1
|
García-Barberán V, Gómez Del Pulgar ME, Guamán HM, Benito-Martin A. The times they are AI-changing: AI-powered advances in the application of extracellular vesicles to liquid biopsy in breast cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:128-140. [PMID: 40206803 PMCID: PMC11977355 DOI: 10.20517/evcna.2024.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/03/2025] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
Artificial intelligence (AI) is revolutionizing scientific research by facilitating a paradigm shift in data analysis and discovery. This transformation is characterized by a fundamental change in scientific methods and concepts due to AI's ability to process vast datasets with unprecedented speed and accuracy. In breast cancer research, AI aids in early detection, prognosis, and personalized treatment strategies. Liquid biopsy, a noninvasive tool for detecting circulating tumor traits, could ideally benefit from AI's analytical capabilities, enhancing the detection of minimal residual disease and improving treatment monitoring. Extracellular vesicles (EVs), which are key elements in cell communication and cancer progression, could be analyzed with AI to identify disease-specific biomarkers. AI combined with EV analysis promises an enhancement in diagnosis precision, aiding in early detection and treatment monitoring. Studies show that AI can differentiate cancer types and predict drug efficacy, exemplifying its potential in personalized medicine. Overall, the integration of AI in biomedical research and clinical practice promises significant changes and advancements in diagnostics, personalized medicine-based approaches, and our understanding of complex diseases like cancer.
Collapse
Affiliation(s)
- Vanesa García-Barberán
- Molecular Oncology Laboratory, Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - María Elena Gómez Del Pulgar
- Molecular Oncology Laboratory, Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Heidy M. Guamán
- Molecular Oncology Laboratory, Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Alberto Benito-Martin
- Molecular Oncology Laboratory, Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
- Facultad de Medicina, Universidad Alfonso X el Sabio, Madrid 28691, Spain
| |
Collapse
|
2
|
Tong Y, Sun J, Jiang X, Jia X, Xiao H, Wang H, Yang G. A study on the production of extracellular vesicles derived from novel immortalized human placental mesenchymal stromal cells. Sci Rep 2025; 15:3568. [PMID: 39875472 PMCID: PMC11775310 DOI: 10.1038/s41598-025-87371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Extracellular vesicles (EVs) are not only involved in cell-to-cell communications but have other functions as "garbage bags", as bringing nutrients to cells, and as inducing mineral during bone formation and ectopic calcification. These minuscule entities significantly contribute to the regulation of bodily functions. However, the clinical application of EVs faces challenges due to limited production yield and targeting efficiency. In our study, we propose a method for efficiently harvesting EVs utilizing simian virus 40 large T antigen (SV40LT) immortalized human placental chorionic mesenchymal stromal cells (CMSCs). We investigated immortalized placental chorionic mesenchymal stromal cells (imCMSCs), a stromal cell line that surpasses the growth limitations of primary passage cells while retaining phenotypic characteristics and differentiation potential. This development offers the prospect of a consistent, uniform source of EVs, which is essential for regenerative medicine. Our findings indicate that the immortalization process preserves the particle size, quantity and surface marker profiles of EVs, providing a possible approach to produce high-yield EVs suitable for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yingying Tong
- International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, No. 999 Hucheng Ring Road, Shanghai, 201306, China
- National Aquatic Animal Pathogen Collection Center, Shanghai Ocean University, Shanghai, 201306, China
- Aquatic Animal Genetics and Breeding Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Jie Sun
- International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, No. 999 Hucheng Ring Road, Shanghai, 201306, China
- National Aquatic Animal Pathogen Collection Center, Shanghai Ocean University, Shanghai, 201306, China
- Aquatic Animal Genetics and Breeding Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Xin Jiang
- International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, No. 999 Hucheng Ring Road, Shanghai, 201306, China
- National Aquatic Animal Pathogen Collection Center, Shanghai Ocean University, Shanghai, 201306, China
- Aquatic Animal Genetics and Breeding Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Xu Jia
- International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, No. 999 Hucheng Ring Road, Shanghai, 201306, China
- National Aquatic Animal Pathogen Collection Center, Shanghai Ocean University, Shanghai, 201306, China
- Aquatic Animal Genetics and Breeding Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Huimin Xiao
- International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, No. 999 Hucheng Ring Road, Shanghai, 201306, China
- National Aquatic Animal Pathogen Collection Center, Shanghai Ocean University, Shanghai, 201306, China
- Aquatic Animal Genetics and Breeding Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Hua Wang
- Shanghai Telebio Biomedical Technology Co., LTD, Shanghai, 201321, China
| | - Guanghua Yang
- International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, No. 999 Hucheng Ring Road, Shanghai, 201306, China.
- National Aquatic Animal Pathogen Collection Center, Shanghai Ocean University, Shanghai, 201306, China.
- Aquatic Animal Genetics and Breeding Center, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Telebio Biomedical Technology Co., LTD, Shanghai, 201321, China.
