1
|
Pan M, Xu Y, Wang Y, Jiang Y, Xie Y, Tai C, Wang W, Wang B. The therapeutic efficacy comparison of MSCs derived different tissues unveilings anti-apoptosis more crucial than angiogenesis in treating acute myocardial infarction. Stem Cell Res Ther 2025; 16:236. [PMID: 40361236 PMCID: PMC12077008 DOI: 10.1186/s13287-025-04378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a severe disease that often associated with impaired angiogenesis and increased myocardial apoptosis. Mesenchymal stromal cells (MSCs) have been a promising candidate for treating myocardial infarction. However, functional heterogeneity of MSCs leads to inconsistent therapeutic efficiency and the current MSCs-based therapy lacks the concept and implementation of precision medicine. In this study, we compared the cardioprotective effect of UCMSCs and ADMSCs targeting the angiogenesis in a mouse MI model and screened out optimum MSCs candidate for precise clinical application. METHODS The gene expression profiles of UCMSCs and ADMSCs were investigated through RNA sequencing analysis. To compare their angiogenic potential, we performed tube formation assay, Matrigel plug assays, and aortic ring assay, and analyzed pro-angiogenic genes via qPCR. Subsequently, UCMSCs and ADMSCs were respectively injected into myocardium after MI surgery in mice. On day 28 post-MI, echocardiography was performed to assess cardiac function. Histological analysis was performed to assess MSCs retention, angiogenesis, and myocardial apoptosis. Additionally, the anti-apoptosis effects mediated by MSCs were further evaluated using flow cytometry in hypoxia H9C2 and HL-1 cells. RESULTS The RNA sequencing analysis revealed differences in gene expression related to angiogenesis and apoptosis pathways between UCMSCs and ADMSCs. UCMSCs presented greater pro-angiogenesis activity than ADMSCs in vitro and in vivo. Both of UCMSCs and ADMSCs improved cardiac function, decreased infarction area and inhibited cardiomyocyte apoptosis while promoting angiogenesis post-MI in mice. Notably, ADMSCs exerted a better cardioprotective function than UCMSCs and stronger anti-apoptotic effect on residual cardiomyocytes. CONCLUSIONS The protection of residual cells survival played a more prominent role than angiogenesis in MSCs-based therapy for acute MI. Our study provides new insights into therapeutic strategies and suggests that the optimal type of MSCs can be screened based on their tissue heterogeneity for precise clinical applications in acute MI.
Collapse
Affiliation(s)
- Mingjie Pan
- Clinical Medicine Research Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yueyue Xu
- The Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yue Jiang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Chenxu Tai
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Wenqing Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Chen C, Zhong W, Zheng H, Zhao W, Wang Y, Shen B. Current state of heart failure treatment: are mesenchymal stem cells and their exosomes a future therapy? Front Cardiovasc Med 2025; 12:1518036. [PMID: 40357434 PMCID: PMC12066684 DOI: 10.3389/fcvm.2025.1518036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Heart failure (HF) represents the terminal stage of cardiovascular disease and remains a leading cause of mortality. Epidemiological studies indicate a high prevalence and mortality rate of HF globally. Current treatment options primarily include pharmacological and non-pharmacological approaches. With the development of mesenchymal stem cell (MSC) transplantation technology, increasing research has shown that stem cell therapy and exosomes derived from these cells hold promise for repairing damaged myocardium and improving cardiac function, becoming a hot topic in clinical treatment for HF. However, this approach also presents certain limitations. This review summarizes the mechanisms of HF, current treatment strategies, and the latest progress in the application of MSCs and their exosomes in HF therapy.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Deng K, Feng S, Cheng F, Zhang X, Li Y, Ju J, Wang Z, Wang P, Wang C. Association of immunonutritional indicators with all-cause mortality in adult stroke patients. Sci Rep 2025; 15:14762. [PMID: 40295648 PMCID: PMC12037735 DOI: 10.1038/s41598-025-99158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
The study aimed to evaluate the relationship between immunonutritional indicators such as the systemic immune-inflammation index (SII), the Naples prognostic score (NPS), nutritional risk index (NRI), serum albumin (ALB), total cholesterol (TC) and all-cause mortality in adult stroke patients. Data were obtained from the National Health and Nutrition Examination Survey (NHANES) databases for 2005-2018. To determine mortality outcomes, participants were matched with National Death Index records until December 31, 2019. Spearman's correlation analysis and the random survival forest (RSF) were employed to assess the relationships among NPS, NRI, SII, ALB, and TC, and to determine the most predictive indicator for all-cause mortality in stroke patients. For the selected prognostic indicator, Kaplan-Meier survival analysis and Cox proportional hazards regression models were subsequently utilized to evaluate their associations with all-cause mortality in stroke patients. The study included 1076 stroke patients, with a median (IQR) age of 67 (56, 77) years. During a median follow-up of 67 months, a total of 372 (weighted 31%) stroke participants died from all causes. Among the immunonutritional indicators evaluated, NPS had the strongest predictive power for all-cause mortality in stroke patients. The Kaplan-Meier curve and Log-rank test showed that all-cause mortality was higher in the higher NPS group (3-4) compared to the lower NPS group (0-2) (P < 0.001). After adjusting for multiple potential confounders, the Cox regression model indicated that the higher NPS (3-4) group remained an independent predictor for higher all-cause mortality risk (HR = 1.89, 95% CI 1.44-2.47, P < 0.001). As a comprehensive evaluation index of inflammation and nutrition, NPS is a powerful predictor of all-cause mortality in stroke patients.
Collapse
Affiliation(s)
- Kai Deng
- Department of Occupational and Environmental Health, School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Shangang Feng
- Department of Clinical Neurosurgery, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, China
| | - Fangyu Cheng
- Department of Occupational and Environmental Health, School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Xinyu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Yueyuan Li
- Department of Occupational and Environmental Health, School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Jiyu Ju
- Department of Immunology Teaching and Research, School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Zengwu Wang
- Department of Clinical Neurosurgery, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, China
| | - Peng Wang
- Department of Nutrition, Food and Children's Health, School of Public Health, Shandong Second Medical University, Weifang, 261053, China.
| | - Chunping Wang
- Department of Occupational and Environmental Health, School of Public Health, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
4
|
Wang Y, Yuan S, Zhou L, Yang K, Jin Z, Lin A, Yang C, Tian W. Cutting-Edge Progress in the Acquisition, Modification and Therapeutic Applications of Exosomes for Drug Delivery. Int J Nanomedicine 2025; 20:5059-5080. [PMID: 40271148 PMCID: PMC12015628 DOI: 10.2147/ijn.s516840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
Exosomes are vesicles secreted by cells, typically ranging from 30 to 150 nm in diameter, and serve as crucial mediators of intercellular communication. Exosomes are capable of loading various therapeutic substances, such as small molecule compounds, proteins, and oligonucleotides, thereby making them an ideal vehicle for drug delivery. The distinctive biocompatibility, high stability, and targeting properties of exosomes render them highly valuable for future treatments of diseases like cancer and cardiovascular diseases. Despite the potential advantage of exosomes in delivering biologically active molecules, the techniques for the preparation, purification, preservation, and other aspects of stem cell exosomes are not yet mature enough. In this paper, we briefly introduce the composition, biogenesis, and benefits of exosomes, and primarily focus on summarizing the isolation and purification methods of exosomes, the preparation of engineered exosomes, and their clinical applications, to better provide new ideas for the development of exosome drug delivery systems.
Collapse
Affiliation(s)
- Yuhao Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Shengmeng Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Lihua Zhou
- National Institute of Measurement and Testing Technology, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Kexin Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zhaorui Jin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - An Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Chao Yang
- Chengdu Shiliankangjian Biotechnology Co., Ltd., Chengdu, Sichuan, 610041, People’s Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
5
|
Banikarimi SP, Mellati A, Abasi M, Soleimani M, Ghiass MA, Ahmadi Tafti SH, Boroumand S, Hasanzadeh E. Cardiac tissue regeneration by microfluidic generated cardiac cell-laden calcium alginate microgels and mesenchymal stem cell extracted exosomes on myocardial infarction model. Int J Biol Macromol 2025; 292:139247. [PMID: 39733869 DOI: 10.1016/j.ijbiomac.2024.139247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Regenerative medicine is one of the effective approaches for myocardial infarcted (MI) tissue due to the low capacity of heart for regeneration. However, cell therapy with local administration has shown poor cell retention in the targeted area and limited engraftment capacity at the intended location, resulting in inadequate tissue regeneration. The present study involves mesenchymal stem cell-derived exosomes and encapsulated cells in small and injectable calcium alginate microgels by a specialized microfluidic device to decrease inflammation and increase cell retention in the infarcted tissue. The results have shown that our microfluidic system can produce monodisperse cardiac cell-laden alginate microgels within the size range of <100 μm that are easily injectable. Our in vivo findings on the MI rat model demonstrated that the combination of cardiac cell-laden calcium alginate microgels with mesenchymal stem cells derived exosomes resulted in a higher increase in echocardiography, heart-specific gene expressions, and cardiac markers results compared to the other groups. However, the administration of exosomes or cardiac cells separately has shown a small amount of regeneration. Encapsulating cardiac cells of specific sizes along with exosomes produced from mesenchymal stem cells can be potentially applied as an effective method for regenerating the myocardium following infarction.
Collapse
Affiliation(s)
- Seyedeh Parnian Banikarimi
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Adel Ghiass
- Tissue Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Safieh Boroumand
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Lafci Büyükkahraman M, Chen H, Chen-Charpentier BM, Liao J, Kojouharov HV. A Mathematical Exploration of the Effects of Ischemia-Reperfusion Injury After a Myocardial Infarction. Bioengineering (Basel) 2025; 12:177. [PMID: 40001696 PMCID: PMC11851514 DOI: 10.3390/bioengineering12020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION After myocardial infarction (MI), the heart undergoes necrosis, inflammation, scar formation, and remodeling. While restoring blood flow is crucial, it can cause ischemia-reperfusion (IR) injury, driven by reactive oxygen species (ROSs), which exacerbate cell death and tissue damage. This study introduces a mathematical model capturing key post-MI dynamics, including inflammatory responses, IR injury, cardiac remodeling, and stem cell therapy. The model uses nonlinear ordinary differential equations to simulate these processes under varying conditions, offering a predictive tool to understand MI pathophysiology better and optimize treatments. METHODS After myocardial infarction (MI), left ventricular remodeling progresses through three distinct yet interconnected phases. The first phase captures the immediate dynamics following MI, prior to any medical intervention. This stage is mathematically modeled using the system of ordinary differential equations: The second and third stages of the remodeling process account for the system dynamics of medical treatments, including oxygen restoration and subsequent stem cell injection at the injury site. RESULTS We simulate heart tissue and immune cell dynamics over 30 days for mild and severe MI using the novel mathematical model under medical treatment. The treatment involves no intervention until 2 h post-MI, followed by oxygen restoration and stem cell injection at day 7, which is shown experimentallyand numerically to be optimal. The simulation incorporates a baseline ROS threshold (Rc) where subcritical ROS levels do not cause cell damage. CONCLUSION This study presents a novel mathematical model that extends a previously published framework by incorporating three clinically relevant parameters: oxygen restoration rate (ω), patient risk factors (γ), and neutrophil recruitment profile (δ). The model accounts for post-MI inflammatory dynamics, ROS-mediated ischemia-reperfusion (IR) injury, cardiac remodeling, and stem cell therapy. The model's sensitivity highlights critical clinical insights: while oxygen restoration is vital, excessive rates may exacerbate ROS-driven IR injury. Additionally, heightened patient risk factors (e.g., smoking, obesity) and immunodeficiency significantly impact tissue damage and recovery. This predictive tool offers valuable insights into MI pathology and aids in optimizing treatment strategies to mitigate IR injury and improve post-MI outcomes.
