1
|
Gupta P, Bansal S, Balakrishnan I, Gupta A. Diabetes mellitus and HbA1c as predictors of mortality in hospitalized COVID-19 patients. Expert Rev Endocrinol Metab 2025; 20:221-232. [PMID: 40017013 DOI: 10.1080/17446651.2025.2469627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND The role of diabetes mellitus (DM) in hospitalized COVID-19 patients and of HbA1c in hospitalized COVID-19 patients with DM were not studied adequately in the past. RESEARCH DESIGN AND METHODS It was a retrospective cohort study. In this study, data from 305 hospitalized COVID-19 patients was analyzed. The study objective was to determine the association of DM with in-hospital mortality in COVID-19 patients. Another study objective was to determine the association of HbA1c with mortality in COVID-19 patients with DM. RESULTS In this retrospective study, DM was present in 41.3% (126/305) of the study population. The multivariate Cox regression analysis showed a significant association between DM and mortality (adjusted hazard ratio (aHR): 2.116, 95% CI: 1.088-4.116, p = 0.027). The median HbA1c in diabetic patients was 8.9% (7.5-11.0). HbA1c was found to be associated with mortality in diabetic patients in the multivariate cox-regression analysis (aHR:1.272, 95% CI: 1.028-1.574, p = 0.027). The multivariate Cox regression analysis also showed the association of HbA1c (10.5%≤HbA1c > 10.5%) as a dichotomous variable with in-hospital mortality (aHR: 2.53, 95% CI: 2.606-194.81, p = 0.005) in diabetic patients. CONCLUSIONS DM was independently associated with mortality in hospitalized COVID-19 patients in the multivariate analysis. In COVID-19 patients with DM, HbA1c was associated with mortality as a continuous and dichotomous variable in the multivariate analysis.
Collapse
Affiliation(s)
- Praveen Gupta
- Department of Cardiology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Sandeep Bansal
- Department of Cardiology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Ira Balakrishnan
- Department of Anesthesia and Critical Care, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Anunay Gupta
- Department of Cardiology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| |
Collapse
|
2
|
Zhang W, Liu Y, Zhang L, Shen X. Development of hyaluronic acid-based hydrogels for chronic diabetic wound healing: A review. Int J Biol Macromol 2025; 308:142273. [PMID: 40112998 DOI: 10.1016/j.ijbiomac.2025.142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
This research delves into the advancements in chronic skin wound treatment, with a particular focus on diabetic foot ulcers, utilizing hyaluronic acid (HA)-based hydrogels. Hyaluronic acid, an integral component of the skin's extracellular matrix, plays a crucial role in process such as inflammation, angiogenesis, and tissue regeneration. Due to their three-dimensional network structure, biocompatibility, hydrophilicity, and gas exchange capabilities, HA-based hydrogels are considered highly suitable for promoting wound healing. Nonetheless, pure HA hydrogels exhibit limitations including insufficient mechanical strength and rapid release of encapsulated substances. To address these limitations, the incorporation of bioactive materials such as chitosan and collagen was investigated. This combination not only optimized mechanical strength and degradation rates but also enhanced antibacterial and anti-inflammatory properties. Furthermore, responsive hydrogel dressings were developed to adapt to the specific characteristics of the diabetic wound microenvironment, enabling on-demand drug release. These advancements present new perspectives for the treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- Wenhao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Ling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Xinni Shen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
3
|
Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, Cao P. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduct Target Ther 2025; 10:132. [PMID: 40274830 PMCID: PMC12022100 DOI: 10.1038/s41392-025-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes mellitus, significantly impacting patient quality of life and contributing to morbidity and mortality. Affecting approximately 50% of patients with diabetes, DN is predominantly characterized by distal symmetric polyneuropathy, leading to sensory loss, pain, and motor dysfunction, often resulting in diabetic foot ulcers and lower-limb amputations. The pathogenesis of DN is multifaceted, involving hyperglycemia, dyslipidemia, oxidative stress, mitochondrial dysfunction, and inflammation, which collectively damage peripheral nerves. Despite extensive research, disease-modifying treatments remain elusive, with current management primarily focusing on symptom control. This review explores the complex mechanisms underlying DN and highlights recent advances in diagnostic and therapeutic strategies. Emerging insights into the molecular and cellular pathways have unveiled potential targets for intervention, including neuroprotective agents, gene and stem cell therapies, and innovative pharmacological approaches. Additionally, novel diagnostic tools, such as corneal confocal microscopy and biomarker-based tests, have improved early detection and intervention. Lifestyle modifications and multidisciplinary care strategies can enhance patient outcomes. While significant progress has been made, further research is required to develop therapies that can effectively halt or reverse disease progression, ultimately improving the lives of individuals with DN. This review provides a comprehensive overview of current understanding and future directions in DN research and management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzhe Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Hu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Wan R, Fang S, Zhang X, Zhou W, Bi X, Yuan L, Lv Q, Song Y, Tang W, Shi Y, Li T. S100A9 as a promising therapeutic target for diabetic foot ulcers. Chin Med J (Engl) 2025; 138:973-981. [PMID: 40143429 PMCID: PMC12037093 DOI: 10.1097/cm9.0000000000003543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Diabetic foot is a complex condition with high incidence, recurrence, mortality, and disability rates. Current treatments for diabetic foot ulcers are often insufficient. This study was conducted to identify potential therapeutic targets for diabetic foot. METHODS Datasets related to diabetic foot and diabetic skin were retrieved from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using R software. Enrichment analysis was conducted to screen for critical gene functions and pathways. A protein interaction network was constructed to identify node genes corresponding to key proteins. The DEGs and node genes were overlapped to pinpoint target genes. Plasma and chronic ulcer samples from diabetic and non-diabetic individuals were collected. Western blotting, immunohistochemistry, and enzyme-linked immunosorbent assays were performed to verify the S100 calcium binding protein A9 (S100A9), inflammatory cytokine, and related pathway protein levels. Hematoxylin and eosin staining was used to measure epidermal layer thickness. RESULTS In total, 283 common DEGs and 42 node genes in diabetic foot ulcers were identified. Forty-three genes were differentially expressed in the skin of diabetic and non-diabetic individuals. The overlapping of the most significant DEGs and node genes led to the identification of S100A9 as a target gene. The S100A9 level was significantly higher in diabetic than in non-diabetic plasma (178.40 ± 44.65 ng/mL vs. 40.84 ± 18.86 ng/mL) and in chronic ulcers, and the wound healing time correlated positively with the plasma S100A9 level. The levels of inflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1, and IL-6) and related pathway proteins (phospho-extracellular signal regulated kinase [ERK], phospho-p38, phospho-p65, and p-protein kinase B [Akt]) were also elevated. The epidermal layer was notably thinner in chronic diabetic ulcers than in non-diabetic skin (24.17 ± 25.60 μm vs. 412.00 ± 181.60 μm). CONCLUSIONS S100A9 was significantly upregulated in diabetic foot and was associated with prolonged wound healing. S100A9 may impair diabetic wound healing by disrupting local inflammatory responses and skin re-epithelialization.
Collapse
Affiliation(s)
- Renhui Wan
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Shuo Fang
- Department of Plastics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xingxing Zhang
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Weiyi Zhou
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xiaoyan Bi
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Le Yuan
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Qian Lv
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yan Song
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Tang
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tuo Li
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
5
|
Chong ZZ, Souayah N. Neuroinflammation in diabetic peripheral neuropathy and therapeutic implications. Rev Neurosci 2025:revneuro-2025-0031. [PMID: 40228523 DOI: 10.1515/revneuro-2025-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025]
Abstract
Diabetic peripheral neuropathy (DPN) is a serious complication of diabetes mellitus, which is a common cause of disability in individuals with diabetes mellitus. Multiple mechanisms may be involved in the development of DPN. Neuroinflammation is a critical factor contributing to nerve damage during diabetes. Inflammation can induce the development of diabetes mellitus, and long-term hyperglycemia also causes increased oxidative stress and promotes the release of inflammatory cytokines. After reading through the literature, the association of inflammation with the induction of diabetes and DPN was discussed in the review. Inflammation induces nerve damage and nerve conduction impairment. The neuropathic pain in diabetes-induced DPN is also closely associated with the inflammatory response. Given the important roles of inflammation in diabetes-induced DPN, explicit elucidation of neuroinflammation during diabetes mellitus and DPN should hold the potential for developing novel therapeutic strategies for DPN. Experimental studies and limited clinical trials support the value of anti-inflammatory reagents in treating DPN, and the positive outcomes of these investigations warrant further clinical trials.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S Orange, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
6
|
Nashtahosseini Z, Eslami M, Paraandavaji E, Haraj A, Dowlat BF, Hosseinzadeh E, Oksenych V, Naderian R. Cytokine Signaling in Diabetic Neuropathy: A Key Player in Peripheral Nerve Damage. Biomedicines 2025; 13:589. [PMID: 40149566 PMCID: PMC11940495 DOI: 10.3390/biomedicines13030589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes mellitus, characterized by progressive nerve damage driven by chronic hyperglycemia and systemic inflammation. The pathophysiology of DPN is significantly influenced by pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α. These cytokines promote oxidative stress, vascular dysfunction, and neuronal degeneration by activating important signaling pathways including NF-κB and MAPK. While IL-6 promotes a pro-inflammatory microenvironment, increasing neuronal damage and neuropathic pain, TNF-α and IL-1β worsen Schwann cell failure by compromising axonal support and causing demyelination. Immune cell infiltration and TLR activation increase the inflammatory cascade in DPN, resulting in a persistent neuroinflammatory state that sustains peripheral nerve injury. The main characteristics of DPN are axonal degeneration, decreased neurotrophic support, and Schwann cell dysfunction, which weaken nerve transmission and increase susceptibility to damage. Advanced glycation end-products, TNF-α, and CXCL10 are examples of biomarkers that may be used for early diagnosis and disease progression monitoring. Additionally, crucial molecular targets have been found using proteomic and transcriptome techniques, enabling precision medicine for the treatment of DPN. This review emphasizes the importance of cytokine signaling in the pathogenesis of DPN and how cytokine-targeted treatments might reduce inflammation, restore nerve function, and improve clinical outcomes for diabetic patients.
Collapse
Affiliation(s)
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran;
| | - Elham Paraandavaji
- Clinical Research Development Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran 13399-73111, Iran
| | - Alireza Haraj
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-1453, Iran
| | - Bahram Fadaee Dowlat
- Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-1453, Iran
| | - Ehsan Hosseinzadeh
- Department of Surgery, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | | | - Ramtin Naderian
- Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
7
|
Chong ZZ, Souayah N. Crumbling Pathogenesis and Biomarkers for Diabetic Peripheral Neuropathy. Biomedicines 2025; 13:413. [PMID: 40002826 PMCID: PMC11853266 DOI: 10.3390/biomedicines13020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Diabetic sensorimotor polyneuropathy (DSP) is a common chronic diabetic complication. Traditionally, DSP was once considered irreversible with a typical loss of axon. However, the superimpose of acquired demyelination on axonal loss in DSP patients has been observed, implying that DSP may be preventable or reversible, particularly within a subgroup of patients exhibiting early-stage acquired demyelination, underscoring the critical importance of identifying early prognostic markers. Methods: We systemically review the literature on the roles of biomarkers in predicting DSP and monitoring the progress. The underlying mechanisms of biomarkers were also discussed. Results: The pathogenesis of DSP is multifaceted, with various pathological mechanisms contributing to its development. Key mechanisms include aberrant glucose metabolism and induction of oxidative stress and inflammation. Several pathological processes, such as disrupted glucose metabolism, nerve damage, impaired microcirculation, genetic variants, and microRNA dysregulation, lead to molecular and protein changes that may be detectable in blood and other biological compartments, thus serving as potential biomarkers for DSP progression. However, the utility of a biomarker depends on its predictive accuracy, practicality, and ease of measurement. Conclusions: Most biomarkers for predicting DSP have demonstrated suboptimal predictive value, and many lack established accuracy in forecasting DSP progression. Consequently, the diagnostic utility of any single biomarker remains limited. A comprehensive combination of biomarkers from various categories may hold incredible promise for accurate detection. As artificial intelligence (AI) techniques, especially machine learning, rapidly advance, these technologies may offer significant potential for developing diagnostic platforms to integrate and interpret complex biomarker data for DSP.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S. Orange Ave, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
8
|
Schramm MC, Schramm CV, Hoppe JM, Trautner M, Hinz M, Mitzner S. Influence of autonomic neuropathy, systemic inflammation and other clinical parameters on mortality in dialysis patients. Clin Kidney J 2025; 18:sfae416. [PMID: 39981139 PMCID: PMC11840246 DOI: 10.1093/ckj/sfae416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 02/22/2025] Open
Abstract
Background Autonomic neuropathy (AN) is prevalent in diabetes and chronic kidney disease. The Composite Autonomic Symptom Score 31 (COMPASS 31) is a self-assessment test developed to determine not only cardiac AN but also AN of other organs, including the vasomotor, pupillomotor, secretomotor, and gastrointestinal systems. As yet there are no data on the effects of combined AN-scores of a variety of affected organ systems on mortality in dialysis patients. Methods In 119 patients undergoing hemodialysis therapy, symptoms of AN were documented using COMPASS 31. After 5 years, survival rates were calculated depending on AN scores and other parameters. After this 5-year period, AN scores were assessed for a second time and correlated with those obtained 5 years earlier. Results Survival rates for patients with lower AN scores were better than for those with higher AN scores. Patients with lower C-reactive protein levels showed better survival compared to those with higher values. Dialysis patients with diabetes had a lower survival rate compared to non-diabetic patients. In women, survival rates were better than in men. AN scores remained unchanged over the 5-year period. Conclusion AN is frequently observed in dialysis patients and can be identified through the COMPASS 31 questionnaire. Patients with higher AN scores exhibit poorer survival rates compared to those with lower scores. This observation is applicable not only for cardiac AN but also to AN scores reflecting changes in other organ systems. Therefore, AN scores can be used effectively to detect various AN symptoms in dialysis patients and identify their increased risk of mortality.