| |
Collapse
|
3
|
Kusnandar MR, Wibowo I, Barlian A. Characterizing Nanoparticle Isolated by Yam Bean ( Pachyrhizus erosus) as a Potential Agent for Nanocosmetics: An in vitro and in vivo Approaches. Pharm Nanotechnol 2025; 13:341-357. [PMID: 38317471 DOI: 10.2174/0122117385279809231221050226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND This study investigated the potential of Plant-Derived Exosome-Like Nanoparticles (PDENs) as cosmeceutical nanocarriers for treating skin problems, such as scar removal, face rejuvenation, anti-aging, and anti-pigmentation. OBJECTIVES Researchers isolated PDENs from Yam Bean ((Pachyrhizus erosus) using PEG-based precipitation, gradual filtration, and various centrifugations at low temperatures. Followed by in vitro and in vivo studies using HDF cells and Zebrafish. METHODS The morphology of the YB-PDENs was determined using TEM analysis, they had a spherical shape with diameters of 236,83 ± 9,27 nm according to PSA. The study found that YB-PDENs were stable in aquabidest at 4°C for one month of storage and had ~-26,5 mV of Zeta Potential. The concentration of YB-PDENs was measured using the BCA Assay, and internalization of YB-PDENs to HDF cells was observed using a Confocal Laser Scanning Microscope labelled with PKH67. RESULTS As for cytotoxicity, after 24 and 72 hours of incubation with YB-PDENs, the viability of HDF cells remained more than 80%. The study also examined cell migration using the Scratch Assay and found that at 2,5 μg/mL, YB-PDENs had better migration results than other concentrations. Immunocytochemistry showed that collagen expression was higher after 14 days of incubation with YBPDENs, and melanocytes in zebrafish decreased at each concentration compared with controls. CONCLUSION In conclusion, this study is the first to extract and describe PDEN s from Yam Bean ((Pachyrhizus erosus), with YB-PDENs having a promising anti-melanogenic effect in skin treatment. This study highlights the potential of YB-PDENs as a promising alternative to depigmentation and skin whitening treatments.
Collapse
Affiliation(s)
| | - Indra Wibowo
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| | - Anggraini Barlian
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
- Research Center of Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| |
Collapse
|
4
|
Boulestreau J, Molina L, Ouedraogo A, Laramy L, Grich I, Van TNN, Molina F, Kahli M. Salivary extracellular vesicles isolation methods impact the robustness of downstream biomarkers detection. Sci Rep 2024; 14:31233. [PMID: 39732788 DOI: 10.1038/s41598-024-82488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Extracellular vesicles (EVs), crucial mediators in cell-to-cell communication, are implicated in both homeostatic and pathological processes. Their detectability in easily accessible peripheral fluids like saliva positions them as promising candidates for non-invasive biomarker discovery. However, the lack of standardized methods for salivary EVs isolation greatly limits our ability to study them. Therefore, we rigorously compared salivary EVs isolated using two scalable techniques-co-precipitation and immuno-affinity-against the long-established but labor-intensive ultracentrifugation method. Employing Cryo-Electron Microscopy (Cryo-EM), Nanoparticle Tracking Analysis, Western blots (WB), and proteomics, we identified significant method-dependent variances in the size, concentration, and protein content of EVs. Importantly, our study uniquely demonstrates the ability of EV isolation to detect specific biomarkers that remain undetected in whole saliva by WB. RT-qPCR analysis targeting six miRNAs confirmed a consistent enrichment of these miRNAs in EV-derived cargo across all three isolation methods. We also found that pre-filtering saliva samples with 0.22 or 0.45 µm pores adversely affects subsequent analyses. Our findings highlight the untapped potential of salivary EVs in diagnostics and advocate for the co-precipitation method as an efficient, cost-effective, and clinically relevant approach for small-volume saliva samples. This work not only sheds light on a neglected source of EVs but also paves the way for their application in routine clinical diagnostics.
Collapse
Affiliation(s)
- Jérémy Boulestreau
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
- Department of Anatomy, Biochemistry, and Physiology John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St. BSB 211, Honolulu, HI, 96813, USA
| | - Laurence Molina
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Alimata Ouedraogo
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Louën Laramy
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Ines Grich
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Thi Nhu Ngoc Van
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
- SkillCell, Montpellier, France
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.
| | - Malik Kahli
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.
| |
Collapse
|
5
|
Huang Q, Wang J, Ning H, Liu W, Han X. Exosome isolation based on polyethylene glycol (PEG): a review. Mol Cell Biochem 2024:10.1007/s11010-024-05191-x. [PMID: 39702782 DOI: 10.1007/s11010-024-05191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Exosome acts as an outstanding biomarker for ongoing studies, diagnosis and prognosis of multiples diseases. Therefore, the call for economically and efficiently isolating a large number of exosomes is an active area of investigation. However, to date, the challenges including complex isolated procedure, uneconomical equipment, low protein content and distinct loss in the particle number of exosomes etc. still encounter in exosome isolation. Polyethylene glycol (PEG)-induced exosome isolation increasingly attracts wide attention of scientists. PEG precipitation reveals higher performance in the yield of exosomes among multiple common isolation techniques. PEG-based precipitation is a temporarily low-purity, but inexpensive, time-save, labor-less, convenient and high-yield technique to gain exosomes with high biological activities. Hence, the PEG-based exosome isolation approach wins the endorsement of experimental workers. Herein, we summary the existing knowledge on procedures of PEG-based exosomes separation from different biospecimens, the binding process of PEG to exosomes, some notices, demerits, merits of PEG-based exosome isolation, and at last the advantages by combining PEG-precipitation to other techniques for exosome isolation, with a view to eliciting profound insights for investigators who recruit PEG for exosome separation, and advancing references for the standardization of PEG-based exosome isolation in future.
