOBEC mutable motif in all studied cancers.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894-6075, USA.
| | - Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities⁻RCMI Program, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936-5067.
| | - Artem G Lada
- Department Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| | - Frida Belinky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894-6075, USA.
| | | | - Galina V Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff CF14 4AY, UK.
| | - Youri I Pavlov
- Departments of Microbiology and Pathology; Biochemistry and Molecular Biology; Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198, USA.
| |
Collapse
|