Collapse
Affiliation(s)
- Michael Christoph Schramm
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Clinic for Internal Medicine, Department of Nephrology, University of Rostock, Rostock, Germany
| | - Catharina Verena Schramm
- Center of Internal Medicine, Department of Nephrology and Cardiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - John Michael Hoppe
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Markus Trautner
- Center of Internal Medicine, Department of Nephrology and Cardiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Hinz
- Clinic for Internal Medicine, Department of Nephrology, University of Rostock, Rostock, Germany
| | - Steffen Mitzner
- Clinic for Internal Medicine, Department of Nephrology, University of Rostock, Rostock, Germany
| |
Collapse
|
9
|
Dan X, Li K, Xu J, Yan P. The Potential of Neuregulin 4 as a Novel Biomarker and Therapeutic Agent for Vascular Complications in Type 2 Diabetes Mellitus. J Inflamm Res 2024; 17:8543-8554. [PMID: 39539725 PMCID: PMC11559183 DOI: 10.2147/jir.s492115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Neuregulin 4 (Nrg4), a novel adipokine produced primarily by brown adipose tissue (BAT), has been functionally characterized to exert beneficial effects on modulating energy homeostasis and glucolipid metabolism, and is closely associated with the development and progression of obesity and obesity-associated metabolic diseases, such as type 2 diabetes mellitus (T2DM) and cardiovascular diseases. Recently, there has been a growing focus on the relationship between circulating Nrg4 levels and T2DM-related vascular complications. In this review, we discussed the known and potential roles of Nrg4 in various physiological and pathological processes, and its association with vascular complications in T2DM, in the aim of finding a potential biomarker recommended for the clinical diagnosis, prognosis and follow-up of T2DM patients at high risk of developing vascular complications as well as providing new therapeutic approaches.
Collapse
Affiliation(s)
- Xiaofang Dan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People’s Republic of China
| | - Ke Li
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People’s Republic of China
| | - Jiali Xu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
10
|
Sloan G, Donatien P, Privitera R, Shillo P, Caunt S, Selvarajah D, Anand P, Tesfaye S. Vascular and nerve biomarkers in thigh skin biopsies differentiate painful from painless diabetic peripheral neuropathy. FRONTIERS IN PAIN RESEARCH 2024; 5:1485420. [PMID: 39512388 PMCID: PMC11543357 DOI: 10.3389/fpain.2024.1485420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Background Identifying distinct mechanisms and biomarkers for painful diabetic peripheral neuropathy (DPN) is required for advancing the treatment of this major global unmet clinical need. We previously provided evidence in calf skin biopsies that disproportion between reduced sensory small nerve fibers and increased blood vessels may distinguish painful from non-painful DPN. We proposed that overexposure of the reduced nerve fibers in DPN to increased hypoxemia-induced vasculature and related algogenic factors, e.g., nerve growth factor (NGF), leads to neuropathic pain. To further investigate this proposed mechanism, we have now studied more proximal thigh skin biopsies, to see if the same disproportion between increased vasculature and decreased nerve fibers generally differentiates painful DPN from painless DPN. Methods A total of 28 subjects with type 2 diabetes (T2DM) and 13 healthy volunteers (HV) underwent detailed clinical and neurophysiological assessments, based on the neuropathy composite score of the lower limbs [NIS(LL)] plus 7 tests. T2DM subjects were subsequently divided into three groups: painful DPN (n = 15), painless DPN (n = 7), and no DPN (n = 6). All subjects underwent skin punch biopsy from the upper lateral thigh 20 cm below the anterior iliac spine. Results Skin biopsies showed decreased PGP 9.5-positive intraepidermal nerve fiber (IENF) density in both painful DPN (p < 0.0001) and painless DPN (p = 0.001). Vascular marker von Willebrand Factor (vWF) density was markedly increased in painful DPN vs. other groups, including painless DPN (p = 0.01). There was a resulting significant decrease in the ratio of intraepidermal nerve fiber density to vasculature and PGP9.5 to vWF, in painful DPN vs. painless DPN (p = 0.05). These results were similar in pattern to those observed in these HV and T2DM groups previously in distal calf biopsies; however, the increase in vWF was much higher and nerve fiber density much lower in the calf than thigh for painful DPN. Thigh skin vWF density was significantly correlated with several metabolic (waist/hip ratio, HbA1c), clinical (e.g., pain score), and neurophysiological measures. Conclusion This study supports our proposal that increased dermal vasculature, and its disproportionate ratio to reduced nociceptors, may help differentiate painful DPN from painless DPN. This disproportion is greater in the distal calf than the proximal thigh skin; hence, neuropathic pain in DPN is length-dependent and first localized to the distal lower limbs, mainly feet.
Collapse
Affiliation(s)
- Gordon Sloan
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Philippe Donatien
- Peripheral Neuropathy Unit, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Rosario Privitera
- Peripheral Neuropathy Unit, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Pallai Shillo
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Sharon Caunt
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Dinesh Selvarajah
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Praveen Anand
- Peripheral Neuropathy Unit, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
11
|
Stoian A, Muntean C, Babă DF, Manea A, Dénes L, Simon-Szabó Z, Kosovski IB, Nemes-Nagy E, Gliga FI, Stoian M. Update on Biomarkers of Chronic Inflammatory Processes Underlying Diabetic Neuropathy. Int J Mol Sci 2024; 25:10395. [PMID: 39408723 PMCID: PMC11476795 DOI: 10.3390/ijms251910395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
There is an increasing prevalence of diabetes mellitus (DM), particularly type 2 DM (T2DM), and its associated complications. T2DM is linked to insulin resistance, chronic inflammation, and oxidative stress, which can lead to both macrovascular and microvascular complications, including peripheral diabetic neuropathy (PDN). Inflammatory processes play a key role in the development and progression of T2DM and its complications, with specific markers like C-reactive protein (CRP), interleukins (ILs), and tumor necrosis factor (TNF)-α being associated with increased risk. Other key inflammatory markers such as nuclear factor kappa B (NF-κB) are activated under hyperglycemic and oxidative stress conditions and contribute to the aggravation of PDN by regulating inflammatory gene expression and enhancing endothelial dysfunction. Other important roles in the inflammatory processes are played by Toll-like receptors (TLRs), caveolin 1 (CAV1), and monocyte chemoattractant protein 1 (MCP1). There is a relationship between vitamin D deficiency and PDN, highlighting the critical role of vitamin D in regulating inflammation and immune responses. The involvement of macrophages in PDN is also suspected, emphasizing their role in chronic inflammation and nerve damage in diabetic patients. Vitamin D supplementation has been found to reduce neuropathy severity, decrease inflammatory markers, and improve glycemic control. These findings suggest that addressing vitamin D deficiency could offer therapeutic benefits for PDN. These molecular pathways are critical in understanding the pathogenesis of DM complications and may offer potential biomarkers or therapeutic targets including anti-inflammatory treatments, vitamin D supplementation, macrophage phenotype modulation, and lifestyle modifications, aimed at reducing inflammation and preventing PDN. Ongoing and more extensive clinical trials with the aim of investigating anti-inflammatory agents, TNF-α inhibitors, and antioxidants are needed to advance deeper into the understanding and treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Carmen Muntean
- Department of Pediatrics 1, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Dragoș-Florin Babă
- Emergency Institute for Cardiovascular Diseases and Transplantation, 540142 Targu Mures, Romania;
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Andrei Manea
- Department of Radiology, Mureș County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Lóránd Dénes
- Department of Anatomy and Embryology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Irina Bianca Kosovski
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Florina Ioana Gliga
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Mircea Stoian
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
12
|
Røikjer J, Borbjerg MK, Andresen T, Giordano R, Hviid CVB, Mørch CD, Karlsson P, Klonoff DC, Arendt-Nielsen L, Ejskjaer N. Diabetic Peripheral Neuropathy: Emerging Treatments of Neuropathic Pain and Novel Diagnostic Methods. J Diabetes Sci Technol 2024:19322968241279553. [PMID: 39282925 PMCID: PMC11571639 DOI: 10.1177/19322968241279553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a prevalent and debilitating complication of diabetes, often leading to severe neuropathic pain. Although other diabetes-related complications have witnessed a surge of emerging treatments in recent years, DPN has seen minimal progression. This stagnation stems from various factors, including insensitive diagnostic methods and inadequate treatment options for neuropathic pain. METHODS In this comprehensive review, we highlight promising novel diagnostic techniques for assessing DPN, elucidating their development, strengths, and limitations, and assessing their potential as future reliable clinical biomarkers and endpoints. In addition, we delve into the most promising emerging pharmacological and mechanistic treatments for managing neuropathic pain, an area currently characterized by inadequate pain relief and a notable burden of side effects. RESULTS Skin biopsies, corneal confocal microscopy, transcutaneous electrical stimulation, blood-derived biomarkers, and multi-omics emerge as some of the most promising new techniques, while low-dose naltrexone, selective sodium-channel blockers, calcitonin gene-related peptide antibodies, and angiotensin type 2 receptor antagonists emerge as some of the most promising new drug candidates. CONCLUSION Our review concludes that although several promising diagnostic modalities and emerging treatments exist, an ongoing need persists for the further development of sensitive diagnostic tools and mechanism-based, personalized treatment approaches.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Krabsmark Borbjerg
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
| | - Trine Andresen
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Rocco Giordano
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Pall Karlsson
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars Arendt-Nielsen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
13
|
Zhang W, Feng J, Ni Y, Li G, Wang Y, Cao Y, Zhou M, Zhao C. The role of SLC7A11 in diabetic wound healing: novel insights and new therapeutic strategies. Front Immunol 2024; 15:1467531. [PMID: 39290692 PMCID: PMC11405230 DOI: 10.3389/fimmu.2024.1467531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Wilson P, Patton D, O'Connor T, Boland F, Budri AM, Moore Z, Phelan N. Biomarkers of local inflammation at the skin's surface may predict both pressure and diabetic foot ulcers. J Wound Care 2024; 33:630-635. [PMID: 39287043 DOI: 10.12968/jowc.2024.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
This commentary considers the similarities which exist between pressure ulcers (PUs) and diabetic foot ulcers (DFUs). It aims to describe what is known to be shared-both in theory and practice-by these wound types. It goes on to detail the literature surrounding the role of inflammation in both wound types. PUs occur following prolonged exposure to pressure or pressure in conjunction with shear, either due to impaired mobility or medical devices. As a result, inflammation occurs, causing cell damage. While DFUs are not associated with immobility, they are associated with altered mobility occurring as a result of complications of diabetes. The incidence and prevalence of both types of lesions are increased in the presence of multimorbidity. The prediction of either type of ulceration is challenging. Current risk assessment practices are reported to be ineffective at predicting when ulceration will occur. While systemic inflammation is easily measured, the presence of local or subclinical inflammation is harder to discern. In patients at risk of either DFUs or PUs, clinical signs and symptoms of inflammation may be masked, and systemic biomarkers of inflammation may not be elevated sufficiently to predict imminent damage until ulceration appears. The current literature suggests that the use of local biomarkers of inflammation at the skin's surface, namely oedema and temperature, may identify early tissue damage.