Collapse
Affiliation(s)
- Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
Zhang Y, Lu L, Li Y, Liu H, Zhou W, Zhang L. Response Surface Methodology Optimization of Exosome-like Nanovesicles Extraction from Lycium ruthenicum Murray and Their Inhibitory Effects on Aβ-Induced Apoptosis and Oxidative Stress in HT22 Cells. Foods 2024; 13:3328. [PMID: 39456390 PMCID: PMC11507227 DOI: 10.3390/foods13203328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Exosome-like nanovesicles (ELNs) derived from plants are nanoscale vesicles isolated from edible plant sources. Lycium ruthenicum Murray (LRM) has garnered growing attention for its dietary value and therapeutic benefits. In this study, a PEG6000-based method was developed to isolate LRM-ELNs. Response surface methodology (RSM) was used to optimize the extraction conditions to obtain the optimal extraction efficiency. When PEG6000 concentration was at 11.93%, relative centrifugal force was 9720 g, and incubation time was 21.12 h, the maximum LRM-ELN yield was 4.24 g/kg. This optimization process yielded LRM-ELNs with a particle size of 114.1 nm and a surface charge of -6.36 mV. Additionally, LRM-ELNs mitigated Aβ-induced apoptosis in HT22 cells by enhancing mitochondrial membrane potential (MMP), lowering the Bax/Bcl-2 ratio, and reducing Cleaved Caspase-3 expression. Furthermore, LRM-ELNs alleviated Aβ-induced oxidative stress in HT22 cells by promoting the nuclear translocation of Nrf2 and upregulating the expression of HO-1 and NQO1. These findings indicate that LRM-ELNs exert protective effects against Aβ-induced damage in HT22 cells and may be considered as a potential dietary supplement for Alzheimer's disease prevention.
Collapse
Affiliation(s)
- Yadan Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.)
| | - Ling Lu
- Hunan No. 1 Health Agriculture Development Co., Ltd., Changsha 411499, China
| | - Yuting Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.)
| | - Huifan Liu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhua Zhou
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.)
| | - Lin Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.)
| |
Collapse
|
7
|
Zhu Y, Zhao J, Ding H, Qiu M, Xue L, Ge D, Wen G, Ren H, Li P, Wang J. Applications of plant-derived extracellular vesicles in medicine. MedComm (Beijing) 2024; 5:e741. [PMID: 39309692 PMCID: PMC11413507 DOI: 10.1002/mco2.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) are promising therapeutic agents owing to their natural abundance, accessibility, and unique biological properties. This review provides a comprehensive exploration of the therapeutic potential of plant-derived EVs and emphasizes their anti-inflammatory, antimicrobial, and tumor-inhibitory effects. Here, we discussed the advancements in isolation and purification techniques, such as ultracentrifugation and size-exclusion chromatography, which are critical for maintaining the functional integrity of these nanovesicles. Next, we investigated the diverse administration routes of EVs and carefully weighed their respective advantages and challenges related to bioavailability and patient compliance. Moreover, we elucidated the multifaceted mechanisms of action of plant-derived EVs, including their roles in anti-inflammation, antioxidation, antitumor activity, and modulation of gut microbiota. We also discussed the impact of EVs on specific diseases such as cancer and inflammatory bowel disease, highlighting the importance of addressing current challenges related to production scalability, regulatory compliance, and immunogenicity. Finally, we proposed future research directions for optimizing EV extraction and developing targeted delivery systems. Through these efforts, we envision the seamless integration of plant-derived EVs into mainstream medicine, offering safe and potent therapeutic alternatives across various medical disciplines.
Collapse
Affiliation(s)
- Yawen Zhu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Junqi Zhao
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haoran Ding
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Dongxue Ge
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Gaolin Wen
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Peng Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
8
|
Pedersen C, Chen VT, Herbst P, Zhang R, Elfert A, Krishan A, Azar DT, Chang JH, Hu WY, Kremsmayer TP, Jalilian E, Djalilian AR, Guaiquil VH, Rosenblatt MI. Target specification and therapeutic potential of extracellular vesicles for regulating corneal angiogenesis, lymphangiogenesis, and nerve repair. Ocul Surf 2024; 34:459-476. [PMID: 39426677 PMCID: PMC11921040 DOI: 10.1016/j.jtos.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Extracellular vesicles, including exosomes, are small extracellular vesicles that range in size from 30 nm to 10 μm in diameter and have specific membrane markers. They are naturally secreted and are present in various bodily fluids, including blood, urine, and saliva, and through the variety of their internal cargo, they contribute to both normal physiological and pathological processes. These processes include immune modulation, neuronal synapse formation, cell differentiation, cancer metastasis, angiogenesis, lymphangiogenesis, progression of infectious disease, and neurodegenerative disorders like Alzheimer's and Parkinson's disease. In recent years, interest has grown in the use of exosomes as a potential drug delivery system for various diseases and injuries. Importantly, exosomes originating from a patient's own cells exhibit minimal immunogenicity and possess remarkable stability along with inherent and adjustable targeting capabilities. This review explores the roles of exosomes in angiogenesis, lymphangiogenesis, and nerve repair with a specific emphasis on these processes within the cornea. Furthermore, it examines exosomes derived from specific cell types, discusses the advantages of exosome-based therapies in modulating these processes, and presents some of the most established methods for exosome isolation. Exosome-based treatments are emerging as potential minimally invasive and non-immunogenic therapies that modulate corneal angiogenesis and lymphangiogenesis, as well as enhance and accelerate endogenous corneal nerve repair.
