1
|
Serio G, Naserian S, Fraj SB, Uzan G, Gentile C. Regenerative and Anti-Senescence Potential of Extracts from Different Parts of Black Persimmon in an In Vitro Model of Vascular Endothelium. Foods 2024; 13:3366. [PMID: 39517149 PMCID: PMC11545823 DOI: 10.3390/foods13213366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Antioxidants are essential for mitigating oxidative stress and maintaining vascular health. Endothelial colony-forming cells (ECFCs) are pivotal in endothelial regeneration and angiogenesis and serve as a model to study the diversity of endothelial cells across various organs. This study evaluated the effects of peel, pulp, and seed extracts from Diospyros digyna Jacq. fruit (black persimmon) on human cord blood-derived ECFCs (CB-ECFCs) to determine how the distinct antioxidant profiles of the fruit's different parts influence cellular functions. The extracts did not affect endothelial marker expression, cell proliferation, or nitric oxide production, indicating no cytotoxic or inflammatory effects. However, functional assays revealed that the seed extract significantly enhanced tube formation, increasing closed tubular networks by 1.5-fold. All extracts promoted cell migration, with the seed extract demonstrating the most substantial effect, surpassing even vascular endothelial growth factor (VEGF). Additionally, the seed extract exhibited the strongest reduction in cellular senescence, both before and after oxidative stress induction with H2O2. These findings underscore the potential of black persimmon extracts, especially from the seed, to enhance the regenerative capabilities of CB-ECFCs and reduce cellular senescence without affecting the normal endothelial phenotype. This positions them as promising candidates for developing endothelial cell therapies and advancing vascular regeneration.
Collapse
Affiliation(s)
- Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Sina Naserian
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France; (S.N.); (S.B.F.)
| | - Sawssen Ben Fraj
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France; (S.N.); (S.B.F.)
| | - Georges Uzan
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France; (S.N.); (S.B.F.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| |
Collapse
|
2
|
Higashi Y. Endothelial Function in Dyslipidemia: Roles of LDL-Cholesterol, HDL-Cholesterol and Triglycerides. Cells 2023; 12:1293. [PMID: 37174693 PMCID: PMC10177132 DOI: 10.3390/cells12091293] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Dyslipidemia is associated with endothelial dysfunction. Endothelial dysfunction is the initial step for atherosclerosis, resulting in cardiovascular complications. It is clinically important to break the process of endothelial dysfunction to cardiovascular complications in patients with dyslipidemia. Lipid-lowering therapy enables the improvement of endothelial function in patients with dyslipidemia. It is likely that the relationships of components of a lipid profile such as low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides with endothelial function are not simple. In this review, we focus on the roles of components of a lipid profile in endothelial function.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 743-8551, Japan; ; Tel.: +81-82-257-5831
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8553, Japan
| |
Collapse
|
3
|
Pacinella G, Ciaccio AM, Tuttolomondo A. Endothelial Dysfunction and Chronic Inflammation: The Cornerstones of Vascular Alterations in Age-Related Diseases. Int J Mol Sci 2022; 23:15722. [PMID: 36555364 PMCID: PMC9779461 DOI: 10.3390/ijms232415722] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Vascular diseases of the elderly are a topic of enormous interest in clinical practice, as they have great epidemiological significance and lead to ever-increasing healthcare expenditures. The mechanisms underlying these pathologies have been increasingly characterized over the years. It has emerged that endothelial dysfunction and chronic inflammation play a diriment role among the most relevant pathophysiological mechanisms. As one can easily imagine, various processes occur during aging, and several pathways undergo irreversible alterations that can promote the decline and aberrations that trigger the diseases above. Endothelial dysfunction and aging of circulating and resident cells are the main characteristics of the aged organism; they represent the framework within which an enormous array of molecular abnormalities occur and contribute to accelerating and perpetuating the decline of organs and tissues. Recognizing and detailing each of these dysfunctional pathways is helpful for therapeutic purposes, as it allows one to hypothesize the possibility of tailoring interventions to the damaged mechanism and hypothetically limiting the cascade of events that drive the onset of these diseases. With this paper, we have reviewed the scientific literature, analysing the pathophysiological basis of the vascular diseases of the elderly and pausing to reflect on attempts to interrupt the vicious cycle that connotes the diseases of aging, laying the groundwork for therapeutic reasoning and expanding the field of scientific research by moving from a solid foundation.
Collapse
Affiliation(s)
| | | | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
4
|
Abstract
Each year 790,000 people in the United States suffer from a myocardial infarction. This results in the permanent loss of cardiomyocytes and an irreversible loss of cardiac function. Current therapies lower mortality rates, but do not address the core pathology, which opens a pathway to step-wise heart failure. Utilizing stem cells to regenerate the dead tissue is a potential method to reverse these devastating effects. Several clinical trials have already demonstrated the safety of stem cell therapy. In this review, we highlight clinical trials, which have utilized various stem cell lineages, and discuss areas for future research.
Collapse
|
5
|
Masuyama T, Sakuma M, Waku R, Hirose S, Kitahara K, Naganuma J, Yazawa H, Toyoda S, Abe S, Nakajima T, Inoue T. Effects of switching from clopidogrel to prasugrel at the chronic phase after coronary stenting on antiplatelet action and vascular endothelial function: Switch-Pras study. Heart Vessels 2020; 36:442-451. [PMID: 33113567 PMCID: PMC7940291 DOI: 10.1007/s00380-020-01714-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 01/12/2023]
Abstract
Compared to clopidogrel, prasugrel has a lower incidence of ischemic events following percutaneous coronary intervention (PCI) because of an early reduction during the acute phase in P2Y12 reaction units (PRU). The objective of this study was to compare the antiplatelet effect and vascular endothelial function of both drugs during the chronic phase after PCI. Patients who had undergone PCI and were confirmed to have no restenosis by follow-up coronary angiography under dual anti-platelet therapy with clopidogrel (75 mg/day) and aspirin (100 mg/day) were randomized to either continue clopidogrel or switch to prasugrel (3.75 mg/day). At baseline, prior to randomization we determined the CYP2C19 genotype. At the baseline and 24 weeks after randomization, the P2Y12 reactivity unit (PRU) was measured using the VerifyNow™ P2Y12 assay. Endothelial function was evaluated by flow-mediated vasodilation (FMD) and reactive hyperemia peripheral arterial tonometry (RH-PAT), while and circulating CD34+/CD133+/CD45low progenitor cells were measured by flow cytometric analysis. Serum high-sensitivity C-reactive protein (hsCRP) level was also measured. The PRU was reduced significantly in the prasugrel group (P = 0.0008), especially in patients who were intermediate or poor metabolizers based on the CYP2C19 genotype (P < 0.0001). This reduction was not observed in the clopidogrel group. The number of CD34+/CD133+/CD45low cells increased in the clopidogrel group (P = 0.008), but not in the prasugrel group. The hsCRP, FMD and reactive hyperemia index measured by RH-PAT did not change in either group. Prasugrel is potentially better than clopidogrel for preventing thrombotic events, although clopidogrel may have an advantage over prasugrel in terms of preventing atherosclerotic events. Proper use of thienopyridine drugs based on the CYP2C19 genotype has promising clinical potential.
Collapse
Affiliation(s)
- Taiki Masuyama
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | - Ryutaro Waku
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Suguru Hirose
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Keijiro Kitahara
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Jin Naganuma
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Hiroko Yazawa
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Shichiro Abe
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Teruo Inoue
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
6
|
YİĞENOĞLU TN, BAŞCI S, ŞAHİN D, BAKIRTAŞ M, KILINC A, UNCU ULU B, BATGİ H, İSKENDER D, OZCAN N, KIZIL ÇAKIR M, DAL S, HACIBEKİROĞLU T, ALTUNTAŞ F. The effect of smoking on stem cell mobilization in allogeneic donors. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2020. [DOI: 10.32322/jhsm.729505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Emmi G, Mannucci A, Argento FR, Silvestri E, Vaglio A, Bettiol A, Fanelli A, Stefani L, Taddei N, Prisco D, Fiorillo C, Becatti M. Stem-Cell-Derived Circulating Progenitors Dysfunction in Behçet's Syndrome Patients Correlates With Oxidative Stress. Front Immunol 2019; 10:2877. [PMID: 31921141 PMCID: PMC6923242 DOI: 10.3389/fimmu.2019.02877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022] Open
Abstract
Behçet's syndrome (BS) is a systemic vasculitis considered as the prototype of a systemic inflammation-induced thrombotic condition whose pathogenesis cannot be explained just by coagulation abnormalities. Circulating hematopoietic progenitor cells (CPC), a population of rare, pre-differentiated adult stem cells originating in the bone marrow and capable of both self-renewal and multi-lineage differentiation, are mobilized in response to vascular injury and play a key role in tissue repair. In cardiovascular and thrombotic diseases, low circulating CPC number and reduced CPC function have been observed. Oxidative stress may be one of the relevant culprits that account for the dysfunctional and numerically reduced CPC in these conditions. However, the detailed mechanisms underlying CPC number reduction are unknown. On this background, the present study was designed to evaluate for the first time the possible relationship between CPC dysfunction and oxidative stress in BS patients. In BS patients, we found signs of plasma oxidative stress and significantly lower CD34+/CD45−/dim and CD34+/CD45−/dim/CD133+ CPC levels. Importantly, in all the considered CPC subsets, significantly higher ROS levels with respect to controls were observed. Higher levels of caspase-3 activity in all the considered CPC population and a strong reduction in GSH content in CPC subpopulation from BS patients with respect to controls were also observed. Interestingly, in BS patients, ROS significantly correlated with CPC number and CPC caspase-3 activity and CPC GSH content significantly correlated with CPC number, in all CPC subsets. Collectively, these data demonstrate for the first time that CPC from BS patients show signs of oxidative stress and apoptosis and that a reduced CPC number is present in BS patients with respect to controls. Interestingly, we observed an inverse correlation between circulating CPC number and CPC ROS production, suggesting a possible toxic ROS effect on CPC in BS patients. The significant correlations between ROS production/GSH content and caspase-3 activity point out that oxidative stress can represent a determinant in the onset of apoptosis in CPC. These data support the hypothesis that oxidative-stress-mediated CPC dysfunctioning may counteract their vascular repair actions, thereby contributing to the pathogenesis and the progression of vascular disease in BS.