Collapse
Affiliation(s)
| | - Houjia Chen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010-0138, USA; (H.C.); (J.L.)
| | - Benito M. Chen-Charpentier
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0408, USA; (B.M.C.-C.); (H.V.K.)
| | - Jun Liao
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010-0138, USA; (H.C.); (J.L.)
| | - Hristo V. Kojouharov
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0408, USA; (B.M.C.-C.); (H.V.K.)
| |
Collapse
|
7
|
Zhang C, Yuan Y, Zhang S, Yan N, Zhao Y, Lu L, Li K, Zhou S, Cai S, Liang F, Ji G, Qu Y, Lv K, Dai Y, Li B, Yan S, Li X, Qu L, Li Y. Mesenchymal stem cells arouse myocardial NAD+ metabolism to alleviate microgravity-induced cardiac dysfunction. Biochem Biophys Res Commun 2024; 733:150623. [PMID: 39255619 DOI: 10.1016/j.bbrc.2024.150623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
After prolonged space operations, astronauts showed maladaptive atrophy within mostly left-ventricular myocardium, resulting in cardiac dysfunction. However, the mechanism of cardiac dysfunction under microgravity conditions is unclear, and the relevant prevention and treatment measures also need to be explored. Through simulating the microgravity environment with a tail suspension (TS) model, we found that long-term exposure to microgravity promotes aging of mouse hearts, which is closely related to cardiac dysfunction. The intravenous administration of adipose-derived mesenchymal stem cells (ADSCs) emerged preventive and therapeutic effect against myocardial senescence and the decline in cardiac function. Plasma metabolomics analysis suggests the loss of NAD+ in TS mice and motivated myocardial NAD + metabolism and utilization in ADSCs-treated mice, likely accounting for ADSCs' function. Oral administration of nicotinamide mononucleotide (NMN, a NAD + precursor) showed similar therapeutic effect to ADSCs treatment. Collectively, these data implicate the effect of ADSCs in microgravity-induced cardiac dysfunction and provide new therapeutic ideas for aging-related maladaptive cardiac remodeling.
Collapse
Affiliation(s)
- Chuanjie Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China; The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning, 121000, China
| | - Yanhong Yuan
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Shuhui Zhang
- Shandong University of Traditional Chinese Medicine, Shandong, 250355, China
| | - Na Yan
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China; Shandong University of Traditional Chinese Medicine, Shandong, 250355, China
| | - Yujie Zhao
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Liang Lu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Kai Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Sihai Zhou
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Shiou Cai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Fengji Liang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Guohua Ji
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Yanxiang Qu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Ke Lv
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Yuying Dai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Bo Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Shixuan Yan
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China
| | - Xiaopeng Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China.
| | - Lina Qu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100000, China.
| |
Collapse
|
8
|
Jasiewicz NE, Mei K, Oh HM, Bonacquisti EE, Chaudhari A, Byrum C, Jensen BC, Nguyen J. In situ-crosslinked Zippersomes enhance cardiac repair by increasing accumulation and retention. Bioeng Transl Med 2024; 9:e10697. [PMID: 39545082 PMCID: PMC11558206 DOI: 10.1002/btm2.10697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 11/17/2024] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are a promising treatment for myocardial infarction (MI), but their therapeutic efficacy is limited by inefficient accumulation at the target site. A minimally invasive MSC EV therapy that enhances EV accumulation at the disease site and extends EV retention could significantly improve post-infarct cardiac regeneration. Here, we show that EVs decorated with the next-generation of high-affinity (HiA) heterodimerizing leucine zippers, termed HiA Zippersomes, amplify targetable surface areas through in situ crosslinking and exhibited ~7-fold enhanced accumulation within the infarcted myocardium in mice after 3 days and continued to be retained up to Day 21, surpassing the performance of unmodified EVs. After MI in mice, HiA Zippersomes increase the ejection fraction by 53% and 100% compared with unmodified EVs and phosphate-buffered saline (PBS), respectively. This notable improvement in cardiac function played a crucial role in restoring healthy heart performance. HiA Zippersomes also robustly decrease infarct size by 52% and 60% compared with unmodified EVs and PBS, respectively, thus representing a promising platform for minimally invasive vesicle delivery to the infarcted heart compared to intramyocardial injections.
Collapse
Affiliation(s)
- Natalie E. Jasiewicz
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Kuo‐Ching Mei
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Hannah M. Oh
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Emily E. Bonacquisti
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Ameya Chaudhari
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Camryn Byrum
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Brian C. Jensen
- McAllister Heart Institute, University of North CarolinaChapel HillNorth CarolinaUSA
- Division of Cardiology, Department of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
9
|
Fatehi Hassanabad A, Zarzycki AN, Patel VB, Fedak PWM. Current concepts in the epigenetic regulation of cardiac fibrosis. Cardiovasc Pathol 2024; 73:107673. [PMID: 38996851 DOI: 10.1016/j.carpath.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
Cardiac fibrosis is a significant driver of congestive heart failure, a syndrome that continues to affect a growing patient population globally. Cardiac fibrosis results from a constellation of complex processes at the transcription, receptor, and signaling axes levels. Various mediators and signaling cascades, such as the transformation growth factor-beta pathway, have been implicated in the pathophysiology of cardiac tissue fibrosis. Our understanding of these markers and pathways has improved in recent years as more advanced technologies and assays have been developed, allowing for better delineation of the crosstalk between specific factors. There is mounting evidence suggesting that epigenetic modulation plays a pivotal role in the progression of cardiac fibrosis. Transcriptional regulation of key pro- and antifibrotic pathways can accentuate or blunt the rate and extent of fibrosis at the tissue level. Exosomes, micro-RNAs, and long noncoding RNAs all belong to factors that can impact the epigenetic signature in cardiac fibrosis. Herein, we comprehensively review the latest literature about exosomes, their contents, and cardiac fibrosis. In doing so, we highlight the specific transcriptional factors with pro- or antifibrotic properties. We also assimilate the data supporting these mediators' potential utility as diagnostic or prognostic biomarkers. Finally, we offer insight into where further work can be done to fill existing gaps to translate preclinical findings better and improve clinical outcomes.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Liu C, Zhang D, Long K, Qi W, Pang L, Li J, Cheng KKY, Cai Y. From exosomes to mitochondria and myocardial infarction: Molecular insight and therapeutic challenge. Pharmacol Res 2024; 209:107468. [PMID: 39426469 DOI: 10.1016/j.phrs.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Myocardial infarction (MI) remains a leading cause of mortality worldwide. Despite patients with MI benefit from timely reperfusion therapies, the rates of mortality and morbidity remain substantial, suggesting an enduring need for the development of new approaches. Molecular mechanisms underlying myocardial ischemic injury are associated with both cardiomyocytes and non-cardiomyocytes. Exosomes are nano-sized extracellular vesicles released by almost all eukaryotic cells. They facilitate the communication between various cells by transferring information via their cargo and altering different biological activities in recipient cells. Studies have created great prospects for therapeutic applications of exosomes in MI, as demonstrated through their beneficial effect on heart function and reducing ventricular remodeling in association with fibrosis, angiogenesis, apoptosis, and inflammation. Of note, myocardial ischemic injury is primarily due to restricted blood flow, reducing oxygen availability, and causing inefficient utilization of energy substrates. However, the impact of exosomes on cardiac energy metabolism has not been adequately investigated. Although exosomes have been engineered for targeted delivery to enhance clinical efficacy, challenges must be overcome to utilize them reliably in the clinic. In this review, we summarize the research progress of exosomes for MI with a focus on the known and unknown regarding the role of exosomes in energy metabolism in cardiomyocytes and non-cardiomyocytes; as well as potential research avenues of exosome-mitochondrial energy regulation as well as therapeutic challenges. We aim to help identify more efficient molecular targets that may promote the clinical application of exosomes.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Dengwen Zhang
- Department of Anesthesiology, Heyuan People's Hospital, Guangdong, China; Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, China
| | - Kekao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wensheng Qi
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China
| | - Jia Li
- Department of Neurology, Wuhan No.1 Hospital, Hubei, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
11
|
Czosseck A, Chen MM, Hsu CC, Shamrin G, Meeson A, Oldershaw R, Nguyen H, Livkisa D, Lundy DJ. Extracellular vesicles from human cardiac stromal cells up-regulate cardiomyocyte protective responses to hypoxia. Stem Cell Res Ther 2024; 15:363. [PMID: 39396003 PMCID: PMC11470622 DOI: 10.1186/s13287-024-03983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Cell therapy can protect cardiomyocytes from hypoxia, primarily via paracrine secretions, including extracellular vesicles (EVs). Since EVs fulfil specific biological functions based on their cellular origin, we hypothesised that EVs from human cardiac stromal cells (CMSCLCs) obtained from coronary artery bypass surgery may have cardioprotective properties. OBJECTIVES This study characterises CMSCLC EVs (C_EVs), miRNA cargo, cardioprotective efficacy and transcriptomic modulation of hypoxic human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). C_EVs are compared to bone marrow mesenchymal stromal cell EVs (B_EVs) which are a known therapeutic EV type. METHODS Cells were characterised for surface markers, gene expression and differentiation potential. EVs were compared for yield, phenotype, and ability to protect hiPSC-CMs from hypoxia/reoxygenation injury. EV dose was normalised by both protein concentration and particle count, allowing direct comparison. C_EV and B_EV miRNA cargo was profiled and RNA-seq was performed on EV-treated hypoxic hiPSC-CMs, then data were integrated by multi-omics. Confirmatory experiments were carried out using miRNA mimics. RESULTS At the same dose, C_EVs were more effective than B_EVs at protecting CM integrity, reducing apoptotic markers, and cell death during hypoxia. While C_EVs and B_EVs shared 70-77% similarity in miRNA content, C_EVs contained unique miRNAs, including miR-202-5p, miR-451a and miR-142-3p. Delivering miRNA mimics confirmed that miR-1260a and miR-202/451a/142 were cardioprotective, and the latter upregulated protective pathways similar to whole C_EVs. CONCLUSIONS This study demonstrates the potential of cardiac tissues, routinely discarded following surgery, as a valuable source of EVs for myocardial infarction therapy. We also identify miR-1260a as protective of CM hypoxia.
Collapse
Affiliation(s)
- Andreas Czosseck
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
| | - Max M Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
| | - Chuan-Chih Hsu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Gleb Shamrin
- Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Annette Meeson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rachel Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Helen Nguyen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
| | - Dora Livkisa
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan.