Collapse
Affiliation(s)
- Cameron Pedersen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victoria T Chen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Runze Zhang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amr Elfert
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tobias P Kremsmayer
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Tang C, Hu W. Biomarkers and diagnostic significance of non-coding RNAs in extracellular vesicles of pathologic pregnancy. J Assist Reprod Genet 2024; 41:2569-2584. [PMID: 39316328 PMCID: PMC11534934 DOI: 10.1007/s10815-024-03268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Intercellular communication is an important mechanism for the development and maintenance of normal biological processes in all organs, including the female reproductive system. Extracellular vesicles, as important carriers of intercellular communication, contain a variety of biologically active molecules, such as mRNAs, miRNAs, lncRNAs, and circRNAs, which are involved in cell-to-cell exchanges as well as in many physiological and pathological processes in the body. Compared with biomarkers found in tissues or body fluids, extracellular vesicles show better stability due to the presence of their envelope membrane which prevents the degradation of the RNA message in their vesicles. Therefore, the genomic and proteomic information contained in extracellular vesicles can serve as important markers and potential therapeutic targets for female reproductive system-related diseases or placental function. Moreover, changes in the expression of non-coding RNAs (mainly miRNAs, lncRNAs, and circRNAs) in maternal extracellular vesicles can accurately and promptly reflect the progress of female reproductive system diseases. The aim of this review is to collect information on different types of non-coding RNAs with key molecular carriers in female pathologic pregnancies (preeclampsia and recurrent spontaneous abortion), so as to explore the relevant molecular mechanisms in female pathologic pregnancies and provide a theoretical basis for clinical research on the pathogenesis and therapeutic approaches of reproductive system diseases. The current state of the art of exosome isolation and extraction is also summarized.
Collapse
Affiliation(s)
- Cen Tang
- Obstetrics Department, Kunming Medical University Second Affiliated Hospital, Kunming, 650101, Yunnan, China
| | - Wanqin Hu
- Obstetrics Department, Kunming Medical University Second Affiliated Hospital, Kunming, 650101, Yunnan, China.
| |
Collapse
|
10
|
Wei C, Zhang M, Cheng J, Tian J, Yang G, Jin Y. Plant-derived exosome-like nanoparticles - from Laboratory to factory, a landscape of application, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39127967 DOI: 10.1080/10408398.2024.2388888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Recent decades have witnessed substantial interest in extracellular vesicles (EVs) due to their crucial role in intercellular communication across various biological processes. Among these, plant-derived exosome-like Nanoparticles (ELNs) have rapidly gained recognition as highly promising candidates. ELNs, characterized by diverse sources, cost-effective production, and straightforward isolation, present a viable option for preventing and treating numerous diseases. Furthermore, ELNs hold significant potential as carriers for natural or engineered drugs, enhancing their attractiveness and drawing considerable attention in science and medicine. However, translating ELNs into clinical applications poses several challenges. This study explores these challenges and offers critical insights into potential research directions. Additionally, it provides a forward-looking analysis of the industrial prospects for ELNs. With their broad applications and remarkable potential, ELNs stand at the forefront of biomedical innovation, poised to revolutionize disease management and drug delivery paradigms in the coming years.
Collapse
Affiliation(s)
- Chaozhi Wei
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Mengyu Zhang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jintao Cheng
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jinzhong Tian
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Guiling Yang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
11
|
Rodrigo-Muñoz JM, Gil-Martínez M, Naharro-González S, Del Pozo V. Eosinophil-derived extracellular vesicles: isolation and classification techniques and implications for disease pathophysiology. J Leukoc Biol 2024; 116:260-270. [PMID: 38836652 DOI: 10.1093/jleuko/qiae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Eosinophils are leukocytes characterized by their ability to release granule content that is highly rich in enzymes and proteins. Besides the antihelminthic, bactericidal, and antiviral properties of eosinophils and their secretory granules, these also play a prominent role in the pathophysiology of diseases such as asthma, eosinophilic esophagitis, and other hypereosinophilic conditions by causing tissue damage and airway hyperresponsiveness. Although this cell was first recognized mainly for its capacity to release granule content, nowadays other capabilities such as cytokine secretion have been linked to its physiology, and research has found that eosinophils are not only involved in innate immunity, but also as orchestrators of immune responses. Nearly 10 yr ago, eosinophil-derived extracellular vesicles (EVs) were first described; since then, the EV field has grown exponentially, revealing their vital roles in intracellular communication. In this review, we synthesize current knowledge on eosinophil-derived EVs, beginning with a description of what they are and what makes them important regulators of disease, followed by an account of the methodologies used to isolate and characterize EVs. We also summarize current understanding of eosinophil-derived vesicles functionality, especially in asthma, the disease in which eosinophil-derived EVs have been most widely studied, describing how they modulate the role of eosinophils themselves (through autocrine signaling) and the way they affect airway structural cells and airway remodeling. Deeper understanding of this cell type could lead to novel research in eosinophil biology, its role in other diseases, and possible use of eosinophil-derived EVs as therapeutic targets.