Collapse
Affiliation(s)
- Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Augusto Vaglio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Alessandra Fanelli
- Central Laboratory, Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Laura Stefani
- Department of Clinical and Experimental Medicine, Center of Sports Medicine, University of Firenze, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| |
Collapse
|
8
|
Otto M, Blatt S, Pabst A, Mandic R, Schwarz J, Neff A, Ziebart T. Influence of buffy coat-derived putative endothelial progenitor cells on tumor growth and neovascularization in oral squamous cell carcinoma xenografts. Clin Oral Investig 2019; 23:3767-3775. [PMID: 30693401 DOI: 10.1007/s00784-019-02806-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this murine in vivo study was to investigate whether buffy coat-derived putative endothelial progenitor cells (BCEPC) alter tumor growth and neovascularization in oral squamous cell carcinomas (OSCC). MATERIALS AND METHODS A murine xenograft model using the PCI-13 oral cancer cell line was deployed of which n = 24 animals received 2 × 106 BCEPC by transfusion whereas the control group (n = 24) received NaCl (0.9%) instead. Tumor size, volume, and capillary density were determined by sonography and measurement with a caliper. Immunohistochemical analysis was carried out with antibodies specific for Cytokeratins, Flt-4, Podoplanin, and Vimentin. RESULTS In the experimental group, systemic application of BCEPC significantly increased tumor volume to 362.49% (p = 0.0012) and weight to 352.38% (p = 0.0018) as well as vascular densities to 162.15% (p = 0.0021) compared with control tumors. In addition, BCEPC-treated xenografts exhibited higher Cytokeratin expression levels by a factor of 1.47 (p = 0.0417), Podoplanin by a factor of 3.3 (p = 0.0020) and Vimentin by a factor of 2.5 (p = 0.0001), respectively. CONCLUSIONS Immunohistochemical investigations support the notion that BCEPC transfusion influences neovascularization and lymphatic vessel density, thereby possibly promoting tumor progression. Future studies, which will include gene expression analysis, should help to define the possible role of BCEPC during OSCC progression in more detail. CLINICAL RELEVANCE Endothelial progenitor cells (EPCs) could serve as a target structure for the treatment of OSCC and possibly other solid tumors.
Collapse
Affiliation(s)
- Marius Otto
- Interdisciplinary Head & Neck Oncology Laboratory, Department for Oral and Maxillofacial Surgery, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, D-35033, Marburg, Germany
| | - Sebastian Blatt
- Clinic for Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Andreas Pabst
- Clinic for Oral and Maxillofacial Surgery, Federal Armed Forces Hospital Koblenz, Koblenz, Germany
| | - Robert Mandic
- Interdisciplinary Head & Neck Oncology Laboratory, Department of Otolaryngology, Head & Neck Surgery, University Hospital Marburg, Marburg, Germany
| | - Johanna Schwarz
- Department of Mathematics and Computer Science, Research Group for Bioinformatics, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Neff
- Interdisciplinary Head & Neck Oncology Laboratory, Department for Oral and Maxillofacial Surgery, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, D-35033, Marburg, Germany
| | - Thomas Ziebart
- Interdisciplinary Head & Neck Oncology Laboratory, Department for Oral and Maxillofacial Surgery, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, D-35033, Marburg, Germany.
| |
Collapse
|
9
|
ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors' Angiogenic Potential and Homing Ability. Shock 2018; 46:390-7. [PMID: 27172159 DOI: 10.1097/shk.0000000000000606] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alternate erythropoietin (EPO)-mediated signaling via the EPOR/CD131 heteromeric receptor exerts the tissue-protective actions of EPO in a wide spectrum of injuries, especially ischemic diseases. Circulating endothelial progenitor cells contribute to endothelial repair and post-natal angiogenesis after chronic ischemic injury. This work aims to investigate the effects of ARA290, a specific agonist of EPOR/CD131 complex, on a subpopulation of endothelial progenitor cells named endothelial colony-forming cells (ECFCs) and to characterize its contribution to ECFCs-induced angiogenesis after peripheral ischemia. METHODS ARA290 effects on ECFCs properties were studied using cell cultures in vitro. We injected ARA290 to mice undergoing chronic hindlimb ischemia (CLI) in combination with ECFC transplantation. The homing of transplanted ECFC to ischemic tissue in vivo was assessed by SPECT/CT imaging. RESULTS In vitro, ARA290 enhanced the proliferation, migration, and resistance to H2O2-induced apoptosis of ECFCs. After ECFC transplantation to mice with CLI, a single ARA290 injection enhanced the ischemic/non-ischemic ratio of hindlimb blood flow and capillary density after 28 days and the homing of radiolabeled transplanted cells to the ischemic leg 4 h after transplantation. Prior neutralization of platelet-endothelial cell adhesion molecule-1 (CD31) expressed by the transplanted cells inhibited ARA290-induced improvement of homing. DISCUSSION ARA290 induces specific improvement of the biological activity of ECFCs. ARA290 administration in combination with ECFCs has a synergistic effect on post-ischemic angiogenesis in vivo. This potentiation appears to rely, at least in part, on a CD31-dependent increase in homing of the transplanted cells to the ischemic tissue.
Collapse
|
10
|
Devetzi M, Goulielmaki M, Khoury N, Spandidos DA, Sotiropoulou G, Christodoulou I, Zoumpourlis V. Genetically‑modified stem cells in treatment of human diseases: Tissue kallikrein (KLK1)‑based targeted therapy (Review). Int J Mol Med 2018; 41:1177-1186. [PMID: 29328364 PMCID: PMC5819898 DOI: 10.3892/ijmm.2018.3361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
The tissue kallikrein-kinin system (KKS) is an endogenous multiprotein metabolic cascade which is implicated in the homeostasis of the cardiovascular, renal and central nervous system. Human tissue kallikrein (KLK1) is a serine protease, component of the KKS that has been demonstrated to exert pleiotropic beneficial effects in protection from tissue injury through its anti-inflammatory, anti-apoptotic, anti-fibrotic and anti-oxidative actions. Mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs) constitute populations of well-characterized, readily obtainable multipotent cells with special immunomodulatory, migratory and paracrine properties rendering them appealing potential therapeutics in experimental animal models of various diseases. Genetic modification enhances their inherent properties. MSCs or EPCs are competent cellular vehicles for drug and/or gene delivery in the targeted treatment of diseases. KLK1 gene delivery using adenoviral vectors or KLK1 protein infusion into injured tissues of animal models has provided particularly encouraging results in attenuating or reversing myocardial, renal and cerebrovascular ischemic phenotype and tissue damage, thus paving the way for the administration of genetically modified MSCs or EPCs with the human tissue KLK1 gene. Engraftment of KLK1-modified MSCs and/or KLK1-modified EPCs resulted in advanced beneficial outcome regarding heart and kidney protection and recovery from ischemic insults. Collectively, findings from pre-clinical studies raise the possibility that tissue KLK1 may be a novel future therapeutic target in the treatment of a wide range of cardiovascular, cerebrovascular and renal disorders.
Collapse
Affiliation(s)
- Marina Devetzi
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Nicolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
11
|
Chao J, Li P, Chao L. Kallistatin: double-edged role in angiogenesis, apoptosis and oxidative stress. Biol Chem 2017; 398:1309-1317. [DOI: 10.1515/hsz-2017-0180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023]
Abstract
AbstractKallistatin, via its two structural elements – an active site and a heparin-binding domain – displays a double-edged function in angiogenesis, apoptosis and oxidative stress. First, kallistatin has both anti-angiogenic and pro-angiogenic effects. Kallistatin treatment attenuates angiogenesis and tumor growth in cancer-bearing mice. Kallistatin via its heparin-binding site inhibits angiogenesis by blocking vascular endothelial growth factor (VEGF)-induced growth, migration and adhesion of endothelial cells. Conversely, kallistatin via the active site promotes neovascularization by stimulating VEGF levels in endothelial progenitor cells. Second, kallistatin inhibits or induces apoptosis depending on cell types. Kallistatin attenuates organ injury and apoptosis in animal models, and its heparin-binding site is essential for blocking tumor necrosis factor (TNF)-α-induced apoptosis in endothelial cells. However, kallistatin via its active site induces apoptosis in breast cancer cells by up-regulating miR-34a and down-regulating miR-21 and miR-203 synthesis. Third, kallistatin can act as an antioxidant or pro-oxidant. Kallistatin treatment inhibits oxidative stress and tissue damage in animal models and cultured cells. Kallistatin via the heparin-binding domain antagonizes TNF-α-induced oxidative stress, whereas its active site is crucial for stimulating antioxidant enzyme expression. In contrast, kallistatin provokes oxidant formation, leading to blood pressure reduction and bacterial killing. Kallistatin-mediated vasodilation is partly mediated by H2O2, as the effect is abolished by the antioxidant enzyme catalase. Moreover, kallistatin exerts a bactericidal effect by stimulating superoxide production in neutrophils of mice with microbial infection as well as in cultured immune cells. Thus, kallistatin’s dual roles in angiogenesis, apoptosis and oxidative stress contribute to its beneficial effects in various diseases.