Collapse
Affiliation(s)
- Pauline Wilson
- St. James's Hospital, Dublin, Ireland
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Health Service Executive, Dublin, Ireland
| | - Declan Patton
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
- School of Nursing and Midwifery, Griffith University, Queensland, Australia
- Faculty of Science, Medicine and Health, University of Wollongong, Australia
| | - Tom O'Connor
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
- School of Nursing and Midwifery, Griffith University, Queensland, Australia
- Lida Institute, Shanghai, China
| | - Fiona Boland
- Data Science, School of Population Health, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Aglecia Mv Budri
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- São Paulo State University (UNESP), Faculty of Medicine, Department of Nursing, São Paulo, Brazil
| | - Zena Moore
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
- School of Nursing and Midwifery, Griffith University, Queensland, Australia
- Lida Institute, Shanghai, China
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Belgium
- University of Wales, Cardiff, UK
- National Health and Medical Research Council Centre of Research Excellence in Wiser Wound Care, Menzies Health Institute Queensland, Queensland, Australia
| | | |
Collapse
|
15
|
Wu L, Wang XJ, Luo X, Zhang J, Zhao X, Chen Q. Diabetic peripheral neuropathy based on Schwann cell injury: mechanisms of cell death regulation and therapeutic perspectives. Front Endocrinol (Lausanne) 2024; 15:1427679. [PMID: 39193373 PMCID: PMC11348392 DOI: 10.3389/fendo.2024.1427679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a complication of diabetes mellitus that lacks specific treatment, its high prevalence and disabling neuropathic pain greatly affects patients' physical and mental health. Schwann cells (SCs) are the major glial cells of the peripheral nervous system, which play an important role in various inflammatory and metabolic neuropathies by providing nutritional support, wrapping axons and promoting repair and regeneration. Increasingly, high glucose (HG) has been found to promote the progression of DPN pathogenesis by targeting SCs death regulation, thus revealing the specific molecular process of programmed cell death (PCD) in which SCs are disrupted is an important link to gain insight into the pathogenesis of DPN. This paper is the first to review the recent progress of HG studies on apoptosis, autophagy, pyroptosis, ferroptosis and necroptosis pathways in SCs, and points out the crosstalk between various PCDs and the related therapeutic perspectives, with the aim of providing new perspectives for a deeper understanding of the mechanisms of DPN and the exploration of effective therapeutic targets.
Collapse
Affiliation(s)
- Lijiao Wu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Jin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, China
| | - Xi Luo
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingqi Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Zhao
- College of lntegrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Eid SA, Elzinga SE, Guo K, Hinder LM, Hayes JM, Pacut CM, Koubek EJ, Hur J, Feldman EL. Transcriptomic profiling of sciatic nerves and dorsal root ganglia reveals site-specific effects of prediabetic neuropathy. Transl Res 2024; 270:24-41. [PMID: 38556110 PMCID: PMC11166517 DOI: 10.1016/j.trsl.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Peripheral neuropathy (PN) is a severe and frequent complication of obesity, prediabetes, and type 2 diabetes characterized by progressive distal-to-proximal peripheral nerve degeneration. However, a comprehensive understanding of the mechanisms underlying PN, and whether these mechanisms change during PN progression, is currently lacking. Here, gene expression data were obtained from distal (sciatic nerve; SCN) and proximal (dorsal root ganglia; DRG) injury sites of a high-fat diet (HFD)-induced mouse model of obesity/prediabetes at early and late disease stages. Self-organizing map and differentially expressed gene analyses followed by pathway enrichment analysis identified genes and pathways altered across disease stage and injury site. Pathways related to immune response, inflammation, and glucose and lipid metabolism were consistently dysregulated with HFD-induced PN, irrespective of injury site. However, regulation of oxidative stress was unique to the SCN while dysregulated Hippo and Notch signaling were only observed in the DRG. The role of the immune system and inflammation in disease progression was supported by an increase in the percentage of immune cells in the SCN with PN progression. Finally, when comparing these data to transcriptomic signatures from human patients with PN, we observed conserved pathways related to metabolic dysregulation across species, highlighting the translational relevance of our mouse data. Our findings demonstrate that PN is associated with distinct site-specific molecular re-programming in the peripheral nervous system, identifying novel, clinically relevant therapeutic targets.
Collapse
Affiliation(s)
- Stéphanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Crystal M. Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Chong ZZ, Menkes DL, Souayah N. Targeting neuroinflammation in distal symmetrical polyneuropathy in diabetes. Drug Discov Today 2024; 29:104087. [PMID: 38969091 DOI: 10.1016/j.drudis.2024.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Diabetic distal symmetric polyneuropathy is the most common type of peripheral neuropathy complication of diabetes mellitus. Neuroinflammation is emerging as an important contributor to diabetes-induced neuropathy. Long-term hyperglycemia results in increased production of advanced glycation end products (AGEs). AGEs interact with their receptors to activate intracellular signaling, leading to the release of various inflammatory cytokines. Increased release of inflammatory cytokines is associated with diabetes, diabetic neuropathy, and neuropathic pain. Thus, anti-inflammatory intervention is a potential therapy for diabetic distal symmetric polyneuropathy. Further characterization of inflammatory mechanisms might identify novel therapeutic targets to mitigate diabetic neuropathy.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Daniel L Menkes
- Department of Neurology, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Nizar Souayah
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
18
|
Andalibi MS, Fields JA, Iudicello JE, Diaz MM, Tang B, Letendre SL, Ellis RJ. Elevated Biomarkers of Inflammation and Vascular Dysfunction Are Associated with Distal Sensory Polyneuropathy in People with HIV. Int J Mol Sci 2024; 25:4245. [PMID: 38673830 PMCID: PMC11049997 DOI: 10.3390/ijms25084245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Distal sensory polyneuropathy (DSP) is a disabling, chronic condition in people with HIV (PWH), even those with viral suppression of antiretroviral therapy (ART), and with a wide range of complications, such as reduced quality of life. Previous studies demonstrated that DSP is associated with inflammatory cytokines in PWH. Adhesion molecules, essential for normal vascular function, are perturbed in HIV and other conditions linked to DSP, but the link between adhesion molecules and DSP in PWH is unknown. This study aimed to determine whether DSP signs and symptoms were associated with a panel of plasma biomarkers of inflammation (d-dimer, sTNFRII, MCP-1, IL-6, IL-8, IP-10, sCD14) and vascular I integrity (ICAM-1, VCAM-1, uPAR, MMP-2, VEGF, uPAR, TIMP-1, TIMP-2) and differed between PWH and people without HIV (PWoH). A cross-sectional study was conducted among 143 participants (69 PWH and 74 PWoH) assessed by studies at the UC San Diego HIV Neurobehavioral Research Program. DSP signs and symptoms were clinically assessed for all participants. DSP was defined as two or more DSP signs: bilateral symmetrically reduced distal vibration, sharp sensation, and ankle reflexes. Participant-reported symptoms were neuropathic pain, paresthesias, and loss of sensation. Factor analyses reduced the dimensionality of the 15 biomarkers among all participants, yielding six factors. Logistic regression was used to assess the associations between biomarkers and DSP signs and symptoms, controlling for relevant demographic and clinical covariates. The 143 participants were 48.3% PWH, 47 (32.9%) women, and 47 (33.6%) Hispanics, with a mean age of 44.3 ± 12.9 years. Among PWH, the median (IQR) nadir and current CD4+ T-cells were 300 (178-448) and 643 (502-839), respectively. Participants with DSP were older but had similar distributions of gender and ethnicity to those without DSP. Multiple logistic regression showed that Factor 2 (sTNFRII and VCAM-1) and Factor 4 (MMP-2) were independently associated with DSP signs in both PWH and PWoH (OR [95% CI]: 5.45 [1.42-21.00], and 15.16 [1.07-215.22]), respectively. These findings suggest that inflammation and vascular integrity alterations may contribute to DSP pathogenesis in PWH, but not PWoH, possibly through endothelial dysfunction and axonal degeneration.
Collapse
Affiliation(s)
- Mohammadsobhan Sheikh Andalibi
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA;
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (J.A.F.); (J.E.I.)
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (J.A.F.); (J.E.I.)
| | - Jennifer E. Iudicello
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (J.A.F.); (J.E.I.)
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Monica M. Diaz
- Department of Neurology, Multiple Sclerosis/Neuroimmunology Division, University of North Carolina at Chapel Hill School of Medicine, 170 Manning Drive, Campus Box 7025, Chapel Hill, NC 27599, USA;
| | - Bin Tang
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (J.A.F.); (J.E.I.)
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Scott L. Letendre
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (J.A.F.); (J.E.I.)
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Ronald J. Ellis
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA;
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (J.A.F.); (J.E.I.)
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
19
|
Cheng Y, Chen Y, Li K, Liu S, Pang C, Gao L, Xie J, Wenjing LV, Yu H, Deng B. How inflammation dictates diabetic peripheral neuropathy: An enlightening review. CNS Neurosci Ther 2024; 30:e14477. [PMID: 37795833 PMCID: PMC11017439 DOI: 10.1111/cns.14477] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) constitutes a debilitating complication associated with diabetes. Although, the past decade has seen rapid developments in understanding the complex etiology of DPN, there are no approved therapies that can halt the development of DPN, or target the damaged nerve. Therefore, clarifying the pathogenesis of DPN and finding effective treatment are the crucial issues for the clinical management of DPN. AIMS This review is aiming to summary the current knowledge on the pathogenesis of DPN, especially the mechanism and application of inflammatory response. METHODS We systematically summarized the latest studies on the pathogenesis and therapeutic strategies of diabetic neuropathy in PubMed. RESULTS In this seminal review, the underappreciated role of immune activation in the progression of DPN is scrutinized. Novel insights into the inflammatory regulatory mechanisms of DPN have been unearthed, illuminating potential therapeutic strategies of notable clinical significance. Additionally, a nuanced examination of DPN's complex etiology, including aberrations in glycemic control and insulin signaling pathways, is presented. Crucially, an emphasis has been placed on translating these novel understandings into tangible clinical interventions to ameliorate patient outcomes. CONCLUSIONS This review is distinguished by synthesizing cutting-edge mechanisms linking inflammation to DPN and identifying innovative, inflammation-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yifan Cheng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Yinuo Chen
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Kezheng Li
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Shuwei Liu
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Chunyang Pang
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Lingfei Gao
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jiali Xie
- Department of Neurology, Shanghai East HospitalTongji UniversityShanghaiP.R. China
| | - L. V. Wenjing
- Department of GeriatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandong ProvinceChina
| | - Huan Yu
- Department of PediatricsSecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Binbin Deng
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
20
|
Mi P, Dong H, Chen S, Gao X, Cao X, Liu Y, Wang H, Fan G. Association between HDL-C and chronic pain: data from the NHANES database 2003-2004. Front Med (Lausanne) 2024; 11:1340037. [PMID: 38529119 PMCID: PMC10961440 DOI: 10.3389/fmed.2024.1340037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Objective High-density lipoprotein cholesterol (HDL-C) has been reported to be associated with pain symptoms of various diseases, and its anti-inflammatory and antioxidant mediation is related to the pathogenesis of chronic pain. This study aims to evaluate the relationship between HDL-C levels and chronic pain in American adults. Methods This cross-sectional study used data from American adults aged 20 and above during the 2003-2004 National Health and Nutrition Examination Survey (NHANES) cycle. Participants were divided into 4 groups based on HDL-C quartiles. We used chi-square tests and Student's t-tests or Mann-Whitney U tests to analyze categorical variables and continuous variables to compare differences between groups. Multivariate logistic regression analysis was used to study the association between HDL-C levels and the risk of chronic pain. Likelihood ratio tests were used to assess interactions between subgroups, and sensitivity analyses were conducted. Results Our final analysis included 4,688 participants, of which 733 (16.4%) had chronic pain. In the multivariate logistic regression model adjusted for covariates, there was a negative correlation between HDL-C levels and chronic pain. Specifically, for every 20 unit increase in HDL-C, the risk of chronic pain decreased by 26%. Compared with the lowest HDL-C quartile (< 43 mg/dL), the highest HDL-C quartile (≥ 64 mg/dL) was associated with a 24% reduction in the risk of chronic pain. No interaction factors affecting the relationship between HDL-C and chronic pain were found in the subgroup analysis. Conclusion This study demonstrates a negative association between HDL-C levels and chronic pain in US adults, providing insights into the pathogenesis of chronic pain and potential improvements in chronic pain management strategies.