Collapse
Affiliation(s)
- José Manuel Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Sara Naharro-González
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
| | - Victoria Del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
12
|
Kaur M, Fusco S, Van den Broek B, Aseervatham J, Rostami A, Iacovitti L, Grassi C, Lukomska B, Srivastava AK. Most recent advances and applications of extracellular vesicles in tackling neurological challenges. Med Res Rev 2024; 44:1923-1966. [PMID: 38500405 DOI: 10.1002/med.22035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Over the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication. As carriers of molecular cargo, EVs demonstrate the ability to traverse the blood-brain barrier, enabling bidirectional communication. As a result, they have garnered attention as potential biomarkers and therapeutic agents, whether in their natural form or after being engineered for use in the CNS. This review article aims to provide a comprehensive introduction to EVs, encompassing various aspects such as their diverse isolation methods, characterization, handling, storage, and different routes for EV administration. Additionally, it underscores the recent advances in their potential applications in neurodegenerative disorder therapeutics. By exploring their unique capabilities, this study sheds light on the promising future of EVs in clinical research. It considers the inherent challenges and limitations of these emerging applications while incorporating the most recent updates in the field.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Bram Van den Broek
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jaya Aseervatham
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Jefferson Stem Cell and Regenerative Neuroscience Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Amit K Srivastava
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Chen K, He Y, Wang W, Yuan X, Carbone DP, Yang F. Development of new techniques and clinical applications of liquid biopsy in lung cancer management. Sci Bull (Beijing) 2024; 69:1556-1568. [PMID: 38641511 DOI: 10.1016/j.scib.2024.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 04/21/2024]
Abstract
Lung cancer is an exceedingly malignant tumor reported as having the highest morbidity and mortality of any cancer worldwide, thus posing a great threat to global health. Despite the growing demand for precision medicine, current methods for early clinical detection, treatment and prognosis monitoring in lung cancer are hampered by certain bottlenecks. Studies have found that during the formation and development of a tumor, molecular substances carrying tumor-related genetic information can be released into body fluids. Liquid biopsy (LB), a method for detecting these tumor-related markers in body fluids, maybe a way to make progress in these bottlenecks. In recent years, LB technology has undergone rapid advancements. Therefore, this review will provide information on technical updates to LB and its potential clinical applications, evaluate its effectiveness for specific applications, discuss the existing limitations of LB, and present a look forward to possible future clinical applications. Specifically, this paper will introduce technical updates from the prospectives of engineering breakthroughs in the detection of membrane-based LB biomarkers and other improvements in sequencing technology. Additionally, it will summarize the latest applications of liquid biopsy for the early detection, diagnosis, treatment, and prognosis of lung cancer. We will present the interconnectedness of clinical and laboratory issues and the interplay of technology and application in LB today.
Collapse
Affiliation(s)
- Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Yue He
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Wenxiang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Xiaoqiu Yuan
- Peking University Health Science Center, Beijing 100191, China
| | - David P Carbone
- Thoracic Oncology Center, Ohio State University, Columbus 43026, USA.
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China.
| |
Collapse
|
14
|
Liu K, Lázaro-Ibáñez E, Lerche M, Lindén D, Salvati A, Sabirsh A. Reply to: Technical challenges of studying the impact of plasma components on the efficacy of lipid nanoparticles for vaccine and therapeutic applications. Nat Commun 2024; 15:3853. [PMID: 38724506 PMCID: PMC11082221 DOI: 10.1038/s41467-024-47726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisa Lázaro-Ibáñez
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
15
|
György B, Pálóczi K, Balbisi M, Turiák L, Drahos L, Visnovitz T, Koltai E, Radák Z. Effect of the 35 nm and 70 nm Size Exclusion Chromatography (SEC) Column and Plasma Storage Time on Separated Extracellular Vesicles. Curr Issues Mol Biol 2024; 46:4337-4357. [PMID: 38785532 PMCID: PMC11120626 DOI: 10.3390/cimb46050264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The technical difficulty of separating extracellular vesicles (EVs) from plasma proteins in human blood presents a significant hurdle in EV research, particularly during nano ultra-high-performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) analysis, where detecting "vesicular" proteins among abundant plasma proteins is challenging. Standardisation is a pressing issue in EV research, prompting collaborative global efforts to address it. While the MISEV guidelines offer valuable recommendations, unanswered questions remain, particularly regarding sample storage. We compared size exclusion chromatography (SEC) columns with pore sizes of 35 nm and 70 nm to identify fractions with minimal contaminating proteins and the highest concentration of small EVs (sEVs). Following column selection, we explored potential differences in the quality and quantity of sEVs isolated from platelet-free plasma (PFP) after long-term storage at -80 °C (>2.5 years) compared to freshly drawn blood. Our methodologically rigorous study indicates that prolonged storage, under correct storage and processing conditions, does not compromise sEV quality. Both columns effectively isolated vesicles, with the 70 nm column exhibiting a higher abundance of "vesicular" proteins. We propose a relatively rapid and moderately efficient protocol for obtaining a comparatively pure sEV fraction from plasma, facilitating sEV processing in clinical trials.
Collapse
Affiliation(s)
- Bernadett György
- Research Centre for Molecular Exercise Science, Hungarian University of Sport Science, Alkotás u. 42-48, 1123 Budapest, Hungary; (B.G.); (E.K.)
| | - Krisztina Pálóczi
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (K.P.); (T.V.)
| | - Mirjam Balbisi
- Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (M.B.); (L.T.); (L.D.)
| | - Lilla Turiák
- Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (M.B.); (L.T.); (L.D.)
| | - László Drahos
- Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (M.B.); (L.T.); (L.D.)
| | - Tamás Visnovitz
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (K.P.); (T.V.)
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Erika Koltai
- Research Centre for Molecular Exercise Science, Hungarian University of Sport Science, Alkotás u. 42-48, 1123 Budapest, Hungary; (B.G.); (E.K.)
| | - Zsolt Radák
- Research Centre for Molecular Exercise Science, Hungarian University of Sport Science, Alkotás u. 42-48, 1123 Budapest, Hungary; (B.G.); (E.K.)
