1
|
de Sousa Moreira A, Lopes B, Sousa AC, Coelho A, Sousa P, Araújo A, Delgado E, Alvites R, Maurício AC. Stem Cell-Based Therapies for Glaucoma Treatment: A Review Bridging the Gap in Veterinary Patients. Int J Mol Sci 2024; 26:232. [PMID: 39796087 PMCID: PMC11719664 DOI: 10.3390/ijms26010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential. These therapies, particularly those based on mesenchymal stem cells, offer the potential to repair and protect retinal tissues through the bioactive molecules (growth factors, cytokines, chemokines) secreted, their secretome. However, research in this field, especially on the use of umbilical cord mesenchymal stem cells' secretome, remains sparse. Most clinical trials focus on human glaucomatous patients, leaving a significant gap in veterinary patients' application, especially in dogs, with additional research being needed to determine its usefulness in canine glaucoma treatment. Future studies should aim to evaluate these therapies across both human and veterinary contexts, broadening treatment possibilities for glaucoma.
Collapse
Affiliation(s)
- Alícia de Sousa Moreira
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Ana Araújo
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Esmeralda Delgado
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra n° 1317, 4585-116 Paredes, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| |
Collapse
|
2
|
Narinx F, Sauvage A, Ceusters J, Grulke S, Serteyn D, Monclin S. Subconjunctival autologous muscle-derived mesenchymal stem cell therapy: A novel, minimally invasive approach for treating equine immune-mediated keratitis. Vet Ophthalmol 2024; 27:424-433. [PMID: 38071501 DOI: 10.1111/vop.13175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 11/21/2024]
Abstract
OBJECTIVE To establish the safety of subconjunctival injections of autologous muscle-derived mesenchymal stem cells (mdMSCs) in healthy horses and to evaluate their effect in four horses (six eyes) with severe chronic equine immune-mediated keratitis (IMMK) that was unresponsive to medical treatments. METHODS MdMSCs were cultured from minimally invasive muscle biopsies. In the safety group, four healthy horses received two subconjunctival injections of 2.5 and 5 million cells, respectively, at 1-month interval, to the same eye. Ocular side effects were monitored for 1 month following each injection. In the treatment group, six eyes received four to seven subconjunctival mdMSCs injections (2.5 or 5 million cells per injection) every 4 weeks, approximatively. Medical treatment was discontinued 1 week before and throughout the entire treatment period. A scoring system was used to assess the evolution of the ocular lesions. RESULTS In the safety group, all horses exhibited mild to moderate chemosis and conjunctival hyperemia at the injection site, lasting 24-48 h. In the treatment group, all eyes initially responded positively to therapy, with a reduction in lesion scores observed after the first injection. Four eyes achieved control of the lesions with repeated injections during the 9.2 months of follow-up. CONCLUSION The first subconjunctival injection of mdMSCs resulted in improvement of the ocular lesions. Repeated injections were found to be safe, minimally invasive and showed promise in managing refractory cases of equine IMMK. Further studies are warranted to demonstrate the long-term benefits of these injections and to optimize the therapeutic protocol.
Collapse
Affiliation(s)
- Florine Narinx
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Aurélie Sauvage
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Justine Ceusters
- Center for Oxygen Research and Development, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Sigrid Grulke
- Department of Clinical Sciences, Equine Surgery, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Didier Serteyn
- Center for Oxygen Research and Development, Institute of Chemistry, University of Liège, Liège, Belgium
- Department of Clinical Sciences, Equine Surgery, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Sébastien Monclin
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Pokorska J, Sawicki S, Gabryś J, Kułaj D, Bauer EA, Lenart-Boroń A, Bulanda K, Kuchta-Gładysz M, Grzesiakowska A, Kemilew J, Barton PM, Lasek O, Bugno-Poniewierska M. The use of stem cells in the treatment of mastitis in dairy cows. Sci Rep 2024; 14:10349. [PMID: 38710789 DOI: 10.1038/s41598-024-61051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
Mastitis is a multifactorial inflammatory disease. The increase in antibiotic resistance of bacteria that cause mastitis means that cattle breeders would prefer to reduce the use of antibiotics. Recently, therapies using mesenchymal stem cells (MSCs) from various sources have gained significant interest in the development of regenerative medicine in humans and animals, due to their extraordinary range of properties and functions. The aim of this study was to analyze the effectiveness of an allogeneic stem cells derived from bone marrow (BMSC) and adipose tissue (ADSC) in treating mastitis in dairy cattle. The research material consisted of milk and blood samples collected from 39 Polish Holstein-Friesian cows, 36 of which were classified as having mastitis, based on cytological evaluation of their milk. The experimental group was divided into subgroups according to the method of MSC administration: intravenous, intramammary, and intravenous + intramammary, and according to the allogeneic stem cells administered: BMSC and ADSC. The research material was collected at several time intervals: before the administration of stem cells, after 24 and 72 h, and after 7 days. Blood samples were collected to assess hematological parameters and the level of pro-inflammatory cytokines, while the milk samples were used for microbiological assessment and to determine the somatic cells count (SCC). The administration of allogeneic MSCs resulted in a reduction in the total number of bacterial cells, Staphylococcus aureus, bacteria from the Enterobacteriaceae group, and a systematic decrease in SCC in milk. The therapeutic effect was achieved via intravenous + intramammary or intramammary administration.
Collapse
Affiliation(s)
- Joanna Pokorska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - Sebastian Sawicki
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Julia Gabryś
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Dominika Kułaj
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Edyta Agnieszka Bauer
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Klaudia Bulanda
- Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Marta Kuchta-Gładysz
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Grzesiakowska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Jerzy Kemilew
- "Kemilew Stem Cells for Animals" Company, Warsaw, Poland
| | - Patryk Mikołaj Barton
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
- Kietrz Agricultural Combine LLC, ul. Zatorze 2, 48-130, Kietrz, Poland
| | - Olga Lasek
- Department of Animal Nutrition, Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
4
|
Klymiuk MC, Balz N, Elashry MI, Wenisch S, Arnhold S. Effect of storage conditions on the quality of equine and canine mesenchymal stem cell derived nanoparticles including extracellular vesicles for research and therapy. DISCOVER NANO 2024; 19:80. [PMID: 38700790 PMCID: PMC11068712 DOI: 10.1186/s11671-024-04026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoparticles including extracellular vesicles derived from mesenchymal stem cells are of increasing interest for research and clinical use in regenerative medicine. Extracellular vesicles (EVs), including also previously named exosomes, provide a promising cell-free tool for therapeutic applications, which is probably a safer approach to achieve sufficient healing. Storage of EVs may be necessary for clinical applications as well as for further experiments, as the preparation is sometimes laborious and larger quantities tend to be gained. For this purpose, nanoparticles were obtained from mesenchymal stem cells from adipose tissue (AdMSC) of horses and dogs. The EVs were then stored for 7 days under different conditions (- 20 °C, 4 °C, 37 °C) and with the addition of various additives (5 mM EDTA, 25-250 µM trehalose). Afterwards, the size and number of EVs was determined using the nano tracking analyzing method. With our investigations, we were able to show that storage of EVs for up to 7 days at 4 °C does not require the addition of supplements. For the other storage conditions, in particular freezing and storage at room temperature, the addition of EDTA was found to be suitable for preventing aggregation of the particles. Contrary to previous publications, trehalose seems not to be a suitable cryoprotectant for AdMSC-derived EVs. The data are useful for processing and storage of isolated EVs for further experiments or clinical approaches in veterinary medicine.
Collapse
Affiliation(s)
- Michele Christian Klymiuk
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany.
| | - Natalie Balz
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Mohamed I Elashry
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| |
Collapse
|
5
|
Velot É, Balmayor ER, Bertoni L, Chubinskaya S, Cicuttini F, de Girolamo L, Demoor M, Grigolo B, Jones E, Kon E, Lisignoli G, Murphy M, Noël D, Vinatier C, van Osch GJVM, Cucchiarini M. Women's contribution to stem cell research for osteoarthritis: an opinion paper. Front Cell Dev Biol 2023; 11:1209047. [PMID: 38174070 PMCID: PMC10762903 DOI: 10.3389/fcell.2023.1209047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Émilie Velot
- Laboratory of Molecular Engineering and Articular Physiopathology (IMoPA), French National Centre for Scientific Research, University of Lorraine, Nancy, France
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milan, Italy
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | - Brunella Grigolo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Bologna, Italy
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department ofBiomedical Sciences, Humanitas University, Milan, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Danièle Noël
- IRMB, University of Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Claire Vinatier
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, Nantes, France
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine and Department of Otorhinolaryngology, Department of Biomechanical Engineering, University Medical Center Rotterdam, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
6
|
Li H, Xiong S, Masieri FF, Monika S, Lethaus B, Savkovic V. Mesenchymal Stem Cells Isolated from Equine Hair Follicles Using a Method of Air-Liquid Interface. Stem Cell Rev Rep 2023; 19:2943-2956. [PMID: 37733199 PMCID: PMC10661790 DOI: 10.1007/s12015-023-10619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
Equine mesenchymal stem cells (MSC) of various origins have been identified in horses, including MSCs from the bone marrow and adipose tissue. However, these stem cell sources are highly invasive in sampling, which thereby limits their clinical application in equine veterinary medicine. This study presents a novel method using an air-liquid interface to isolate stem cells from the hair follicle outer root sheath of the equine forehead skin. These stem cells cultured herewith showed high proliferation and asumed MSC phenotype by expressing MSC positive biomarkers (CD29, CD44 CD90) while not expressing negative markers (CD14, CD34 and CD45). They were capable of differentiating towards chondrogenic, osteogenic and adipogenic lineages, which was comparable with MSCs from adipose tissue. Due to their proliferative phenotype in vitro, MSC-like profile and differentiation capacities, we named them equine mesenchymal stem cells from the hair follicle outer root sheath (eMSCORS). eMSCORS present a promising alternative stem cell source for the equine veterinary medicine.
Collapse
Affiliation(s)
- Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Shiwen Xiong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | | | - Seltenhammer Monika
- Institute of Livestock Sciences (NUWI), University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33/II, A-1180, Vienna, Austria
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Vuk Savkovic
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
7
|
Degorska B, Sterna J, Bonecka J, Sobczak-Filipiak M, Jacewicz J. Successful treatment of a benign, non-infected cyst in a dog by bone marrow injections. VET MED-CZECH 2023; 68:337-342. [PMID: 37982124 PMCID: PMC10646538 DOI: 10.17221/19/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/19/2023] [Indexed: 11/21/2023] Open
Abstract
Bone cysts are rare orthopaedic problems in dogs. There are no clear treatment guidelines. A young male Shih Tzu was referred to Small Animal Clinic with fifth-degree lameness (5/5) of the left thoracic limb, and with swelling and deformation of the distal humeral region. The radiological assessment revealed an enlargement of the distal brachium and an extensive hypodense osteolytic lesion in the distal metaphyseal region of the humerus. Diagnosis of the bone cyst was formulated and treated with a mini-invasive method using autologous non-concentrated bone marrow injections. The treatment was successful, and at the three weeks, the cyst significantly changed its structure. The follow-up at 12 weeks after the first injection, and at one year revealed complete recovery. To our knowledge, this is the first evidence of a bone cyst in a young dog successfully treated with a minimally-invasive method by using a non-concentrated autologous bone marrow injection.