Collapse
Affiliation(s)
- Panpan Mi
- Department of Orthopedic, Hebei PetroChina Central Hospital, Langfang, China
| | - Haoran Dong
- Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Shengle Chen
- Department of Orthopedic, Hebei PetroChina Central Hospital, Langfang, China
| | - Xuan Gao
- Department of Orthopedic, Hebei PetroChina Central Hospital, Langfang, China
| | - Xu Cao
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Yong Liu
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Huijie Wang
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Guofeng Fan
- Department of Orthopedic, Hebei PetroChina Central Hospital, Langfang, China
| |
Collapse
|
21
|
Yang LF, He JD, Jiang WQ, Wang XD, Yang XC, Liang Z, Zhou YK. Interferon-gamma Treatment of Human Umbilical Cord Mesenchymal Stem Cells can Significantly Reduce Damage Associated with Diabetic Peripheral Neuropathy in Mice. Curr Stem Cell Res Ther 2024; 19:1129-1141. [PMID: 37644749 DOI: 10.2174/1574888x19666230829155046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Diabetic peripheral neuropathy causes significant pain to patients. Umbilical cord mesenchymal stem cells have been shown to be useful in the treatment of diabetes and its complications. The aim of this study was to investigate whether human umbilical cord mesenchymal stem cells treated with interferon-gamma can ameliorate nerve injury associated with diabetes better than human umbilical cord mesenchymal stem cells without interferon-gamma treatment. METHODS Human umbilical cord mesenchymal stem cells were assessed for adipogenic differentiation, osteogenic differentiation, and proliferation ability. Vonfry and a hot disc pain tester were used to evaluate tactile sensation and thermal pain sensation in mice. Hematoxylin-eosin and TUNEL staining were performed to visualize sciatic nerve fiber lesions and Schwann cell apoptosis in diabetic mice. Western blotting was used to detect expression of the apoptosis-related proteins Bax, B-cell lymphoma-2, and caspase-3 in mouse sciatic nerve fibers and Schwann cells. Real-Time Quantitative PCR was used to detect mRNA levels of the C-X-C motif chemokine ligand 1, C-X-C motif chemokine ligand 2, C-X-C motif chemokine ligand 9, and C-X-C motif chemokine ligand 10 in mouse sciatic nerve fibers and Schwann cells. Enzyme-linked immunosorbent assay was used to detect levels of the inflammatory cytokines, interleukin- 1β, interleukin-6, and tumor necrosis factor-α in serum and Schwann cells. RESULTS The adipogenic differentiation capacity, osteogenic differentiation capacity, and proliferation ability of human umbilical cord mesenchymal stem cells were enhanced after interferon-gamma treatment. Real-Time Quantitative PCR revealed that interferon-gamma promoted expression of the adipogenic markers, PPAR-γ and CEBP-α, as well as of the osteogenic markers secreted phosphoprotein 1, bone gamma-carboxyglutamate protein, collagen type I alpha1 chain, and Runt-related transcription factor 2. The results of hematoxylin-eosin and TUNEL staining showed that pathological nerve fiber damage and Schwann cell apoptosis were reduced after the injection of interferon-gamma-treated human umbilical cord mesenchymal stem cells. Expression of the apoptosis-related proteins, caspase-3 and Bax, was significantly reduced, while expression of the anti-apoptotic protein B-cell lymphoma-2 was significantly increased. mRNA levels of the cell chemokines, C-X-C motif chemokine ligand 1, C-X-C motif chemokine ligand 2, C-X-C motif chemokine ligand 9, and C-X-C motif chemokine ligand 10, were significantly reduced, and levels of the inflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, were decreased. Tactile and thermal pain sensations were improved in diabetic mice. CONCLUSION Interferon-gamma treatment of umbilical cord mesenchymal stem cells enhanced osteogenic differentiation, adipogenic differentiation, and proliferative potential. It can enhance the ability of human umbilical cord mesenchymal stem cells to alleviate damage to diabetic nerve fibers and Schwann cells, in addition to improving the neurological function of diabetic mice.
Collapse
Affiliation(s)
- Li-Fen Yang
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province, China
| | - Jun-Dong He
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province, China
- Medical School, Kunming University of Science and Technology, Kunming, 650300, Yunnan Province, People's Republic of China
| | - Wei-Qi Jiang
- The First Clinical Medical College, Kunming Medical University, Kunming, 650050, People's Republic of China
| | - Xiao-Dan Wang
- Kunming Yan'an Hospital Kunming, 650051, People's Republic of China
| | - Xiao-Chun Yang
- Department of Ophthalmology First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, People's Republic of China
| | - Zhi Liang
- Department of Information Center, First People's Hospital of Yunnan Province, China
| | - Yi-Kun Zhou
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province, China
| |
Collapse
|
22
|
Sen A, Mohanraj PS, Ranjan A, Rajendran V, ArulVijayaVani S, Balan Y, Bansal A. Unraveling the Role of Tumor Necrosis Factor-Alpha in Diabetic Peripheral Neuropathy: A Systematic Review and Meta-Analysis. Cureus 2023; 15:e49926. [PMID: 38179375 PMCID: PMC10764202 DOI: 10.7759/cureus.49926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent and debilitating complication of diabetes mellitus, leading to sensory abnormalities, decreased balance, and increased risk of foot problems. Although tumor necrosis factor-alpha (TNF-α) has emerged as a potential factor in the pathogenesis of DPN, its role remains contested. This study intends to thoroughly analyze the association between TNF-α and DPN by combining data from various global studies. This systematic review and meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and included 23 articles investigating TNF-α levels in DPN patients for systematic review and 11 articles for meta-analysis. Data were extracted, and heterogeneity was examined. A random-effect model was chosen due to high heterogeneity. The major outcome measure across studies was serum TNF-α levels. The meta-analysis found a significant mean difference of 15.2464 (95% confidence interval = 4.4963; 25.9965) under the random-effect model due to the substantial heterogeneity (I2 = 98.1%) among included studies. The meta-analysis indicates a consistent elevation in TNF-α levels in individuals with DPN compared to those without neuropathy. This underlines the potential of TNF-α as a biomarker and contributor to diabetic neuropathy. Despite heterogeneity, the study's extensive scope and systematic approach enhance the trustworthiness and generalizability of the findings.
Collapse
Affiliation(s)
- Aniruddha Sen
- Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| | | | - Amit Ranjan
- Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| | - Vinoth Rajendran
- Community Medicine & Family Medicine, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| | - Subramaniam ArulVijayaVani
- Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research Karaikal, Karaikal, IND
| | - Yuvaraj Balan
- Biochemistry, All India Institute of Medical Sciences, Madurai, Madurai, IND
| | - Akash Bansal
- Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| |
Collapse
|
23
|
Rasmussen VF, Hirschberg Jensen V, Thrysøe M, Vestergaard ET, Størling J, Kristensen K. Cross-sectional study investigating the association between inflammatory biomarkers and neuropathy in adolescents with type 1 diabetes. BMJ Open 2023; 13:e074992. [PMID: 37802616 PMCID: PMC10565182 DOI: 10.1136/bmjopen-2023-074992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVES The aims of this study were to investigate circulating levels of inflammatory markers in adolescents with type 1 diabetes with and without different types of neuropathies and evaluate the association between inflammatory biomarkers, nerve function and clinical parameters. DESIGN Cross-sectional study. SETTING Hospitals and Steno Diabetes Center in Denmark. PARTICIPANTS Adolescents with more than 5 years of diabetes duration were investigated for large fibre, small fibre and autonomic neuropathy as a part of the T1DANES study. Blood samples from the participants were analysed for inflammatory biomarkers by Meso Scale Discovery multiplexing technology. PRIMARY AND SECONDARY OUTCOME MEASURES Inflammatory biomarkers and results of diagnostic nerve tests. RESULTS Fifty-six adolescents with type 1 diabetes and 23 healthy controls were included. The adolescents with diabetes had significantly higher interferon-gamma, tumour necrosis factor-alpha (TNF-a), interleukin (IL)-10 and soluble urokinase plasminogen activator receptor (suPAR) compared with healthy controls (p values<0.05). TNF-a was higher in the adolescents with large fibre neuropathy (LFN) (p=0.03) compared with those without LFN in the group with diabetes. A negative correlation was seen between TNF-a and conduction velocity in nervus tibialis (p=0.04), and higher TNF-a and IL-6 were associated with higher gastric motility index (TNF-a, p value=0.03; IL-6, p value=0.02). There were no significant associations between inflammatory markers and expressed symptoms, haemoglobin A1c, diabetes duration or body mass index standard derivation score (p values>0.05). The receiver operating characteristic (ROC) curves for the inflammatory markers suggested them as poor screening methods for all types of neuropathies with an area under the curve between 0.47 and 0.67. CONCLUSION Our results confirm increased low-grade inflammation in adolescents with type 1 diabetes. TNF-a was higher in adolescents with LFN and correlated negatively with nervus tibialis conduction velocity. The other inflammatory biomarkers fail to support differences in those with and without different types of diabetic neuropathies. However, TNF-a and IL-6 were positively correlated to gastric motility index.
Collapse
Grants
- Steno Diabetes Center
- The entire project was sponsored by the following: Skibsreder Per Henriksen og Hustrus Fond, Tømrermester Jørgen Holm og Hustru Lisa F. Hansens Mindelegat, Vissing Fonden, Rissfort Fonden, Kirsten Dyrløv Madsens legat, Lipperts Fond, Reinholdt W. Jorck og Hustrus fond, Helga og Peter Kornings Fond, Beckett Fonden, Dagmar Marschall Fond. Danske lægers Forsikring under Danica Pension, William Demant Fonden. Professor Iversens Rejsefond, Diabetesforeningen.
- Novo Nordisk
- Aarhus University
Collapse
Affiliation(s)
- Vinni Faber Rasmussen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics and Adolescents, Randers Regional Hospital, Randers, Denmark
| | | | - Mathilde Thrysøe
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Joachim Størling
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Kristensen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
Mureșan AV, Tomac A, Opriș DR, Bandici BC, Coșarcă CM, Covalcic DC, Hălmaciu I, Akácsos-Szász OZ, Rădulescu F, Lázár K, Stoian A, Tilinca MC. Inflammatory Markers Used as Predictors of Subclinical Atherosclerosis in Patients with Diabetic Polyneuropathy. Life (Basel) 2023; 13:1861. [PMID: 37763265 PMCID: PMC10532684 DOI: 10.3390/life13091861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND peripheral arterial disease (PAD) is identified late in diabetic patients because, in the majority of cases, it is associated with diabetic peripheral neuropathy, resulting in little or no symptoms, or symptoms that are completely neglected. METHODS In this study were enrolled all patients over 18 years of age, with diabetes mellitus type II for more than a year with poor glycemic control, diagnosed with diabetic polyneuropathy admitted to the Diabetology Department, Emergency County Hospital of Targu Mures, Romania between January 2020 and March 2023. We divided the patients into two groups, based on the presence or absence of subclinical atherosclerosis in the lower limb, named "SA" and "non-SA". RESULTS Patients in the SA group were older (p = 0.01) and had a higher incidence of IHD (p = 0.03), history of MI (p = 0.02), and diabetic nephropathy (p = 0.01). Moreover, patients with subclinical atherosclerosis had a higher BMI (p < 0.0001) and a longer duration of diabetes (p < 0.0001). Among all patients, the systemic inflammatory markers, MLR (r = 0.331, p < 0.001), NLR (r = 0.517, p < 0.001), PLR (r = 0.296, p < 0.001), SII (r = 0.413, p < 0.001), as well as BMI (r = 0.241, p < 0.001) and HbA1C (r = 0.489, p < 0.001), demonstrated a strong positive correlation with the diabetes duration. The multivariate logistic regression analysis showed that older patients (OR: 2.58, p < 0.001), the male gender (OR: 2.30, p = 0.006), a higher baseline levels of BMI (OR: 7.71, p < 0.001), and the duration of diabetes (OR: 8.65, p < 0.001) are predictors of subclinical atherosclerosis in DN patients. Additionally, the high baseline levels of all systemic inflammatory markers (for all: p < 0.001) and poor diabetes management (OR: 10.4, p < 0.001 for HbA1C; OR: 10.78, p < 0.001 for admission glucose) are independent predictors of SA. CONCLUSIONS the inflammatory markers, NLR, MLR, PLR, and SII, being cheap and easy to collect in routine medical practice from the standard blood tests, could be an important step in predicting vascular outcomes in diabetic patients and the disease's progression, playing a key role in follow-up visits in type-2 diabetic patients and PAD patients.