Collapse
|
12
|
Mandraffino G, Cairo V, Saitta A. Current challenges on circulating progenitor cells: Could their number predict oncoming diseases? Atherosclerosis 2017; 261:153-154. [PMID: 28389015 DOI: 10.1016/j.atherosclerosis.2017.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Valentina Cairo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
13
|
Hao M, Wang R, Wang W. Cell Therapies in Cardiomyopathy: Current Status of Clinical Trials. Anal Cell Pathol (Amst) 2017; 2017:9404057. [PMID: 28194324 PMCID: PMC5282433 DOI: 10.1155/2017/9404057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/28/2022] Open
Abstract
Because the human heart has limited potential for regeneration, the loss of cardiomyocytes during cardiac myopathy and ischaemic injury can result in heart failure and death. Stem cell therapy has emerged as a promising strategy for the treatment of dead myocardium, directly or indirectly, and seems to offer functional benefits to patients. The ideal candidate donor cell for myocardial reconstitution is a stem-like cell that can be easily obtained, has a robust proliferation capacity and a low risk of tumour formation and immune rejection, differentiates into functionally normal cardiomyocytes, and is suitable for minimally invasive clinical transplantation. The ultimate goal of cardiac repair is to regenerate functionally viable myocardium after myocardial infarction (MI) to prevent or heal heart failure. This review provides a comprehensive overview of treatment with stem-like cells in preclinical and clinical studies to assess the feasibility and efficacy of this novel therapeutic strategy in ischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Ming Hao
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| | - Richard Wang
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| | - Wen Wang
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| |
Collapse
|
14
|
Peixiao S, Ningyuan F, Haiya W. Lercanidipine effect on circulating CD34+ progenitor cells in elderly patients: a randomized study. Curr Med Res Opin 2016; 32:9-12. [PMID: 27779456 DOI: 10.1080/03007995.2016.1218834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This randomized study evaluates the effects of lercanidipine - as well as its antihypertensive efficacy - on the number of circulating endothelial progenitor cells (EPCs) in elderly patients with hypertension. RESEARCH DESIGN AND METHODS In total, 61 patients with hypertension were randomly assigned to lercanidipine 10 mg/day or to other antihypertensive treatments (control group). MAIN OUTCOME MEASURES Cytometry analysis was conducted at baseline, at 12 weeks and at 24 weeks. Routine clinical examination was also performed. RESULTS Overall, the number of circulating EPCs had already significantly increased with lercanidipine, compared with baseline values, after 12 weeks; this increase was sustained until the end of the study. On the other hand, the number of circulating EPCs remained stable in the control group throughout the study period. At 12 weeks, a significant reduction in blood pressure, compared with baseline values, was observed in both groups. Regression analysis showed a significant negative correlation between systolic blood pressure and the number of circulating EPCs. CONCLUSIONS Although the limited number of patients and the short follow-up hamper the analysis, this study suggests that lercanidipine may increase EPC concentration independently from its anti-hypertensive effect.
Collapse
Affiliation(s)
- Shen Peixiao
- a Department of Geratology , Renji Hospital Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Fang Ningyuan
- a Department of Geratology , Renji Hospital Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Wang Haiya
- a Department of Geratology , Renji Hospital Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
15
|
Affiliation(s)
- Julie Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.).
| | - Grant Bledsoe
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| | - Lee Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| |
Collapse
|
16
|
Significance of endothelial progenitor cells (EPC) for tumorigenesis of head and neck squamous cell carcinoma (HNSCC): possible marker of tumor progression and neovascularization? Clin Oral Investig 2016; 20:2293-2300. [PMID: 26993659 DOI: 10.1007/s00784-016-1785-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/04/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Angiogenesis and neovascularisation plays a crucial role for tumorigenesis and tumor progression in head and neck squamous cell carcinoma (HNSCC). The aim of our study was to investigate the neovascularization capacity by endothelial progenitor cells (EPC) in tumor patient as a possible predictor for tumor progression and tumor stage. MATERIALS AND METHODS Therefore, we investigated the cell number and biologic activity by cell migration and colony-forming ability of EPC. Cells were isolated from the peripheral venous blood of 79 patients who suffer HNSCC in different stages of disease. Thirty-three healthy individuals served as the control group. RESULTS Significantly increased biological activities were reflected by expression of the migration rate (1027 ± 1510) in comparison to the control group (632 ± 269) and the clonal potency measured by colony-forming unit (CFU) (tumor patients (19.7 ± 12.3) vs. control group (10.84 ± 4.8)). To determine whether or not EPC number can be used as a valid prognostic marker for clinical outcome of tumor patients, we furthermore compared a "high EPC-number-subgroup" (HI) with a "low EPC-number-subgroup" (LO) in a Kaplan-Meier survival curve. The HI-subgroup shows herein clearly a worse outcome. CONCLUSIONS Our findings indicate a possible pathway for EPC to play a critical role in the vasculogenesis and consequently in the progression of HNSCC. CLINICAL RELEVANCE Our findings could serve as possible predictors for the neovascularisation potential in HNSCC tumor patients.
Collapse
|
17
|
Statins, HMG-CoA Reductase Inhibitors, Improve Neovascularization by Increasing the Expression Density of CXCR4 in Endothelial Progenitor Cells. PLoS One 2015; 10:e0136405. [PMID: 26309120 PMCID: PMC4550447 DOI: 10.1371/journal.pone.0136405] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 08/04/2015] [Indexed: 01/19/2023] Open
Abstract
Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, are used to reduce cholesterol biosynthesis in the liver. Accordingly, statins regulate nitric oxide (NO) and glutamate metabolism, inflammation, angiogenesis, immunity and endothelial progenitor cells (EPCs) functions. The function of EPCs are regulated by stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β), etc. Even though the pharmacologic mechanisms by which statins affect the neovasculogenesis of circulating EPCs, it is still unknown whether statins affect the EPCs function through the regulation of CXCR4, a SDF-1 receptor expression. Therefore, we desired to explore the effects of statins on CXCR4 expression in EPC-mediated neovascularization by in vitro and in vivo analyses. In animal studies, we analyzed the effects of atorvastatin or rosuvastatin treatments in recovery of capillary density and blood flow, the expression of vWF and CXCR4 at ischemia sites in hindlimb ischemia ICR mice. Additionally, we analyzed whether the atorvastatin or rosuvastatin treatments increased the mobilization, homing, and CXCR4 expression of EPCs in hindlimb ischemia ICR mice that underwent bone marrow transplantation. The results indicated that statins treatment led to significantly more CXCR4-positive endothelial progenitor cells incorporated into ischemic sites and in the blood compared with control mice. In vivo, we isolated human EPCs and analyzed the effect of statins treatment on the vasculogenic ability of EPCs and the expression of CXCR4. Compared with the control groups, the neovascularization ability of EPCs was significantly improved in the atorvastatin or rosuvastatin group; this improvement was dependent on CXCR4 up-regulation. The efficacy of statins on improving EPC neovascularization was related to the SDF-1α/CXCR4 axis and might be regulated by the NO. In conclusion, atorvastatin and rosuvastatin improved neovascularization in hindlimb ischemia mice; this effect may have been mediated by increased CXCR4 expression in EPCs.
Collapse
|
18
|
Gong X, Shao L, Fu YM, Zou Y. Effects of olmesartan on endothelial progenitor cell mobilization and function in carotid atherosclerosis. Med Sci Monit 2015; 21:1189-93. [PMID: 25913171 PMCID: PMC4422112 DOI: 10.12659/msm.892996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Olmesartan is a type of angiotensin II receptor inhibitor that can reduce the incidence of cardiovascular events. However, its role in the function of endothelial progenitor cells in atherosclerosis patients is still unclear. Our study aimed to explore the effects and mechanism of olmesartan on endothelial progenitor cell mobilization and function in carotid atherosclerosis. MATERIAL/METHODS Forty carotid atherosclerosis patients were enrolled. Patients were administrated olmesartan 20 mg/day for 3 months. Flow cytometry was used for counting circulating endothelial progenitor cells; colorimetric method was used to measure the serum levels of endothelial nitric oxide synthase and nitric oxide. Cell migration, adhesion, and proliferation capacity, and related signaling pathway were also analyzed. Spearman rank correlation analysis was used to investigate the influence of olmesartan on endothelial progenitor cells and clinical characteristics (e.g., sex, age, blood pressure). RESULTS Compared with the control group, the number of circulating endothelial progenitor cells was significantly decreased. Olmesartan can increase circulating endothelial progenitor cells number and the serum levels of eNOS and NO. Furthermore, it can improve cell migration, adhesion, and proliferation capacities. Spearman rank correlation analysis showed there is no relationship between olmesartan promotion effects on endothelial progenitor cell mobilization and the clinical characteristics (P>0.05). P-eNOS and P-Akt expression can be unregulated by RNH-6270 treatment and blocked by LY294002. CONCLUSIONS Olmesartan can effectively promote the endothelial progenitor cells mobilization and improve their function in patients with carotid atherosclerosis, independent of basic characteristics. This process relies on the PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Xin Gong
- Department of Health Care, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Li Shao
- Department of Health Care, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Yi-Min Fu
- Department of Health Care, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Yong Zou
- Department of Health Care, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| |
Collapse
|
19
|
Teplan V, Mahrová A, Králová-Lesná I, Racek J, Valkovský I, Štollová M. Endothelial Progenitor Cells and Asymmetric Dimethylarginine After Renal Transplantation. J Ren Nutr 2015; 25:247-9. [DOI: 10.1053/j.jrn.2014.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/29/2014] [Indexed: 01/26/2023] Open
|
20
|
Li F, Tan YS, Chen HL, Yan Y, Zhai KF, Li DP, Kou JP, Yu BY. Identification of schisandrin as a vascular endothelium protective component in YiQiFuMai Powder Injection using HUVECs binding and HPLC-DAD-Q-TOF-MS/MS analysis. J Pharmacol Sci 2015; 129:1-8. [PMID: 26452526 DOI: 10.1016/j.jphs.2015.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 01/26/2023] Open
Abstract
YiQiFuMai Powder Injection (YQFM) is a re-developed preparation based on the well-known traditional Chinese medicine formula Sheng-mai-san. It has been widely used for the treatment of cardiovascular disease with definite clinical efficacy in China, but its bioactive molecules remain obscure. In this study, an effective method has been employed as a tool for screening active components in YQFM, using human umbilical vein endothelial cells (HUVECs) extraction and liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS). Nine compounds, which could interact with HUVECs, were identified as ginsenosides Rb1, Rc, Rb2, Rd, 20(S)-Rg3, 20(R)-Rg3, Rk1/Rg5 and schisandrin by comparing with reference substances or literature. In vitro assays showed that schisandrin at concentrations of 10-100 μM protected HUVECs from hypoxia/reoxygenation (H/R) injury, increased cell viability, nitric oxide (NO) content and decreased lactate dehydrogenase (LDH) leakage, malonaldehyde (MDA) content and ROS generation. Moreover, schisandrin pretreatment inhibited cell apoptosis, as evidenced by inhibiting activation of caspase-3 and increasing the Bcl-2/Bax ratio. These data indicate that HUVECs biospecific extraction coupled with HPLC-ESI-Q-TOF-MS/MS analysis is a reliable method for screening potential bioactive components from traditional Chinese medicines. Meanwhile, the vascular endothelium protective property of schisandrin might be beneficial for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China
| | - Yi-Sha Tan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China
| | - Hong-Lin Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China
| | - Yan Yan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China
| | - Ke-Feng Zhai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China
| | - Da-Peng Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China
| | - Jun-Ping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China.