Collapse
Affiliation(s)
- Beata Degorska
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Jacek Sterna
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Joanna Bonecka
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Malgorzata Sobczak-Filipiak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Jowita Jacewicz
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| |
Collapse
|
8
|
Phyo H, Aburza A, Mellanby K, Esteves CL. Characterization of canine adipose- and endometrium-derived Mesenchymal Stem/Stromal Cells and response to lipopolysaccharide. Front Vet Sci 2023; 10:1180760. [PMID: 37275605 PMCID: PMC10237321 DOI: 10.3389/fvets.2023.1180760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are used for regenerative therapy in companion animals. Their potential was initially attributed to multipotency, but subsequent studies in rodents, humans and veterinary species evidenced that MSCs produce factors that are key mediators of immune, anti-infective and angiogenic responses, which are essential in tissue repair. MSCs preparations have been classically obtained from bone marrow and adipose tissue (AT) in live animals, what requires the use of surgical procedures. In contrast, the uterus, which is naturally exposed to external insult and infection, can be accessed nonsurgically to obtain samples, or tissues can be taken after neutering. In this study, we explored the endometrium (EM) as an alternative source of MSCs, which we compared with AT obtained from canine paired samples. Canine AT- and EM-MSCs, formed CFUs when seeded at low density, underwent tri-lineage differentiation into adipocytes, osteocytes and chondrocytes, and expressed the CD markers CD73, CD90 and CD105, at equivalent levels. The immune genes IL8, CCL2 and CCL5 were equally expressed at basal levels by both cell types. However, in the presence of the inflammatory stimulus lipopolysaccharide (LPS), expression of IL8 was higher in EM- than in AT-MSCs (p < 0.04) while the other genes were equally elevated in both cell types (p < 0.03). This contrasted with the results for CD markers, where the expression was unaltered by exposing the MSCs to LPS. Overall, the results indicate that canine EM-MSCs could serve as an alternative cell source to AT-MSCs in therapeutic applications.
Collapse
|
9
|
Barrachina L, Arshaghi TE, O'Brien A, Ivanovska A, Barry F. Induced pluripotent stem cells in companion animals: how can we move the field forward? Front Vet Sci 2023; 10:1176772. [PMID: 37180067 PMCID: PMC10168294 DOI: 10.3389/fvets.2023.1176772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Following a one medicine approach, the development of regenerative therapies for human patients leads to innovative treatments for animals, while pre-clinical studies on animals provide knowledge to advance human medicine. Among many different biological products under investigation, stem cells are among the most prominent. Mesenchymal stromal cells (MSCs) are extensively investigated, but they present challenges such as senescence and limited differentiation ability. Embryonic stem cells (ESCs) are pluripotent cells with a virtually unlimited capacity for self-renewal and differentiation, but the use of embryos carries ethical concerns. Induced pluripotent stem cells (iPSCs) can overcome all of these limitations, as they closely resemble ESCs but are derived from adult cells by reprogramming in the laboratory using pluripotency-associated transcription factors. iPSCs hold great potential for applications in therapy, disease modeling, drug screening, and even species preservation strategies. However, iPSC technology is less developed in veterinary species compared to human. This review attempts to address the specific challenges associated with generating and applying iPSCs from companion animals. Firstly, we discuss strategies for the preparation of iPSCs in veterinary species and secondly, we address the potential for different applications of iPSCs in companion animals. Our aim is to provide an overview on the state of the art of iPSCs in companion animals, focusing on equine, canine, and feline species, as well as to identify which aspects need further optimization and, where possible, to provide guidance on future advancements. Following a "step-by-step" approach, we cover the generation of iPSCs in companion animals from the selection of somatic cells and the reprogramming strategies, to the expansion and characterization of iPSCs. Subsequently, we revise the current applications of iPSCs in companion animals, identify the main hurdles, and propose future paths to move the field forward. Transferring the knowledge gained from human iPSCs can increase our understanding in the biology of pluripotent cells in animals, but it is critical to further investigate the differences among species to develop specific approaches for animal iPSCs. This is key for significantly advancing iPSC application in veterinary medicine, which at the same time will also allow gaining pre-clinical knowledge transferable to human medicine.
Collapse
Affiliation(s)
| | | | | | | | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, University of Galway, Galway, Ireland
| |
Collapse
|
10
|
Cryobanking European Mink (Mustela lutreola) Mesenchymal Stem Cells and Oocytes. Int J Mol Sci 2022; 23:ijms23169319. [PMID: 36012583 PMCID: PMC9408899 DOI: 10.3390/ijms23169319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The European mink (Mustela lutreola) is one of Europe’s most endangered species, and it is on the brink of extinction in the Iberian Peninsula. The species’ precarious situation requires the application of new ex situ conservation methodologies that complement the existing ex situ and in situ conservation measures. Here, we report for the first time the establishment of a biobank for European mink mesenchymal stem cells (emMSC) and oocytes from specimens found dead in the Iberian Peninsula, either free or in captivity. New emMSC lines were isolated from different tissues: bone marrow (emBM-MSC), oral mucosa (emOM-MSc), dermal skin (emDS-MSC), oviduct (emO-MSc), endometrium (emE-MSC), testicular (emT-MSC), and adipose tissue from two different adipose depots: subcutaneous (emSCA-MSC) and ovarian (emOA-MSC). All eight emMSC lines showed plastic adhesion, a detectable expression of characteristic markers of MSCs, and, when cultured under osteogenic and adipogenic conditions, differentiation capacity to these lineages. Additionally, we were able to keep 227 Cumulus-oocyte complexes (COCs) in the biobank, 97 of which are grade I or II. The European mink MSC and oocyte biobank will allow for the conservation of the species’ genetic variability, the application of assisted reproduction techniques, and the development of in vitro models for studying the molecular mechanisms of infectious diseases that threaten the species’ precarious situation.
Collapse
|
11
|
Buote NJ. Laparoscopic adipose-derived stem cell harvest technique with bipolar sealing device: Outcome in 12 dogs. Vet Med Sci 2022; 8:1421-1428. [PMID: 35537084 PMCID: PMC9297765 DOI: 10.1002/vms3.816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective This study aimed to describe the technique and clinical outcomes in dogs undergoing Laparoscopic Adipose‐Derived Stem Cell Harvest via bipolar sealing device (LADSCHB) for degenerative orthopaedic and neurologic disease. Study Design Descriptive retrospective case series. Animals Eleven dogs with orthopaedic disease and one dog with degenerative spinal disease were enrolled in the study. Methods Medical records of dogs undergoing LADSCHB were reviewed for signalment, weight, reason for the procedure, anaesthesia time, surgery time, other procedures performed, post‐operative pain protocols, incision size, amount of adipose tissue collected, number of viable cells collected, days to discharge, short‐term complications, and owner satisfaction. Results The median weight of the population was 34.2 kg (range 9.2–62 kg), the median surgery time was 39 min (range 15–45 min), mean incision length was 2.5 cm, the median amount of adipose collected was 60 g, and the median number of viable stem cells was 21 million cells. Conversion to open laparotomy was not needed. The most common reason for the harvest was osteoarthritis of the elbow (8/12 cases). Nine cases had other procedures performed at the same time as the harvest. No complications were noted during the procedure or within the post‐operative period. All owners surveyed were satisfied with the laparoscopic harvest procedure. Conclusions LADSCHB was technically feasible, productive, and not associated with any complications. This procedure was performed rapidly and was paired with other surgical procedures. Clinical Significance LADSCHB allows for stem cell harvest with commonly utilized laparoscopic equipment. This surgical technique could lead to the increased ability to treat patients with diseases that benefit from stem cell therapy.
Collapse
Affiliation(s)
- Nicole J Buote
- VCA West Los Angeles Animal Hospital, Los Angeles, California, USA
| |
Collapse
|
12
|
Elashry MI, Kinde M, Klymiuk MC, Eldaey A, Wenisch S, Arnhold S. The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice. Stem Cell Res Ther 2022; 13:56. [PMID: 35123554 PMCID: PMC8817503 DOI: 10.1186/s13287-022-02730-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Skeletal muscle-derived stem cells (SC) have become a promising approach for investigating myogenic differentiation and optimizing tissue regeneration. Muscle regeneration is performed by SC, a self-renewal cell population underlying the basal lamina of muscle fibers. Here, we examined the impact of hypoxia condition on the regenerative capacity of SC either in their native microenvironment or via isolation in a monolayer culture using ectopic differentiation inductions. Furthermore, the effect of low oxygen tension on myogenic differentiation protocols of the myoblasts cell line C2C12 was examined.
Methods
Hind limb muscles of wild type mice were processed for both SC/fiber isolation and myoblast extraction using magnetic beads. SC were induced for myogenic, adipogenic and osteogenic commitments under normoxic (21% O2) and hypoxic (3% O2) conditions. SC proliferation and differentiation were evaluated using histological staining, immunohistochemistry, morphometric analysis and RT-qPCR. The data were statistically analyzed using ANOVA.
Results
The data revealed enhanced SC proliferation and motility following differentiation induction after 48 h under hypoxia. Following myogenic induction, the number of undifferentiated cells positive for Pax7 were increased at 72 h under hypoxia. Hypoxia upregulated MyoD and downregulated Myogenin expression at day-7 post-myogenic induction. Hypoxia promoted both SC adipogenesis and osteogenesis under respective induction as shown by using Oil Red O and Alizarin Red S staining. The expression of adipogenic markers; peroxisome proliferator activated receptor gamma (PPARγ) and fatty acid-binding protein 4 (FABP4) were upregulated under hypoxia up to day 14 compared to normoxic condition. Enhanced osteogenic differentiation was detected under hypoxic condition via upregulation of osteocalcin and osteopontin expression up to day 14 as well as, increased calcium deposition at day 21. Hypoxia exposure increases the number of adipocytes and the size of fat vacuoles per adipocyte compared to normoxic culture. Combining the differentiation medium with dexamethasone under hypoxia improves the efficiency of the myogenic differentiation protocol of C2C12 by increasing the length of the myotubes.
Conclusions
Hypoxia exposure increases cell resources for clinical applications and promotes SC multipotency and thus beneficial for tissue regeneration.