- Center for Cell Therapy, Taipei Medical University Hospital, 250 Wuxing Street, Taipei, 110, Taiwan.
- College of Biomedical Engineering, 301 Yuantong Road, Taipei, 235605, Taiwan.
| |
Collapse
|
12
|
Dong K, Chen F, Wang L, Lin C, Ying M, Li B, Huang T, Wang S. iMSC exosome delivers hsa-mir-125b-5p and strengthens acidosis resilience through suppression of ASIC1 protein in cerebral ischemia-reperfusion. J Biol Chem 2024; 300:107568. [PMID: 39019215 PMCID: PMC11363484 DOI: 10.1016/j.jbc.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/01/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024] Open
Abstract
Acid-sensing ion channel 1 (ASIC1) is critical in acidotoxicity and significantly contributes to neuronal death in cerebral stroke. Pharmacological inhibition of ASIC1 has been shown to reduce neuronal death. However, the potential of utilizing exosomes derived from pluripotent stem cells to achieve inhibition of Asic1 remains to be explored. Developing qualified exosome products with precise and potent active ingredients suitable for clinical application is also ongoing. Here, we adopt small RNA-seq to interrogate the miRNA contents in exosomes of pluripotent stem cell induced mesenchymal stem cell (iMSC). RNA-seq was used to compare the oxygen-glucose deprivation-damaged neurons before and after the delivery of exosomes. We used Western blot to quantify the Asic1 protein abundance in neurons before and after exosome treatment. An in vivo test on rats validated the neuroprotective effect of iMSC-derived exosome and its active potent miRNA hsa-mir-125b-5p. We demonstrate that pluripotent stem cell-derived iMSCs produce exosomes with consistent miRNA contents and sustained expression. These exosomes efficiently rescue injured neurons, alleviate the pathological burden, and restore neuron function in rats under oxygen-glucose deprivation stress. Furthermore, we identify hsa-mir-125b-5p as the active component responsible for inhibiting the Asic1a protein and protecting neurons. We validated a novel therapeutic strategy to enhance acidosis resilience in cerebral stroke by utilizing exosomes derived from pluripotent stem cells with specific miRNA content. This holds promise for cerebral stroke treatment with the potential to reduce neuronal damage and improve clinical patient outcomes.
Collapse
Affiliation(s)
- Kai Dong
- Department of Neurology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Fangyan Chen
- Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Liang Wang
- Department of Quality Control, Guidon Pharmaceutics, Beijing, China
| | - Chengyu Lin
- Department of Quality Control, Guidon Pharmaceutics, Beijing, China
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bingnan Li
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.
| | - Tao Huang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Shuyan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Guo H, Li Z, Xiao B, Huang R. M2 macrophage-derived exosomes promote angiogenesis and improve cardiac function after myocardial infarction. Biol Direct 2024; 19:43. [PMID: 38840223 PMCID: PMC11155164 DOI: 10.1186/s13062-024-00485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a major cause of mortality and morbidity worldwide. The intercellular communication in post-infarction angiogenesis remains unclear. METHODS In this study, we explored the role and mechanism of action of M2 macrophage-derived exosomes (M2-exos) in angiogenesis after MI. M2-exos were harvested and injected intramyocardially at the onset of MI. Two distinct endothelial cells (ECs) were cultured with M2-exos to explore the direct effects on angiogenesis. RESULTS We showed that M2-exos improved cardiac function, reduced infarct size, and enhanced angiogenesis after MI. Moreover, M2-exos promoted angiogenesis in vitro; the molecules loaded in the vesicles were responsible for its proangiogenic effects. We further validated that higher abundance of miR-132-3p in M2-exos, which recapitulate their functions, was required for the cardioprotective effects exerted by M2-exos. Mechanistically, miR-132-3p carried by M2-exos down-regulate the expression of THBS1 through direct binding to its 3´UTR and the proangiogenic effects of miR-132-3p were largely reversed by THBS1 overexpression. CONCLUSION Our findings demonstrate that M2-exos promote angiogenesis after MI by transporting miR-132-3p to ECs, and by binding to THBS1 mRNA directly and negatively regulating its expression. These findings highlight the role of M2-exos in cardiac repair and provide novel mechanistic understanding of intercellular communication in post-infarction angiogenesis.
Collapse
Affiliation(s)
- Hongzhou Guo
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Beijing, 100050, P. R. China
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zeya Li
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Beijing, 100050, P. R. China
| | - Bin Xiao
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Beijing, 100050, P. R. China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Beijing, 100050, P. R. China.
| |
Collapse
|
14
|
Farahzadi R, Fathi E, Valipour B, Ghaffary S. Stem cells-derived exosomes as cardiac regenerative agents. IJC HEART & VASCULATURE 2024; 52:101399. [PMID: 38584674 PMCID: PMC10990901 DOI: 10.1016/j.ijcha.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Heart failure is a root cause of morbidity and mortality worldwide. Due to the limited regenerative capacity of the heart following myocardial injury, stem cell-based therapies have been considered a hopeful approach for improving cardiac regeneration. In recent years, different kinds of cell products have been investigated regarding their potential to treat patients with heart failure. Despite special attention to cell therapy and its products, therapeutic efficacy has been disappointing, and clinical application is not affordable. In the past few years, a subset of small extracellular vehicles (EVs), commonly known as "exosomes," was reported to grant regenerative and cardioprotective signals at a value similar to their donor cells. The conceptual advantage is that they may be ideally used without evoking a relevant recipient immune response or other adverse effects associated with viable cells. The evidence related to their beneficial effects in animal models of heart failure is rapidly growing. However, there is remarkable heterogeneity regarding source cells, isolation process, effective dosage, and delivery mode. This brief review will focus on the latest research and debates on regenerative potential and cardiac repair of exosomes from different sources, such as cardiac/non-cardiac stem, somatic cells, and progenitor cells. Overall, the current state of research on exosomes as an experimental therapy for heart diseases will be discussed.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghaffary
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Wang M, Li C, Liu Y, Jin Y, Yu Y, Tan X, Zhang C. The effect of macrophages and their exosomes in ischemic heart disease. Front Immunol 2024; 15:1402468. [PMID: 38799471 PMCID: PMC11116575 DOI: 10.3389/fimmu.2024.1402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic heart disease (IHD) is a leading cause of disability and death worldwide, with immune regulation playing a crucial role in its pathogenesis. Various immune cells are involved, and as one of the key immune cells residing in the heart, macrophages play an indispensable role in the inflammatory and reparative processes during cardiac ischemia. Exosomes, extracellular vesicles containing lipids, nucleic acids, proteins, and other bioactive molecules, have emerged as important mediators in the regulatory functions of macrophages and hold promise as a novel therapeutic target for IHD. This review summarizes the regulatory mechanisms of different subsets of macrophages and their secreted exosomes during cardiac ischemia over the past five years. It also discusses the current status of clinical research utilizing macrophages and their exosomes, as well as strategies to enhance their therapeutic efficacy through biotechnology. The aim is to provide valuable insights for the treatment of IHD.
Collapse
Affiliation(s)
- Minrui Wang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuchang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanyuan Jin
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Yu
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiu Tan
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chunxiang Zhang
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
16
|
Zou A, Xiao T, Chi B, Wang Y, Mao L, Cai D, Gu Q, Chen Q, Wang Q, Ji Y, Sun L. Engineered Exosomes with Growth Differentiation Factor-15 Overexpression Enhance Cardiac Repair After Myocardial Injury. Int J Nanomedicine 2024; 19:3295-3314. [PMID: 38606373 PMCID: PMC11007405 DOI: 10.2147/ijn.s454277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Background Cardiac repair remains a thorny issue for survivors of acute myocardial infarction (AMI), due to the regenerative inertia of myocardial cells. Cell-free therapies, such as exosome transplantation, have become a potential strategy for myocardial injury. The aim of this study was to investigate the role of engineered exosomes in overexpressing Growth Differentiation Factor-15 (GDF-15) (GDF15-EVs) after myocardial injury, and their molecular mechanisms in cardiac repair. Methods H9C2 cells were transfected with GDF-15 lentivirus or negative control. The exosomes secreted from H9C2 cells were collected and identified. The cellular apoptosis and autophagy of H2O2-injured H9C2 cells were assessed by Western blotting, TUNEL assay, electron microscopy, CCK-8 and caspase 3/7 assay. A rat model of AMI was constructed by ligating the left anterior descending artery. The anti-apoptotic, pro-angiogenic effects of GDF15-EVs treatment, as well as ensuing functional and histological recovery were evaluated. Then, mRNA sequencing was performed to identify the differentially expressed mRNAs after GDF15-EVs treatment. Results GDF15-EVs inhibited apoptosis and promoted autophagy in H2O2 injured H9C2 cells. GDF15-EVs effectively decreased the infarct area and enhanced the cardiac function in rats with AMI. Moreover, GDF15-EVs hindered inflammatory cell infiltration, inhibited cell apoptosis, and promoted cardiac angiogenesis in rats with AMI. RNA sequence showed that telomerase reverse transcriptase (TERT) mRNA was upregulated in GDF15-EVs-treated H9C2 cells. AMPK signaling was activated after GDF15-EVs. Silencing TERT impaired the protective effects of GDF15-EVs on H2O2-injured H9C2 cells. Conclusion GDF15-EVs could fulfil their protective effects against myocardial injury by upregulating the expression of TERT and activating the AMPK signaling pathway. GDF15-EVs might be exploited to design new therapies for AMI.
Collapse
Affiliation(s)
- Ailin Zou
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Tingting Xiao
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Boyu Chi
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
- Changzhou Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Yu Wang
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Lipeng Mao
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
- Changzhou Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Dabei Cai
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
- Changzhou Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Qingqing Gu
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Qianwen Chen
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Qingjie Wang
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Yuan Ji
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Ling Sun
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
- Changzhou Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|
17
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
18
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
19
|
Mesquita FCP, King M, da Costa Lopez PL, Thevasagayampillai S, Gunaratne PH, Hochman-Mendez C. Laminin Alpha 2 Enhances the Protective Effect of Exosomes on Human iPSC-Derived Cardiomyocytes in an In Vitro Ischemia-Reoxygenation Model. Int J Mol Sci 2024; 25:3773. [PMID: 38612582 PMCID: PMC11011704 DOI: 10.3390/ijms25073773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Ischemic heart disease, a leading cause of death worldwide, manifests clinically as myocardial infarction. Contemporary therapies using mesenchymal stromal cells (MSCs) and their derivative (exosomes, EXOs) were developed to decrease the progression of cell damage during ischemic injury. Laminin alpha 2 (LAMA2) is an important extracellular matrix protein of the heart. Here, we generated MSC-derived exosomes cultivated under LAMA2 coating to enhance human-induced pluripotent stem cell (hiPSC)-cardiomyocyte recognition of LAMA2-EXOs, thus, increasing cell protection during ischemia reoxygenation. We mapped the mRNA content of LAMA2 and gelatin-EXOs and identified 798 genes that were differentially expressed, including genes associated with cardiac muscle development and extracellular matrix organization. Cells were treated with LAMA2-EXOs 2 h before a 4 h ischemia period (1% O2, 5% CO2, glucose-free media). LAMA2-EXOs had a two-fold protective effect compared to non-treatment on plasma membrane integrity and the apoptosis activation pathway; after a 1.5 h recovery period (20% O2, 5% CO2, cardiomyocyte-enriched media), cardiomyocytes treated with LAMA2-EXOs showed faster recovery than did the control group. Although EXOs had a protective effect on endothelial cells, there was no LAMA2-enhanced protection on these cells. This is the first report of LAMA2-EXOs used to treat cardiomyocytes that underwent ischemia-reoxygenation injury. Overall, we showed that membrane-specific EXOs may help improve cardiomyocyte survival in treating ischemic cardiovascular disease.