| |
Collapse
|
21
|
Di Stefano R, Felice F, Pini S, Mazzotta G, Bovenzi FM, Bertoli D, Abelli M, Borelli L, Cardini A, Lari L, Gesi C, Muccignat A, Oligeri C, Michi P, Balbarini A. Impact of depression on circulating endothelial progenitor cells in patients with acute coronary syndromes: a pilot study. J Cardiovasc Med (Hagerstown) 2014; 15:353-9. [PMID: 24685963 DOI: 10.2459/jcm.0b013e328365c195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS Depression has been identified as a risk factor for an adverse prognosis and reduced survival in patients with acute coronary syndrome (ACS). The number of endothelial progenitor cells (EPCs) is an independent predictor of clinical outcomes in patients with ACS. The aim of this study was to evaluate the impact of depression on EPC levels in patients with ACS. METHODS Out of 74 ACS patients [23 non-ST-segment elevation myocardial infarction (NSTEMI), 48 STEMI], 36 had a diagnosis of major depressive episode (MDE) according to the Diagnostic and Statistical Manual of Mental Disorders 4th edition (DSM-IV) criteria at the time of the inclusion in the study. Control groups were as follows: 15 healthy individuals and 18 patients with current MDE without a history of cardiovascular diseases. EPCs were defined as CD34CD133KDR and evaluated by flow cytometry. All patients underwent standardized cardiological and psychopathological evaluations. Parametric and nonparametric statistical tests were performed wherever appropriate. RESULTS ACS patients with MDE showed a significant decrease in circulating EPC number compared with ACS patients without MDE (P < 0.001). The ACS study population was then subdivided into STEMI and NSTEMI groups, and within each group patients with MDE again showed a significant decrease in circulating CD34CD133KDR EPCs compared with others (P <0.001). CONCLUSION We showed that ACS patients with MDE have a reduced number of circulating CD34CD133KDR cells compared with ACS patients without MDE, suggesting that the presence of MDE reduces the response of bone marrow to acute ischemic events. Considering the reparative role of EPCs in ACS patients, we propose that patients with MDE might be protected less than patients without MDE.
Collapse
Affiliation(s)
- Rossella Di Stefano
- aDepartment of Surgical, Medical and Molecular Pathology and Critic Area bDepartment of Clinical and Experimental Medicine, Psychiatry Sector, University of Pisa, Pisa cUnit of Cardiology, Ospedale S. Andrea, La Spezia dCardio-Respiratory Department, Ospedale Campo di Marte, Lucca eUnit of Cardiology, USL5 Sarzana (SP), Italy *Rossella Di Stefano and Francesca Felice contributed equally to the writing of this article
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Teplan V, Králová Lesná I, Piťha J, Mahrová A, Racek J, Valkovský I, Sekerková A, Štollová M. Asymmetric dimethylarginine and endothelial progenitor cells after renal transplantation: the effect of exercise training. Physiol Res 2014; 63:S411-7. [PMID: 25428747 DOI: 10.33549/physiolres.932886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Level of asymmetric dimethylarginine (ADMA) is elevated and endothelial progenitor cells (EPC) and stem cells (SC) are decreased in patients undergoing renal transplantation (Tx) and may contribute to cardiovascular complications. We tested the hypothesis that ADMA, EPC and SC can be influenced with regular physical exercise early after Tx. Blood samples of ADMA, EPC, SC, adipocytokines and metabolic parameters were randomly obtained from 50 transplant patients before and 6 months after exercise program (Group I). Fifty age, sex, HLA typing, duration of dialysis and immunosupression regimen-matched non exercising transplant were examined as controls (Group II). After 6 months, in Group I ADMA decreased (3.50+/-0.45 vs 2.11+/-0.35 micromol/l, P<0.01) and was lower comparing to Group II (P<0.01), SC and EPC also decreased (2816+/-600 vs 2071+/-480 cells/ml resp. 194+/-87 to 125+/-67 cells/ml, P<0.02). Next changes in Group I: adiponectin (P<0.01), leptin (P<0.01), resistin (P<0.02). Visfatin, blood lipids, HbA1c, insulin and blood pressure were also influenced by training program (P<0.05).
Collapse
Affiliation(s)
- V Teplan
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Circulating endothelial progenitor cell: a promising biomarker in clinical oncology. Med Oncol 2014; 32:332. [PMID: 25428376 DOI: 10.1007/s12032-014-0332-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022]
Abstract
Human cancers are endowed with sustained vascularization capability, and their growth, invasion, and metastasis are vascularization dependent. Recently, accumulated body of evidence suggests that endothelial progenitor cells (EPCs) can support vasculogenesis and induce angiogenesis through paracrine mechanisms. In addition, numerous clinical studies have revealed the increase in the number of EPCs in the peripheral blood of cancer patients and demonstrated the correlation of circulating EPCs (CEPCs) with the clinical outcomes. This review highlights current enrichment procedures and methods for the detection of CEPCs and different biomarkers to identify CEPCs as well as the functions of EPCs in tumor vascularization. Furthermore, we systematically review available studies on the clinical relevance of CEPCs in cancer patients to explore the potential diagnostic and prognostic values of CEPCs. Although several contrasting results exist, CEPCs can conceivably serve as a promising biomarker for the early diagnosis, prognosis prediction, and treatment response indication in the future. Additionally, further well-designed clinical studies with larger sample size and unique, specific enumeration procedures are warranted to achieve further insight into the clinical implications of CEPCs.
Collapse
|
24
|
Difference in mobilization of progenitor cells after myocardial infarction in smoking versus non-smoking patients: insights from the BONAMI trial. Stem Cell Res Ther 2014; 4:152. [PMID: 24423369 PMCID: PMC4054959 DOI: 10.1186/scrt382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/14/2013] [Accepted: 12/10/2013] [Indexed: 01/15/2023] Open
Abstract
Introduction Although autologous bone marrow cell (BMC) therapy has emerged as a promising treatment for acute myocardial infarction (AMI), trials reported mixed results. In the BONAMI trial, active smoking reduced cardiac function recovery after reperfused AMI. Therefore, we hypothesized that variability in the functionality of BMCs retrieved from patients with cardiovascular risk factors may partly explain these mixed results. We investigated the characteristics of progenitor cells in active smokers and non-smokers with AMI and their potential impact on BMC therapy efficacy. Methods Bone marrow and blood samples from 54 smoking and 47 non-smoking patients enrolled in the BONAMI cell therapy trial were analyzed. Results The white BMC and CD45dimCD34+ cell numbers were higher in active smokers (P = 0.001, P = 0.03, respectively). In marked contrast, either bone marrow or blood endothelial progenitor CD45dimCD34 + KDR + cells (EPCs) were decreased in active smokers (P = 0.005, P = 0.04, respectively). Importantly, a multivariate analysis including cardiovascular risk factors confirmed the association between active smoking and lower EPC number in bone marrow (P = 0.04) and blood (P = 0.04). Furthermore, baseline circulating EPC count predicted infarct size decrease at three months post-AMI in non-smokers (P = 0.01) but not in active smokers. Interestingly, baseline circulating EPCs were no longer predictive of cardiac function improvement in the BMC therapy group. Conclusions These data suggest that circulating EPCs play an important role in cardiac repair post-AMI only in non-smokers and that active smoking-associated EPC alterations may participate in the impairment of cardiac function recovery observed in smokers after AMI, an effect that was overridden by BMC therapy.
Collapse
|
25
|
Chao J, Bledsoe G, Chao L. Kallikrein-kinin in stem cell therapy. World J Stem Cells 2014; 6:448-457. [PMID: 25258666 PMCID: PMC4172673 DOI: 10.4252/wjsc.v6.i4.448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
The tissue kallikrein-kinin system exerts a wide spectrum of biological activities in the cardiovascular, renal and central nervous systems. Tissue kallikrein-kinin modulates the proliferation, viability, mobility and functional activity of certain stem cell populations, namely mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), mononuclear cell subsets and neural stem cells. Stimulation of these stem cells by tissue kallikrein-kinin may lead to protection against renal, cardiovascular and neural damage by inhibiting apoptosis, inflammation, fibrosis and oxidative stress and promoting neovascularization. Moreover, MSCs and EPCs genetically modified with tissue kallikrein are resistant to hypoxia- and oxidative stress-induced apoptosis, and offer enhanced protective actions in animal models of heart and kidney injury and hindlimb ischemia. In addition, activation of the plasma kallikrein-kinin system promotes EPC recruitment to the inflamed synovium of arthritic rats. Conversely, cleaved high molecular weight kininogen, a product of plasma kallikrein, reduces the viability and vasculogenic activity of EPCs. Therefore, kallikrein-kinin provides a new approach in enhancing the efficacy of stem cell therapy for human diseases.