Collapse
|
13
|
Effect of Allogeneic Oral Mucosa Mesenchymal Stromal Cells on Equine Wound Repair. Vet Med Int 2021; 2021:5024905. [PMID: 34950446 PMCID: PMC8692048 DOI: 10.1155/2021/5024905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To assess the clinical value and safety of the application of allogeneic equine oral mucosa mesenchymal stromal cells (OM-MSCs) to wounds. Animals. 8 healthy adult horses without front limb skin lesions or musculoskeletal disease. Procedures. Stem cells were isolated from the oral mucosa of a donor horse. Horses were subjected to the creation of eight full-thickness cutaneous wounds, two on each distal forelimb (FL) and two on both sides of the thorax (TH). Each wound was subjected to one out of four treatments: no medication (T1), hyaluronic acid- (HA-) gel containing OM-MSC (T2), HA-gel containing OM-MSC secretome (T3), and HA-gel alone (T4). Gross macroscopic evaluation and laser digital photographic documentation were regularly performed to allow wound assessment including wound surface area. Full-thickness skin punch biopsy was performed at each site before wound induction (D0, normal skin) and after complete wound healing (D62, repaired skin). Results All wounds healed without adverse effect at D62. Distal limb wounds are slower to heal than body wounds. OM-MSC and its secretome have a positive impact on TH wound contraction. OM-MSC has a positive impact on the contraction and epithelialization of FL wounds. No significant difference between wound sites before and after treatment was noted at histological examination. Conclusion and Clinical Relevance. Using horse cells harvested from oral mucosa is a feasible technique to produce OM-MSC or its secretome. The gel produced by the combination of these biologic components with HA shows a positive impact when applied during the early stage of wound healing.
Collapse
|
14
|
Neuroinflammation in Primary Cultures of the Rat Spinal Dorsal Horn Is Attenuated in the Presence of Adipose Tissue-Derived Medicinal Signalling Cells (AdMSCs) in a Co-cultivation Model. Mol Neurobiol 2021; 59:475-494. [PMID: 34716556 PMCID: PMC8786781 DOI: 10.1007/s12035-021-02601-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022]
Abstract
Neuroinflammation within the superficial dorsal horn (SDH) of the spinal cord induces inflammatory pain with symptoms of hyperalgesia and allodynia. Glial activation and production of inflammatory mediators (e.g. cytokines) is associated with modulation of nociceptive signalling. In this context, medicinal signalling cells, e.g. obtained from adipose tissue (AdMSCs), gained attention due to their capacity to modulate the inflammatory response in several diseases, e.g. spinal cord injury. We applied the recently established mixed neuroglial primary cell culture of the rat SDH to investigate effects of AdMSCs on the inflammatory response of SDH cells. Following establishment of a co-cultivation system, we performed specific bioassays for tumour necrosis factor alpha (TNFα) and interleukin (IL)-6, RT-qPCR and immunocytochemistry to detect changes in cytokine production and glial activation upon inflammatory stimulation with lipopolysaccharide (LPS). LPS-induced expression and release of pro-inflammatory cytokines (TNFα, IL-6) by SDH cells was significantly attenuated in the presence of AdMSCs. Further evidence for anti-inflammatory capacities of AdMSCs derived from a blunted LPS-induced TNFα/IL-10 expression ratio and suppressed nuclear translocation of the inflammatory transcription factor nuclear factor kappa B (NFκB) in SDH microglial cells. Expression of IL-10, transforming growth factor beta (TGF-β) and TNFα-stimulated gene-6 (TSG-6) was detected in AdMSCs, which are putative candidates for anti-inflammatory capacities of these cells. We present a novel co-cultivation system of AdMSCs with neuroglial primary cultures of the SDH to investigate immunomodulatory effects of AdMSCs at a cellular level.
Collapse
|
15
|
Immunomodulatory Effects of Canine Adipose Tissue Mesenchymal Stem Cell-Derived Extracellular Vesicles on Stimulated CD4 + T Cells Isolated from Peripheral Blood Mononuclear Cells. J Immunol Res 2021; 2021:2993043. [PMID: 34447855 PMCID: PMC8384509 DOI: 10.1155/2021/2993043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) have anti-inflammatory and immunomodulatory characteristics. Many studies have suggested that the immunomodulation of ADSCs is largely mediated by secreted paracrine factors. Various factors are secreted from ADSCs, among which extracellular vesicles are considered to play a major role in the communication between ADSCs and target cells. Several studies have reported the function of canine ADSC-derived extracellular vesicles (cADSC-EVs), but few studies have reported the immunomodulatory effects of cADSC-EVs on immune cells. The purpose of this study was to investigate the effects of cADSC-EVs on in vitro-stimulated CD4+ T cells isolated from peripheral blood mononuclear cells (PBMCs). cADSC-EVs were isolated from cADSCs under naive conditions or primed conditions by tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ). The expression levels of several microRNAs in cADSC-EVs were altered by priming with TNFα and IFNγ. Culturing PBMCs stimulated with concanavalin A in the presence of naive or primed cADSC-EVs inhibited the differentiation of PBMCs and CD4+ T cells and promoted apoptosis of PBMCs. CD4+, CD8+, and CD4+CD8+ T cells were decreased, while CD3+CD4-CD8- T cells were increased. T helper (Th) 1, Th2, Th17, and regulatory T (Treg) cells were analyzed by flow cytometry. cADSC-EVs inhibited the proliferation of Th1 and Th17 cells and enhanced Th2 and Treg cell proliferation. However, CD4+ T cells that had incorporated labeled cADSC-EVs comprised only a few percent of all cells. Therefore, these responses of stimulated CD4+ T cells may be due to not only direct effects of cADSC-EVs but also to indirect effects through interactions between cADSC-EVs and other immune cells. In conclusion, cADSC-EVs exert immunosuppressive effects on stimulated CD4+ T cells in vitro. These findings may be useful for further studies of immune diseases.
Collapse
|
16
|
Graves SS, Storb R. Evolution of haematopoietic cell transplantation for canine blood disorders and a platform for solid organ transplantation. Vet Med Sci 2021; 7:2156-2171. [PMID: 34390541 PMCID: PMC8604109 DOI: 10.1002/vms3.601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pre-clinical haematopoietic cell transplantation (HCT) studies in canines have proven to be invaluable for establishing HCT as a highly successful clinical option for the treatment of malignant and non-malignant haematological diseases in humans. Additionally, studies in canines have shown that immune tolerance, established following HCT, enabled transplantation of solid organs without the need of lifelong immunosuppression. This progress has been possible due to multiple biological similarities between dog and mankind. In this review, the hurdles that were overcome and the methods that were developed in the dog HCT model which made HCT clinically possible are examined. The results of these studies justify the question whether HCT can be used in the veterinary clinical practice for more wide-spread successful treatment of canine haematologic and non-haematologic disorders and whether it is prudent to do so.
Collapse
Affiliation(s)
- Scott S Graves
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rainer Storb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
17
|
Liu Z, Screven R, Yu D, Boxer L, Myers MJ, Han J, Devireddy LR. Microfluidic Separation of Canine Adipose-Derived Mesenchymal Stromal Cells. Tissue Eng Part C Methods 2021; 27:445-461. [PMID: 34155926 DOI: 10.1089/ten.tec.2021.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are potential treatments for a variety of veterinary medical conditions. However, clinical trials have often fallen short of expectations, due in part to heterogeneity and lack of characterization of the MSCs. Identification and characterization of subpopulations within MSC cultures may improve those outcomes. Therefore, the functional heterogeneity of different-sized subpopulations of MSCs was evaluated. A high-throughput, biophysical, label-free microfluidic sorting approach was used to separate subpopulations of canine adipose-derived MSCs (Ad-MSCs) based on size for subsequent characterization, as well as to evaluate the impact of culture conditions on their functional heterogeneity. We found that culture-expanded canine Ad-MSCs comprise distinct subpopulations: larger MSCs (mean diameter of 18.6 ± 0.2 μm), smaller MSCs (mean diameter of 15.3 ± 0.2 μm), and intermediate MSCs (mean diameter of 16.9 ± 0.1 μm). In addition, proliferation characteristics, senescence, and differentiation potential of canine Ad-MSCs are also dependent on cell size. We observed that larger MSCs proliferate more slowly, senesce at earlier passages, and are inclined to differentiate into adipocytes compared with smaller MSCs. Most importantly, these size-dependent functions are also affected by the presence of serum in the culture medium, as well as time in culture. Cell surface staining for MSC-specific CD44 and CD90 antigens showed that all subpopulations of MSCs are indistinguishable, suggesting that this criterion is not relevant to define subpopulations of MSCs. Finally, transcriptome analysis showed differential gene expression between larger and smaller subpopulations of MSCs. Larger MSCs expressed genes involved in cellular senescence such as cyclin-dependent kinase inhibitor 1A and smaller MSCs expressed genes that promote cell growth [mechanistic target of rapamycin 1 (mTORC1) pathway] and cell proliferation [myelocytomatosis (myc), e2f targets]. These results suggest that different subpopulations of MSCs have specific properties. Impact statement Clinical trials of mesenchymal stromal cells (MSCs) from veterinary species have often fallen short of expectations, due in part to heterogeneity and lack of characterization of the MSCs. A high-throughput, biophysical, label-free microfluidic sorting approach was used to separate subpopulations of canine adipose-derived MSCs (Ad-MSCs) based on size for subsequent characterization. Proliferation characteristics, senescence, and differentiation potential of canine Ad-MSCs are also dependent on cell size. Cell surface staining for MSC-specific cell surface markers showed that all subpopulations of MSCs are indistinguishable, suggesting that this criterion is not relevant to define subpopulations of MSCs.
Collapse
Affiliation(s)
- Zhuoming Liu
- Division of Applied Veterinary Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Rudell Screven
- Division of Applied Veterinary Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Debbie Yu
- Micro/Nanofluidic BioMEMS Group, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lynne Boxer
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Michael J Myers
- Division of Applied Veterinary Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Jongyoon Han
- Micro/Nanofluidic BioMEMS Group, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Laxminarayana R Devireddy
- Division of Applied Veterinary Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| |
Collapse
|
18
|
Cequier A, Sanz C, Rodellar C, Barrachina L. The Usefulness of Mesenchymal Stem Cells beyond the Musculoskeletal System in Horses. Animals (Basel) 2021; 11:ani11040931. [PMID: 33805967 PMCID: PMC8064371 DOI: 10.3390/ani11040931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The main target of mesenchymal stem cell therapy in horses has long been the locomotor system, because these athletic animals commonly suffer from tendon and joint lesions. Originally, mesenchymal stem cells were thought to act by just differentiating into the cells of the injured tissue. However, these cells are also able to regulate and stimulate the body’s own repair mechanisms, opening the door to many applications in inflammatory and immune-mediated disorders in both animals and humans. In horses, beyond their traditional application in the musculoskeletal system, these cells have been studied for ophthalmologic pathologies such as corneal ulcers or immune-mediated processes, and for reproductive disorders such as endometritis/endometrosis. Their potential has been explored for equine pathologies very similar to those affecting people, such as asthma, metabolic syndrome, aberrant wound healing, or endotoxemia, as well as for equine-specific pathologies such as laminitis. Current evidence is still preliminary, and further research is needed to clarify different aspects, although research performed so far shows the promising potential of mesenchymal stem cells to treat a wide variety of equine pathologies, some of which are analogous to human disorders. Therefore, advancements in this path will be beneficial for both animals and people. Abstract The differentiation ability of mesenchymal stem cells (MSCs) initially raised interest for treating musculoskeletal injuries in horses, but MSC paracrine activity has widened their scope for inflammatory and immune-mediated pathologies in both equine and human medicine. Furthermore, the similar etiopathogenesis of some diseases in both species has advanced the concept of “One Medicine, One Health”. This article reviews the current knowledge on the use of MSCs for equine pathologies beyond the locomotor system, highlighting the value of the horse as translational model. Ophthalmologic and reproductive disorders are among the most studied for MSC application. Equine asthma, equine metabolic syndrome, and endotoxemia have been less explored but offer an interesting scenario for human translation. The use of MSCs in wounds also provides a potential model for humans because of the healing particularities in both species. High-burden equine-specific pathologies such as laminitis have been suggested to benefit from MSC-therapy, and MSC application in challenging disorders such as neurologic conditions has been proposed. The available data are preliminary, however, and require further development to translate results into the clinic. Nevertheless, current evidence indicates a significant potential of equine MSCs to enlarge their range of application, with particular interest in pathologies analogous to human conditions.