Collapse
Affiliation(s)
- Fernanda C. P. Mesquita
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, TX 77030, USA; (F.C.P.M.); (M.K.); (P.L.d.C.L.)
| | - Madelyn King
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, TX 77030, USA; (F.C.P.M.); (M.K.); (P.L.d.C.L.)
| | - Patricia Luciana da Costa Lopez
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, TX 77030, USA; (F.C.P.M.); (M.K.); (P.L.d.C.L.)
| | | | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, TX 77030, USA; (F.C.P.M.); (M.K.); (P.L.d.C.L.)
| |
Collapse
|
20
|
Jasiewicz NE, Mei KC, Oh HM, Bonacquisti EE, Chaudhari A, Byrum C, Jensen BC, Nguyen J. In Situ-Crosslinked Zippersomes Enhance Cardiac Repair by Increasing Accumulation and Retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585030. [PMID: 38559120 PMCID: PMC10980051 DOI: 10.1101/2024.03.14.585030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are a promising treatment for myocardial infarction, but their therapeutic efficacy is limited by inefficient accumulation at the target site. A non-invasive MSC EV therapy that enhances EV accumulation at the disease site and extends EV retention could significantly improve post-infarct cardiac regeneration. Here we show that EVs decorated with the next-generation of high-affinity heterodimerizing leucine zippers, termed high-affinity (HiA) Zippersomes, amplify targetable surface areas through in situ crosslinking and exhibited ∼7-fold enhanced accumulation within the infarcted myocardium in mice after three days and continued to be retained up to day 21, surpassing the performance of unmodified EVs. After myocardial infarction in mice, high-affinity Zippersomes increase the ejection fraction by 53% and 100% compared with unmodified EVs and PBS, respectively. This notable improvement in cardiac function played a crucial role in restoring healthy heart performance. High-affinity Zippersomes also robustly decrease infarct size by 52% and 60% compared with unmodified EVs and PBS, respectively, thus representing a promising platform for non-invasive vesicle delivery to the infarcted heart. Translational Impact Statement Therapeutic delivery to the heart remains inefficient and poses a bottleneck in modern drug delivery. Surgical application and intramyocardial injection of therapeutics carry high risks for most heart attack patients. To address these limitations, we have developed a non-invasive strategy for efficient cardiac accumulation of therapeutics using in situ crosslinking. Our approach achieves high cardiac deposition of therapeutics without invasive intramyocardial injections. Patients admitted with myocardial infarction typically receive intravenous access, which would allow painless administration of Zippersomes alongside standard of care.
Collapse
|
21
|
Yaghoobi A, Rezaee M, Behnoush AH, Khalaji A, Mafi A, Houjaghan AK, Masoudkabir F, Pahlavan S. Role of long noncoding RNAs in pathological cardiac remodeling after myocardial infarction: An emerging insight into molecular mechanisms and therapeutic potential. Biomed Pharmacother 2024; 172:116248. [PMID: 38325262 DOI: 10.1016/j.biopha.2024.116248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Myocardial infarction (MI) is the leading cause of heart failure (HF), accounting for high mortality and morbidity worldwide. As a consequence of ischemia/reperfusion injury during MI, multiple cellular processes such as oxidative stress-induced damage, cardiomyocyte death, and inflammatory responses occur. In the next stage, the proliferation and activation of cardiac fibroblasts results in myocardial fibrosis and HF progression. Therefore, developing a novel therapeutic strategy is urgently warranted to restrict the progression of pathological cardiac remodeling. Recently, targeting long non-coding RNAs (lncRNAs) provided a novel insight into treating several disorders. In this regard, numerous investigations have indicated that several lncRNAs could participate in the pathogenesis of MI-induced cardiac remodeling, suggesting their potential therapeutic applications. In this review, we summarized lncRNAs displayed in the pathophysiology of cardiac remodeling after MI, emphasizing molecular mechanisms. Also, we highlighted the possible translational role of lncRNAs as therapeutic targets for this condition and discussed the potential role of exosomes in delivering the lncRNAs involved in post-MI cardiac remodeling.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Behnoush
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Farzad Masoudkabir
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
22
|
Zhang R, Li Y, Zhang J. Molecular mechanisms of pelvic organ prolapse influenced by FBLN5 via FOSL1/miR-222/MEIS1/COL3A1 axis. Cell Signal 2024; 114:111000. [PMID: 38056607 DOI: 10.1016/j.cellsig.2023.111000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
This study delves into the role of FBLN5 in pelvic organ prolapse (POP) and its molecular mechanisms, focusing on the FOSL1/miR-222/MEIS1/COL3A1 axis. Gene relationships linked to POP were confirmed using bioinformatics databases like GEO and StarBase. Primary human uterosacral ligament fibroblasts (hUSLF) were extracted and subjected to mechanical stretching. Cellular cytoskeletal changes were examined via phalloidin staining, intracellular ROS levels with a ROS kit, cell apoptosis through flow cytometry, and cell senescence using β-galactosidase staining. FBLN5's downstream targets were identified, and the interaction between FOSL1 and miR-222 and miR-222 and MEIS1 were validated using assays. In rat models, the role of FBLN5 in POP was assessed using bladder pressure tests. Results indicated diminished FBLN5 expression in uterine prolapse. Enhanced FBLN5 countered mechanical damage in hUSLF cells by downregulating FOSL1. FOSL1 augmented miR-222, inhibiting MEIS1, which subsequently fostered COL3A1 transcription. In rat models, the absence of FBLN5 exacerbated POP by influencing the FOSL1/miR-222/MEIS1/COL3A1 pathway. FBLN5's protective role likely involves regulating the above axis and boosting COL3A1 expression. Further research is needed to validate the effectiveness and safety of this mechanism in human patients and to propose potential new treatment options.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, PR China
| | - Ya Li
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, PR China
| | - Jin Zhang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, PR China.
| |
Collapse
|
23
|
Chen Z, Xiong M, Tian J, Song D, Duan S, Zhang L. Encapsulation and assessment of therapeutic cargo in engineered exosomes: a systematic review. J Nanobiotechnology 2024; 22:18. [PMID: 38172932 PMCID: PMC10765779 DOI: 10.1186/s12951-023-02259-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Exosomes are nanoscale extracellular vesicles secreted by cells and enclosed by a lipid bilayer membrane containing various biologically active cargoes such as proteins, lipids, and nucleic acids. Engineered exosomes generated through genetic modification of parent cells show promise as drug delivery vehicles, and they have been demonstrated to have great therapeutic potential for treating cancer, cardiovascular, neurological, and immune diseases, but systematic knowledge is lacking regarding optimization of drug loading and assessment of delivery efficacy. This review summarizes current approaches for engineering exosomes and evaluating their drug delivery effects, and current techniques for assessing exosome drug loading and release kinetics, cell targeting, biodistribution, pharmacokinetics, and therapeutic outcomes are critically examined. Additionally, this review synthesizes the latest applications of exosome engineering and drug delivery in clinical translation. The knowledge compiled in this review provides a framework for the rational design and rigorous assessment of exosomes as therapeutics. Continued advancement of robust characterization methods and reporting standards will accelerate the development of exosome engineering technologies and pave the way for clinical studies.
Collapse
Affiliation(s)
- Zhen Chen
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China
- School of Public Health, Weifang Medical University, Weifang, 261000, China
| | - Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China
| | - Shuyin Duan
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250001, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China.
| |
Collapse
|
24
|
Amirzadeh Gougheri K, Ahmadi A, Ahmadabadi MG, Babajani A, Yazdanpanah G, Bahrami S, Hassani M, Niknejad H. Exosomal Cargo: Pro-angiogeneic, anti-inflammatory, and regenerative effects in ischemic and non-ischemic heart diseases - A comprehensive review. Biomed Pharmacother 2023; 168:115801. [PMID: 37918257 DOI: 10.1016/j.biopha.2023.115801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Heart diseases are the primary cause of mortality and morbidity worldwide which inflict a heavy social and economic burden. Among heart diseases, most deaths are due to myocardial infarction (MI) or heart attack, which occurs when a decrement in blood flow to the heart causes injury to cardiac tissue. Despite several available diagnostic, therapeutic, and prognostic approaches, heart disease remains a significant concern. Exosomes are a kind of small extracellular vesicles released by different types of cells that play a part in intercellular communication by transferring bioactive molecules important in regenerative medicine. Many studies have reported the diagnostic, therapeutic, and prognostic role of exosomes in various heart diseases. Herein, we reviewed the roles of exosomes as new emerging agents in various types of heart diseases, including ischemic heart disease, cardiomyopathy, arrhythmia, and valvular disease, focusing on pathogenesis, therapeutic, diagnostic, and prognostic roles in different areas. We have also mentioned different routes of exosome delivery to target tissues, the effects of preconditioning and modification on exosome's capability, exosome production in compliance with good manufacturing practice (GMP), and their ongoing clinical applications in various medical contexts to shed light on possible clinical translation.
Collapse
Affiliation(s)
- Kowsar Amirzadeh Gougheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
He H, Yuan Y, Wu Y, Lu J, Yang X, Lu K, Liu A, Cao Z, Sun M, Yu M, Wang H. Exoskeleton Partial-Coated Stem Cells for Infarcted Myocardium Restoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307169. [PMID: 37962473 DOI: 10.1002/adma.202307169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The integration of abiotic materials with live cells has emerged as an exciting strategy for the control of cellular functions. Exoskeletons consisting ofmetal-organic frameworks are generated to produce partial-coated bone marrow stem cells (BMSCs) to overcome low cell survival leading to disappointing effects for cell-based cardiac therapy. Partially coated exoskeletons can promote the survival of suspended BMSCs by integrating the support of exoskeletons and unimpaired cellular properties. In addition, partial exoskeletons exhibit protective effects against detrimental environmental conditions, including reactive oxygen species, pH changes, and osmotic pressure. The partial-coated cells exhibit increased intercellular adhesion forces to aggregate and adhere, promoting cell survival and preventing cell escape during cell therapy. The exoskeletons interact with cell surface receptors integrin α5β1, leading to augmented biological functions with profitable gene expression alteration, such as Vegfa, Cxcl12, and Adm. The partial-coated BMSCs display enhanced cell retention in infarcted myocardium through non-invasive intravenous injections. The repair of myocardial infarction has been achieved with improved cardiac function, myocardial angiogenesis, proliferation, and inhibition of cell apoptosis. This discovery advances the elucidation of potential molecular and cellular mechanisms for cell-exoskeleton interactions and benefits the rational design and manufacture of next-generation nanobiohybrids.