Collapse
Affiliation(s)
- Adrian Vasile Mureșan
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania; (A.V.M.); (C.M.C.)
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Alexandru Tomac
- Clinic of Plastic Surgery, Emergency Clinical Hospital Saint Spiridon, 700111 Iasi, Romania;
| | - Diana Roxana Opriș
- Emergency Institute for Cardiovascular Diseases and Transplantation (IUBCVT) of Targu Mures, 540136 Targu Mures, Romania
| | - Bogdan Corneliu Bandici
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania; (A.V.M.); (C.M.C.)
| | - Cătălin Mircea Coșarcă
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania; (A.V.M.); (C.M.C.)
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Diana Carina Covalcic
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania; (A.V.M.); (C.M.C.)
| | - Ioana Hălmaciu
- Department of Radiology, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Orsolya-Zsuzsa Akácsos-Szász
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Flavia Rădulescu
- Clinical Department of Endocrinology, Mures County Emergency Hospital, 540136 Targu Mures, Romania; (F.R.)
- Department of Scientific Research Methodology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Krisztina Lázár
- Clinical Department of Endocrinology, Mures County Emergency Hospital, 540136 Targu Mures, Romania; (F.R.)
| | - Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Mariana Cornelia Tilinca
- Department of Diabetes, Nutrition and Metabolic Diseases, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
25
|
Pușcașu C, Ungurianu A, Șeremet OC, Andrei C, Mihai DP, Negreș S. The Influence of Sildenafil-Metformin Combination on Hyperalgesia and Biochemical Markers in Diabetic Neuropathy in Mice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1375. [PMID: 37629665 PMCID: PMC10456948 DOI: 10.3390/medicina59081375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Background and objectives: Worldwide, approximately 500 million people suffer from diabetes and at least 50% of these people develop neuropathy. Currently, therapeutic strategies for reducing diabetic neuropathy (DN)-associated pain are limited and have several side effects. The purpose of the study was to evaluate the antihyperalgesic action of different sildenafil (phosphodiesterase-5 inhibitor) and metformin (antihyperglycemic agent) combinations in alloxan-induced DN. Methods: The study included 100 diabetic mice and 20 non-diabetic mice that were subjected to hot and cold stimulus tests. Furthermore, we determined the influence of this combination on TNF-α, IL-6 and nitrites levels in brain and liver tissues. Results: In both the hot-plate and tail withdrawal test, all sildenafil-metformin combinations administered in our study showed a significant increase in pain reaction latencies when compared to the diabetic control group. Furthermore, all combinations decreased blood glucose levels due to the hypoglycemic effect of metformin. Additionally, changes in nitrite levels and pro-inflammatory cytokines (TNF-α and IL-6) were observed after 14 days of treatment with different sildenafil-metformin combinations. Conclusions: The combination of these two substances increased the pain reaction latency of diabetic animals in a dose-dependent manner. Moreover, all sildenafil-metformin combinations significantly reduced the concentration of nitrites in the brain and liver, which are final products formed under the action of iNOS.
Collapse
Affiliation(s)
| | | | - Oana Cristina Șeremet
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | | | | | | |
Collapse
|
26
|
Ding R, Zhu S, Zhao X, Yue R. Vascular endothelial growth factor levels in diabetic peripheral neuropathy: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1169405. [PMID: 37251664 PMCID: PMC10213658 DOI: 10.3389/fendo.2023.1169405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Vascular endothelial growth factors (VEGFs, including VEGF-A, VEGF-B, VEGF-C, VEGF-D and PLGF) have important roles in the development and function of the peripheral nervous system. Studies have confirmed that VEGFs, especially VEGF-A (so called VEGF) may be associated with the diabetic peripheral neuropathy (DPN) process. However, different studies have shown inconsistent levels of VEGFs in DPN patients. Therefore, we conducted this meta-analysis to evaluate the relationship between cycling levels of VEGFs and DPN. Methods This study searched 7 databases, including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Database, WanFang Database, and Chinese Biomedical Literature (CBM), to find the target researches. The random effects model was used to calculate the overall effect. Results 14 studies with 1983 participants were included, among which 13 studies were about VEGF and 1 was VEGF-B, so only the effects of VEGF were pooled. The result showed that there were obviously increased VEGF levels in DPN patients compared with diabetic patients without DPN (SMD:2.12[1.34, 2.90], p<0.00001) and healthy people (SMD:3.50[2.24, 4.75], p<0.00001). In addition, increased circulating VEGF levels were not associated with an increased risk of DPN (OR:1.02[0.99, 1.05], p<0.00001). Conclusion Compared with healthy people and diabetic patients without DPN, VEGF content in the peripheral blood of DPN patients is increased, but current evidence does not support the correlation between VEGF levels and the risk of DPN. This suggests that VEGF may play a role in the pathogenesis and repairment of DPN.
Collapse
Affiliation(s)
- Rui Ding
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shicong Zhu
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyan Zhao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Jin MY, Everett ES, Abd-Elsayed A. Microbiological and Physiological Effects of Pain. Curr Pain Headache Rep 2023; 27:165-173. [PMID: 37086365 PMCID: PMC10122082 DOI: 10.1007/s11916-023-01114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Pain is an important innate defense mechanism that can dramatically alter a person's quality of life. Understanding the microbiological and physiological effects of pain may be important in the pursuit of novel pain interventions. The three descriptors of pain recognized by the International Association for the Study of Pain are nociceptive, neuropathic, and nociplastic pain. Our review examined the current understanding of all three pain types, focusing on the key molecules involved in the manifestation of each type as well as physiological effects. Additionally, we compared the differences in painful and painless neuropathies and discussed the neuroimmune interaction involved in the manifestation of pain.
Collapse
Affiliation(s)
- Max Y Jin
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Erin S Everett
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
28
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
29
|
Sanders WM, Harlow SD, Ylitalo KR, Lange-Maia BS, Leis AM, McConnell DS, Karvonen-Gutierrez CA. The Association of Inflammatory Factors With Peripheral Neuropathy: The Study of Women's Health Across the Nation. J Clin Endocrinol Metab 2023; 108:962-970. [PMID: 36260527 PMCID: PMC10211489 DOI: 10.1210/clinem/dgac612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/27/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Previous work has focused on the role of diabetes in peripheral neuropathy (PN), but PN often occurs before, and independently from, diabetes. This study measures the association of cardiometabolic and inflammatory factor with PN, independent of diabetes. METHODS Study of Women's Health Across the Nation participants (n = 1910), ages 60 to 73 (mean 65.6) were assessed for PN by symptom questionnaire and monofilament testing at the 15th follow-up visit (V15). Anthropometric measures and biomarkers were measured at study baseline approximately 20 years prior, and C-reactive protein (CRP) and fibrinogen were measured longitudinally. Log-binomial regression was used to model the association between metabolic syndrome (MetS), obesity (≥35 body mass index), CRP, and fibrinogen with PN, adjusting for sociodemographic and health behavior measures. RESULTS Baseline MetS [prevalence ratio (PR) 1.79, 95% CI (1.45, 2.20)], obesity [PR 2.08 (1.65, 2.61)], median CRP [PR 1.32 per log(mg/dL), (1.20, 1.45)], and mean fibrinogen (PR 1.28 per 100 mg/dL, (1.09, 1.50)] were associated with PN symptoms at V15. After excluding participants with baseline diabetes or obesity, MetS [PR 1.59 (1.17, 2.14)] and CRP [PR 1.19 per log(mg/dL), (1.06, 1.35)] remained statistically significantly associated with PN. There was a negative interaction between MetS and obesity, and the association between these conditions and PN was mediated by CRP. CONCLUSIONS Cardiometabolic factors and inflammation are significantly associated with PN, independent of diabetes and obesity. CRP mediates the relationship of both obesity and MetS with PN, suggesting an etiological role of inflammation in PN in this sample.
Collapse
Affiliation(s)
- Wade M Sanders
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Kelly R Ylitalo
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX
| | - Brittney S Lange-Maia
- Rush Alzheimer's Disease Center and Department of Preventative Medicine, Rush University Medical Center, Chicago, IL
| | - Aleda M Leis
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Daniel S McConnell
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
30
|
Exploring Novel Therapeutic Targets in the Common Pathogenic Factors in Migraine and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24044114. [PMID: 36835524 PMCID: PMC9959352 DOI: 10.3390/ijms24044114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Migraine and neuropathic pain (NP) are both painful, disabling, chronic conditions which exhibit some symptom similarities and are thus considered to share a common etiology. The calcitonin gene-related peptide (CGRP) has gained credit as a target for migraine management; nevertheless, the efficacy and the applicability of CGRP modifiers warrant the search for more effective therapeutic targets for pain management. This scoping review focuses on human studies of common pathogenic factors in migraine and NP, with reference to available preclinical evidence to explore potential novel therapeutic targets. CGRP inhibitors and monoclonal antibodies alleviate inflammation in the meninges; targeting transient receptor potential (TRP) ion channels may help prevent the release of nociceptive substances, and modifying the endocannabinoid system may open a path toward discovery of novel analgesics. There may exist a potential target in the tryptophan-kynurenine (KYN) metabolic system, which is closely linked to glutamate-induced hyperexcitability; alleviating neuroinflammation may complement a pain-relieving armamentarium, and modifying microglial excitation, which is observed in both conditions, may be a possible approach. Those are several potential analgesic targets which deserve to be explored in search of novel analgesics; however, much evidence remains missing. This review highlights the need for more studies on CGRP modifiers for subtypes, the discovery of TRP and endocannabinoid modulators, knowledge of the status of KYN metabolites, the consensus on cytokines and sampling, and biomarkers for microglial function, in search of innovative pain management methods for migraine and NP.
Collapse
|
31
|
Unbiased proteomic analysis detects painful systemic inflammatory profile in the serum of nerve-injured mice. Pain 2023; 164:e77-e90. [PMID: 35587992 PMCID: PMC9833115 DOI: 10.1097/j.pain.0000000000002695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Neuropathic pain is a complex, debilitating disease that results from injury to the somatosensory nervous system. The presence of systemic chronic inflammation has been observed in patients with chronic pain but whether it plays a causative role remains unclear. This study aims to determine the perturbation of systemic homeostasis by an injury to peripheral nerve and its involvement in neuropathic pain. We assessed the proteomic profile in the serum of mice at 1 day and 1 month after partial sciatic nerve injury (PSNL) or sham surgery. We also assessed mouse mechanical and cold sensitivity in naïve mice after receiving intravenous administration of serum from PSNL or sham mice. Mass spectrometry-based proteomic analysis revealed that PSNL resulted in a long-lasting alteration of serum proteome, where most of the differentially expressed proteins were in inflammation-related pathways, involving cytokines and chemokines, autoantibodies, and complement factors. Although transferring sham serum to naïve mice did not change their pain sensitivity, PSNL serum significantly lowered mechanical thresholds and induced cold hypersensitivity in naïve mice. With broad anti-inflammatory properties, bone marrow cell extracts not only partially restored serum proteomic homeostasis but also significantly ameliorated PSNL-induced mechanical allodynia, and serum from bone marrow cell extracts-treated PSNL mice no longer induced hypersensitivity in naïve mice. These findings clearly demonstrate that nerve injury has a long-lasting impact on systemic homeostasis, and nerve injury-associated systemic inflammation contributes to the development of neuropathic pain.