Collapse
|
26
|
Gao L, Li P, Zhang J, Hagiwara M, Shen B, Bledsoe G, Chang E, Chao L, Chao J. Novel role of kallistatin in vascular repair by promoting mobility, viability, and function of endothelial progenitor cells. J Am Heart Assoc 2014; 3:e001194. [PMID: 25237049 PMCID: PMC4323828 DOI: 10.1161/jaha.114.001194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Kallistatin exerts pleiotropic activities in inhibiting inflammation, apoptosis, and oxidative stress in endothelial cells. Because endothelial progenitor cells (EPCs) play a significant role in vascular repair, we investigated whether kallistatin contributes to vascular regeneration by enhancing EPC migration and function. Methods and Results We examined the effect of endogenous kallistatin on circulating EPCs in a rat model of vascular injury and the mechanisms of kallistatin on EPC mobility and function in vitro. In deoxycorticosterone acetate–salt hypertensive rats, we found that kallistatin depletion augmented glomerular endothelial cell loss and diminished circulating EPC number, whereas kallistatin gene delivery increased EPC levels. In cultured EPCs, kallistatin significantly reduced tumor necrosis factor‐α–induced apoptosis and caspase‐3 activity, but kallistatin's effects were blocked by phosphoinositide 3‐kinase inhibitor (LY294002) and nitric oxide (NO) synthase inhibitor (l‐NAME). Kallistatin stimulated the proliferation, migration, adhesion and tube formation of EPCs; however, kallistatin's actions were abolished by LY294002, l‐NAME, endothelial NO synthase–small interfering RNA, constitutively active glycogen synthase kinase‐3β, or vascular endothelial growth factor antibody. Kallistatin also increased Akt, glycogen synthase kinase‐3β, and endothelial NO synthase phosphorylation; endothelial NO synthase, vascular endothelial growth factor, and matrix metalloproteinase‐2 synthesis and activity; and NO and vascular endothelial growth factor levels. Kallistatin's actions on phosphoinositide 3‐kinase–Akt signaling were blocked by LY294002, l‐NAME, and anti–vascular endothelial growth factor antibody. Conclusions Endogenous kallistatin plays a novel role in protection against vascular injury in hypertensive rats by promoting the mobility, viability, and vasculogenic capacity of EPCs via enhancing NO and vascular endothelial growth factor levels through activation of phosphoinositide 3‐kinase–Akt signaling. Kallistatin therapy may be a promising approach in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Lin Gao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Jingmei Zhang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Makoto Hagiwara
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Bo Shen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Grant Bledsoe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Eugene Chang
- Department of Obstetrics and Gynecology, College of Medicine, Medical University of South Carolina, Charleston, SC (E.C.)
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| |
Collapse
|
27
|
Shen W, Chung SH, Irhimeh MR, Li S, Lee SR, Gillies MC. Systemic administration of erythropoietin inhibits retinopathy in RCS rats. PLoS One 2014; 9:e104759. [PMID: 25119659 PMCID: PMC4132022 DOI: 10.1371/journal.pone.0104759] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/12/2014] [Indexed: 12/17/2022] Open
Abstract
Objective Royal College of Surgeons (RCS) rats develop vasculopathy as photoreceptors degenerate. The aim of this study was to examine the effect of erythropoietin (EPO) on retinopathy in RCS rats. Methods Fluorescein angiography was used to monitor retinal vascular changes over time. Changes in retinal glia and vasculature were studied by immunostaining. To study the effects of EPO on retinal pathology, EPO (5000 IU/kg) was injected intraperitoneally in 14 week old normal and RCS rats twice a week for 4 weeks. Changes in the retinal vasculature, glia and microglia, photoreceptor apoptosis, differential expression of p75 neurotrophin receptor (p75NTR), pro-neurotrophin 3 (pro-NT3), tumour necrosis factor-α (TNFα), pigment epithelium derived factor (PEDF) and vascular endothelial growth factor-A (VEGF-A), the production of CD34+ cells and mobilization of CD34+/VEGF-R2+ cells as well as recruitment of CD34+ cells into the retina were examined after EPO treatment. Results RCS rats developed progressive capillary dropout and subretinal neovascularization which were accompanied by retinal gliosis. Systemic administration of EPO stabilized the retinal vasculature and inhibited the development of focal vascular lesions. Further studies showed that EPO modulated retinal gliosis, attenuated photoreceptor apoptosis and p75NTR and pro-NT3 upregulation, promoted the infiltration of ramified microglia and stimulated VEGF-A expression but had little effect on TNFα and PEDF expression. EPO stimulated the production of red and white blood cells and CD34+ cells along with effective mobilization of CD34+/VEGF-R2+ cells. Immunofluorescence study demonstrated that EPO enhanced the recruitment of CD34+ cells into the retina. Conclusions Our results suggest that EPO has therapeutic potentials in treatment of neuronal and vascular pathology in retinal disease. The protective effects of EPO on photoreceptors and the retinal vasculature may involve multiple mechanisms including regulation of retinal glia and microglia, inhibition of p75NTR-pro-NT3 signaling together with stimulation of production and mobilization of bone marrow derived cells.
Collapse
Affiliation(s)
- Weiyong Shen
- Save Sight Institute, the University of Sydney, Sydney, Australia
| | - Sook H Chung
- Save Sight Institute, the University of Sydney, Sydney, Australia
| | | | - Shiying Li
- Save Sight Institute, the University of Sydney, Sydney, Australia; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
| | - So-Ra Lee
- Save Sight Institute, the University of Sydney, Sydney, Australia
| | - Mark C Gillies
- Save Sight Institute, the University of Sydney, Sydney, Australia
| |
Collapse
|
28
|
Liu JF, DU ZD, Chen Z, He ZX. Whole bone marrow cell culture: A convenient protocol for the in vitro expansion of endothelial progenitor cells. Exp Ther Med 2014; 8:805-812. [PMID: 25120604 PMCID: PMC4113536 DOI: 10.3892/etm.2014.1827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022] Open
Abstract
The number and function of endothelial progenitor cells (EPCs) may be a predictive factor for the severity and outcome of cardiovascular disease. However, the manipulation of bone marrow mononuclear cell (BMMC) cultures for EPCs is an elaborate and difficult procedure in small experimental animals. The present study aimed to assess the feasibility of whole bone marrow cell (WBMC) culture for expanding EPCs in small experimental animals. C57BL/6 mice (age, 3–4 weeks; weight, 9.47±0.76 g) were used as the experimental animals, and WBMCs were isolated from the femora and tibiae and cultured in endothelial cell growth medium-2. A BMMC culture for EPCs was used as a control. EPC growth, phenotype and functions were assessed in vitro and in vivo. The results demonstrated that EPCs were easily obtained from a WBMC culture in vitro. The cells exhibited similar growth and biological characteristics when compared with the EPCs derived from the traditional BMMC culture system. Thus, the cells were able to simultaneously bind to lectin and cause phagocytosis of acetylated-low density lipoproteins. In addition, the cells exhibited high expression levels of cluster of differentiation 34 and fetal liver kinase 1, and possessed similar functional properties to BMMC-derived EPCs, including vascular network formation, proliferation, adhesion and migration abilities in vitro. Thus, WBMC-derived EPCs can improve the outcome of pulmonary vascular disease when transplanted into a monocrotaline-induced pulmonary hypertension mouse model. The results of the present study indicated that the WBMC culture system is a more convenient and effective method of obtaining and expanding EPCs compared with BMMC culture, with the advantage of a simplified procedure.
Collapse
Affiliation(s)
- Jun-Feng Liu
- Laboratory of Tissue Engineering and Stem Cells, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China ; Department of Pediatrics, The General Hospital of Huabei Oil Field Company, Renqiu, Hebei 062552, P.R. China
| | - Zhong-Dong DU
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Zhi Chen
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Zhi-Xu He
- Laboratory of Tissue Engineering and Stem Cells, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
29
|
Abstract
BACKGROUND Obstructive sleep apnea (OSA) occurs in 4% of middle-aged men and 2% of middle-aged women in the general population, and the prevalence is even higher in specific patient groups. OSA is an independent risk factor for a variety of cardiovascular diseases. Endothelial injury could be the pivotal determinant in the development of cardiovascular pathology in OSA. Endothelial damage ultimately represents a dynamic balance between the magnitude of injury and the capacity for repair. Bone marrow-derived endothelial progenitor cells (EPCs) within adult peripheral blood present a possible means of vascular maintenance that could home to sites of injury and restore endothelial integrity and normal function. METHODS We summarized pathogenetic mechanisms of OSA and searched for available studies on numbers and functions of EPCs in patients with OSA to explore the potential links between the numbers and functions of EPCs and OSA. In particular, we tried to elucidate the molecular mechanisms of the effects of OSA on EPCs. CONCLUSION Intermittent hypoxia cycles and sleep fragmentation are major pathophysiologic characters of OSA. Intermittent hypoxia acts as a trigger of oxidative stress, systemic inflammation, and sympathetic activation. Sleep fragmentation is associated with a burst of sympathetic activation and systemic inflammation. In most studies, a reduction in circulating EPCs has emerged. The possible mechanisms underlying the decrease in the number or function of EPCs include prolonged inflammation response, oxidative stress, increased sympathetic activation, physiological adaptive responses of tissue to hypoxia, reduced EPC mobilization, EPC apoptosis, and functional impairment in untreated OSA. Continuous positive airway pressure (CPAP) therapy for OSA affects the mobilization, apoptosis, and function of EPCs through preventing intermittent hypoxia episodes, improving sleep quality, and reducing systemic inflammation, oxidative stress levels, and sympathetic overactivation. To improve CPAP adherence, the medical staff should pay attention to making the titration trial a comfortable first CPAP experience for the patients; for example, using the most appropriate ventilators or proper humidification. It is also important to give the patients education and support about CPAP use in the follow-up, especially in the early stage of the treatment.