Collapse
Affiliation(s)
- Huihui He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yuan Yuan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, 310058, China
| | - Yunhong Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyi Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xiaofu Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Kejie Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - An Liu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, China
| | - Zelin Cao
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Miao Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
26
|
Bashyal N, Lee YJ, Jung JH, Kim MG, Lee KW, Hwang WS, Kim SS, Chang DY, Suh-Kim H. Assessment of Risks and Benefits of Using Antibiotics Resistance Genes in Mesenchymal Stem Cell-Based Ex-Vivo Therapy. Int J Stem Cells 2023; 16:438-447. [PMID: 37385638 PMCID: PMC10686797 DOI: 10.15283/ijsc23053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Recently, ex-vivo gene therapy has emerged as a promising approach to enhance the therapeutic potential of mesenchymal stem cells (MSCs) by introducing functional genes in vitro. Here, we explored the need of using selection markers to increase the gene delivery efficiency and evaluated the potential risks associated with their use in the manufacturing process. We used MSCs/CD that carry the cytosine deaminase gene (CD) as a therapeutic gene and a puromycin resistance gene (PuroR) as a selection marker. We evaluated the correlation between the therapeutic efficacy and the purity of therapeutic MSCs/CD by examining their anti-cancer effect on co-cultured U87/GFP cells. To simulate in vivo horizontal transfer of the PuroR gene in vivo, we generated a puromycin-resistant E. coli (E. coli/PuroR) by introducing the PuroR gene and assessed its responsiveness to various antibiotics. We found that the anti-cancer effect of MSCs/CD was directly proportional to their purity, suggesting the crucial role of the PuroR gene in eliminating impure unmodified MSCs and enhancing the purity of MSCs/CD during the manufacturing process. Additionally, we found that clinically available antibiotics were effective in inhibiting the growth of hypothetical microorganism, E. coli/PuroR. In summary, our study highlights the potential benefits of using the PuroR gene as a selection marker to enhance the purity and efficacy of therapeutic cells in MSC-based gene therapy. Furthermore, our study suggests that the potential risk of horizontal transfer of antibiotics resistance genes in vivo can be effectively managed by clinically available antibiotics.
Collapse
Affiliation(s)
| | - Young Jun Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, Korea
| | - Jin-Hwa Jung
- Research Center, CELLeBRAIN, Ltd., Jeonju, Korea
| | - Min Gyeong Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, Korea
| | - Kwang-Wook Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Woo Sup Hwang
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | | | - Haeyoung Suh-Kim
- Research Center, CELLeBRAIN, Ltd., Jeonju, Korea
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
27
|
Yin X, Lin L, Fang F, Zhang B, Shen C. Mechanisms and Optimization Strategies of Paracrine Exosomes from Mesenchymal Stem Cells in Ischemic Heart Disease. Stem Cells Int 2023; 2023:6500831. [PMID: 38034060 PMCID: PMC10686715 DOI: 10.1155/2023/6500831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The morbidity and mortality of myocardial infarction (MI) are increasing worldwide. Mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal and differentiation capabilities that are essential in tissue healing and regenerative medicine. However, the low implantation and survival rates of transplanted cells hinder the widespread clinical use of stem cells. Exosomes are naturally occurring nanovesicles that are secreted by cells and promote the repair of cardiac function by transporting noncoding RNA and protein. In recent years, MSC-derived exosomes have been promising cell-free treatment tools for improving cardiac function and reversing cardiac remodeling. This review describes the biological properties and therapeutic potential of exosomes and summarizes some engineering approaches for exosomes optimization to enhance the targeting and therapeutic efficacy of exosomes in MI.
Collapse
Affiliation(s)
- Xiaorong Yin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lizhi Lin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fang Fang
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Cheng Shen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
28
|
Deszcz I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int 2023; 2023:2729377. [PMID: 37954462 PMCID: PMC10635745 DOI: 10.1155/2023/2729377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
The World Health Organization reports that cardiovascular diseases (CVDs) represent 32% of all global deaths. The ineffectiveness of conventional therapies in CVDs encourages the development of novel, minimally invasive therapeutic strategies for the healing and regeneration of damaged tissue. The self-renewal capacity, multilineage differentiation, lack of immunogenicity, and immunosuppressive properties of mesenchymal stem cells (MSCs) make them a promising option for CVDs. However, growing evidence suggests that myocardial regeneration occurs through paracrine factors and extracellular vesicle (EV) secretion, rather than through differentiation into cardiomyocytes. Research shows that stem cells secrete or surface-shed into their culture media various cytokines, chemokines, growth factors, anti-inflammatory factors, and EVs, which constitute an MSC-conditioned medium (MSC-CM) or the secretome. The use of MSC-CM enhances cardiac repair through resident heart cell differentiation, proliferation, scar mass reduction, a decrease in infarct wall thickness, and cardiac function improvement comparable to MSCs without their side effects. This review highlights the limitations and benefits of therapies based on stem cells and their secretome as an innovative treatment of CVDs.
Collapse
Affiliation(s)
- Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| |
Collapse
|
29
|
Wang D, Wang X, Yang T, Tian H, Su Y, Wang Q. Long Non-Coding RNA Dancr Affects Myocardial Fibrosis in Atrial Fibrillation Mice via the MicroRNA-146b-5p/Smad5 Axis. ACTA CARDIOLOGICA SINICA 2023; 39:841-853. [PMID: 38022420 PMCID: PMC10646592 DOI: 10.6515/acs.202311_39(6).20230619b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/19/2023] [Indexed: 12/01/2023]
Abstract
Objectives Atrial fibrillation (AF) is the most frequent arrhythmia, and myocardial fibrosis (MF) has a close association with atrial remodeling and leads to AF. This study aimed to explore the function of the long non-coding RNA (lncRNA) differentiation antagonizing non-protein coding RNA (Dancr)/microRNA (miR)-146b-5p/Smad5 axis on MF in AF mice. Methods AF mouse models were established. Overexpression Dancr lentivirus was injected into AF mice to increase Dancr expression in myocardial tissues. LncRNA Dancr, miR-146b-5p, and Smad5 expression levels and inflammatory factors (IL-18 and TNF-α) in the myocardial tissues were measured. MF was measured and the expression levels of MF-related genes (COL1A1, α-SMA, and FN1) were detected. In addition, in vitro HL-1 cell rapid pacing models were constructed, and after lncRNA Dancr and miR-146b-5p-related construct transfection, cell viability and cell apoptosis were determined. Results LncRNA Dancr up-regulation ameliorated MF in the AF mice, reduced IL-18 and TNF-α expression levels in myocardial tissues, and decreased COL1A1, α-SMA, and FN1 expression levels. The in vitro HL-1 cell rapid pacing models suggested that miR-146b-5p overexpression reversed the inhibitory effects of lncRNA Dancr overexpression on MF in HL-1 cells, and Smad5 interference reversed the ameliorative effects of miR-146b-5p interference on MF in HL-1 cells. Conclusions LncRNA Dancr can sponge miR-146b-5p to promote Smad5 expression, thereby delaying MF in AF mice.
Collapse
Affiliation(s)
- Dejin Wang
- Department of Cardiology, Zibo Central Hospital, Zibo 255036, Shandong, People's Republic of China
| | - Xiqian Wang
- Department of Cardiology, Zibo Central Hospital, Zibo 255036, Shandong, People's Republic of China
| | - Tianxiao Yang
- Department of Cardiology, Zibo Central Hospital, Zibo 255036, Shandong, People's Republic of China
| | - Hongliang Tian
- Department of Cardiology, Zibo Central Hospital, Zibo 255036, Shandong, People's Republic of China
| | - Yuanzhen Su
- Department of Cardiology, Zibo Central Hospital, Zibo 255036, Shandong, People's Republic of China
| | - Qilei Wang
- Department of Cardiology, Zibo Central Hospital, Zibo 255036, Shandong, People's Republic of China
| |
Collapse
|
30
|
Zhang H, Wan X, Tian J, An Z, Liu L, Zhao X, Zhou Y, Zhang L, Ge C, Song X. The therapeutic efficacy and clinical translation of mesenchymal stem cell-derived exosomes in cardiovascular diseases. Biomed Pharmacother 2023; 167:115551. [PMID: 37783149 DOI: 10.1016/j.biopha.2023.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Exosomes, mainly derived from mesenchymal stem cells, provide a good reference for cardiac function repair and clinical application in cardiac and vascular diseases by regulating cardiomyocyte viability, inflammatory levels, angiogenesis, and ventricular remodeling after a heart injury. This review presents the cardioprotective efficacy of mesenchymal stem cell-originated exosomes and explores the underlying molecular mechanisms. Furthermore, we expound on several efficient approaches to transporting exosomes into the heart in clinical application and comment on the advantages and disadvantages of each method.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Xueqi Wan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China; The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, PR China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Yuquan Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Lijun Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Changjiang Ge
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
31
|
Aguilar S, García-Olloqui P, Amigo-Morán L, Torán JL, López JA, Albericio G, Abizanda G, Herrero D, Vales Á, Rodríguez-Diaz S, Higuera M, García-Martín R, Vázquez J, Mora C, González-Aseguinolaza G, Prosper F, Pelacho B, Bernad A. Cardiac Progenitor Cell Exosomal miR-935 Protects against Oxidative Stress. Cells 2023; 12:2300. [PMID: 37759522 PMCID: PMC10528297 DOI: 10.3390/cells12182300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress-induced myocardial apoptosis and necrosis are critically involved in ischemic infarction, and several sources of extracellular vesicles appear to be enriched in therapeutic activities. The central objective was to identify and validate the differential exosome miRNA repertoire in human cardiac progenitor cells (CPC). CPC exosomes were first analyzed by LC-MS/MS and compared by RNAseq with exomes of human mesenchymal stromal cells and human fibroblasts to define their differential exosome miRNA repertoire (exo-miRSEL). Proteomics demonstrated a highly significant representation of cardiovascular development functions and angiogenesis in CPC exosomes, and RNAseq analysis yielded about 350 different miRNAs; among the exo-miRSEL population, miR-935 was confirmed as the miRNA most significantly up-regulated; interestingly, miR-935 was also found to be preferentially expressed in mouse primary cardiac Bmi1+high CPC, a population highly enriched in progenitors. Furthermore, it was found that transfection of an miR-935 antagomiR combined with oxidative stress treatment provoked a significant increment both in apoptotic and necrotic populations, whereas transfection of a miR-935 mimic did not modify the response. Conclusion. miR-935 is a highly differentially expressed miRNA in exo-miRSEL, and its expression reduction promotes oxidative stress-associated apoptosis. MiR-935, together with other exosomal miRNA members, could counteract oxidative stress-related apoptosis, at least in CPC surroundings.