Collapse
|
32
|
Piona C, Costantini S, Zusi C, Cozzini T, Pedrotti E, Marigliano M, Fornari E, Maguolo A, Morandi A, Maffeis C. Early marker of ocular neurodegeneration in children and adolescents with type 1 diabetes: the contributing role of polymorphisms in mir146a and mir128a genes. Acta Diabetol 2022; 59:1551-1561. [PMID: 36002591 PMCID: PMC9581843 DOI: 10.1007/s00592-022-01919-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Early ocular neurodegenerative signs of diabetic neuropathy (DN) can be found in children and adolescents with type 1 diabetes (T1D). No data are available on the potential role of polymorphisms in miRNAs genes in predisposing T1D subjects to these signs. AIMS To determine whether MIR146A rs2910164 and MIR128A rs11888095 polymorphisms are associated with early retinal and corneal neurodegenerative changes in pediatric patients with T1D. METHODS A total of 140 T1D children/adolescents underwent spectral domain-optical coherence tomography (SD-OCT) and in vivo confocal microscopy (IVCM) with measurement of retinal and corneal nerve fiber parameters. Risk factors for diabetes complications (diabetes duration, blood pressure, HbA1c) were recorded. Genotyping of rs2910164 and rs1188095 SNPs and genotype-phenotype association analysis were performed. RESULTS The C allele of rs2910164 in MIR146A was associated with higher values of IVCM parameters and minimum rim width (MRW) of the peripapillary region of optic nerve head measured in the retina, whereas the T allele of rs1188095 in MIR128A was associated with a significant impairment of them. Multiple regression analysis showed that MIR146A and MIR128A polymorphisms were significantly associated with corneal nerve fiber length (beta = 0.225 and - 0.204, respectively) and other IVCM parameters, independently from age, diabetes duration, HbA1c and systolic blood pressure percentile. Similar results were found for MRW (beta = 0.213 and - 0.286, respectively). CONCLUSIONS These results provide new insight into the genetic predisposition to DN showing that two polymorphisms in MIR146A and MIR128A genes could significantly contribute to the development of early ocular preclinical signs of DN.
Collapse
Affiliation(s)
- Claudia Piona
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, P.le Stefani 1, 37126, Verona, Italy
| | - Silvia Costantini
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, P.le Stefani 1, 37126, Verona, Italy
| | - Chiara Zusi
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, P.le Stefani 1, 37126, Verona, Italy
| | - Tiziano Cozzini
- Department of Neuroscience, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, P.le L. A. Scuro 10, 37134, Verona, Italy
| | - Emilio Pedrotti
- Department of Neuroscience, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, P.le L. A. Scuro 10, 37134, Verona, Italy
| | - Marco Marigliano
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, P.le Stefani 1, 37126, Verona, Italy
| | - Elena Fornari
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, P.le Stefani 1, 37126, Verona, Italy
| | - Alice Maguolo
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, P.le Stefani 1, 37126, Verona, Italy
| | - Anita Morandi
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, P.le Stefani 1, 37126, Verona, Italy.
| | - Claudio Maffeis
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, P.le Stefani 1, 37126, Verona, Italy
| |
Collapse
|
33
|
Cha SA. Heart rate-corrected QT interval prolongation is associated with decreased heart rate variability in patients with type 2 diabetes. Medicine (Baltimore) 2022; 101:e31511. [PMID: 36397376 PMCID: PMC9666134 DOI: 10.1097/md.0000000000031511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the association between the heart rate-corrected QT interval (QTc interval) measured by standard electrocardiography and heart rate variability (HRV) in patients with type 2 diabetes mellitus (T2DM). From March 1, 2009, to December 12, 2009, 411 patients with T2DM who underwent resting 12-lead electrocardiography and cardiovascular autonomic function testing concurrently without the exclusion criteria were consecutively recruited in this cross-sectional study. Time- and frequency-domain HRV variables were assessed for 5 minutes by beat-to-beat HRV recording. The QT interval was corrected for the heart rate using Bazett's formula. QTc interval measurements of >440 ms were considered abnormally prolonged. The mean age and diabetes duration were 56.3 ± 10.6 years and 9.6 ± 7.3 years, respectively. A total of 90 patients had QTc interval prolongation (21.9%). The participants with a prolonged QTc interval were older (59.4 ± 10.1 years vs 55.5 ± 10.6 years, P = .002), were more likely to be a woman (72.2% vs 51.7%, P = .001), had a higher prevalence of hypertension (46.7% vs 33.4%, P = .022), had a higher hemoglobin A1c level (8.8% ± 2.2% vs 8.2% ± 1.8%, P = .045), and had decreased values for the variables measuring HRV, except for the low frequency (LF)/high frequency (HF) ratio (total power [TP], 147.7 [74.1-335.9] ms vs 328.7 [185.7-721.7] ms, P = .002). After adjusting for multiple confounders, QTc interval prolongation was associated with the lowest quartile of the HRV parameters of TP (odds ratio [OR] = 3.99; 95% confidence interval [CI]: 2.29-6.96), HF (OR = 3.20; 95% CI: 1.84-5.58), LF (OR = 3.68; 95% CI: 2.10-6.43), standard deviation of the normal-to-normal interval (OR = 3.31; 95% CI: 1.89-5.77), and root-mean-square of the successive differences (OR = 1.98; 95% CI: 1.13-3.47) in patients with T2DM. Decreased values for the variables measuring HRV, except for the LF/HF ratio, might be associated with QTc interval prolongation in patients with T2DM.
Collapse
Affiliation(s)
- Seon-Ah Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wonkwang University Sanbon Hospital, Gunpo, Republic of Korea
- *Correspondence: Seon-Ah Cha, Division of Endocrinology and Metabolism, Department of Internal Medicine, Wonkwang University Sanbon Hospital, 321 Sanbon-ro, Gunpo, Gyeonggi-do 15865, Republic of Korea (e-mail: )
| |
Collapse
|
34
|
Potential Roles of Anti-Inflammatory Plant-Derived Bioactive Compounds Targeting Inflammation in Microvascular Complications of Diabetes. Molecules 2022; 27:molecules27217352. [PMID: 36364178 PMCID: PMC9657994 DOI: 10.3390/molecules27217352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders, the characteristics of which include chronic hyperglycemia owing to defects in insulin function, insulin secretion, or both. Inflammation plays a crucial role in DM pathogenesis and innate immunity in the development of microvascular complications of diabetes. In addition, hyperglycemia and DM mediate a proinflammatory microenvironment that can result in various microvascular complications, including diabetic nephropathy (DNP), diabetic neuropathy (DN), and diabetic retinopathy (DR). DNP is a major cause of end-stage renal disease. DNP can lead to albuminuria, decreased filtration, mesangium expansion, thickening of the basement membrane, and eventually renal failure. Furthermore, inflammatory cells can accumulate in the interstitium and glomeruli to deteriorate DNP. DN is another most prevalent microvascular complication of DM and the main cause of high mortality, disability, and a poor quality of life. DNs have a wide range of clinical manifestations because of the types of fiber dysfunctions and complex structures of the peripheral nervous system. DR is also a microvascular and multifactorial disease, as well as a major cause of visual impairment globally. Pathogenesis of DR is yet to be fully revealed, however, numerous studies have already confirmed the role of inflammation in the onset and advancement of DR. Despite evidence, and better knowledge regarding the pathogenesis of these microvascular complications of diabetes, there is still a deficiency of effective therapies. Bioactive compounds are mainly derived from plants, and these molecules have promising therapeutic potential. In this review, evidence and molecular mechanisms regarding the role of inflammation in various microvascular complications of diabetes including DNP, DN, and DR, have been summarized. The therapeutic potential of several bioactive compounds derived from plants in the treatment of these microvascular complications of diabetes has also been discussed.
Collapse
|
35
|
Umbaugh DS, Maciejewski JC, Wooten JS, Guilford BL. Neuronal Inflammation is Associated with Changes in Epidermal Innervation in High Fat Fed Mice. Front Physiol 2022; 13:891550. [PMID: 36082224 PMCID: PMC9445198 DOI: 10.3389/fphys.2022.891550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral neuropathy (PN), a debilitating complication of diabetes, is associated with obesity and the metabolic syndrome in nondiabetic individuals. Evidence indicates that a high fat diet can induce signs of diabetic peripheral PN in mice but the pathogenesis of high fat diet-induced PN remains unknown. PURPOSE: Determine if neuronal inflammation is associated with the development of mechanical hypersensitivity and nerve fiber changes in high fat fed mice. METHODS: Male C57Bl/6 mice were randomized to a standard (Std, 15% kcal from fat) or high fat diet (HF, 54% kcal from fat) for 2, 4, or 8 weeks (n = 11-12 per group). Lumbar dorsal root ganglia were harvested and inflammatory mediators (IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-17, MCP-1, IFN-γ, TNF-α, MIP-1α, GMCSF, RANTES) were quantified. Hindpaw mechanical sensitivity was assessed using the von Frey test. Intraepidermal nerve fiber density (IENFD) and TrkA nerve fiber density were quantified via immunohistochemistry. RESULTS: After 8 weeks, HF had greater body mass (33.3 ± 1.0 vs 26.7 ± 0.5 g, p < 0.001), fasting blood glucose (160.3 ± 9.4 vs 138.5 ± 3.4 mg/dl, p < 0.05) and insulin (3.58 ± 0.46 vs 0.82 ± 0.14 ng/ml, p < 0.001) compared to Std. IL-1α, RANTES and IL-5 were higher in HF compared to Std after 2 and 4 weeks, respectively (IL-1α: 4.8 ± 1.3 vs 2.9 ± 0.6 pg/mg, p < 0.05; RANTES: 19.6 ± 2.2 vs 13.3 ± 1.2 pg/mg p < 0.05; IL-5: 5.8 ± 0.7 vs 3.1 ± 0.5 pg/mg, p < 0.05). IENFD and TrkA fiber density were also higher in HF vs Std after 4 weeks (IENFD: 39.4 ± 1.2 vs 32.2 ± 1.3 fibers/mm, p < 0.001; TrkA: 30.4 ± 1.8 vs 22.4 ± 1.3 fibers/mm). There were no significant differences in hindpaw sensitivity for Std vs HF. CONCLUSION: Increased inflammatory mediators preceded and accompanied an increase in cutaneous pain sensing nerve fibers in high fat fed mice but was not accompanied by significant mechanical allodynia. Diets high in fat may increase neuronal inflammation and lead to increased nociceptive nerve fiber density.
Collapse
Affiliation(s)
| | | | | | - Brianne L. Guilford
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| |
Collapse
|
36
|
Hagedorn JM, Engle AM, George TK, Karri J, Abdullah N, Ovrom E, Bocanegra-Becerra JE, D'Souza RS. An overview of painful diabetic peripheral neuropathy: Diagnosis and treatment advancements. Diabetes Res Clin Pract 2022; 188:109928. [PMID: 35580704 DOI: 10.1016/j.diabres.2022.109928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus remains a public health problem, affecting 422 million people worldwide. Currently, there is no consensus around treating painful diabetic peripheral neuropathy in a step-wise manner. Among the non-pharmacological interventions, neuromodulation has become a promising alternative. Over the past decade, significant clinical trials have paved the way for prompt inclusion of high-frequency spinal cord stimulation within the painful diabetic peripheral neuropathy treatment algorithm. This article aims to provide an updated evidence-based approach for the management of painful diabetic peripheral neuropathy.
Collapse
Affiliation(s)
| | - Alyson M Engle
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Jay Karri
- Johns Hopkins University, Baltimore, MD, USA
| | - Newaj Abdullah
- Division of Pain Medicine, Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Erik Ovrom
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | | | - Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Circulating Growth Differentiation Factor 15 Is Associated with Diabetic Neuropathy. J Clin Med 2022; 11:jcm11113033. [PMID: 35683420 PMCID: PMC9180959 DOI: 10.3390/jcm11113033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Growth differentiation factor (GDF15) is a superfamily of transforming growth factor-beta which has been suggested to be correlated with various pathological conditions. The current study aimed to investigate the predicted role of circulating GDF15 in diabetic metabolism characteristics and diabetic neuropathy. Methods: 241 diabetic patients and 42 non-diabetic subjects were included to participate in the study. The plasma GDF15 levels were measured using ELISA. Chronic kidney disease and albuminuria were defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) guideline. The nerve conductive study (NCS) was performed with measurement of distal latency, amplitude, nerve conduction velocity (NCV), H-reflex, and F-wave studies. Results: The diabetic group had a significantly higher prevalence of chronic kidney disease and higher plasma GDF15 level. After adjusting for age and BMI, GDF15 was significantly positively correlated with waist circumference (r = 0.332, p = <0.001), hip circumference (r = 0.339, p < 0.001), HbA1c (r = 0.302, p < 0.001), serum creatine (r = 0.146, p = 0.017), urine albumin/creatinine ratio (r = 0.126, p = 0.040), and HOMA-IR (r = 0.166, p = 0.007). As to NCS, GDF15 was significantly correlated with all latency and amplitude of sensory and motor nerves, as well as F-wave and H-reflex latencies. The area under the curve (AUC) in predicting tibial motor nerve neuropathy (MNCV) in all subjects and in the diabetic group for GDF15 was 0.646 (p = 0.001) and 0.610 (p = 0.012), respectively; for HbA1c was 0.639 (p = 0.001) and 0.604 (p = 0.018), respectively. Predicting ulnar sensory nerve neuropathy for GDF15 was 0.639 (p = 0.001) and 0.658 (p = 0.001), respectively; for HbA1c was 0.545 (p = 0.307) and 0.545 (p = 0.335), respectively. Predicting median sensory nerve neuropathy for GDF15 was 0.633 (p = 0.007) and 0.611 (p = 0.032), respectively; for HbA1c was 0.631 (p = 0.008) and 0.607 (p = 0.038), respectively. Predicting CKD for GDF15 was 0.709 (95% CI, 0.648−0.771), p < 0.001) and 0.676 (95% CI, 0.605−0.746), p < 0.001), respectively; for HbA1c was 0.560 (95% CI, 0.493−0.627); p = 0.080) and 0.515 (95% CI, 0.441−0.588); p = 0.697), respectively. Conclusions: We suggest that there is a significant association between the increased serum GDF-15 level and metabolic parameters and diabetic neuropathy. Plasma GDF15 may be an independent predictor of diabetic neuropathy.