Collapse
Affiliation(s)
- Qing Wang
- The Second Respiratory Department of the First People’s Hospital of Kunming, Yunnan, People’s Republic of China
| | - Qi Wu
- Tianjin Haihe Hospital, Tianjin, People’s Republic of China
| | - Jing Feng
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
- Correspondence: Jing Feng, Respiratory Department of Tianjin Medical University General Hospital, Tianjin 300052, People’s Republic of China, Email
| | - Xin Sun
- Respiratory Department of Tianjin Haihe Hospital, Tianjin, People’s Republic of China
- Xin Sun, Respiratory Department of Tianjin Haihe Hospital, Tianjin 300350, People’s Republic of China, Email
| |
Collapse
|
30
|
Wadajkar AS, Santimano S, Tang L, Nguyen KT. Magnetic-based multi-layer microparticles for endothelial progenitor cell isolation, enrichment, and detachment. Biomaterials 2013; 35:654-63. [PMID: 24144902 DOI: 10.1016/j.biomaterials.2013.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 10/02/2013] [Indexed: 02/08/2023]
Abstract
Although endothelial progenitor cells (EPCs) are useful in many applications including cell-based therapies, their use is still limited due to issues associated with cell culture techniques like a low isolation efficiency, use of harmful proteolytic enzymes in cell cultures, and difficulty in ex vivo expansion. Here, we report a tool to simultaneously isolate, enrich, and detach EPCs without the use of harmful chemicals. In particular, we developed magnetic-based multi-layer microparticles (MLMPs) that (1) magnetically isolate EPCs via anti-CD34 antibodies to avoid the use of Ficoll and harsh shear forces; (2) provide a 3D surface for cell attachment and growth; (3) produce sequential releases of growth factors (GFs) to enrich ex vivo expansion of cells; and (4) detach cells without using trypsin. MLMPs were successful in isolating EPCs from a cell suspension and provided a sequential release of GFs for EPC proliferation and differentiation. The cell enrichment profiles indicated steady cell growth on MLMPs in comparison to commercial Cytodex3 microbeads. Further, the cells were detached from MLMPs by lowering the temperature below 32 °C. Results indicate that the MLMPs have potential to be an effective tool towards efficient cell isolation, fast expansion, and non-chemical detachment.
Collapse
Affiliation(s)
- Aniket S Wadajkar
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA; Joint Biomedical Engineering Program between The University of Texas at Arlington and The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
31
|
Yao L, Heuser-Baker J, Herlea-Pana O, Iida R, Wang Q, Zou MH, Barlic-Dicen J. Bone marrow endothelial progenitors augment atherosclerotic plaque regression in a mouse model of plasma lipid lowering. Stem Cells 2013; 30:2720-31. [PMID: 23081735 DOI: 10.1002/stem.1256] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/14/2012] [Indexed: 12/30/2022]
Abstract
The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice, normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein (GFP) under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP(+)) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP(+) EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis.
Collapse
Affiliation(s)
- Longbiao Yao
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Tapping CR, Bratby MJ. The changing face of vascular interventional radiology: the future role of pharmacotherapies and molecular imaging. Cardiovasc Intervent Radiol 2013; 36:904-12. [PMID: 23636247 DOI: 10.1007/s00270-013-0621-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/25/2013] [Indexed: 01/22/2023]
Abstract
Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies.
Collapse
Affiliation(s)
- Charles R Tapping
- Department of Radiology, Oxford University Hospitals, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
33
|
Xu H, Yang YJ, Yang T, Qian HY. Statins and stem cell modulation. Ageing Res Rev 2013; 12:1-7. [PMID: 22504583 DOI: 10.1016/j.arr.2012.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 03/21/2012] [Accepted: 03/30/2012] [Indexed: 01/26/2023]
Abstract
Stem cell-based therapy is a promising option for the treatment of ischemic heart diseases. As to a successful stem cell-based therapy, one of the most important issues is that the stable engraftment and survival of implanted stem cells in cardiac microenvironment. There are evidences suggest that pharmacological treatment devoted to regulate stem cell function might represent a potential new therapeutic strategy and are drawing nearer to becoming a part of treatment in clinical settings. Statins could exert cholesterol-independent or pleiotropic effects to cardiovascular system. Recent studies have shown that statins could modulate the biological characteristics and function of various stem cells, thus could be an effective method to facilitate stem cell therapy. This review will focus on statins and their modulation effects on various stem cells.
Collapse
|
34
|
Lima LCF, Porto ML, Campagnaro BP, Tonini CL, Nogueira BV, Pereira TM, Vasquez EC, Meyrelles SS. Mononuclear cell therapy reverts cuff-induced thrombosis in apolipoprotein E-deficient mice. Lipids Health Dis 2012; 11:96. [PMID: 22849299 PMCID: PMC3477089 DOI: 10.1186/1476-511x-11-96] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/12/2012] [Indexed: 01/06/2023] Open
Abstract
Background Stem/progenitor cell-based therapy has successfully been used as a novel therapeutic strategy for vascular diseases triggered by endothelial dysfunction. The aim of this study was to investigate the effects of mononuclear cell (MNC) therapy in situ on carotid cuff-induced occlusive thrombus in the apolipoprotein E knockout (apoE-/-) mouse. Methods Spleen-derived MNCs were isolated from green fluorescent protein (GFP)-transgenic mice for cell treatment. A cuff-induced thrombus model was produced by placing a nonconstrictive silastic collar around the left common carotid artery in 20-week-old female apoE-/- mice. After 10 days, the cuff was removed, and the animals received in situ MNCs (Cuff-MNC) or vehicle (Cuff-Vehicle) and were compared with sham-operated animals (Sham). Results The histological analysis showed that the MNC treatment reverted occlusive thrombus formation compared to the vehicle and the vessel lumen area to that observed in the Sham group (MNC, 50 ± 4; Vehicle, 20 ± 4; Sham, 55 ± 2 x103 μm2; p < 0.01). The animals that underwent the carotid cuff placement developed compensatory vessel enlargement, which was reduced by the MNC therapy. In addition, the treatment was able to reduce superoxide anion production, which likely contributed to the reduced apoptosis that was observed. Lastly, the immunofluorescence analysis revealed the presence of endothelial progenitor cells (EPCs) in the carotid endothelia of the apoE-/- mice. Conclusion In situ short-term MNC therapy was able to revert cuff-induced occlusive thrombi in the carotid arteries of apoE-/- mice, possibly through the homing of EPCs, reduction of oxidative stress and decreased apoptosis.
Collapse
Affiliation(s)
- Leandro C F Lima
- Laboratory of Transgenes and Cardiovascular Control, Department Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Da Pozzo E, Barsotti MC, Bendinelli S, Martelli A, Calderone V, Balbarini A, Martini C, Di Stefano R. Differential effects of fondaparinux and bemiparin on angiogenic and vasculogenesis-like processes. Thromb Res 2012; 130:e113-22. [PMID: 22497885 DOI: 10.1016/j.thromres.2012.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 02/14/2012] [Accepted: 03/13/2012] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Conventional therapy for venous thromboembolism or acute coronary syndrome involves the administration of glycoanticoagulants (heparins) or oligosaccharides (fondaparinux). We evaluated the effects of such drugs on angiogenesis and vasculogenesis-like models. MATERIALS AND METHODS Human umbilical vein endothelial cells or human endothelial progenitor cells were treated with bemiparin, fondaparinux or unfractionated heparin, at concentrations reflecting the doses used in clinical practice. After 24h, cell viability, proliferation, tubule formation and angiogenic molecular mechanisms, such as activation of the serine/threonine kinase AKT, were assessed. In vivo angiogenesis was studied using a Matrigel sponge assay in mice. RESULTS Bemiparin gave a significant decrease of in vitro angiogenesis as shown by the reduction of endothelial cell tubule network, while both fondaparinux and unfractionated heparin did not show any significant effect. In assays of Matrigel sponge invasion in mice, unfractionated heparin was able to stimulate angiogenesis and, conversely, bemiparin inhibited angiogenesis. Furthermore, both bemiparin and fondaparinux caused a significant reduction in an in vitro vasculogenesis-like model, as demonstrated by the decrease of tubule network after co-seeding of endothelial progenitor cells and human umbilical vein endothelial cells. In addition, unfractionated heparin but not bemiparin was able to increase AKT phosphorylation. CONCLUSIONS In in vitro experiments, bemiparin was the only drug to show an anti-angiogenic and vasculogenic-like effect, unfractionated heparin showed only a trend to increase in angiogenesis assay and fondaparinux affected only the vasculogenesis-like model. Notably, the in vivo experiments corroborated these data. Such results are important for the choice of a patient-tailored therapy.