Collapse
Affiliation(s)
- Alina Cequier
- Laboratorio de Genética Bioquímica LAGENBIO—Instituto de Investigación Sanitaria de Aragón (IIS)—Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain; (A.C.); (C.R.)
| | - Carmen Sanz
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain;
| | - Clementina Rodellar
- Laboratorio de Genética Bioquímica LAGENBIO—Instituto de Investigación Sanitaria de Aragón (IIS)—Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain; (A.C.); (C.R.)
| | - Laura Barrachina
- Laboratorio de Genética Bioquímica LAGENBIO—Instituto de Investigación Sanitaria de Aragón (IIS)—Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain; (A.C.); (C.R.)
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain;
- Correspondence:
| |
Collapse
|
19
|
Koprivec S, Novak M, Bernik S, Voga M, Mohorič L, Majdič G. Treatment of cranial cruciate ligament injuries in dogs using a combination of tibial tuberosity advancement procedure and autologous mesenchymal stem cells/multipotent mesenchymal stromal cells - A pilot study. Acta Vet Hung 2021; 68:405-412. [PMID: 33656452 DOI: 10.1556/004.2020.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022]
Abstract
In the present pilot study, we evaluated different supplemental therapies using autologous multipotent mesenchymal stromal cells (MMSCs) for the treatment of cranial cruciate ligament defects in dogs. We used tibial tuberosity advancement (TTA) and augmented it by supportive therapy with MMSCs in three patient groups. In the first patient group, the dogs were injected with MMSCs directly into the treated stifle one month after surgery. In the second group, MMSCs were delivered in a silk fibroin scaffold which was placed in the osteotomy gap during surgery. In the third group, MMSCs were first mixed with bone tissue and blood from the patient and delivered into the osteotomy gap during surgery. In the control group, patients underwent the TTA procedure but did not receive MMSC treatment. In the group of patients who received cells in the silk fibroin scaffold during surgery, the osteotomy gap did not heal, presumably due to the low absorption of silk fibroin. Patients who received MMSCs mixed with bone tissue and blood during surgery into the osteotomy gap recovered clinically faster and had better healing of the osteotomy gap than dogs from the other two treated groups and from the control group, as assessed by clinical examination and quantification of radiographs. In conclusion, dogs that received stem cells directly into the osteotomy gap (Group 3) recovered faster compared to dogs from Groups 1 (MMSCs injected into the joint one month after surgery), 2 (cells implanted into the osteotomy gap in a silk fibroin scaffold), and the control group that did not receive additional MMSCs treatment.
Collapse
Affiliation(s)
| | | | | | - Metka Voga
- 2Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Luka Mohorič
- 3Animacel Biotechnology Ltd., Ljubljana, Slovenia
| | - Gregor Majdič
- 2Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
REIS BPZCD, ORGE ID, SAMPAIO GLDA, DALTRO SRT, SANTOS RRD, MEIRA CS, SOARES MBP. Mesenchymal Stem cells in the context of canine atopic dermatitis: A Review. REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2021. [DOI: 10.1590/s1519-99402122242021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Canine atopic dermatitis (CAD) is a chronic inflammatory skin disease and has a high frequency among dermatological diseases. The interaction of genetic factors, skin and environmental conditions affect the expression of the disease, developing a complex pathology. Current multimodal treatment has numerous adverse effects and variations in its efficacy and safety, demonstrating the need to develop safe and effective therapeutic resources for patients with CAD. Mesenchymal stem cells (MSCs) are multipotent cells, with special characteristics, such as self-renewal, immunomodulatory properties, and de-differentiation, making them useful for several clinical problems. The discovery of the immunosuppressive effect of MSCs on T cells has opened the potential for new perspectives with its use as a therapeutic agent for immune diseases, such as CAD. The scarce number of research using the MSC as a treatment for CAD result in the lack of knowledge about the benefits and possible protocols to be followed for the use of this cell therapy. In this review, we highlighted the clinical studies and potential biological mechanisms of MSC-based cell therapy effects attenuating canine atopic dermatitis compared to conventional treatment, which might lead to a safe improvement of the animal’s clinical condition in a short period without causing adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Cássio Santana MEIRA
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; University Center SENAI/CIMATEC, Brazil
| | | |
Collapse
|
21
|
Weatherall EL, Avilkina V, Cortes-Araya Y, Dan-Jumbo S, Stenhouse C, Donadeu FX, Esteves CL. Differentiation Potential of Mesenchymal Stem/Stromal Cells Is Altered by Intrauterine Growth Restriction. Front Vet Sci 2020; 7:558905. [PMID: 33251256 PMCID: PMC7676910 DOI: 10.3389/fvets.2020.558905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Consistency in clinical outcomes is key to the success of therapeutic Mesenchymal Stem/Stromal cells (MSCs) in regenerative medicine. MSCs are used to treat both humans and companion animals (horses, dogs, and cats). The properties of MSC preparations can vary significantly with factors including tissue of origin, donor age or health status. We studied the effects of developmental programming associated with intrauterine growth restriction (IUGR) on MSC properties, particularly related to multipotency. IUGR results from inadequate uterine capacity and placental insufficiency of multifactorial origin. Both companion animals (horses, dogs, cats) and livestock (pigs, sheep, cattle) can be affected by IUGR resulting in decreased body size and other associated changes that can include, alterations in musculoskeletal development and composition, and increased adiposity. Therefore, we hypothesized that this dysregulation occurs at the level of MSCs, with the cells from IUGR animals being more prone to differentiate into adipocytes and less to other lineages such as chondrocytes and osteocytes compared to those obtained from normal animals. IUGR has consequences on health and performance in adult life and in the case of farm animals, on meat quality. In humans, IUGR is linked to increased risk of metabolic (type 2 diabetes) and other diseases (cardiovascular), later in life. Here, we studied porcine MSCs where IUGR occurs spontaneously, and shows features that recapitulate human IUGR. We compared the properties of adipose-derived MSCs from IUGR (IUGR-MSCs) and Normal (Normal-MSCs) new-born pig littermates. Both MSC types grew clonally and expressed typical MSC markers (CD105, CD90, CD44) at similar levels. Importantly, tri-lineage differentiation capacity was significantly altered by IUGR. IUGR-MSCs had higher adipogenic capacity than Normal-MSCs as evidenced by higher adipocyte content and expression of the adipogenic transcripts, PPARγ and FABP4 (P < 0.05). A similar trend was observed for fibrogenesis, where, upon differentiation, IUGR-MSCs expressed significantly higher levels of COL1A1 (P < 0.03) than Normal-MSCs. In contrast, chondrogenic and osteogenic potential were decreased in IUGR-MSCs as shown by a smaller chondrocyte pellet and osteocyte staining, and lower expression of SOX9 (P < 0.05) and RUNX2 (P < 0.02), respectively. In conclusion, the regenerative potential of MSCs appears to be determined prenatally in IUGR and this should be taken into account when selecting cell donors in regenerative therapy programmes both in humans and companion animals.
Collapse
Affiliation(s)
- Emma L Weatherall
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Viktorija Avilkina
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Yennifer Cortes-Araya
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Susan Dan-Jumbo
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Claire Stenhouse
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Francesc X Donadeu
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom.,The Euan Macdonald Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Cristina L Esteves
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Kang MH, Park HM. Challenges of stem cell therapies in companion animal practice. J Vet Sci 2020; 21:e42. [PMID: 32476316 PMCID: PMC7263915 DOI: 10.4142/jvs.2020.21.e42] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine using stem cells from various sources are emerging treatment modality in several refractory diseases in veterinary medicine. It is well-known that stem cells can differentiate into specific cell types, self-renew, and regenerate. In addition, the unique immunomodulatory effects of stem cells have made stem cell transplantation a promising option for treating a wide range of disease and injuries. Recently, the medical demands for companion animals have been rapidly increasing, and certain disease conditions require alternative treatment options. In this review, we focused on stem cell application research in companion animals including experimental models, case reports and clinical trials in dogs and cats. The clinical studies and therapeutic protocols were categorized, evaluated and summarized according to the organ systems involved. The results indicate that evidence for the effectiveness of cell-based treatment in specific diseases or organ systems is not yet conclusive. Nonetheless, stem cell therapy may be a realistic treatment option in the near future, therefore, considerable efforts are needed to find optimized cell sources, cell numbers and delivery methods in order to standardize treatment methods and evaluation processes.
Collapse
Affiliation(s)
- Min Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hee Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
23
|
Zaki AKA, Almundarij TI, Abo-Aziza FAM. Comparative characterization and osteogenic / adipogenic differentiation of mesenchymal stem cells derived from male rat hair follicles and bone marrow. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:13. [PMID: 32778979 PMCID: PMC7417469 DOI: 10.1186/s13619-020-00051-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/11/2023]
Abstract
Clinical applications of cell therapy and tissue regeneration under different conditions need a multiplicity of adult stem cell sources. Up to date, little is available on the comparative isolation, characterization, proliferation, rapid amplification, and osteogenic/adipogenic differentiation of rat mesenchymal stem cells (MSCs) isolated from living bulge cells of the hair follicle (HF) and bone marrow (BM) from the same animal. This work hopes to use HF-MSCs as an additional adult stem cell source for research and application. After reaching 80% confluence, the cell counting, viability %, and yields of HF-MSCs and BM-MSCs were nearly similar. The viability % was 91.41 ± 2.98 and 93.11 ± 3.06 while the cells yield of initial seeding was 33.15 ± 2.76 and 34.22 ± 3.99 and of second passage was 28.76 ± 1.01 and 29.56 ± 3.11 for HF-MSCs and BM-MSCs respectively. Clusters of differentiation (CDs) analysis revealed that HF-MSCs were positively expressed CD34, CD73 and CD200 and negatively expressed CD45. BM-MSCs were positively expressed CD73 and CD200 and negatively expressed of CD34 and CD45. The proliferation of HF-MSCs and BM-MSCs was determined by means of incorporation of Brd-U, population doubling time (PDT) assays and the quantity of formazan release. The percentage of Brd-U positive cells and PDT were relatively similar in both types of cells. The proliferation, as expressed by the quantity of formazan assay in confluent cells, revealed that the quantity of release by BM-MSCs was slightly higher than HF-MSCs. Adipogenic differentiated BM-MSCs showed moderate accumulation of oil red-O stained lipid droplets when compared to that of HF-MSCs which exhibited high stain. The total lipid concentration was significantly higher in adipogenic differentiated HF-MSCs than BM-MSCs (P < 0.05). It was found that activity of bone alkaline phosphatase and calcium concentration were significantly higher (P < 0.01 and P < 0.05 respectively) in osteogenic differentiated BM-MSCs than that of HF-MSCs. The present findings demonstrate that the HF-MSCs are very similar in most tested characteristics to BM-MSCs with the exception of differentiation. Additionally; no issues have been reported during the collection of HF-MSCs. Therefore, the HF may represent a suitable and accessible source for adult stem cells and can be considered an ideal cell source for adipogenesis research.