- Faculty of Sport Sciences, Waseda University, Tokorozawa 2-579-15, Japan
| |
Collapse
|
16
|
R AB, K SR, Chandran D, Hegde S, Upadhya R, Se PK, Shenoy S, Devi V, Upadhya D. Cell-specific extracellular vesicle-encapsulated exogenous GABA controls seizures in epilepsy. Stem Cell Res Ther 2024; 15:108. [PMID: 38637847 PMCID: PMC11027552 DOI: 10.1186/s13287-024-03721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Epilepsy affects ∼60 million people worldwide. Most antiseizure medications in the market act on voltage-gated sodium or calcium channels, indirectly modulating neurotransmitter GABA or glutamate levels or multiple targets. Earlier studies made significant efforts to directly deliver GABA into the brain with varied success. Herein, we have hypothesized to directly deliver exogenous GABA to the brain with epilepsy through extracellular vesicles (EVs) from human GABA-producing cells and their progenitors as EVs largely mimic their parent cell composition. METHODS Human neural stem cells (NSCs), medial ganglionic eminence (MGE) cells, and GABAergic interneurons (INs) were generated from induced pluripotent stem cells (iPSCs) and characterized. EVs were isolated from NSCs, MGE cells, and INs and characterized for size and distribution, morphological features, and molecular markers. Exogenous GABA was passively loaded to the isolated EVs as a zwitterion at physiological pH, and the encapsulated dose of GABA was quantified. Epilepsy was developed through status epilepticus induction in Fisher rats by administration of repeated low doses of kainic acid. The extent of the seizures was measured for 10 h/ day for 3-6 months by video recording and its evaluation for stage III, IV and V seizures as per Racine scale. EVs from INs, MGE cells, and NSCs encapsulated with exogenous GABA were sequentially tested in the 4th, 5th, and 6th months by intranasal administration in the rats with epilepsy for detailed seizure, behavioral and synapse analysis. In separate experiments, several controls including exogenic GABA alone and EVs from INs and MGE cells were evaluated for seizure-controlling ability. RESULTS Exogenic GABA could enter the brain through EVs. Treatment with EVs from INs and MGE cells encapsulated with GABA significantly reduced total seizures, stage V seizures, and total time spent in seizure activity. EVs from NSCs encapsulated with GABA demonstrated limited seizure control. Exogenic GABA alone and EVs from INs and MGE cells individually failed to control seizures. Further, exogenic GABA with EVs from MGE cells improved depressive behavior while partially improving memory functions. Co-localization studies confirmed exogenous GABA with presynaptic vesicles in the hippocampus, indicating the interaction of exogenous GABA in the brain with epilepsy. CONCLUSION For the first time, the study demonstrated that exogenous GABA could be delivered to the brain through brain cell-derived EVs, which could regulate seizures in temporal lobe epilepsy. It is identified that the cellular origin of EVs plays a vital role in seizure control with exogenous GABA.
Collapse
Affiliation(s)
- Abhijna Ballal R
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shivakumar Reddy K
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Divya Chandran
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sumukha Hegde
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Praveen Kumar Se
- Department of Pharmacology, Manipal Tata Medical College, Jamshedpur, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
17
|
Augello G, Cusimano A, Cervello M, Cusimano A. Extracellular Vesicle-Related Non-Coding RNAs in Hepatocellular Carcinoma: An Overview. Cancers (Basel) 2024; 16:1415. [PMID: 38611093 PMCID: PMC11011022 DOI: 10.3390/cancers16071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. It is a major public health problem worldwide, and it is often diagnosed at advanced stages, when no effective treatment options are available. Extracellular vesicles (EVs) are nanosized double-layer lipid vesicles containing various biomolecule cargoes, such as lipids, proteins, and nucleic acids. EVs are released from nearly all types of cells and have been shown to play an important role in cell-to-cell communication. In recent years, many studies have investigated the role of EVs in cancer, including HCC. Emerging studies have shown that EVs play primary roles in the development and progression of cancer, modulating tumor growth and metastasis formation. Moreover, it has been observed that non-coding RNAs (ncRNAs) carried by tumor cell-derived EVs promote tumorigenesis, regulating the tumor microenvironment (TME) and playing critical roles in the progression, angiogenesis, metastasis, immune escape, and drug resistance of HCC. EV-related ncRNAs can provide information regarding disease status, thus encompassing a role as biomarkers. In this review, we discuss the main roles of ncRNAs present in HCC-derived EVs, including micro(mi) RNAs, long non-coding (lnc) RNAs, and circular (circ) RNAs, and their potential clinical value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| | - Alessandra Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| |
Collapse
|
18
|
Shiju TM, Yuan A. Extracellular vesicle biomarkers in ocular fluids associated with ophthalmic diseases. Exp Eye Res 2024; 241:109831. [PMID: 38401855 DOI: 10.1016/j.exer.2024.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Extracellular vesicles (EVs) are released as highly stable lipid bilayer particles carrying proteins, lipids, glycans and miRNAs. The contents of EVs vary based on the cellular origin, biogenesis route and the functional state of the cell suggesting certain diseased conditions. A growing body of evidence show that EVs carry important molecules implicated in the development and progression of ophthalmic diseases. EVs associated with ophthalmic diseases are mainly carried by one of the three ocular biofluids which include tears, aqueous humor and vitreous humor. This review summarizes the list of EV derived biomarkers identified thus far in ocular fluids for ophthalmic disease diagnosis. Further, the methods used for sample collection, sample volume and the sample numbers used in these studies have been highlighted. Emphasis has been given to describe the EV isolation and the characterization methods used, EV size profiled and the EV concentrations analyzed by these studies, thus providing a roadmap for future EV biomarker studies in ocular fluids.