Collapse
Affiliation(s)
- Eleonora Da Pozzo
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen J, Jin J, Song M, Dong H, Zhao G, Huang L. C-reactive protein down-regulates endothelial nitric oxide synthase expression and promotes apoptosis in endothelial progenitor cells through receptor for advanced glycation end-products. Gene 2012; 496:128-35. [PMID: 22301267 DOI: 10.1016/j.gene.2011.12.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 12/07/2011] [Accepted: 12/20/2011] [Indexed: 02/08/2023]
Abstract
OBJECTIVE C-reactive protein (CRP), the prototypic marker of inflammation, has been shown to be an independent predictor of atherosclerosis. CRP can regulate receptor for advanced glycation end-products (RAGE) expression in endothelial progenitor cells (EPCs). Endothelial nitric oxide synthase (eNOS) deficiency is a pivotal event in atherogenesis. It is believed that decreased eNOS bioactivity occurs early in atherogenesis. Therefore, we tested the hypothesis that CRP can alter eNOS expression and promote apoptosis in EPCs through RAGE. METHODS AND RESULTS EPCs, isolated from bone marrow, were cultured in the presence or absence of LPS-free CRP (5, 10, 15, 20, and50μg/ml). RAGE protein expression and siRNA were measured by flow cytometric analysis. PCR was used to detect eNOS mRNA expression. eNOS protein expression was measured by Western blot analysis. A spectrophotometer was used to assess eNOS activity. A modified Boyden's chamber was used to assess the migration of EPCs and the number of recultured EPCs was counted to measure adhesiveness. A MTT assay was used to determine proliferation. Apoptosis was evaluated by annexin V immunostaining and TUNEL staining. Co-culturing with CRP caused a significant down-regulation of eNOS expression, inhibited the proliferation, migration, and adhesion of EPCs, and induced EPC apoptosis. In addition, these effects were attenuated during RAGE protein expression blockade by siRNA. CONCLUSIONS CRP, at concentrations known to predict cardiovascular event, directly quenches the expression of eNOS and diminishes NO production, and may serve to impair EPC function and promote EPC apoptosis through RAGE. These data further support a direct role of CRP in the development and/or progression of atherosclerosis and indicate a new pathophysiologic mechanism of disturbed vascular adaptation in atherosclerosis.
Collapse
Affiliation(s)
- Jianfei Chen
- Department of Cardiology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, Santoro A, Laezza C, Bifulco M. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev 2012; 64:102-46. [PMID: 22106090 DOI: 10.1124/pr.111.004994] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Statins, among the most commonly prescribed drugs worldwide, are cholesterol-lowering agents used to manage and prevent cardiovascular and coronary heart diseases. Recently, a multifaceted action in different physiological and pathological conditions has been also proposed for statins, beyond anti-inflammation and neuroprotection. Statins have been shown to act through cholesterol-dependent and -independent mechanisms and are able to affect several tissue functions and modulate specific signal transduction pathways that could account for statin pleiotropic effects. Typically, statins are prescribed in middle-aged or elderly patients in a therapeutic regimen covering a long life span during which metabolic processes, aging, and concomitant novel diseases, including cancer, could occur. In this context, safety, toxicity, interaction with other drugs, and the state of health have to be taken into account in subjects treated with statins. Some evidence has shown a dichotomous effect of statins with either cancer-inhibiting or -promoting effects. To date, clinical trials failed to demonstrate a reduced cancer occurrence in statin users and no sufficient data are available to define the long-term effects of statin use over a period of 10 years. Moreover, results from clinical trials performed to evaluate the therapeutic efficacy of statins in cancer did not suggest statin use as chemotherapeutic or adjuvant agents. Here, we reviewed the pharmacology of the statins, providing a comprehensive update of the current knowledge of their effects on tissues, biological processes, and pathological conditions, and we dissected the disappointing evidence on the possible future use of statin-based drugs in cancer therapy.
Collapse
Affiliation(s)
- Patrizia Gazzerro
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (Salerno), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Porto ML, Lima LCF, Pereira TMC, Nogueira BV, Tonini CL, Campagnaro BP, Meyrelles SS, Vasquez EC. Mononuclear cell therapy attenuates atherosclerosis in apoE KO mice. Lipids Health Dis 2011; 10:155. [PMID: 21896159 PMCID: PMC3179743 DOI: 10.1186/1476-511x-10-155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 11/17/2022] Open
Abstract
Background Recent studies have highlighted the potential of cell therapy for atherosclerosis. The aim of this study was to evaluate the effects of mononuclear cell (MNC) therapy on the development of atherosclerotic lesions in the apolipoprotein E knockout (apoE KO) mouse. Methods We investigated vascular lipid deposition, vascular remodeling, oxidative stress, and endothelial nitric oxide synthase (eNOS) expression in apoE KO mice treated with spleen MNCs isolated from lacZ transgenic mice (apoE KO-MNC) for 8 weeks compared to untreated control mice (apoE KO). Results Histological analysis of aortas showed a significant reduction in the lipid deposition area in apoE KO-MNC mice compared to apoE KO mice (0.051 ± 0.004 vs 0.117 ± 0.016 mm2, respectively, p < 0.01). In addition, vessel morphometry revealed that MNC therapy prevented the outward (positive) remodeling in apoE KO mice that is normally observed (apoE KO-MNC: 0.98 ± 0.07 vs apoE KO: 1.37 ± 0.09), using wild-type mice (C57BL/6J) as a reference. ApoE KO-MNC mice also have reduced production of superoxide anions and increased eNOS expression compared to apoE KO mice. Finally, immunohistochemistry analysis revealed a homing of endothelial progenitor cells (EPCs) in the aortas of apoE KO-MNC mice. Conclusion MNC therapy attenuates the progression of atherosclerosis in the aortas of apoE KO mice. Our data provide evidence that the mechanism by which this attenuation occurs includes the homing of EPCs, a decrease in oxidative stress and an upregulation of eNOS expression.
Collapse
Affiliation(s)
- Marcella L Porto
- Laboratory of Transgenes and Cardiovascular Control, Dept Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev Mol Med 2011; 13:e19. [DOI: 10.1017/s1462399411001918] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diseases of the central nervous system (CNS) pose a significant health challenge, but despite their diversity, they share many common features and mechanisms. For example, endothelial dysfunction has been implicated as a crucial event in the development of several CNS disorders, such as Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, multiple sclerosis, human immunodeficiency virus (HIV)-1-associated neurocognitive disorder and traumatic brain injury. Breakdown of the blood–brain barrier (BBB) as a result of disruption of tight junctions and transporters, leads to increased leukocyte transmigration and is an early event in the pathology of these disorders. The brain endothelium is highly reactive because it serves as both a source of, and a target for, inflammatory proteins and reactive oxygen species. BBB breakdown thus leads to neuroinflammation and oxidative stress, which are implicated in the pathogenesis of CNS disease. Furthermore, the physiology and pathophysiology of endothelial cells are closely linked to the functioning of their mitochondria, and mitochondrial dysfunction is another important mediator of disease pathology in the brain. The high concentration of mitochondria in cerebrovascular endothelial cells might account for the sensitivity of the BBB to oxidant stressors. Here, we discuss how greater understanding of the role of BBB function could lead to new therapeutic approaches for diseases of the CNS that target the dynamic properties of brain endothelial cells.
Collapse
|
40
|
Fang L, Chen MF, Xiao ZL, Liu Y, Yu GL, Chen XB, Xie XM. Calcitonin gene-related peptide released from endothelial progenitor cells inhibits the proliferation of rat vascular smooth muscle cells induced by angiotensin II. Mol Cell Biochem 2011; 355:99-108. [PMID: 21603886 DOI: 10.1007/s11010-011-0843-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 04/20/2011] [Indexed: 02/07/2023]
Abstract
We have recently demonstrated that endothelial progenitor cells (EPCs) inhibit AngII-induced proliferation of vascular smooth muscle cells (VSMCs) by inactivating MAPKs and NF-κB signaling pathway and reducing expression of oncogene c-myc and c-fos. The inhibitory effect of EPCs on VSMCs is associated with paracrine mechanism. However, the potential mechanism of EPCs on the regulation of AngII-induced proliferation of VSMCs was unknown. Calcitonin gene-related peptide (CGRP) could inhibit AngII-induced proliferation and transformation of VSMCs. However, it has not been known whether CGRP released from EPCs is a potential regulator in regulation of AngII-induced proliferation of VSMCs. Early endothelial progenitor cell-conditioned medium(E-EPC-CM) was pre-incubated with functional blocking antibodies against CGRP for 1 h or VSMCs was preteated with CGRP(837)(CGRP receptor antagonist) for 1 h before VSMCs were pretreated with CM for 30 min. DNA synthesis ability, total protein levels, cell survival, signal transduction, and expressions of c-myc and c-fos of VSMCs induced by AngII (10(-6)mol/l) were detected to assess the role of CGRP in AngII-induced proliferation of VSMCs. E-EPC-CM could significantly inhibit AngII-induced DNA synthesis ability, total protein levels, cell survival, phosphorylation of ERK, JNK, p38, p65, and expressions of c-myc and c-fos compared with the control group(P < 0.05). However, Pretreatment with anti-CGRP antibody and CGRP(837) could significantly weaken the inhibitory effect of E-EPC-CM on proliferation of VSMCs induced by AngII (P < 0.05). EPCs exert anti-proliferative effects on VSMCs mediated by the release of CGRP.