Collapse
Affiliation(s)
- Susana Aguilar
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Paula García-Olloqui
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Lidia Amigo-Morán
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - José Luis Torán
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Juan Antonio López
- Cardiovascular Proteomics Laboratory, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Guillermo Albericio
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Gloria Abizanda
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Diego Herrero
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - África Vales
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Saray Rodríguez-Diaz
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Marina Higuera
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Rubén García-Martín
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Carmen Mora
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Gloria González-Aseguinolaza
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Felipe Prosper
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Program of Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Hematology and Cell Therapy, Clínica Universidad de Navarra, 30008 Pamplona, Spain
| | - Beatriz Pelacho
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Antonio Bernad
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| |
Collapse
|
32
|
Liu Y, Wang M, Yu Y, Li C, Zhang C. Advances in the study of exosomes derived from mesenchymal stem cells and cardiac cells for the treatment of myocardial infarction. Cell Commun Signal 2023; 21:202. [PMID: 37580705 PMCID: PMC10424417 DOI: 10.1186/s12964-023-01227-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023] Open
Abstract
Acute myocardial infarction has long been the leading cause of death in coronary heart disease, which is characterized by irreversible cardiomyocyte death and restricted blood supply. Conventional reperfusion therapy can further aggravate myocardial injury. Stem cell therapy, especially with mesenchymal stem cells (MSCs), has emerged as a promising approach to promote cardiac repair and improve cardiac function. MSCs may induce these effects by secreting exosomes containing therapeutically active RNA, proteins and lipids. Notably, normal cardiac function depends on intracardiac paracrine signaling via exosomes, and exosomes secreted by cardiac cells can partially reflect changes in the heart during disease, so analyzing these vesicles may provide valuable insights into the pathology of myocardial infarction as well as guide the development of new treatments. The present review examines how exosomes produced by MSCs and cardiac cells may influence injury after myocardial infarction and serve as therapies against such injury. Video Abstract.
Collapse
Affiliation(s)
- Yuchang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Minrui Wang
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Nucleic Acids in Medicine for National High-Level Talents, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
33
|
Li X, Hu X, Chen Q, Jiang T. Bone marrow mesenchymal stem cell-derived exosomes carrying E3 ubiquitin ligase ITCH attenuated cardiomyocyte apoptosis by mediating apoptosis signal-regulated kinase-1. Pharmacogenet Genomics 2023; 33:117-125. [PMID: 37306338 DOI: 10.1097/fpc.0000000000000499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cell (BMSC)-derived exosomes have been verified to perform an effective role in treating acute myocardial infarction (MI). Herein, we aimed to investigate the role of BMSC-derived exosomes carrying itchy E3 ubiquitin ligase (ITCH) in MI and the underlying mechanism involved. METHODS BMSCs were isolated from rat bone marrow and exosomes were extracted using ultra-high speed centrifugation. Exosomes uptake by cardiomyoblasts was determined by PKH-67 staining. Rat cardiomyoblast cell line H9C2 was stimulated by hypoxia, as in vitro model. H9C2 cell apoptosis was determined by flow cytometry. Cell viability was examined by cell counting kit-8 assay. Western blotting was performed to determine the expression of ITCH, apoptosis signal-regulated kinase-1 (ASK1), and apoptotic-related protein cleaved-caspase 3 and Bcl-2. Ubiquitination assay was employed to measure the levels of ASK1 ubiquitination. RESULTS Exosomes derived from BMSCs were endocytosed by H9C2 cardiomyoblasts. BMSC-Exo downregulated cleaved-caspase 3 expression, upregulated Bcl-2 expression, further suppressed H9C2 cell apoptosis under hypoxia treatment, meanwhile the expression of ASK1 was downregulated, and similar effects were observed in BMSC-cultured supernatant (BMSC-S). However, these effects were reversed by exosome inhibitor GW4869. BMSC-derived exosomes enhanced ASK1 ubiquitination and degradation. Mechanically, exosomes of ITCH-knockdown BMSCs promoted H9C2 cell apoptosis and upregulated ASK1 expression. Overexpression of ITCH enhanced ASK1 ubiquitination and degradation. Further, the protein expression of ASK1 and cleaved-caspase 3 was upregulated and Bcl-2 protein expression was downregulated. ITCH-knockdown BMSC exosomes increased cardiomyoblast apoptosis. CONCLUSION BMSC-derived exosomes carrying ITCH suppressed cardiomyoblast apoptosis, promoted cardiomyoblast viability, and improved myocardial injury in AMI by mediating ASK1 ubiquitination.
Collapse
Affiliation(s)
- Xuejun Li
- Department of Cardiac Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | | | | |
Collapse
|
34
|
Ning Y, Huang P, Chen G, Xiong Y, Gong Z, Wu C, Xu J, Jiang W, Li X, Tang R, Zhang L, Hu M, Xu J, Xu J, Qian H, Jin C, Yang Y. Atorvastatin-pretreated mesenchymal stem cell-derived extracellular vesicles promote cardiac repair after myocardial infarction via shifting macrophage polarization by targeting microRNA-139-3p/Stat1 pathway. BMC Med 2023; 21:96. [PMID: 36927608 PMCID: PMC10022054 DOI: 10.1186/s12916-023-02778-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells (MSCs) pretreated with atorvastatin (ATV) (MSCATV-EV) have a superior cardiac repair effect on acute myocardial infarction (AMI). The mechanisms, however, have not been fully elucidated. This study aims to explore whether inflammation alleviation of infarct region via macrophage polarization plays a key role in the efficacy of MSCATV-EV. METHODS MSCATV-EV or MSC-EV were intramyocardially injected 30 min after coronary ligation in AMI rats. Macrophage infiltration and polarization (day 3), cardiac function (days 0, 3, 7, 28), and infarct size (day 28) were measured. EV small RNA sequencing and bioinformatics analysis were conducted for differentially expressed miRNAs between MSCATV-EV and MSC-EV. Macrophages were isolated from rat bone marrow for molecular mechanism analysis. miRNA mimics or inhibitors were transfected into EVs or macrophages to analyze its effects on macrophage polarization and cardiac repair in vitro and in vivo. RESULTS MSCATV-EV significantly reduced the amount of CD68+ total macrophages and increased CD206+ M2 macrophages of infarct zone on day 3 after AMI compared with MSC-EV group (P < 0.01-0.0001). On day 28, MSCATV-EV much more significantly improved the cardiac function than MSC-EV with the infarct size markedly reduced (P < 0.05-0.0001). In vitro, MSCATV-EV also significantly reduced the protein and mRNA expressions of M1 markers but increased those of M2 markers in lipopolysaccharide-treated macrophages (P < 0.05-0.0001). EV miR-139-3p was identified as a potential cardiac repair factor mediating macrophage polarization. Knockdown of miR-139-3p in MSCATV-EV significantly attenuated while overexpression of it in MSC-EV enhanced the effect on promoting M2 polarization by suppressing downstream signal transducer and activator of transcription 1 (Stat1). Furthermore, MSCATV-EV loaded with miR-139-3p inhibitors decreased while MSC-EV loaded with miR-139-3p mimics increased the expressions of M2 markers and cardioprotective efficacy. CONCLUSIONS We uncovered a novel mechanism that MSCATV-EV remarkably facilitate cardiac repair in AMI by promoting macrophage polarization via miR-139-3p/Stat1 pathway, which has the great potential for clinical translation.
Collapse
Affiliation(s)
- Yu Ning
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
- National Health Commission Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Peisen Huang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
- National Health Commission Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Zhaoting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Chunxiao Wu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Junyan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Wenyang Jiang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Xiaosong Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Ruijie Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Lili Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Mengjin Hu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Haiyan Qian
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
35
|
Exosomes from Adipose-Derived Stem Cells Alleviate Dexamethasone-Induced Bone Loss by Regulating the Nrf2/HO-1 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3602962. [PMID: 36778207 PMCID: PMC9908349 DOI: 10.1155/2023/3602962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
The widespread use of therapeutic glucocorticoids has increased the incidences of glucocorticoid-induced osteoporosis (GIOP). Oxidative stress and mitochondrial dysfunction are major causes of GIOP; therefore, alleviation of excess oxidative stress in osteoblasts is a potential therapeutic strategy for osteoporosis. Exosomes derived from ADSCs (ADSCs-Exos), as novel cell-free therapeutics, can modulate various biological processes, such as immunomodulation, reduce oxidative damage, and promote tissue repair as well as regeneration. In this study, ADSCs-Exos restored the viability and osteogenic potential of MC3T3-E1 cells by attenuating apoptosis, oxidative damage, intracellular ROS generation, and mitochondrial dysfunction. Moreover, after pretreatment with ADSCs-Exos, Nrf2 expressions were upregulated in Dex-stimulated osteoblasts. Inhibitory assays showed that silencing Nrf2 partially eliminated the protective effects of ADSCs-Exos. The rat model assays confirmed that ADSCs-Exos alleviated the Dex-induced increase in oxidation levels, restored bone mass of the distal femur, and increased the expressions of Nrf2 and osteogenic markers in bone tissues. Thus, ADSCs-Exos alleviated apoptosis and oxidative stress by regulating Nrf2/HO-1 expressions after Dex and prevented the development of GIOP in vivo.
Collapse
|
36
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
37
|
An Z, Tian J, Liu Y, Zhao X, Yang X, Yong J, Liu L, Zhang L, Jiang W, Song X, Zhang H. Exosomes as a Cell-free Therapy for Myocardial Injury Following Acute Myocardial Infarction or Ischemic Reperfusion. Aging Dis 2022; 13:1770-1786. [PMID: 36465167 PMCID: PMC9662265 DOI: 10.14336/ad.2022.0416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/16/2022] [Indexed: 08/13/2023] Open
Abstract
Exosomes, which contain miRNA, have been receiving growing attention in cardiovascular therapy because of their role in mediating cell-cell communication, autophagy, apoptosis, inflammation, and angiogenesis. Several studies have suggested that miRNA derived from exosomes can be used to detect myocardial infarctions (MI) in patients. Basic research also suggests that exosomes could serve as a potential therapeutic target for treating acute myocardial infarction. Ischemia/reperfusion (IR) injury is associated with adverse cardiac events after acute MI. We aim to review the potential benefits and mechanisms of exosomes in treating MI and IR injury.
Collapse
Affiliation(s)
- Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Yue Liu
- Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jingwen Yong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Lijun Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Wenjian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Pan Z, Sun W, Chen Y, Tang H, Lin W, Chen J, Chen C. Extracellular Vesicles in Tissue Engineering: Biology and Engineered Strategy. Adv Healthc Mater 2022; 11:e2201384. [PMID: 36053562 DOI: 10.1002/adhm.202201384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Extracellular vesicles (EVs), acting as an important ingredient of intercellular communication through paracrine actions, have gained tremendous attention in the field of tissue engineering (TE). Moreover, these nanosized extracellular particles (30-140 nm) can be incorporated into biomaterials according to different principles to facilitate signal delivery in various regenerative processes directly or indirectly. Bioactive biomaterials as the carrier will extend the retention time and realize the controlled release of EVs, which further enhance their therapeutic efficiency in tissue regeneration. Herein, the basic biological characteristics of EVs are first introduced, and then their outstanding performance in exerting direct impacts on target cells in tissue regeneration as well as indirect effects on promoting angiogenesis and regulating the immune environment, due to specific functional components of EVs (nucleic acid, protein, lipid, etc.), is emphasized. Furthermore, different design ideas for suitable EV-loaded biomaterials are also demonstrated. In the end, this review also highlights the engineered strategies, which aim at solving the problems related to natural EVs such as highly heterogeneous functions, inadequate tissue targeting capabilities, insufficient yield and scalability, etc., thus promoting the therapeutic pertinence and clinical potential of EV-based approaches in TE.