Collapse
Affiliation(s)
| | - Alex Yuan
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
19
|
Asfiya R, McCully G, Paramanantham A, Das S, Srivastava A. Combinatorial effect of calcium chloride and polyethylene glycol on efficient isolation of small extracellular vesicles. Analyst 2024; 149:1709-1718. [PMID: 38410062 DOI: 10.1039/d3an01955a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Small extracellular vesicles (sEVs) are cargo-carrying cellular nano-vesicles that have been explored for developing organic drug delivery modalities (DVM), an alternative to synthetic liposomes. However, scaled-up production of sEVs is a notable challenge in bringing sEV-based DVMs from the bench to the clinic. Ultracentrifugation is the most accepted isolation approach, but the cumbersome logistical issues and aftereffects of intense 'g' force hinder their applicability. In this study, we developed a new amenable isolation strategy for sEVs using a combinatorial treatment of calcium chloride and polyethylene glycol (PEG). An equivalent volume of cell culture medium from growing lung cancer A549 and H1299 cells was incubated overnight at 4 °C with different formulations (0.1 M CaCl2, 8% PEG, 12% PEG, 0.1 M CaCl2 + 8% PEG, and 0.1 M CaCl2 + 12% PEG) and centrifuged at 4000g to purify the precipitated sEVs as a pellet. Next, the extra CaCl2 was chelated out and the buffer was exchanged with PBS. The sEV number and protein content were assessed using the NTA (nanoparticle tracking analysis) and the BCA assay, respectively. Finally, transmission electron microscopy (TEM) was used to visualize the sEVs. The data from the present study demonstrated that the combination of 8% PEG and 0.1 M CaCl2 produced comparable numbers of sEVs with the ultracentrifugation technique. The sEV characteristics and structural integrity also remained intact, as evident from the TEM images and western blot assay. Thus, here we report an efficient technique for sEV isolation that can be easily scaled up.
Collapse
Affiliation(s)
- Rahmat Asfiya
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | - Grace McCully
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | - Anjugam Paramanantham
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | - Siddharth Das
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | - Akhil Srivastava
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
- Ellis Fischel Cancer Centre, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
20
|
Teflischi Gharavi A, Niknejad A, Irian S, Rahimi A, Salimi M. Polyethylene Glycol -Mediated Exosome Isolation: A Method for Exosomal RNA Analysis. IRANIAN BIOMEDICAL JOURNAL 2024; 28:132-9. [PMID: 38468372 PMCID: PMC11186611 DOI: 10.61186/ibj.4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
Background : Exosomal RNAs (ExoRNAs) offer valuable insights into their cellular origin. ExoRNA studies were faced with challenges in obtaining sufficient amounts of high-quality RNA. Herein, we aimed to compare three traditional exosome isolation methods to introduce an appropriate strategy to extract RNA from cancer-derived exosomes for further RNA analysis. Methods Exosomes were isolated through ultracentrifugation, precipitation kit, and size exclusion column chromatography, and then characterized by dynamic light scattering and transmission electron microscopy, followed by extracting total RNA. The quality and quantity of the extracted RNAs were assessed by a NanoDrop and 2.5% agarose gel electrophoresis. Results Extracted exosomes displayed a similar range of size and morphology. We found that polyethylene glycol-precipitation method resulted in a higher RNA yield with a 260/280 ratio of 1.9. The obtained exoRNA appeared as a smear in the agarose gel, indicative of small exoRNAs. Conclusion We provide researchers a suitable approach to isolate exosomes based on yield and purity of exoRNA.
Collapse
Affiliation(s)
- Abdulwahab Teflischi Gharavi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Azadeh Niknejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saeed Irian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Amirabbas Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Liu Y, Ren C, Zhan R, Cao Y, Ren Y, Zou L, Zhou C, Peng L. Exploring the Potential of Plant-Derived Exosome-like Nanovesicle as Functional Food Components for Human Health: A Review. Foods 2024; 13:712. [PMID: 38472825 DOI: 10.3390/foods13050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Plant-derived exosome-like nanovesicles (PELNs) are bilayer membrane-enclosed nanovesicles secreted by plant cells, serving as carriers of various substances such as proteins, RNA, and metabolites. The mounting evidence suggests that PELN plays a crucial role in transmembrane signaling, nutrient transportation, apoptosis, and regulation of gut microbiota composition. This makes it a promising "dark nutrient" for plants to modulate human physiology and pathogenesis. A comprehensive understanding of PELN formation, uptake, and functional mechanisms can offer novel insights into plant nutrition and functional properties, thereby facilitating the precise development of plant-based foods and drugs. This article provides a summary of PELN extraction and characterization, as well as absorption and delivery processes. Furthermore, it focuses on the latest discoveries and underlying physiological mechanisms of PELN's functions while exploring future research directions.
Collapse
Affiliation(s)
- Yizhi Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Chaoqin Ren
- College of Resources and Environment, Aba Teachers University, Wenchuan 623002, China
| | - Ruiling Zhan
- Agricultural Science Research Institute of Tibetan Autonomous Prefecture of Ganzi Prefecture, Kangding 626099, China
| | - Yanan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Chuang Zhou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
22
|
Thongseesuksai T, Boonmars T, Laummaunwai P. Comparison of Three Methods to Extract Plasmodium falciparum DNA from Whole Blood and Dried Blood Spots. Am J Trop Med Hyg 2024; 110:220-227. [PMID: 38227960 PMCID: PMC10859813 DOI: 10.4269/ajtmh.23-0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/01/2023] [Indexed: 01/18/2024] Open
Abstract
This study aimed to compare the effectiveness of three DNA extraction methods: the GF-1 Blood DNA Extraction Kit (GF-1 BD Kit), which employs a spin column along with lysing and washing buffers; the tris-ethylenediaminetetraacetic acid and proteinase K (TE-pK) method, which utilizes a combination of TE buffer and proteinase K for cell lysis; and DNAzol® Direct (DN 131), a single reagent combined with heating for the extraction process. Plasmodium falciparum DNA was extracted from both whole blood and dried blook spots (DBSs), with consideration of DNA concentration, purity, cost, time requirement, and limit of parasite detection (LOD) for each method. The target gene in this study was 18S rRNA, resulting in a 395-bp product using specific primers. In the comparative analysis, the DN 131 method yielded significantly higher DNA quantities from whole blood and DBSs than the GF-1 BD Kit and TE-pK methods. In addition, the DNA purity obtained from whole blood and DBSs using the GF-1 BD Kit significantly exceeded that obtained using the TE-pK and DN 131 methods. For LOD, the whole blood extracted using the DN 131, GF-1 BD Kit, and TE-pK methods revealed 0.012, 0.012, and 1.6 parasites/µL, respectively. In the case of DBSs, the LODs for the DN 131, GF-1 BD Kit, and TE-pK methods were 1.6, 8, and 200 parasites/µL, respectively. The results revealed that the TE-pK method was the most cost-effective, whereas the DN 131 method showed the simplest protocol. These findings offer alternative approaches for extracting Plasmodium DNA that are particularly well-suited for large-scale studies conducted in resource-limited settings.