Collapse
|
38
|
Coelho MA, Jeyaraman M, Jeyaraman N, Rajendran RL, Sugano AA, Mosaner T, Santos GS, Bizinotto Lana JV, Lana AVSD, da Fonseca LF, Domingues RB, Gangadaran P, Ahn BC, Lana JFSD. Application of Sygen ® in Diabetic Peripheral Neuropathies-A Review of Biological Interactions. Bioengineering (Basel) 2022; 9:217. [PMID: 35621495 PMCID: PMC9138133 DOI: 10.3390/bioengineering9050217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
This study investigates the role of Sygen® in diabetic peripheral neuropathy, a severe disease that affects the peripheral nervous system in diabetic individuals. This disorder often impacts the lower limbs, causing significant discomfort and, if left untreated, progresses into more serious conditions involving chronic ulcers and even amputation in many cases. Although there are management strategies available, peripheral neuropathies are difficult to treat as they often present multiple causes, especially due to metabolic dysfunction in diabetic individuals. Gangliosides, however, have long been studied and appreciated for their role in neurological diseases. The monosialotetrahexosylganglioside (GM1) ganglioside, popularly known as Sygen, provides beneficial effects such as enhanced neuritic sprouting, neurotrophism, neuroprotection, anti-apoptosis, and anti-excitotoxic activity, being particularly useful in the treatment of neurological complications that arise from diabetes. This product mimics the roles displayed by neurotrophins, improving neuronal function and immunomodulation by attenuating exacerbated inflammation in neurons. Furthermore, Sygen assists in axonal stabilization and keeps nodal and paranodal regions of myelin fibers organized. This maintains an adequate propagation of action potentials and restores standard peripheral nerve function. Given the multifactorial nature of this complicated disorder, medical practitioners must carefully screen the patient to avoid confusion and misdiagnosis. There are several studies analyzing the role of Sygen in neurological disorders. However, the medical literature still needs more robust investigations such as randomized clinical trials regarding the administration of this compound for diabetic peripheral neuropathies, specifically.
Collapse
Affiliation(s)
- Marcelo Amaral Coelho
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine-Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
| | - Naveen Jeyaraman
- Fellow in Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - André Atsushi Sugano
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Tomas Mosaner
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - João Vitor Bizinotto Lana
- Medical Specialties School Centre, Centro Universitário Max Planck, Indaiatuba 13343-060, Brazil; (J.V.B.L.); (A.V.S.D.L.)
| | | | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Rafael Barnabé Domingues
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - José Fábio Santos Duarte Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| |
Collapse
|
39
|
Stanimirovic J, Radovanovic J, Banjac K, Obradovic M, Essack M, Zafirovic S, Gluvic Z, Gojobori T, Isenovic ER. Role of C-Reactive Protein in Diabetic Inflammation. Mediators Inflamm 2022; 2022:3706508. [PMID: 35620114 PMCID: PMC9129992 DOI: 10.1155/2022/3706508] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 01/08/2023] Open
Abstract
Even though type 2 diabetes mellitus (T2DM) represents a worldwide chronic health issue that affects about 462 million people, specific underlying determinants of insulin resistance (IR) and impaired insulin secretion are still unknown. There is growing evidence that chronic subclinical inflammation is a triggering factor in the origin of T2DM. Increased C-reactive protein (CRP) levels have been linked to excess body weight since adipocytes produce tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), which are pivotal factors for CRP stimulation. Furthermore, it is known that hepatocytes produce relatively low rates of CRP in physiological conditions compared to T2DM patients, in which elevated levels of inflammatory markers are reported, including CRP. CRP also participates in endothelial dysfunction, the production of vasodilators, and vascular remodeling, and increased CRP level is closely associated with vascular system pathology and metabolic syndrome. In addition, insulin-based therapies may alter CRP levels in T2DM. Therefore, determining and clarifying the underlying CRP mechanism of T2DM is imperative for novel preventive and diagnostic procedures. Overall, CRP is one of the possible targets for T2DM progression and understanding the connection between insulin and inflammation may be helpful in clinical treatment and prevention approaches.
Collapse
Affiliation(s)
- Julijana Stanimirovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Banjac
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Sonja Zafirovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
40
|
Diaz MM, Caylor J, Strigo I, Lerman I, Henry B, Lopez E, Wallace MS, Ellis RJ, Simmons AN, Keltner JR. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:869215. [PMID: 35634449 PMCID: PMC9130475 DOI: 10.3389/fpain.2022.869215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic pain affects ~10-20% of the U.S. population with an estimated annual cost of $600 billion, the most significant economic cost of any disease to-date. Neuropathic pain is a type of chronic pain that is particularly difficult to manage and leads to significant disability and poor quality of life. Pain biomarkers offer the possibility to develop objective pain-related indicators that may help diagnose, treat, and improve the understanding of neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to opiates, inflammation, and endocannabinoids with the objective of identifying composite biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided into physiological non-imaging pain biomarkers and brain imaging pain biomarkers. We review both types of biomarker types with the goal of identifying composite pain biomarkers that may improve recognition and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Jacob Caylor
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Irina Strigo
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Brook Henry
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Lopez
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S. Wallace
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Department of Psychiatry, San Diego & Center of Excellence in Stress and Mental Health, Veteran Affairs Health Care System, University of California, San Diego, San Diego, CA, United States
| | - John R. Keltner
- Department of Psychiatry, San Diego & San Diego VA Medical Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
41
|
Bäckryd E, Themistocleous A, Larsson A, Gordh T, Rice AS, Tesfaye S, Bennett DL, Gerdle B. Hepatocyte growth factor, colony-stimulating factor 1, CD40, and 11 other inflammation-related proteins are associated with pain in diabetic neuropathy: exploration and replication serum data from the Pain in Neuropathy Study. Pain 2022; 163:897-909. [PMID: 34433766 PMCID: PMC9009322 DOI: 10.1097/j.pain.0000000000002451] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022]
Abstract
ABSTRACT One in 5 patients with diabetes suffers from chronic pain with neuropathic characteristics, but the pathophysiological mechanisms underlying the development of neuropathic pain in patients with diabetic distal symmetrical polyneuropathy (DSP) are poorly understood. Systemic low-grade inflammation has been implicated, but there is still a considerable knowledge gap concerning its scope and meaning in this context. The aim of the study was to establish the broad inflammatory signature of painful diabetic DSP in serum samples from the Pain in Neuropathy Study, an observational cross-sectional multicentre study in which participants underwent deep phenotyping. In the present two cohorts exploration-replication study (180 participants in each cohort), serum samples from Pain in Neuropathy Study participants were analyzed with the Olink INFLAMMATION panel (Olink Bioscience, Uppsala, Sweden) that enables the simultaneous measurement of 92 inflammation-related proteins (mainly cytokines, chemokines, and growth factors). In both the exploration and the replication cohort, we identified a high-inflammation subgroup where 14 inflammation-related proteins in particular were associated with more neuropathy and higher pain intensity. The top 3 proteins were hepatocyte growth factor, colony-stimulating factor 1, and CD40 in both cohorts. In the exploratory cohort, additional clinical data were available, showing an association of inflammation with insomnia and self-reported psychological distress. Hence, this cross-sectional exploration-replication study seems to confirm that low-grade systemic inflammation is related to the severity of neuropathy and neuropathic pain in a subgroup of patients with diabetic DSP. The pathophysiological relevance of these proteins for the development of neuropathic pain in patients with diabetic DSP must be explored in more depth in future studies.
Collapse
Affiliation(s)
- Emmanuel Bäckryd
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Andreas Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingom
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew S.C. Rice
- Pain Research, Departmennt Surgery and Cancer, Faculty of Medicine, Imperial College London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingom
| | - Björn Gerdle
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
42
|
Ungurianu A, Zanfirescu A, Grădinaru D, Ionescu-Tîrgoviște C, Dănciulescu Miulescu R, Margină D. Interleukins and redox impairment in type 2 diabetes mellitus: mini-review and pilot study. Curr Med Res Opin 2022; 38:511-522. [PMID: 35067142 DOI: 10.1080/03007995.2022.2033049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) represents a leading cause of morbidity and premature mortality, low-grade inflammation being acknowledged as a key contributor to its development and progression. A tailored therapeutic approach, based on sensitive and specific biomarkers, could allow a more accurate analysis of disease susceptibility/prognostic and of the response to treatment. OBJECTIVES This mini-review and pilot study had two main goals: (1) reviewing the most recent literature encompassing the use of interleukins as inflammatory markers influenced by the redox imbalances in T2DM and (2) assessing parameters that conjunctly evaluate the redox impairment and inflammatory burden of T2DM patients, taking into consideration smoking status, as such group-specific biomarkers are scarcely reported in literature. METHODS Firstly, PubMed database was surveyed to select and review the relevant studies employing interleukins as T2DM biomarkers and to assess if studies using combined inflammatory-redox indices were reported. Then, routine biochemical parameters were assessed in a pilot study -T2DM patients with 3 subgroups: non-smokers, smokers and ex-smokers, were compared to a control group of non-diabetic, apparently healthy non-smokers. Protein (AOPPs, AGEs), lipid/HDL (Amplex Red-based method) oxidative damage and inflammatory status (CRP, IL-1β, IL-6, IL-10) biomarkers were assessed. Cytokine ratios and 2 oxidative-inflammatory status indices were developed (IH1 and IH2) and evaluated. RESULTS We observed significant differences in terms of serum redox and inflammatory status (AOPPs, AGEs, CRP, CRP/HDL, CRP/IL-6, IL-10/IL-6, IH1) between T2DM patients compared to control and, moreover, between the subgroups formed considering smoking status (CRP, CRP/HDL, IH1). Glycemic control strongly influenced inflammatory status biomarkers: glycemia was positively correlated with the inflammatory parameters (CRP/IL-10) and inversely with the anti-inflammatory ones (IL-10, IL-10/IL-1β ratio). CONCLUSIONS Several of the assessed parameters may possess prognostic value for diabetics, especially when comparing subgroups with a different smoking history and could prove useful in clinical practice for assessing disease progress and therapeutic efficacy.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Zanfirescu
- Department of Pharmacology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Rucsandra Dănciulescu Miulescu
- N. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
- Department of Department of Endocrinology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
43
|
Khan A, Pasquier J, Ramachandran V, Ponirakis G, Petropoulos IN, Chidiac O, Thomas B, Robay A, Jayyousi A, Al Suwaidi J, Rafii A, Menzies RA, Talal TK, Najafi-Shoushtari SH, Abi Khalil C, Malik RA. Altered Circulating microRNAs in Patients with Diabetic Neuropathy and Corneal Nerve Loss: A Pilot Study. J Clin Med 2022; 11:jcm11061632. [PMID: 35329958 PMCID: PMC8956033 DOI: 10.3390/jcm11061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
An alteration in circulating miRNAs may have important diagnostic and therapeutic relevance in diabetic neuropathy. Patients with type 2 diabetes mellitus (T2DM) underwent an assessment of neuropathic symptoms using Douleur Neuropathique 4 (DN4), the vibration perception threshold (VPT) using a Neurothesiometer, sudomotor function using the Sudoscan, corneal nerve morphology using corneal confocal microscopy (CCM) and circulating miRNAs using high-throughput miRNA expression profiling. Patients with T2DM, with (n = 9) and without (n = 7) significant corneal nerve loss were comparable in age, gender, diabetes duration, BMI, HbA1c, eGFR, blood pressure, and lipid profile. The VPT was significantly higher (p < 0.05), and electrochemical skin conductance (p < 0.05), corneal nerve fiber density (p = 0.001), corneal nerve branch density (p = 0.013), and corneal nerve fiber length (p < 0.001) were significantly lower in T2DM patients with corneal nerve loss compared to those without corneal nerve loss. Following a q-PCR-based analysis of total plasma microRNAs, we found that miR-92b-3p (p = 0.008) was significantly downregulated, while miR-22-3p (p = 0.0001) was significantly upregulated in T2DM patients with corneal nerve loss. A network analysis revealed that these miRNAs regulate axonal guidance and neuroinflammation genes. These data support the need for more extensive studies to better understand the role of dysregulated miRNAs’ in diabetic neuropathy.