Collapse
Affiliation(s)
- Abdel Kader A Zaki
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia.
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Tariq I Almundarij
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Faten A M Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
24
|
Quality control and immunomodulatory potential for clinical-grade equine bone marrow-derived mesenchymal stromal cells and conditioned medium. Res Vet Sci 2020; 132:407-415. [PMID: 32768869 DOI: 10.1016/j.rvsc.2020.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to assess the safety and reproducibility of cell therapy for its use in clinical practice. We performed immunophenotypic characterization of equine bone marrow-derived mesenchymal stromal cells (BMMSCs) by flow cytometry using CD90, CD19, CD14, CD105, CD45, and HLA-DR markers (n = 4); GTG banding cytogenetic analysis (n = 3); and microbiological quality control (n = 4). The immunomodulatory potentials of BMMSCs (n = 4) and its conditioned medium (CM, n = 3) were investigated by in vitro lymphocyte inhibition assay using phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMCs). BMMSCs populations isolated from all animals showed high expression of CD90 and CD105, and low expression of CD19, CD4, CD45, and HLA-DR. Of the 60 metaphases analyzed, 5% presented aneuploidy on random chromosomes and no contamination was found based on microbiological analyses. Both treatments significantly inhibited lymphocyte proliferation (> 50%), compared with PHA-stimulated PBMCs (p < 0.0001). These promising results for BMMSCs and CM justify their potential as a therapeutic approach for inflammatory diseases. The techniques used in this study were effective in assessing the quality and determining the minimum criteria for the clinical use of BMMSCs in veterinary medicine.
Collapse
|
25
|
Paterson YZ, Cribbs A, Espenel M, Smith EJ, Henson FMD, Guest DJ. Genome-wide transcriptome analysis reveals equine embryonic stem cell-derived tenocytes resemble fetal, not adult tenocytes. Stem Cell Res Ther 2020; 11:184. [PMID: 32430075 PMCID: PMC7238619 DOI: 10.1186/s13287-020-01692-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tendon injuries occur frequently in human and equine athletes. Treatment options are limited, and the prognosis is often poor with functionally deficient scar tissue resulting. Fetal tendon injuries in contrast are capable of healing without forming scar tissue. Embryonic stem cells (ESCs) may provide a potential cellular therapeutic to improve adult tendon regeneration; however, whether they can mimic the properties of fetal tenocytes is unknown. To this end, understanding the unique expression profile of normal adult and fetal tenocytes is crucial to allow validation of ESC-derived tenocytes as a cellular therapeutic. METHODS Equine adult, fetal and ESC-derived tenocytes were cultured in a three-dimensional environment, with histological, morphological and transcriptomic differences compared. Additionally, the effects on gene expression of culturing adult and fetal tenocytes in either conventional two-dimensional monolayer culture or three-dimensional culture were compared using RNA sequencing. RESULTS No qualitative differences in three-dimensional tendon constructs generated from adult, fetal and ESCs were found using histological and morphological analysis. However, genome-wide transcriptomic analysis using RNA sequencing revealed that ESC-derived tenocytes' transcriptomic profile more closely resembled fetal tenocytes as opposed to adult tenocytes. Furthermore, this study adds to the growing evidence that monolayer cultured cells' gene expression profiles converge, with adult and fetal tenocytes having only 10 significantly different genes when cultured in this manner. In contrast, when adult and fetal tenocytes were cultured in 3D, large distinctions in gene expression between these two developmental stages were found, with 542 genes being differentially expressed. CONCLUSION The information provided in this study makes a significant contribution to the investigation into the differences between adult reparative and fetal regenerative cells and supports the concept of using ESC-derived tenocytes as a cellular therapy. Comparing two- and three-dimensional culture also indicates three-dimensional culture as being a more physiologically relevant culture system for determining transcriptomic difference between the same cell types from different developmental stages.
Collapse
Affiliation(s)
- Y. Z. Paterson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU UK
| | - A. Cribbs
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - M. Espenel
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU UK
| | - E. J. Smith
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU UK
| | - F. M. D. Henson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU UK
| | - D. J. Guest
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU UK
| |
Collapse
|
26
|
An JH, Li FP, He P, Chen JS, Cai ZG, Liu SR, Yue CJ, Liu YL, Hou R. Characteristics of Mesenchymal Stem Cells Isolated from the Bone Marrow of Red Pandas. ZOOLOGY 2020; 140:125775. [PMID: 32251890 DOI: 10.1016/j.zool.2020.125775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSC) have strong therapeutic potential due to their capacity for self-renewal and multilineage differentiation. MSCs can also be useful in preserving the current genetic diversity of endangered wildlife. To date, MSCs from various species have been studied, but only a few species of endangered wild animals have been reported. Adult bone marrow (BM) is a rich source of mesenchymal stem cells. The aim of this study was to isolate and characterize MSCs derived from the BM of red pandas. Red panda BM-MSCs isolated from five individuals were fibroblast-like cells, similar to other species. Cultured BM-MSCs with normal karyotype were negative for the hematopoietic line marker CD34 and the endothelial cell marker CD31 but were positive for MSC markers, including CD44, CD105 and CD90. RT-PCR and western blot analysis showed self-renewal and pluripotency genes, including Oct4, Sox2 and Klf4, were also expressed in red panda BM-MSCs. Finally, red panda BM-MSCs had the potential for differentiation into osteogenic, adipogenic and neuron-like cells by using a combination of previously reported protocols for other species. We have therefore demonstrated that cells harvested from red panda bone marrow are capable of extensive in vitro multiplication and multilineage differentiation, which is an essential step toward their use in the preservation of red pandas biological diversity and future studies on MSC applications in endangered species.
Collapse
Affiliation(s)
- Jun-Hui An
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Fei-Ping Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Ping He
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Jia-Song Chen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Zhi-Gang Cai
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Song-Rui Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Chan-Juan Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Yu-Liang Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China.
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China.
| |
Collapse
|
27
|
Kuncorojakti S, Srisuwatanasagul S, Kradangnga K, Sawangmake C. Insulin-Producing Cell Transplantation Platform for Veterinary Practice. Front Vet Sci 2020; 7:4. [PMID: 32118053 PMCID: PMC7028771 DOI: 10.3389/fvets.2020.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) remains a global concern in both human and veterinary medicine. Type I DM requires prolonged and consistent exogenous insulin administration to address hyperglycemia, which can increase the risk of diabetes complications such as retinopathy, nephropathy, neuropathy, and heart disorders. Cell-based therapies have been successful in human medicine using the Edmonton protocol. These therapies help maintain the production of endogenous insulin and stabilize blood glucose levels and may possibly be adapted to veterinary clinical practice. The limited number of cadaveric pancreas donors and the long-term use of immunosuppressive agents are the main obstacles for this protocol. Over the past decade, the development of potential therapies for DM has mainly focused on the generation of effective insulin-producing cells (IPCs) from various sources of stem cells that can be transplanted into the body. Another successful application of stem cells in type I DM therapies is transplanting generated IPCs. Encapsulation can be an alternative strategy to protect IPCs from rejection by the body due to their immunoisolation properties. This review summarizes current concepts of IPCs and encapsulation technology for veterinary clinical application and proposes a potential stem-cell-based platform for veterinary diabetic regenerative therapy.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sayamon Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Krishaporn Kradangnga
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Shojaee A, Parham A, Ejeian F, Nasr Esfahani MH. Equine adipose mesenchymal stem cells (eq-ASCs) appear to have higher potential for migration and musculoskeletal differentiation. Res Vet Sci 2019; 125:235-243. [PMID: 31310927 DOI: 10.1016/j.rvsc.2019.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 05/14/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
Equine adipose-derived mesenchymal stem cells (eq-ASCs) possess excellent regeneration potential especially for treatment of musculoskeletal disorders. Besides their common characteristics, MSCs harvested from different species reveal some species-specific and donor-dependent behaviors. Hence, the molecular analysis of MSCs may shed more light on their future clinical application of these cells. This study aimed to investigate some behavioral aspects of eq-ASCs in vitro which may influence the efficacy of stem cell therapy. For this purpose, MSCs of a donor horse were isolated, characterized and expanded under normal culture conditions. During continuous culture condition, eq-ASCs were started to formed aggregated structures that was accompanied with the up-regulation of migratory related genes including transforming growth factor beta 1 (TGFB1) and its receptor 3 (TGFBR3), and snail family transcriptional repressor 1 (SNAI1), E-cadherin (CDH1) and β-catenin (CTNNB1). Moreover, the expression of a musculoskeletal progenitor marker, scleraxis bHLH transcription factor (SCX), was also increased after 3 days. In order to clarify the impact of TGFB signaling pathway on cultured cells, gain- and loss-of-function treatment by TGFB3 and SB431542 (TGFB inhibitor) were performed, respectively. We found that TGFB3 treatment exaggerated the aggregate formation effects, in some extend via induction of cytoskeletal actin rearrangement, while inhibition of TGFB signaling pathway by SB431542 reversed this phenomenon. Overall, our findings support the fact that eq-ASCs have an inherent capacity for migration, which was enhanced by TGFB3 treatment and, this ability may play crucial role in cell motility and wound healing of transplanted cells.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Alternative Regenerative Medicine Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fatemeh Ejeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
29
|
Sasaki A, Mizuno M, Mochizuki M, Sekiya I. Mesenchymal stem cells for cartilage regeneration in dogs. World J Stem Cells 2019; 11:254-269. [PMID: 31171954 PMCID: PMC6545524 DOI: 10.4252/wjsc.v11.i5.254] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Articular cartilage damage and osteoarthritis (OA) are common orthopedic diseases in both humans and dogs. Once damaged, the articular cartilage seldom undergoes spontaneous repair because of its avascular, aneural, and alymphatic state, and the damage progresses to a chronic and painful situation. Dogs have distinctive characteristics compared to other laboratory animal species in that they share an OA pathology with humans. Dogs can also require treatment for naturally developed OA; therefore, effective treatment methods for OA are desired in veterinary medicine as well as in human medicine. Recently, interest has grown in regenerative medicine that includes the use of mesenchymal stem cells (MSCs). In cartilage repair, MSCs are a promising therapeutic tool due to their self-renewal capacity, ability to differentiate into cartilage, potential for trophic factor production, and capacity for immunomodulation. The MSCs from dogs (canine MSCs; cMSCs) share various characteristics with MSCs from other animal species, but they show some deviations, particularly in their differentiation ability and surface epitope expression. In vivo studies of cMSCs have demonstrated that intraarticular cMSC injection into cartilage lesions results in excellent hyaline cartilage regeneration. In clinical situations, cMSCs have shown great therapeutic effects, including amelioration of pain and lameness in dogs suffering from OA. However, some issues remain, such as a lack of regulations or guidelines and a need for unified methods for the use of cMSCs. This review summarizes what is known about cMSCs, including their in vitro characteristics, their therapeutic effects in cartilage lesion treatment in preclinical in vivo studies, their clinical efficacy for treatment of naturally developed OA in dogs, and the current limitations of cMSC studies.