Collapse
Affiliation(s)
- Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| |
Collapse
|
39
|
Gao Y, Kang Y, Wang T, Li C, Shen S, Qu C, Gong S, Liu P, Yang L, Liu J, Han B, Li C. Alginate microspheres-collagen hydrogel, as a novel 3D culture system, enhanced skin wound healing of hUCMSCs in rats model. Colloids Surf B Biointerfaces 2022; 219:112799. [PMID: 36095954 DOI: 10.1016/j.colsurfb.2022.112799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
Abstract
While stem cell transplantation has emerged as a promising approach to improving wound healing outcomes, the application of stem cells to date has been limited by the poor survival and retention of these cells once transplanted. The survival, development, and migratory activity of transplanted cells can be improved through the use of three-dimensional (3D) culture systems. Here, a novel alginate microsphere-collage hydrogel (AMS-Col gel) 3D culture system was developed and found to improve human umbilical cord mesenchymal stem cell (hUCMSC) survival, permitting their sustained release so as to promote wound healing. Through hematoxylin and eosin staining and Masson's trichrome staining, the prepared hUCMSCs-AMS-Col gel was found to exhibit wound healing activity. On day 7 following the hUCMSCs-AMS-Col gel treatment of model wounds, improved collagen fiber deposition and re-epithelialization were evident, with complete epithelial regeneration as of day 14 and near-total wound healing was evident as of day 21. This hUCMSCs-AMS-Col gel was also associated with increased VEGF and FGF2 expression. Together, these data indicate that AMS-Col gels are a promising and novel form of 3D cell culture system capable of improving hUCMSC-mediated wound healing, highlighting the potential clinical utility of this regenerative strategy.
Collapse
Affiliation(s)
- Yonglin Gao
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Yating Kang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Tong Wang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Chengbo Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Shengbiao Shen
- Yantai Longstrong Biotechnology Co., Ltd., Yantai 264670, PR China
| | - Chenglei Qu
- Yantai Longstrong Biotechnology Co., Ltd., Yantai 264670, PR China
| | - Shizhou Gong
- Yantai Longstrong Biotechnology Co., Ltd., Yantai 264670, PR China
| | - Ping Liu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Lintong Yang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Jingmin Liu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Bing Han
- Luye Pharma Group Ltd., Yantai 264003, PR China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
40
|
Fang J, Zhang Y, Chen D, Zheng Y, Jiang J. Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction. Int J Nanomedicine 2022; 17:4699-4719. [PMID: 36217495 PMCID: PMC9547598 DOI: 10.2147/ijn.s377479] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes are a pluripotent group of extracellular nanovesicles secreted by all cells that mediate intercellular communications. The effective information within exosomes is primarily reflected in exosomal cargos, including proteins, lipids, DNAs, and non-coding RNAs (ncRNAs), the most intensively studied molecules. Cardiac resident cells (cardiomyocytes, fibroblasts, and endothelial cells) and foreign cells (infiltrated immune cells, cardiac progenitor cells, cardiosphere-derived cells, and mesenchymal stem cells) are involved in the progress of ventricular remodeling (VR) following myocardial infarction (MI) via transferring exosomes into target cells. Here, we summarize the pathological mechanisms of VR following MI, including cardiac myocyte hypertrophy, cardiac fibrosis, inflammation, pyroptosis, apoptosis, autophagy, angiogenesis, and metabolic disorders, and the roles of exosomal cargos in these processes, with a focus on proteins and ncRNAs. Continued research in this field reveals a novel diagnostic and therapeutic strategy for VR.
Collapse
Affiliation(s)
- Jiacheng Fang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yuxuan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Delong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yiyue Zheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China,Correspondence: Jun Jiang, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People’s Republic of China, Tel/Fax +86 135 8870 6891, Email
| |
Collapse
|
41
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
42
|
Song H, Li B, Guo R, He S, Peng Z, Qu J, Zhao Y, Zhai X, Yin W, Yang K, Fan X, Zhang J, Tan J, Liu Y, Xie J, Xu J. Hypoxic preconditioned aged BMSCs accelerates MI injury repair by modulating inflammation, oxidative stress and apoptosis. Biochem Biophys Res Commun 2022; 627:45-51. [PMID: 36007334 DOI: 10.1016/j.bbrc.2022.08.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022]
Abstract
The benefits of autologous cell therapy for cardiac repair are diminished in aged individuals due to the limited quality and poor tolerance of aged stem cells in the ischemic micro-environment. The safe and efficient methods to improve the therapeutic effect of aged stem cells are needed to treat the increasing number of aged patients with cardiac diseases. In the present study, we aimed to determine whether hypoxic preconditioning can improve the therapeutic effect of aged stem cells even if the responsiveness of aged MSCs is poor, and to seek the underlying mechanism. Using a murine model of MI, our results showed that hypoxic preconditioning promoted the therapeutic effect of aged BMSCs, which was expressed in improved cardiac function, decreased scar size and alleviated cardiac remodeling in vivo. This in vivo effect of hypoxic preconditioned aged BMSCs was associated with alleviated inflammation, oxidative stress and apoptosis in infarcted heart. In vitro studies confirmed that hypoxic preconditioned aged BMSCs exert cytoprotective impacts on H9C2 cells against lethal hypoxia injury via attenuating oxidative stress and apoptosis. Our data support the promise of hypoxic preconditioning as a potential strategy to improve autologous stem cell therapy for ischemic heart injury in aged individuals.
Collapse
Affiliation(s)
- Huifang Song
- Department of Hepatological Surgery, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Anatomy, Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China.
| | - Bin Li
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Rui Guo
- Department of Pathology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Sheng He
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Zexu Peng
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Junyuan Qu
- Department of Pathology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yunhe Zhao
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhai
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Wenjuan Yin
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Kun Yang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Xuemei Fan
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jie Zhang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jiayin Tan
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Yang Liu
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China.
| | - Jun Xu
- Department of Hepatological Surgery, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
43
|
Bashyal N, Lee TY, Chang DY, Jung JH, Kim MG, Acharya R, Kim SS, Oh IH, Suh-Kim H. Improving the Safety of Mesenchymal Stem Cell-Based Ex Vivo Therapy Using Herpes Simplex Virus Thymidine Kinase. Mol Cells 2022; 45:479-494. [PMID: 35356894 PMCID: PMC9260133 DOI: 10.14348/molcells.2022.5015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Narayan Bashyal
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Tae-Young Lee
- Research Center, Cell&Brain Co., Ltd., Jeonju 54871, Korea
| | - Da-Young Chang
- Research Center, Cell&Brain Co., Ltd., Jeonju 54871, Korea
| | - Jin-Hwa Jung
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Min Gyeong Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Rakshya Acharya
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Il-Hoan Oh
- Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul 06591, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
- Research Center, Cell&Brain Co., Ltd., Jeonju 54871, Korea
| |
Collapse
|
44
|
Jiang CY, Zhong TT, Qiu LW, Liu YF, Zuo HH, Huang XF. The potential role of circulating exosomes in protecting myocardial injury in acute myocardial infarction via regulating miR-190a-3p/CXCR4/CXCL12 pathway. J Bioenerg Biomembr 2022; 54:175-189. [PMID: 35867293 DOI: 10.1007/s10863-022-09944-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
Exosomes of different origins have been found to be protective against ischemic-induced myocardial injury. This study examined the protective effects of circulating exosomes in the mice model of acute myocardial infarction (AMI) and explored the underlying molecular mechanisms. The effects of exosomes on myocardial injury were assessed in the AMI mice model. The in vivo studies showed that circulating exosomes reduced the infarcted size, improved the morphology of heart tissues and also reduced apoptosis of the heart tissues. In addition, the model mice showed an increase in the CD34 + /VEGFR2 + cell population and CD31, CXCR4 and CXCL12 expression after exosomes treatment. MiR-190a-3p was significantly down-regulated in the exosomes derived from the culture medium of hypoxia-treated human cardiomyocytes (HCMs). Further analysis revealed that miR-190a-3p could physically interact with CXCR4/CXCL12 by targeting the respective 3'UTRs. These exosomes could up-regulated CXCR4 and CXCL12 expression in the EPCs; in addition, miR-190a-3p mimics repressed CXCR4/CXCL12 expression in EPCs, while its inhibitor had opposite effects. The in vitro functional assays showed that miR-190a-3p overexpression suppressed the cell viability, proliferation, migration, adhesion and tube formation of EPCs; while miR-190a-3p inhibitor had the opposite effects; exosomes derived from the culture medium of hypoxia-treated HCMs exhibited similar actions of miR-190a-3p inhibitor. Moreover, miR-190a-3p was down-regulated in exosomes from serum in the AMI group when compared to that from sham group. Treatment with exosomes from serum in the AMI group promoted cell proliferation, migration, adhesion and tube formation of EPCs when compared to that in the sham group. More importantly, IT1t attenuated the enhanced effects of miR-190a-3p inhibition on EPC proliferation, migration, adhesion and tube formation. In conclusion, circulating exosomes exerted protective effects on myocardial injury in the AMI mice model, and down-regulation of miR-190a-3p in the circulating exosomes may exert protective effects against myocardial injury. Hypoxia induced the downregulation of miR-190a-3p in the culture medium of HCMs, and the mechanistic investigations indicated that exosomes of hypoxia-conditioned HCM culture medium promoted the cell viability, proliferation, migration, adhesion and tube formation of EPCs via regulating miR-190a-3p/CXCR4/CXCL12 pathway.