Collapse
Affiliation(s)
- Li Fang
- Department of Geriatric Cardiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Nozaki T, Ohura K. Gene Expression Profile of Dental Pulp Cells During Differentiation Into an Adipocyte Lineage. J Pharmacol Sci 2011; 115:354-63. [DOI: 10.1254/jphs.10163fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
42
|
Autonomic alterations and endothelial dysfunction in pediatric obstructive sleep apnea. Sleep Med 2010; 11:714-20. [DOI: 10.1016/j.sleep.2009.12.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 12/06/2009] [Accepted: 12/12/2009] [Indexed: 11/21/2022]
|
43
|
Kheirandish-Gozal L, Bhattacharjee R, Kim J, Clair HB, Gozal D. Endothelial progenitor cells and vascular dysfunction in children with obstructive sleep apnea. Am J Respir Crit Care Med 2010; 182:92-7. [PMID: 20203242 PMCID: PMC2902761 DOI: 10.1164/rccm.200912-1845oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Endothelial dysfunction is a potential complication of obstructive sleep apnea syndrome (OSAS) in children ascribed to systemic inflammatory changes. However, not all children with OSAS will manifest endothelial dysfunction. OBJECTIVES The variability in endothelial function in pediatric OSAS may be related to the ability to recruit repair mechanisms such as endothelial progenitor cells (EPCs). METHODS Prepubertal nonhypertensive children with or without polysomonographically confirmed OSAS had endothelial function assessed in a morning fasted state using a modified hyperemic test involving cuff-induced occlusion of the radial and ulnar arteries. Blood was drawn and EPCs were assessed by flow cytometry and triple staining using antibodies against CD133, CD34, and vascular endothelial growth factor receptor-2 after isolation of peripheral blood mononuclear cells. SDF-1 levels were measured by ELISA. MEASUREMENTS AND MAIN RESULTS Eighty children with OSAS (mean age 8.2 +/- 1.4 yr, mean body mass index [BMI] z-score, 1.43 +/- 0.3) and 20 controls (CO) matched for BMI, age, sex, and ethnicity were studied. Significant delays to peak capillary reperfusion after occlusion release (Tmax) occurred in OSAS children, but substantial variability was present. Despite similar OSAS severity, EPC counts, and stromal cell-derived factor-1 (SDF-1) levels were significantly lower among the 20 OSAS children with the longest Tmax, when compared with either the 20 children with normal Tmax values or to CO ( P < 0.01). Furthermore, Tmax was significantly and inversely correlated with EPCs (r(2), 0.51; P < 0.01), but neither EPCs nor Tmax were associated with apnea-hyponea index (AHI). CONCLUSIONS Endothelial dysfunction is frequently present in OSAS. Variance in endothelial functional phenotype may not only reside in the individual susceptibility but also in the ability to recruit endothelial repair mechanisms.
Collapse
Affiliation(s)
- Leila Kheirandish-Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, The University of Chicago, 5721 S Maryland Avenue, MC 8000, Suite K-160, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
44
|
Ludwig A, Jochmann N, Kertesz A, Kuhn C, Mueller S, Gericke C, Baumann G, Stangl K, Stangl V. Smoking decreases the level of circulating CD34+ progenitor cells in young healthy women--a pilot study. BMC Womens Health 2010; 10:20. [PMID: 20509965 PMCID: PMC2891626 DOI: 10.1186/1472-6874-10-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 05/30/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Decreased levels of circulating bone marrow-derived progenitor cells have been associated with risk factors and cardiovascular diseases. Smoking is the most important modifiable risk factor for atherosclerosis in young women. The aim of this pilot study was to assess in healthy premenopausal women without other risk factors for cardiovascular disease the influence of nicotine abuse on the number of circulating progenitor cells in relation to endothelial function. METHODS The number of endothelial progenitor cells, measured as colony-forming units in a cell-culture assay (EPC-CFU) and the number of circulating CD34 + and CD34 + /CD133 + cells, measured by flow cytometry, was estimated in 32 women at the menstrual phase of the menstrual cycle. In addition, flow-mediated dilation (FMD) was assessed as a marker for vascular function. In a subgroup of these women (n = 20), progenitor cells were also investigated at the mid-follicular and luteal phases of the menstrual cycle. RESULTS Compared to non-smokers, the abundance of circulating CD34 + cells was significantly lower in smoking women in the menstrual, mid-luteal, and mid-follicular phases of the menstrual cycle. The number of CD34 + progenitor cells was revealed to have significant positive correlation with FMD in young healthy women, whereas CD34 + /CD133 + progenitor cells and EPC-CFU showed no significant correlation. CONCLUSION The number of CD34 + progenitor cells positively correlates with FMD in young healthy women and is decreased by smoking.
Collapse
Affiliation(s)
- Antje Ludwig
- Med. Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité - Universitaetsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Nicoline Jochmann
- Med. Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité - Universitaetsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Andras Kertesz
- Med. Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité - Universitaetsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Claudia Kuhn
- Med. Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité - Universitaetsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Simone Mueller
- Med. Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité - Universitaetsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Christine Gericke
- Institut für Biometrie und Klinische Epidemiologie, Charité - Universitaetsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Gert Baumann
- Med. Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité - Universitaetsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Karl Stangl
- Med. Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité - Universitaetsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Verena Stangl
- Med. Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité - Universitaetsmedizin Berlin, Campus Mitte, Berlin, Germany
| |
Collapse
|
45
|
António N, Fernandes R, Rodriguez-Losada N, Jiménez-Navarro MF, Paiva A, de Teresa Galván E, Gonçalves L, Ribeiro CF, Providência LA. Stimulation of endothelial progenitor cells: a new putative effect of several cardiovascular drugs. Eur J Clin Pharmacol 2010; 66:219-230. [PMID: 20012029 DOI: 10.1007/s00228-009-0764-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 11/12/2009] [Indexed: 01/04/2023]
Abstract
The role of vascular endothelium in cardiovascular disorders is well recognized. Mature endothelial cells contribute to the repair of endothelial injury, but they only have a limited capacity to do so. This has led to growing interest and further investigation into circulating endothelial progenitor cells (EPCs) and their role in vascular healing, repair, and postnatal neovascularization. The current perception of vascular health is that of a balance between ongoing injury and resultant vascular repair, mediated at least in part by circulating EPCs. Circulating EPCs play an important role in accelerating endothelialization at areas of vascular damage, and EPC enumeration is a viable strategy for assessing reparative capacity. Recent studies have shown that EPCs are affected both in number and function by several cardiovascular risk factors as well as various cardiovascular disease states, such as hypertension, hypercholesterolemia, and coronary artery disease. The present review summarizes the most relevant studies on the effects of cardiovascular drugs on vascular function and EPCs, focusing on their mechanisms of action.
Collapse
Affiliation(s)
- Natália António
- Cardiology Department, Coimbra University Hospital and Medical School, Coimbra, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Park JA, Kwon YG. Could Circulating Progenitor Cell Count Be a Barometer for Coronary Artery Disease Progression? Circ J 2010; 74:1804-5. [DOI: 10.1253/circj.cj-10-0695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University
| |
Collapse
|
47
|
Schobersberger W, Leichtfried V, Mueck-Weymann M, Humpeler E. Austrian Moderate Altitude Studies (AMAS): benefits of exposure to moderate altitudes (1,500-2,500 m). Sleep Breath 2009; 14:201-7. [PMID: 19669819 DOI: 10.1007/s11325-009-0286-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/08/2009] [Accepted: 07/21/2009] [Indexed: 12/22/2022]
Abstract
OBJECTIVES A considerable part of the millions of Alpine tourists suffer from pre-existing diseases (e.g., metabolic syndrome) and high daily stress levels. The main goal of the Austrian Moderate Altitude Study (AMAS) was to investigate (a) the consequences of an active vacation at moderate altitude on the key parameters of the metabolic syndrome (AMAS I) and (b) the effects of a short active vacation on adult progenitor cells, bio-psychological parameters, and heart rate variability (HRV). METHODS During the AMAS I pilot study (n = 22; 1,700 m a.s.l.) and AMAS I main study (n = 71; 1,700 m a.s.l. and 200 m a.s.l.), the volunteers simulated 3-week coached hiking vacations. For AMAS II, healthy volunteers (n = 13) participated in a 1-week active holiday at 1,700 m. RESULTS There were significant improvements of obesity, hypertension, dyslipidemia, and insulin resistance of AMAS I patients after the vacation. In AMAS II participants, we found an increase in circulating endothelial progenitor cells as well as improvements in bio-psychological and HRV parameters. CONCLUSIONS Active vacations at moderate altitude are associated with a variety of positive health effects in persons with metabolic syndrome and in healthy subjects.
Collapse
Affiliation(s)
- Wolfgang Schobersberger
- Institut für Sport-, Alpinmedizin und Gesundheitstourismus (ISAG), TILAK Innsbruck und UMIT, Eduard Wallnöfer-Zentrum 1, Hall/Tirol, Austria.
| | | | | | | |
Collapse
|
48
|
Paul D, Samuel SM, Maulik N. Mesenchymal stem cell: present challenges and prospective cellular cardiomyoplasty approaches for myocardial regeneration. Antioxid Redox Signal 2009; 11:1841-55. [PMID: 19260767 PMCID: PMC2848514 DOI: 10.1089/ars.2009.2455] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Myocardial ischemia and cardiac dysfunction have been known to follow ischemic heart diseases (IHDs). Despite a plethora of conventional treatment options, their efficacies are associated with skepticism. Cell therapies harbor a promising potential for vascular and cardiac repair, which is corroborated by adequate preclinical evidence. The underlying objectives behind cardiac regenerative therapies subsume enhancing angiomyogenesis in the ischemic myocardium, ameliorating cellular apoptosis, regenerating the damaged myocardium, repopulating the lost resident myocardial cells (smooth muscle, cardiomyocyte, and endothelial cells), and finally, decreasing fibrosis with a consequent reduction in ventricular remodeling. Although-cell based cardiomyoplasty approaches have an immense potential, their clinical utilization is limited owing to the increased need for better candidates for cellular cardiomyoplasty, better routes of delivery, appropriate dose for efficient engraftment, and better preconditioning or genetic-modification strategies for the progenitor and stem cells. Mesenchymal stem cells (MSCs) have emerged as powerful candidates in mediating myocardial repair owing to their unique properties of multipotency, transdifferentiation, intercellular connection with the resident cardiomyocytes via connexin 43 (Cx43)-positive gap junctions in the myocardium, and most important, immunomodulation. In this review, we present an in-depth discussion on the complexities associated with stem and progenitor cell therapies, the potential of preclinical approaches involving MSCs for myocardial repair, and an account of the past milestones and ongoing MSC-based trials in humans.
Collapse
Affiliation(s)
- Debayon Paul
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030-1110, USA
| | | | | |
Collapse
|