Collapse
Affiliation(s)
- Akari Sasaki
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Manabu Mochizuki
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
30
|
Kornicka K, Geburek F, Röcken M, Marycz K. Stem Cells in Equine Veterinary Practice-Current Trends, Risks, and Perspectives. J Clin Med 2019; 8:jcm8050675. [PMID: 31091732 PMCID: PMC6572129 DOI: 10.3390/jcm8050675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
With this Editorial, we introduce the Special Issue "Adipose-Derived Stem Cells and Their Extracellular Microvesicles (ExMVs) for Tissue Engineering and Regenerative Medicine Applications" to the scientific community. In this issue, we focus on regenerative medicine, stem cells, and their clinical application.
Collapse
Affiliation(s)
- Katarzyna Kornicka
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
- International Institute of Translational Medicine, Malin, Jesionowa 11, 55-114 Wisznia Mała, Poland.
| | - Florian Geburek
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Krzysztof Marycz
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
- International Institute of Translational Medicine, Malin, Jesionowa 11, 55-114 Wisznia Mała, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| |
Collapse
|
31
|
Barboni B, Russo V, Berardinelli P, Mauro A, Valbonetti L, Sanyal H, Canciello A, Greco L, Muttini A, Gatta V, Stuppia L, Mattioli M. Placental Stem Cells from Domestic Animals: Translational Potential and Clinical Relevance. Cell Transplant 2019; 27:93-116. [PMID: 29562773 PMCID: PMC6434480 DOI: 10.1177/0963689717724797] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The field of regenerative medicine is moving toward clinical practice in veterinary science. In this context, placenta-derived stem cells isolated from domestic animals have covered a dual role, acting both as therapies for patients and as a valuable cell source for translational models. The biological properties of placenta-derived cells, comparable among mammals, make them attractive candidates for therapeutic approaches. In particular, stemness features, low immunogenicity, immunomodulatory activity, multilineage plasticity, and their successful capacity for long-term engraftment in different host tissues after autotransplantation, allo-transplantation, or xenotransplantation have been demonstrated. Their beneficial regenerative effects in domestic animals have been proven using preclinical studies as well as clinical trials starting to define the mechanisms involved. This is, in particular, for amniotic-derived cells that have been thoroughly studied to date. The regenerative role arises from a mutual tissue-specific cell differentiation and from the paracrine secretion of bioactive molecules that ultimately drive crucial repair processes in host tissues (e.g., anti-inflammatory, antifibrotic, angiogenic, and neurogenic factors). The knowledge acquired so far on the mechanisms of placenta-derived stem cells in animal models represent the proof of concept of their successful use in some therapeutic treatments such as for musculoskeletal disorders. In the next future, legislation in veterinary regenerative medicine will be a key element in order to certify those placenta-derived cell-based protocols that have already demonstrated their safety and efficacy using rigorous approaches and to improve the degree of standardization of cell-based treatments among veterinary clinicians.
Collapse
Affiliation(s)
- B Barboni
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - V Russo
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - P Berardinelli
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - A Mauro
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - L Valbonetti
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - H Sanyal
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - A Canciello
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - L Greco
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - A Muttini
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - V Gatta
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - L Stuppia
- 2 Medical Genetics, University "G. d'Annunzio" of Chieti Pescara, Chieti, Italy
| | - M Mattioli
- 3 Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| |
Collapse
|
32
|
Pieri NCG, de Souza AF, Botigelli RC, Machado LS, Ambrosio CE, Dos Santos Martins D, de Andrade AFC, Meirelles FV, Hyttel P, Bressan FF. Stem cells on regenerative and reproductive science in domestic animals. Vet Res Commun 2019; 43:7-16. [PMID: 30656543 DOI: 10.1007/s11259-019-9744-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Stem cells are undifferentiated and self-renewable cells that present new possibilities for both regenerative medicine and the understanding of early mammalian development. Adult multipotent stem cells are already widely used worldwide in human and veterinary medicine, and their therapeutic signalling, particularly with respect to immunomodulation, and their trophic properties have been intensively studied. The derivation of embryonic stem cells (ESCs) from domestic species, however, has been challenging, and the poor results do not reflect the successes obtained in mouse and human experiments. More recently, the generation of induced pluripotent stem cells (iPSCs) via the forced expression of specific transcription factors has been demonstrated in domestic species and has introduced new potentials in regenerative medicine and reproductive science based upon the ability of these cells to differentiate into a variety of cells types in vitro. For example, iPSCs have been differentiated into primordial germ-like cells (PGC-like cells, PGCLs) and functional gametes in mice. The possibility of using iPSCs from domestic species for this purpose would contribute significantly to reproductive technologies, offering unprecedented opportunities to restore fertility, to preserve endangered species and to generate transgenic animals for biomedical applications. Therefore, this review aims to provide an updated overview of adult multipotent stem cells and to discuss new possibilities introduced by the generation of iPSCs in domestic animals, highlighting the possibility of generating gametes in vitro via PGCL induction.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Lucas Simões Machado
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Eduardo Ambrosio
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Flavio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil.
| |
Collapse
|
33
|
Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Vet Immunol Immunopathol 2018; 208:6-15. [PMID: 30712794 DOI: 10.1016/j.vetimm.2018.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023]
Abstract
The two main sources of mesenchymal stem cell (MSCs) in the canine species are bone marrow (cBM-MSCs) and adipose tissue (cAd-MSCs). The secretion of multitude bioactive molecules, included under the concept of secretome and found in the cultured medium, play a predominant role in the mechanism of action of these cells on tissue regeneration. Although certain features of its characterization are well documented, their secretory profiles remain unknown. We described and compared, for the first time, the secretory profile and exosomes characterization in standard monolayer culture of MSCs from both sources of the same donor as well as its immunomodulatory potential. We found that despite the similarity in surface immunophenotyping and trilineage differentiation, there are several differences in terms of proliferation rate and secretory profile. cAd-MSCs have advantages in proliferative capacity, whereas cBM-MSCs showed a significantly higher secretory production of some soluble factors (IL-10, IL-2, IL-6, IL-8, IL-12p40, IFN-γ, VEGF-A, NGF-β, TGF-β, NO and PGE2) and exosomes under the same standard culture conditions. Proteomics analysis confirm that cBM-MSCs exosomes have a greater number of characterized proteins involved in metabolic processes and in the regulation of biological processes compared to cAd-MSCs. On the other hand, secretome from both sources demonstrate similar immunomodulatory capacity when tested in mitogen stimulated lymphocyte reaction, but not in their exosomes at the dose used. Considering that the use of secretome open as a new therapeutic strategy for different diseases, without the need to implant cells, those biological differences should be considered, when choosing the MSCs source, for either cellular implantation or direct use of secretome for a specific clinical application.
Collapse
|
34
|
Could hypoxia influence basic biological properties and ultrastructural features of adult canine mesenchymal stem /stromal cells? Vet Res Commun 2018; 42:297-308. [PMID: 30238341 DOI: 10.1007/s11259-018-9738-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to compare canine adipose tissue mesenchymal stem cells cultured under normoxic (20% O2) and not severe hypoxic (7% O2) conditions in terms of marker expression, proliferation rate, differentiation potential and cell morphology. Intra-abdominal fat tissue samples were recovered from 4 dogs and cells isolated from each sample were cultured under hypoxic and normoxic conditions. Proliferation rate and adhesion ability were determined, differentiation towards chondrogenic, osteogenic and adipogenic lineages was induced; the expression of CD44, CD34, DLA-DQA1, DLA-DRA1 was determined by PCR, while flow cytometry analysis for CD90, CD105, CD45 and CD14 was carried out. The morphological study was performed by transmission electron microscopy. Canine AT-MSCs, cultured under different oxygen tensions, maintained their basic biological features. However, under hypoxia, cells were not able to form spheroid aggregates revealing a reduction of their adhesivness. In both conditions, MSCs mainly displayed the same ultrastructural morphology and retained the ability to produce membrane vesicles. Noteworthy, MSCs cultivated under hypoxya revealed a huge shedding of large complex vesicles, containing smaller round-shaped vesicles. In our study, hypoxia partially influences the basic biological properties and the ultrastructural features of canine mesenchymal stem /stromal cells. Further studies are needed to clarify how hypoxia affects EVs production in term of amount and content in order to understand its contribution in tissue regenerative mechanisms and the possible employment in clinical applications. The findings of the present work could be noteworthy for canine as well as for other mammalian species.
Collapse
|
35
|
Bwalya EC, Wijekoon HS, Fang J, Kim S, Hosoya K, Okumura M. Independent chondrogenic potential of canine bone marrow-derived mesenchymal stem cells in monolayer expansion cultures decreases in a passage-dependent pattern. J Vet Med Sci 2018; 80:1681-1687. [PMID: 30210068 PMCID: PMC6261819 DOI: 10.1292/jvms.18-0202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Although chondroinductive growth factors are considered necessary for chondrogenesis of bone marrow-derived mesenchymal stem cells (BMSC), independent and spontaneous chondrogenesis has
been previously demonstrated in adult horses, bovine calves and adult human BMSC. Surprisingly, adult canine BMSC under similar culture conditions previously failed to demonstrate
chondrogenesis. The present study evaluated independent chondrogenic potential of BMSC sourced from three young dogs in the absence of known chondroinductive factors. BMSC were culture
expanded in 10% DMEM up to third passage (P3). At each passage, the phenotype of BMSC was evaluated by RT-PCR gel electrophoresis and qPCR. BMSC exhibited a chondrogenic phenotype in the
absence of dexamethasone and TGF-β1 as verified by the expression of Sox-9, type II collagen and aggrecan. Sox-9 was
significantly downregulated (P<0.05) from P1−P3 compared to P0 while type II and X collagen, and aggrecan were
significantly downregulated at P3 compared to P0. There was a significant (P<0.01) negative correlation between passaging and Sox-9, type II
collagen and aggrecan gene expression. These results indicate that independent chondrogenic potential and phenotype retention of BMSC decreases in a
passage-dependent pattern. Therefore, caution should be exercised for future experiments evaluating the chondrogenic potential of BMSC after extensive expansion cultures in 10% DMEM.