Collapse
Affiliation(s)
- Chun-Yuan Jiang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi, 330006, Nanchang, China
| | - Ting-Ting Zhong
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518057, China.
| | - Lu-Wen Qiu
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518057, China
| | - Yan-Feng Liu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi, 330006, Nanchang, China
| | - Hui-Hua Zuo
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518057, China
| | - Xiao-Fei Huang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi, 330006, Nanchang, China
| |
Collapse
|
45
|
Soltani S, Mansouri K, Parvaneh S, Thakor AS, Pociot F, Yarani R. Diabetes complications and extracellular vesicle therapy. Rev Endocr Metab Disord 2022; 23:357-385. [PMID: 34647239 DOI: 10.1007/s11154-021-09680-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic disorder characterized by dysregulated glycemic conditions. Diabetic complications include microvascular and macrovascular abnormalities and account for high morbidity and mortality rates in patients. Current clinical approaches for diabetic complications are limited to symptomatic treatments and tight control of blood sugar levels. Extracellular vesicles (EVs) released by somatic and stem cells have recently emerged as a new class of potent cell-free therapeutic delivery packets with a great potential to treat diabetic complications. EVs contain a mixture of bioactive molecules and can affect underlying pathological processes in favor of tissue healing. In addition, EVs have low immunogenicity and high storage capacity while maintaining nearly the same regenerative and immunomodulatory effects compared to current cell-based therapies. Therefore, EVs have received increasing attention for diabetes-related complications in recent years. In this review, we provide an outlook on diabetic complications and summarizes new knowledge and advances in EV applications. Moreover, we highlight recommendations for future EV-related research.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah, University of Medical Sciences, Kermanshah, Iran
| | - Shahram Parvaneh
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Reza Yarani
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
46
|
Handley EL, Callanan A. Modulation of Tissue Microenvironment Following Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ella Louise Handley
- Institute for Bioengineering School of Engineering University of Edinburgh Edinburgh EH9 3DW UK
| | - Anthony Callanan
- Institute for Bioengineering School of Engineering University of Edinburgh Edinburgh EH9 3DW UK
| |
Collapse
|
47
|
Uemura L, Baggio Simeoni R, Bispo Machado Júnior PA, Gavazzoni Blume G, Kremer Gamba L, Sgarbossa Tonial M, Baggio Simeoni PR, Stadler Tasca Ribeiro V, Silvestre R, de Carvalho KAT, Napimoga MH, Cesar Francisco J, Guarita-Souza LC. Autologous Bone Marrow Mononuclear Cells (BMMC)-Associated Anti-Inflammatory Nanoparticles for Cardiac Repair after Myocardial Infarction. J Funct Biomater 2022; 13:jfb13020059. [PMID: 35645267 PMCID: PMC9149818 DOI: 10.3390/jfb13020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
To investigate the effect of transplantation of stem cells from the bone marrow mononuclear cells (BMMC) associated with 15d-PGJ2-loaded nanoparticles in a rat model of chronic MI. Chronic myocardial infarction (MI) was induced by the ligation of the left anterior descending artery in 40 male Wistar rats. After surgery, we transplanted bone marrow associated with 15d-PGJ2-loaded nanoparticle by intramyocardial injection (106 cells/per injection) seven days post-MI. Myocardial infarction was confirmed by echocardiography, and histological analyses of infarct morphology, gap junctions, and angiogenesis were obtained. Our results from immunohistochemical analyses demonstrated the presence of angiogenesis identified in the transplanted region and that there was significant expression of connexin-43 gap junctions, showing a more effective electrical and mechanical integration of the host myocardium. This study suggests that the application of nanoparticle technology in the prevention and treatment of MI is an emerging field and can be a strategy for cardiac repair.
Collapse
Affiliation(s)
- Laercio Uemura
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, Brazil; (L.U.); (P.A.B.M.J.); (G.G.B.); (L.K.G.); (M.S.T.); (P.R.B.S.); (V.S.T.R.); (J.C.F.); (L.C.G.-S.)
| | - Rossana Baggio Simeoni
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, Brazil; (L.U.); (P.A.B.M.J.); (G.G.B.); (L.K.G.); (M.S.T.); (P.R.B.S.); (V.S.T.R.); (J.C.F.); (L.C.G.-S.)
- Correspondence: ; Tel.: +55-41-988213440
| | - Paulo André Bispo Machado Júnior
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, Brazil; (L.U.); (P.A.B.M.J.); (G.G.B.); (L.K.G.); (M.S.T.); (P.R.B.S.); (V.S.T.R.); (J.C.F.); (L.C.G.-S.)
| | - Gustavo Gavazzoni Blume
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, Brazil; (L.U.); (P.A.B.M.J.); (G.G.B.); (L.K.G.); (M.S.T.); (P.R.B.S.); (V.S.T.R.); (J.C.F.); (L.C.G.-S.)
| | - Luize Kremer Gamba
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, Brazil; (L.U.); (P.A.B.M.J.); (G.G.B.); (L.K.G.); (M.S.T.); (P.R.B.S.); (V.S.T.R.); (J.C.F.); (L.C.G.-S.)
| | - Murilo Sgarbossa Tonial
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, Brazil; (L.U.); (P.A.B.M.J.); (G.G.B.); (L.K.G.); (M.S.T.); (P.R.B.S.); (V.S.T.R.); (J.C.F.); (L.C.G.-S.)
| | - Paulo Ricardo Baggio Simeoni
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, Brazil; (L.U.); (P.A.B.M.J.); (G.G.B.); (L.K.G.); (M.S.T.); (P.R.B.S.); (V.S.T.R.); (J.C.F.); (L.C.G.-S.)
| | - Victoria Stadler Tasca Ribeiro
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, Brazil; (L.U.); (P.A.B.M.J.); (G.G.B.); (L.K.G.); (M.S.T.); (P.R.B.S.); (V.S.T.R.); (J.C.F.); (L.C.G.-S.)
| | - Rodrigo Silvestre
- Instituto de Radiologia (InRad), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-070, Brazil;
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, 1632 Silva Jardim Avenue, Curitiba 80240-020, Brazil;
| | - Marcelo Henrique Napimoga
- Institute and Research Center São Leopoldo Mandic, São Leopoldo Mandic, Faculty–SLMANDIC, Campinas, São Paulo 13045-775, Brazil;
| | - Júlio Cesar Francisco
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, Brazil; (L.U.); (P.A.B.M.J.); (G.G.B.); (L.K.G.); (M.S.T.); (P.R.B.S.); (V.S.T.R.); (J.C.F.); (L.C.G.-S.)
| | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, Brazil; (L.U.); (P.A.B.M.J.); (G.G.B.); (L.K.G.); (M.S.T.); (P.R.B.S.); (V.S.T.R.); (J.C.F.); (L.C.G.-S.)
| |
Collapse
|
48
|
Zhu Y, Luo M, Bai X, Lou Y, Nie P, Jiang S, Li J, Li B, Luo P. Administration of mesenchymal stem cells in diabetic kidney disease: mechanisms, signaling pathways, and preclinical evidence. Mol Cell Biochem 2022; 477:2073-2092. [PMID: 35469057 DOI: 10.1007/s11010-022-04421-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes. Currently, the prevalence and mortality of DKD are increasing annually. However, with no effective drugs to prevent its occurrence and development, the primary therapeutic option is to control blood sugar and blood pressure. Therefore, new and effective drugs/methods are imperative to prevent the development of DKD in patients with diabetes. Mesenchymal stem cells (MSCs) with multi-differentiation potential and paracrine function have received extensive attention as a new treatment option for DKD. However, their role and mechanism in the treatment of DKD remain unclear, and clinical applications are still being explored. Given this, we here provide an unbiased review of recent advances in MSCs for the treatment of DKD in the last decade from the perspectives of the pathogenesis of DKD, biological characteristics of MSCs, and different molecular and signaling pathways. Furthermore, we summarize information on combination therapy strategies using MSCs. Finally, we discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
49
|
Chen X, Luo Q. Potential clinical applications of exosomes in the diagnosis, treatment, and prognosis of cardiovascular diseases: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:372. [PMID: 35433929 PMCID: PMC9011294 DOI: 10.21037/atm-22-619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Background and Objective Cardiovascular diseases (CVDs) have been one of the most common threats to human health in recent decades. At present, despite many diagnostic, prognostic and therapeutic methods being applied in the clinic, the prevalence of CVDs continues to rise. Therefore, new discovery is needed and exosomes have received extensive attention. Exosomes are extracellular vesicles that enable communication between cells. They are widely distributed in biofluids, suggesting that they may be useful in CVD diagnosis and prognosis. Furthermore, exosomes are ideal drug transporters with relatively high transport efficiency and the capability to target different kinds of tissues. However, the present research concentrates, for the most part, on mechanistic studies with less attention to clinical applications. Methods More than 150 relevant scientific articles from databases like PubMed, Web of Science were screened and analysed for this narrative review. Data of clinical trials are collected from clinicaltrials.gov. Key Content and Findings In this review, we concentrate on different exosomes and CVDs, and we summarize the physiological and pathological roles of CVD-related exosomes. We focused on the role exosomes may have as biomarkers of CVDs, therapeutic opportunities, and possible hurdles to the clinical application of exosomes, aiming to provide a useful reference for its translational use in the CVD field. Conclusions Specific changes in exosome cargos (mainly miRNAs and proteins) are in accordance with the occurrence and development of CVDs including acute myocardial infarction (AMI), arrhythmia, coronary artery disease (CAD), heart failure (HF) and cardiomyopathy, therefore meaningful for diagnosis and prognosis of CVDs. For exosome related therapeutic methods, potential ways consist of direct administration of exosomes, targeting on exosome synthesis, processing and release, and working as adjuvants. All in all, exosomes are expected to serve as meaningful tools in the diagnosis, treatment and prognosis of CVDs.
Collapse
Affiliation(s)
- Xuyang Chen
- Joint Program of Nanchang University and Queen Mary University of London, Queen Mary School, Medical Department, Nanchang University, Nanchang, China.,Department of Histology and Embryology, Nanchang University School of Basic Medical Sciences, Nanchang, China
| | - Qi Luo
- Department of Histology and Embryology, Nanchang University School of Basic Medical Sciences, Nanchang, China
| |
Collapse
|
50
|
Li Z, Huo X, Chen K, Yang F, Tan W, Zhang Q, Yu H, Li C, Zhou D, Chen H, Zhao B, Wang Y, Chen Z, Du X. Profilin 2 and Endothelial Exosomal Profilin 2 Promote Angiogenesis and Myocardial Infarction Repair in Mice. Front Cardiovasc Med 2022; 9:781753. [PMID: 35479278 PMCID: PMC9036097 DOI: 10.3389/fcvm.2022.781753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, wherein myocardial infarction (MI) is the most dangerous one. Promoting angiogenesis is a prospective strategy to alleviate MI. Our previous study indicated that profilin 2 (PFN2) may be a novel target associated with angiogenesis. Further results showed higher levels of serum PFN2 and exosomal PFN2 in patients, mice, and pigs with MI. In this study, we explored whether PFN2 and endothelial cell (EC)-derived exosomal PFN2 could increase angiogenesis and be beneficial for the treatment of MI. Serum PFN2, exosomes, and exosomal PFN2 were elevated in rats with MI. PFN2 and exosomes from PFN2-overexpressing ECs (OE-exo) enhanced EC proliferation, migration, and tube formation ability. OE-exo also significantly increased the vessel number in zebrafish and protected the ECs from inflammatory injury. Moreover, OE-exo-treated mice with MI showed improvement in motor ability, ejection fraction, left ventricular shortening fraction, and left ventricular mass, as well as increased vessel numbers in the MI location, and decreased infarction volume. Mechanistically, PI3K might be the upstream regulator of PFN2, while ERK might be the downstream regulator in the PI3K-PFN2-ERK axis. Taken together, our findings demonstrate that PFN2 and exosomal PFN2 promote EC proliferation, migration, and tube formation through the PI3K-PFN2-ERK axis. Exosomal PFN2 may be a valuable target in the repair of MI injury via angiogenesis.
Collapse
Affiliation(s)
- Zhenkun Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Dalian, China
| | - Fenghua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Weijiang Tan
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Qi Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haixu Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Deshan Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Hao Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| |
Collapse
|