Collapse
Affiliation(s)
- Adnan Khan
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Faculty of Health Sciences, Khyber Medical University, Peshawar P.O. Box 25100, Pakistan
| | - Jennifer Pasquier
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Vimal Ramachandran
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Ioannis N. Petropoulos
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Omar Chidiac
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Binitha Thomas
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amal Robay
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amin Jayyousi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Jassim Al Suwaidi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Arash Rafii
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Robert A. Menzies
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Talal K. Talal
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Seyed Hani Najafi-Shoushtari
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| |
Collapse
|
44
|
Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 2022; 59:1836-1849. [PMID: 35023058 DOI: 10.1007/s12035-021-02662-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Accelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, β-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed.
Collapse
|
45
|
Singleton JR, Foster-Palmer S, Marcus RL. Exercise as Treatment for Neuropathy in the Setting of Diabetes and Prediabetic Metabolic Syndrome: A Review of Animal Models and Human Trials. Curr Diabetes Rev 2022; 18:e230921196752. [PMID: 34561989 DOI: 10.2174/1573399817666210923125832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Peripheral neuropathy is among the most common complications of diabetes, but a phenotypically identical distal sensory predominant, painful axonopathy afflicts patients with prediabetic metabolic syndrome, exemplifying a spectrum of risk and continuity of pathogenesis. No pharmacological treatment convincingly improves neuropathy in the setting of metabolic syndrome, but evolving data suggest that exercise may be a promising alternative. OBJECTIVE The aim of the study was to review in depth the current literature regarding exercise treatment of metabolic syndrome neuropathy in humans and animal models, highlight the diverse mechanisms by which exercise exerts beneficial effects, and examine adherence limitations, safety aspects, modes and dose of exercise. RESULTS Rodent models that recapitulate the organismal milieu of prediabetic metabolic syndrome and the phenotype of its neuropathy provide a strong platform to dissect exercise effects on neuropathy pathogenesis. In these models, exercise reverses hyperglycemia and consequent oxidative and nitrosative stress, improves microvascular vasoreactivity, enhances axonal transport, ameliorates the lipotoxicity and inflammatory effects of hyperlipidemia and obesity, supports neuronal survival and regeneration following injury, and enhances mitochondrial bioenergetics at the distal axon. Prospective human studies are limited in scale but suggest exercise to improve cutaneous nerve regenerative capacity, neuropathic pain, and task-specific functional performance measures of gait and balance. Like other heath behavioral interventions, the benefits of exercise are limited by patient adherence. CONCLUSION Exercise is an integrative therapy that potently reduces cellular inflammatory state and improves distal axonal oxidative metabolism to ameliorate features of neuropathy in metabolic syndrome. The intensity of exercise need not improve cardinal features of metabolic syndrome, including weight, glucose control, to exert beneficial effects.
Collapse
Affiliation(s)
| | | | - Robin L Marcus
- Department Physical Therapy and Athletic Training, University of Utah, UT, United States
| |
Collapse
|
46
|
Abstract
Diabetic painless and painful peripheral neuropathy remains the most frequent complication of diabetes mellitus, but the pathophysiology remains undescribed, there are no robust clinical endpoints and no efficient treatment exists. This hampers good clinical practice, fruitful clinical research and successful pharmacological trials, necessary for the development of early detection, prevention and treatment. This chapter supplies an update on background and treatment of diabetic peripheral neuropathy. Goals and perspectives for future clinical and scientific approaches are also described.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Faculty of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark.
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
47
|
Sloan G, Alam U, Selvarajah D, Tesfaye S. The Treatment of Painful Diabetic Neuropathy. Curr Diabetes Rev 2022; 18:e070721194556. [PMID: 34238163 DOI: 10.2174/1573399817666210707112413] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
Painful diabetic peripheral neuropathy (painful-DPN) is a highly prevalent and disabling condition, affecting up to one-third of patients with diabetes. This condition can have a profound impact resulting in a poor quality of life, disruption of employment, impaired sleep, and poor mental health with an excess of depression and anxiety. The management of painful-DPN poses a great challenge. Unfortunately, currently there are no Food and Drug Administration (USA) approved disease-modifying treatments for diabetic peripheral neuropathy (DPN) as trials of putative pathogenetic treatments have failed at phase 3 clinical trial stage. Therefore, the focus of managing painful- DPN other than improving glycaemic control and cardiovascular risk factor modification is treating symptoms. The recommended treatments based on expert international consensus for painful- DPN have remained essentially unchanged for the last decade. Both the serotonin re-uptake inhibitor (SNRI) duloxetine and α2δ ligand pregabalin have the most robust evidence for treating painful-DPN. The weak opioids (e.g. tapentadol and tramadol, both of which have an SNRI effect), tricyclic antidepressants such as amitriptyline and α2δ ligand gabapentin are also widely recommended and prescribed agents. Opioids (except tramadol and tapentadol), should be prescribed with caution in view of the lack of definitive data surrounding efficacy, concerns surrounding addiction and adverse events. Recently, emerging therapies have gained local licenses, including the α2δ ligand mirogabalin (Japan) and the high dose 8% capsaicin patch (FDA and Europe). The management of refractory painful-DPN is difficult; specialist pain services may offer off-label therapies (e.g. botulinum toxin, intravenous lidocaine and spinal cord stimulation), although there is limited clinical trial evidence supporting their use. Additionally, despite combination therapy being commonly used clinically, there is little evidence supporting this practise. There is a need for further clinical trials to assess novel therapeutic agents, optimal combination therapy and existing agents to determine which are the most effective for the treatment of painful-DPN. This article reviews the evidence for the treatment of painful-DPN, including emerging treatment strategies such as novel compounds and stratification of patients according to individual characteristics (e.g. pain phenotype, neuroimaging and genotype) to improve treatment responses.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine and the Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, and Liverpool University Hospital, NHS Foundation Trust, Liverpool, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester, Manchester, UK
| | - Dinesh Selvarajah
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
48
|
Hamid I, Nadeem H, Ansari SF, Khiljee S, Abbasi I, Bukhari A, Arif M, Imran M. 2-Substituted Benzoxazoles as Potent Anti-Inflammatory Agents: Synthesis, Molecular Docking and In Vivo Anti-Ulcerogenic Studies. Med Chem 2021; 18:791-809. [PMID: 34931968 DOI: 10.2174/1573406418666211220125344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) are the commonly used therapeutic interventions of inflammation and pain that competitively inhibit the cyclooxygenase (COX) enzymes. Several side effects like gastrointestinal and renal toxicities are associated with the use of these drugs. The therapeutic anti-inflammatory benefits of NSAIDs are produced by the inhibition of COX-2 enzymes, while undesirable side effects arise from the inhibition of COX-1 enzymes. OBJECTIVES In the present study, a new series of 2-substituted benzoxazole derivatives 2(a-f) and 3(a-e) were synthesized in our lab as potent anti-inflammatory agents with outstanding gastro-protective potential. The new analogs 2(a-f) and 3(a-e) were designed depending upon the literature review to serve as ligands for the development of selective COX-2 inhibitors. METHODS The synthesized analogs were characterized using different spectroscopic techniques (FTIR, 1HNMR, 13CNMR) and elemental analysis. All synthesized compounds were screened for their binding potential in the protein pocket of COX-2 and evaluated for their anti-inflammatory potential in animals using the carrageenan-induced paw edema method. Further 5 compounds were selected to assess the in vivo anti-ulcerogenic activity in an ethanol-induced anti-ulcer rat model. RESULTS Five compounds (2a, 2b, 3a, 3b and 3c) exhibited potent anti-inflammatory activity and significant binding potential in the COX-2 protein pocket. Similarly, these five compounds demonstrated a significant gastro-protective effect (p<0.01) in comparison to the standard drug, Omeprazole. CONCLUSION Depending upon our results, we hypothesize that 2-substituted benzoxazole derivatives have excellent potential to serve as candidates for the development of selective anti-inflammatory agents (COX-2 inhibitors). However, further assessments are required to delineate their underlying mechanisms.
Collapse
Affiliation(s)
- Iqra Hamid
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, 44000, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, 44000, Pakistan
| | - Sameen Fatima Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, 44000, Pakistan
| | - Sonia Khiljee
- Shahida Islam College of Pharmacy, Lodhran, Punjab , Pakistan
| | - Inzamam Abbasi
- Department of Chemistry, Quaid-e-Azam University Islamabad, 44000, Pakistan
| | - Asma Bukhari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, 44000, Pakistan
| | - Muazzam Arif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, 44000, Pakistan
| | - Muhammad Imran
- Department of Pharmacy, Iqra University Islamabad Campus, Islamabad 44000, Pakistan
| |
Collapse
|
49
|
Zhou WBS, Meng J, Zhang J. Does Low Grade Systemic Inflammation Have a Role in Chronic Pain? Front Mol Neurosci 2021; 14:785214. [PMID: 34858140 PMCID: PMC8631544 DOI: 10.3389/fnmol.2021.785214] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
One of the major clinical manifestations of peripheral neuropathy, either resulting from trauma or diseases, is chronic pain. While it significantly impacts patients’ quality of life, the underlying mechanisms remain elusive, and treatment is not satisfactory. Systemic chronic inflammation (SCI) that we are referring to in this perspective is a state of low-grade, persistent, non-infective inflammation, being found in many physiological and pathological conditions. Distinct from acute inflammation, which is a protective process fighting against intruders, SCI might have harmful effects. It has been associated with many chronic non-communicable diseases. We hypothesize that SCI could be a predisposing and/or precipitating factor in the development of chronic pain, as well as associated comorbidities. We reviewed evidence from human clinical studies indicating the coexistence of SCI with various types of chronic pain. We also collated existing data about the sources of SCI and who could have it, showing that those individuals or patients having SCI usually have higher prevalence of chronic pain and psychological comorbidities. We thus elaborate on the need for further research in the connection between SCI and chronic pain. Several hypotheses have been proposed to explain these complex interactions.
Collapse
Affiliation(s)
- Wen Bo Sam Zhou
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - JingWen Meng
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Ji Zhang
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, Faculty of Medicine McGill University, Montreal, QC, Canada
| |
Collapse
|
50
|
Yan LS, Cheng BCY, Zhang SF, Luo G, Zhang C, Wang QG, Fu XQ, Wang YW, Zhang Y. Tibetan Medicine for Diabetes Mellitus: Overview of Pharmacological Perspectives. Front Pharmacol 2021; 12:748500. [PMID: 34744728 PMCID: PMC8566911 DOI: 10.3389/fphar.2021.748500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) and its complications pose a major public health threat which is approaching epidemic proportions globally. Current drug options may not provide good efficacy and even cause serious adverse effects. Seeking safe and effective agents for DM treatment has been an area of intensive interest. As a healing system originating in Tibet, Traditional Tibetan Medicine (TTM) has been widely used by Tibetan people for the prevention and treatment of DM and its complications for hundreds of years. Tibetan Materia Medica (TMM) including the flower of Edgeworthia gardneri (Wall.) Meisn., Phyllanthi Fructus, Chebulae Fructus, Huidouba, and Berberidis Cortex are most frequently used and studied. These TMMs possess hypoglycemic, anti-insulin resistant, anti-glycation, lipid lowering, anti-inflammatory, and anti-oxidative effects. The underlying mechanisms of these actions may be related to their α-glucosidase inhibitory, insulin signaling promoting, PPARs-activating, gut microbiota modulation, islet β cell-preserving, and TNF-α signaling suppressive properties. This review presents a comprehensive overview of the mode and mechanisms of action of various active constituents, extracts, preparations, and formulas from TMM. The dynamic beneficial effects of the products prepared from TMM for the management of DM and its complications are summarized. These TMMs are valuable materia medica which have the potential to be developed as safe and effective anti-DM agents.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong, China
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Gao Wang
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi, China
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|