Collapse
Affiliation(s)
- Eugene C Bwalya
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Hm Suranji Wijekoon
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Jing Fang
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kenji Hosoya
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
36
|
Cortés-Araya Y, Amilon K, Rink BE, Black G, Lisowski Z, Donadeu FX, Esteves CL. Comparison of Antibacterial and Immunological Properties of Mesenchymal Stem/Stromal Cells from Equine Bone Marrow, Endometrium, and Adipose Tissue. Stem Cells Dev 2018; 27:1518-1525. [PMID: 30044182 PMCID: PMC6209426 DOI: 10.1089/scd.2017.0241] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Equine mesenchymal stem/stromal cells (MSCs) are multipotent cells that are widely used for treatment of musculoskeletal injuries, and there is significant interest in expanding their application to nonorthopedic conditions. MSCs possess antibacterial and immunomodulatory properties that may be relevant for combating infection; however, comparative studies using MSCs from different origins have not been carried out in the horse, and this was the focus of this study. Our results showed that MSC-conditioned media attenuated the growth of Escherichia coli, and that this effect was, on average, more pronounced for endometrium (EM)-derived and adipose tissue (AT)-derived MSCs than for bone marrow (BM)-derived MSCs. In addition, the antimicrobial lipocalin-2 was expressed at mean higher levels in EM-MSCs than in AT-MSCs and BM-MSCs, and the bacterial component lipopolysaccharide (LPS) stimulated its production by all three MSC types. We also showed that MSCs express interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1, chemokine ligand-5, and Toll-like receptor 4, and that, in general, these cytokines were induced in all cell types by LPS. Low expression levels of the macrophage marker colony-stimulating factor 1 receptor were detected in BM-MSCs and EM-MSCs but not in AT-MSCs. Altogether, these findings suggest that equine MSCs from EM, AT, and BM have both direct and indirect antimicrobial properties that may vary between MSCs from different origins and could be exploited toward improvement of regenerative therapies for horses.
Collapse
Affiliation(s)
- Yennifer Cortés-Araya
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Karin Amilon
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | | | - Georgina Black
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Zofia Lisowski
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Francesc Xavier Donadeu
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom .,2 The Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh , Edinburgh, United Kingdom
| | - Cristina L Esteves
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
37
|
Liu Z, Screven R, Boxer L, Myers MJ, Devireddy LR. Characterization of Canine Adipose-Derived Mesenchymal Stromal/Stem Cells in Serum-Free Medium. Tissue Eng Part C Methods 2018; 24:399-411. [DOI: 10.1089/ten.tec.2017.0409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Zhuoming Liu
- Division of Applied Veterinary Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Rudell Screven
- Division of Applied Veterinary Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Lynne Boxer
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland
| | - Michael J. Myers
- Division of Applied Veterinary Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Lax R. Devireddy
- Division of Applied Veterinary Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| |
Collapse
|
38
|
Bucan V, Vaslaitis D, Peck CT, Strauß S, Vogt PM, Radtke C. Effect of Exosomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration After Crush Injury. Mol Neurobiol 2018; 56:1812-1824. [PMID: 29931510 PMCID: PMC6394792 DOI: 10.1007/s12035-018-1172-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/01/2018] [Indexed: 12/29/2022]
Abstract
Peripheral nerve injury requires optimal conditions in both macro-environment and microenvironment for promotion of axonal regeneration. However, most repair strategies of traumatic peripheral nerve injury often lead to dissatisfying results in clinical outcome. Though various strategies have been carried out to improve the macro-environment, the underlying molecular mechanism of axon regeneration in the microenvironment provided by nerve conduit remains unclear. In this study, we evaluate the effects of from adipose-derived mesenchymal stem cells (adMSCs) originating exosomes with respect to sciatic nerve regeneration and neurite growth. Molecular and immunohistochemical techniques were used to investigate the presence of characteristic exosome markers. A co-culture system was established to determine the effect of exosomes on neurite elongation in vitro. The in vivo walking behaviour of rats was evaluated by footprint analysis, and the nerve regeneration was assessed by immunocytochemistry. adMSCs secrete nano-vesicles known as exosomes, which increase neurite outgrowth in vitro and enhance regeneration after sciatic nerve injury in vivo. Furthermore, we showed the presence of neural growth factors transcripts in adMSC exosomes for the first time. Our results demonstrate that exosomes, constitutively produced by adMSCs, are involved in peripheral nerve regeneration and have the potential to be utilised as a therapeutic tool for effective tissue-engineered nerves.
Collapse
Affiliation(s)
- Vesna Bucan
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany.
| | - Desiree Vaslaitis
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Claas-Tido Peck
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Sarah Strauß
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Christine Radtke
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
39
|
Park MJ, Lee J, Byeon JS, Jeong DU, Gu NY, Cho IS, Cha SH. Effects of three-dimensional spheroid culture on equine mesenchymal stem cell plasticity. Vet Res Commun 2018; 42:171-181. [PMID: 29721754 DOI: 10.1007/s11259-018-9720-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/02/2018] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) are useful candidates for tissue engineering and cell therapy fields. We optimize culture conditions of equine adipose tissue-derived MSCs (eAD-MSCs) for treatment of horse fractures. To investigate enhancing properties of three-dimensional (3D) culture system in eAD-MSCs, we performed various sized spheroid formation and determined changes in gene expression levels to obtain different sized spheroid for cell therapy. eAD-MSCs were successfully isolated from horse tailhead. Using hanging drop method, spheroid formation was generated for three days. Quantitative real-time PCR was performed to analyze gene expression. As results, expression levels of pluripotent markers were increased depending on spheroid size and the production of PGE2 was increased in spheroid formation compared to that in monolayer. Ki-67 showed a remarkable increase in the spheroid formed with 2.0 × 105 cells/drop as compared to that in the monolayer. Expression levels of angiogenesis-inducing factors such as VEGF, IL-6, IL-8, and IL-18 were significantly increased in spheroid formation compared to those in the monolayer. Expression levels of bone morphogenesis-inducing factors such as Cox-2 and TGF-β1 were also significantly increased in spheroid formation compared to those in the monolayer. Expression levels of osteocyte-specific markers such as RUNX2, osteocalcin, and differentiation potential were also significantly increased in spheroid formation compared to those in the monolayer. Therefore, spheroid formation of eAD-MSCs through the hanging drop method can increases the expression of angiogenesis-inducing and bone morphogenesis-inducing factors under optimal culture conditions.
Collapse
Affiliation(s)
- Mi Jeong Park
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Jienny Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Jeong Su Byeon
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Da-Un Jeong
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Na-Yeon Gu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - In-Soo Cho
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Sang-Ho Cha
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea.
| |
Collapse
|
40
|
Mesenchymal Stem Cells Form 3D Clusters Following Intraventricular Transplantation. J Mol Neurosci 2018; 65:60-73. [PMID: 29705933 DOI: 10.1007/s12031-018-1070-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are regarded as an immune privileged cell type with numerous regeneration-promoting effects. The in vivo behavior of MSC and underlying mechanisms leading to their regenerative effects are largely unknown. The aims of this study were to comparatively investigate the in vivo behavior of canine (cMSC), human (hMSC), and murine MSC (mMSC) following intra-cerebroventricular transplantation. At 7 days post transplantation (dpt), clusters of cMSC, hMSC, and mMSC were detected within the ventricular system. At 49 dpt, cMSC-transplanted mice showed clusters mostly consisting of extracellular matrix lacking transplanted MSC. Similarly, hMSC-transplanted mice lacked MSC clusters at 49 dpt. Xenogeneic MSC transplantation was associated with a local T lymphocyte-dominated immune reaction at both time points. Interestingly, no associated inflammation was observed following syngeneic mMSC transplantation. In conclusion, transplanted MSC formed intraventricular cell clusters and exhibited a short life span in vivo. Xenogeneically in contrast to syngeneically transplanted MSC triggered a T cell-mediated graft rejection indicating that MSCs are not as immune privileged as previously assumed. However, MSC may mediate their effects by a "hit and run" mechanism and future studies will show whether syngeneically or xenogeneically transplanted MSCs exert better therapeutic effects in animals with CNS disease.
Collapse
|
41
|
Broeckx S, Spaas J, Chiers K, Duchateau L, Van Hecke L, Van Brantegem L, Dumoulin M, Martens A, Pille F. Equine allogeneic chondrogenic induced mesenchymal stem cells: A GCP target animal safety and biodistribution study. Res Vet Sci 2018; 117:246-254. [DOI: 10.1016/j.rvsc.2017.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022]
|
42
|
Facilitated recruitment of mesenchymal stromal cells by bone marrow concentrate and platelet rich plasma. PLoS One 2018; 13:e0194567. [PMID: 29566102 PMCID: PMC5864018 DOI: 10.1371/journal.pone.0194567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Biologics containing growth factors are frequently used to enhance healing after musculoskeletal injuries. One mechanism of action is thought to be though the ability of biologics to induce homing and migration of endogenous mesenchymal stromal cells (MSCs) to a target tissue. However, the ability of biologics to stimulate chemotaxis (directed migration of cells) and chemokinesis (increase rate of cell migration) of MSCs is unknown. HYPOTHESIS/PURPOSE The aim of this study was to directly compare the ability of biologics including platelet rich plasma (PRP) and bone marrow concentrate (BMC) to induce MSC migration. The hypothesis was that leukocyte-low platelet rich plasma (Llo PRP) would induce migration to a greater extent than leukocyte-high platelet rich plasma (Lhi PRP) or BMC. METHODS Bone marrow-derived MSCs were isolated from 8 horses. Migration of MSCs toward a biologic (BMC, Llo PRP, and Lhi PRP) or the positive control platelet derived growth factor (PDGF) was continuously traced and measured for 24hrs using time-lapse microscopy and a microfluidics device. Cell migration, chemotaxis and chemokinesis were determined by measurements of displacement, number of cells migrated, and cell flux. RESULTS All biologics resulted in a significantly greater percentage of MSCs migrated compared to the positive control (PDGF). MSCs migrated further toward BMC compared to Llo PRP. Cell migration, measured as cell flux, was greater toward BMC and Lhi PRP than Llo PRP. CONCLUSION The biologics BMC and Lhi PRP elicit greater chemotaxis and chemokinesis of MSCs than Llo PRP. However, all biologics recruited the same number of MSCs suggesting that differences in other regenerative effects, such as growth factor concentration, between biologics should be strongly considered when choosing a biologic for treatment of musculoskeletal injuries. The results of this study have the potential to reduce the need, risks, and costs associated with MSC culture and delivery.
Collapse
|
43
|
Zayed M, Adair S, Ursini T, Schumacher J, Misk N, Dhar M. Concepts and challenges in the use of mesenchymal stem cells as a treatment for cartilage damage in the horse. Res Vet Sci 2018; 118:317-323. [PMID: 29601969 DOI: 10.1016/j.rvsc.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA), the most common form of joint disease affecting humans and horses, is characterized by the advance and decline of cartilage and loss of function of the affected joint. The progression of OA is steadily accompanied with biochemical events, which interfere with the cytokines and proteolytic enzymes responsible for progress of the disease. Recently, regenerative therapies have been used with an assumption that mesenchymal stem cells (MSCs) possess the potential to prevent the advancement of cartilage damage and potentially regenerate the injured tissue with an ultimate goal of preventing OA. We believe that despite various challenges, the use of allogenic versus autologous MSCs in cartilage regeneration, is a major issue which can directly or indirectly affect the other factors including, the timing of implantation, dose or cell numbers for implantation, and the source of MSCs. Current knowledge reporting some of these challenges that the clinicians might face in the treatment of cartilage damage in horses are presented. In this regard we conducted two independent studies. In the first study we compared donor matched bone marrow and synovial fluid - derived equine MSCs in vitro, and showed that the SFMSCs were similar to the BMMSCs in their proliferation, expression of CD29, CD44 and CD90, but, exhibited a significantly different chondrogenesis. Additionally, 3.2-21% of all SFMSCs were positive for MHC II, whereas, BMMSCs were negative. In the second study we observed that injection of both the autologous and allogenic SFMSCs into the tarsocrural joint resulted in elevated levels of total protein and total nucleated cell counts. Further experiments to evaluate the in vivo acute or chronic response to allogenic or autologous MSCs are imperative.
Collapse
Affiliation(s)
- Mohammed Zayed
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Steve Adair
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Tena Ursini
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - James Schumacher
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Nabil Misk
- Department of Animal Surgery, College of Veterinary Medicine, Assuit University, 71526 Assuit, Egypt
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
44
|
Veron AD, Bienboire-Frosini C, Feron F, Codecasa E, Deveze A, Royer D, Watelet P, Asproni P, Sadelli K, Chabaud C, Stamegna JC, Fagot J, Khrestchatisky M, Cozzi A, Roman FS, Pageat P, Mengoli M, Girard SD. Isolation and characterization of olfactory ecto-mesenchymal stem cells from eight mammalian genera. BMC Vet Res 2018; 14:17. [PMID: 29343270 PMCID: PMC5772688 DOI: 10.1186/s12917-018-1342-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 01/11/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Stem cell-based therapies are an attractive option to promote regeneration and repair defective tissues and organs. Thanks to their multipotency, high proliferation rate and the lack of major ethical limitations, "olfactory ecto-mesenchymal stem cells" (OE-MSCs) have been described as a promising candidate to treat a variety of damaged tissues. Easily accessible in the nasal cavity of most mammals, these cells are highly suitable for autologous cell-based therapies and do not face issues associated with other stem cells. However, their clinical use in humans and animals is limited due to a lack of preclinical studies on autologous transplantation and because no well-established methods currently exist to cultivate these cells. Here we evaluated the feasibility of collecting, purifying and amplifying OE-MSCs from different mammalian genera with the goal of promoting their interest in veterinary regenerative medicine. Biopsies of olfactory mucosa from eight mammalian genera (mouse, rat, rabbit, sheep, dog, horse, gray mouse lemur and macaque) were collected, using techniques derived from those previously used in humans and rats. The possibility of amplifying these cells and their stemness features and differentiation capability were then evaluated. RESULTS Biopsies were successfully performed on olfactory mucosa without requiring the sacrifice of the donor animal, except mice. Cell populations were rapidly generated from olfactory mucosa explants. These cells displayed similar key features of their human counterparts: a fibroblastic morphology, a robust expression of nestin, an ability to form spheres and similar expression of surface markers (CD44, CD73). Moreover, most of them also exhibited high proliferation rates and clonogenicity with genus-specific properties. Finally, OE-MSCs also showed the ability to differentiate into mesodermal lineages. CONCLUSIONS This article describes for the first time how millions of OE-MSCs can be quickly and easily obtained from different mammalian genera through protocols that are well-suited for autologous transplantations. Moreover, their multipotency makes them relevant to evaluate therapeutic application in a wide variety of tissue injury models. This study paves the way for the development of new fundamental and clinical studies based on OE-MSCs transplantation and suggests their interest in veterinary medicine.
Collapse
Affiliation(s)
- Antoine D Veron
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France. .,Aix Marseille Univ, CNRS, NICN, Marseille, France.
| | - Cécile Bienboire-Frosini
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - François Feron
- Aix Marseille Univ, CNRS, NICN, Marseille, France.,Inserm CBT 1409, Centre d'Investigations Cliniques en Biothérapie, Marseille, France
| | - Elisa Codecasa
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Arnaud Deveze
- Département ORL, Hôpital Universitaire Nord, AP-HM, Marseille, France.,Aix-Marseille Univ, IFSTTAR, LBA, Marseille, France
| | - Dany Royer
- Centre Hospitalier Vétérinaire Pommery, 51100, Reims, France
| | - Paul Watelet
- Société Hippique Le frigouyé, 30650, Saze, France
| | - Pietro Asproni
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Camille Chabaud
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Joël Fagot
- Aix-Marseille Univ, CNRS, LPC, Marseille, France
| | | | - Alessandro Cozzi
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Patrick Pageat
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Manuel Mengoli
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Stéphane D Girard
- Aix Marseille Univ, CNRS, NICN, Marseille, France.,Present address: Vect-Horus S.A.S., Faculté de Médecine Secteur Nord, CS80011, Boulevard Pierre Dramard, 13344, Marseille, Cedex 15, France
| |
Collapse
|
45
|
Pericytes in Veterinary Species: Prospective Isolation, Characterization and Tissue Regeneration Potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1109:67-77. [DOI: 10.1007/978-3-030-02601-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Abstract
Mesenchymal stem cell (MSC) therapy is being increasingly used to treat dogs and horses with naturally-occurring diseases. However these animals also serve as critical large animal models for ongoing translation of cell therapy products to the human market. MSC manufacture for clinical use mandates improvement in cell culture systems to meet demands for higher MSC numbers and removal of xeno-proteins (i.e. fetal bovine serum, FBS). While serum-free media (SFM) is commercially available, its affects on MSC phenotype and immunomodulatory functions are not fully known. The objective of this study was to determine if specific MSC culture conditions, MSC expansion in HYPERFlasks® or MSC expansion in a commercially available SFM, would alter MSC proliferation, phenotype or immunomodulatory properties in vitro. MSCs cultured in HYPERFlasks® were similar in phenotype, proliferative capacity and immunomodulatory functions to MSCs grown in standard flasks however MSC yield was markedly increased. HYPERFlasks® therefore provide a viable option to generate greater cell numbers in a streamlined manner. Canine and equine MSCs expanded in SFM displayed similar proliferation, surface phenotype and inhibitory effect on lymphocyte proliferation in vitro. However, MSCs cultured in the absence of FBS secreted significantly less PGE2, and were significantly less able to inhibit IFNγ secretion by activated T-cells. Immunomodulatory functions altered by expansion in SFM were species dependent. Unlike equine MSCs, in canine adipose-derived MSCs, the inhibition of lymphocyte proliferation was not principally modulated by PGE2. The removal of FBS from both canine and equine MSC culture systems resulted in altered immunomodulatory properties in vitro and warrants further investigation prior to moving towards FBS-free culture conditions.
Collapse
|
47
|
Devireddy LR, Boxer L, Myers MJ, Skasko M, Screven R. Questions and Challenges in the Development of Mesenchymal Stromal/Stem Cell-Based Therapies in Veterinary Medicine. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:462-470. [DOI: 10.1089/ten.teb.2016.0451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lax R. Devireddy
- Division of Applied Veterinary Research, Center for Veterinary Medicine, US Food and Drug Administration, Laurel, Maryland
| | - Lynne Boxer
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, US Food and Drug Administration, Rockville, Maryland
| | - Michael J. Myers
- Division of Applied Veterinary Research, Center for Veterinary Medicine, US Food and Drug Administration, Laurel, Maryland
| | - Mark Skasko
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, US Food and Drug Administration, Rockville, Maryland
| | - Rudell Screven
- Division of Applied Veterinary Research, Center for Veterinary Medicine, US Food and Drug Administration, Laurel, Maryland
| |
Collapse
|
48
|
Esteves CL, Donadeu FX. Pericytes and their potential in regenerative medicine across species. Cytometry A 2017; 93:50-59. [PMID: 28941046 DOI: 10.1002/cyto.a.23243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/15/2017] [Accepted: 08/25/2017] [Indexed: 12/17/2022]
Abstract
The discovery that pericytes are in vivo counterparts of Mesenchymal Stem/Stromal Cells (MSCs) has placed these perivascular cells in the research spotlight, bringing up hope for a well-characterized cell source for clinical applications, alternative to poorly defined, heterogeneous MSCs preparations currently in use. Native pericytes express typical MSC markers and, after isolation by fluorescence-activated cell sorting, display an MSC phenotype in culture. These features have been demonstrated in different species, including humans and horses, the main targets of regenerative treatments. Significant clinical potential of pericytes has been shown by transplantation of human cells into rodent models of tissue injury, and it is hoped that future studies will demonstrate clinical potential in veterinary species. Here, we provide an overview of the current knowledge on pericytes across different species including humans, companion and large animal models, in relation to their identification in different body tissues, methodology for prospective isolation, characterization, and potential for tissue regeneration. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- C L Esteves
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
| | - F X Donadeu
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
| |
Collapse
|
49
|
Byron CR, Trahan RA. Comparison of the Effects of Interleukin-1 on Equine Articular Cartilage Explants and Cocultures of Osteochondral and Synovial Explants. Front Vet Sci 2017; 4:152. [PMID: 28979900 PMCID: PMC5611359 DOI: 10.3389/fvets.2017.00152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a ubiquitous disease affecting many horses. The disease causes chronic pain and decreased performance for patients and great cost to owners for diagnosis and treatment. The most common treatments include systemic non-steroidal anti-inflammatory drugs and intra-articular injection of corticosteroids. There is excellent support for the palliative pain relief these treatments provide; however, they do not arrest progression and may in some instances hasten advancement of disease. Orthobiologic treatments have been investigated as potential OA treatments that may not only ameliorate pain but also prevent or reverse pathologic articular tissue changes. Clinical protocols for intra-articular use of such treatments have not been optimized; the high cost of in vivo research and concerns over humane use of research animals may be preventing discovery. The objective of this study was to evaluate a novel in vitro articular coculture system for future use in OA treatment research. Concentrations and fold increases in various markers of inflammation (prostaglandin E2 and tumor necrosis factor-alpha), degradative enzyme activity [matrix metalloproteinase-13 (MMP-13)], cartilage and bone metabolism (bone alkaline phosphatase and dimethyl-methylene blue), and cell death (lactate dehydrogenase) were compared between IL-1-stimulated equine articular cartilage explant cultures and cocultures comprised of osteochondral and synovial explants (OCS). Results suggested that there are differences in responses of culture systems to inflammatory stimulation. In particular, the IL-1-induced fold changes in MMP-13 concentration were significantly different between OCS and cartilage explant culture systems after 96 h. These differences may be relevant to responses of joints to inflammation in vivo and could be important to the biological relevance of in vitro research findings.
Collapse
Affiliation(s)
- Christopher R Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, Unites States
| | - Richard A Trahan
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, Unites States
| |
Collapse
|
50
|
De Schauwer C. Mesenchymal stem cells in daily veterinary practice: Are we there yet? Vet J 2017; 225:1-2. [PMID: 28720291 DOI: 10.1016/j.tvjl.2017.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/13/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Catharina De Schauwer
- Reproductive Biology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Belgium.
| |
Collapse
|