Collapse
Affiliation(s)
| | - Thidarut Boonmars
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Neglected Zoonosis and Vector-Borne Disease Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Porntip Laummaunwai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Neglected Zoonosis and Vector-Borne Disease Research Group, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
23
|
Rufo J, Zhang P, Wang Z, Gu Y, Yang K, Rich J, Chen C, Zhong R, Jin K, He Y, Xia J, Li K, Wu J, Ouyang Y, Sadovsky Y, Lee LP, Huang TJ. High-yield and rapid isolation of extracellular vesicles by flocculation via orbital acoustic trapping: FLOAT. MICROSYSTEMS & NANOENGINEERING 2024; 10:23. [PMID: 38317693 PMCID: PMC10838941 DOI: 10.1038/s41378-023-00648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 02/07/2024]
Abstract
Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method called FLocculation via Orbital Acoustic Trapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics.
Collapse
Affiliation(s)
- Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ruoyu Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ke Jin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ye He
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ke Li
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jiarong Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Yingshi Ouyang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Luke P. Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| |
Collapse
|
24
|
Emmanuela N, Muhammad DR, Iriawati, Wijaya CH, Ratnadewi YMD, Takemori H, Ana ID, Yuniati R, Handayani W, Wungu TDK, Tabata Y, Barlian A. Isolation of plant-derived exosome-like nanoparticles (PDENs) from Solanum nigrum L. berries and Their Effect on interleukin-6 expression as a potential anti-inflammatory agent. PLoS One 2024; 19:e0296259. [PMID: 38175845 PMCID: PMC10766179 DOI: 10.1371/journal.pone.0296259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammation is a temporary response of the immune system that can be treated using common anti-inflammatory drugs. However, prolonged use of these drugs increases the risk of adverse side effects. Accordingly, there is an increasing need for alternative treatments for inflammation with fewer side effects. Exosomes are extracellular vesicles secreted by most eukaryotic cells and have been studied as a candidate for cell-free therapy for inflammatory diseases due to their immunomodulatory and anti-inflammatory properties. In recent years, the focus of exosome research has shifted from animal cell-derived exosomes to plant-derived exosome-like nanoparticles (PDENs). Plant-derived exosome-like nanoparticles (PDENs) are easier to obtain, have minimal safety concerns, and can be produced in higher quantities and lower cost than exosomes derived from animal cells. In this study, the isolation and analysis of the anti-inflammatory potential of PDENs from black nightshade berries (Solanum nigrum L.) were carried out. The results of isolation and characterization showed that PDENs had a spherical morphology, measuring around 107 nm with zeta potential of -0.6 mV, and had a protein concentration of 275.38 μg/mL. PDENs were also shown to be internalized by RAW264.7 macrophage cell line after 2 hours of incubation and had no cytotoxicity effect up to the concentration of 2.5 μg/mL. Furthermore, exposure to several doses of PDENs to the LPS-stimulated RAW264.7 cell significantly decreased the expression of pro-inflammatory cytokine gene IL-6, as well as the expression of IL-6 protein up to 97,28%. GC-MS analysis showed the presence of neral, a monoterpene compound with known anti-inflammatory properties, which may contribute to the anti-inflammatory activity of PDENs isolated from Solanum nigrum L. berries. Taken together, the present study was the first to isolate and characterize PDENs from Solanum nigrum L. berries. The results of this study also demonstrated the anti-inflammatory activity of PDEN by suppressing the production of IL-6 in LPS-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Natasya Emmanuela
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Iriawati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | | | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Ika Dewi Ana
- Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ratna Yuniati
- Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Windri Handayani
- Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | | | - Yasuhiko Tabata
- Department of Regeneration Science and Engineering Institute for Life and Medical Science (LiMe), Kyoto University, Kyoto, Japan
| | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
- Research Center of Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
25
|
Park S, Patel SA, Torr EE, Dureke AGN, McIntyre AM, Skop AR. A protocol for isolating and imaging large extracellular vesicles or midbody remnants from mammalian cell culture. STAR Protoc 2023; 4:102562. [PMID: 37690025 PMCID: PMC10500451 DOI: 10.1016/j.xpro.2023.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
Traditionally, midbody remnants (MBRs) are isolated from cell culture medium using ultracentrifugation, which is expensive and time consuming. Here, we present a protocol for isolating MBRs or large extracellular vesicles (EVs) from mammalian cell culture using either 1.5% polyethylene glycol 6000 (PEG6000) or PEG5000-coated gold nanoparticles. We describe steps for growing cells, collecting media, and precipitating MBRs and EVs from cell culture medium. We then detail characterization of MBRs through immunofluorescent antibody staining and immunofluorescent imaging.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Smit A Patel
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Elizabeth E Torr
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | | | - Alina M McIntyre
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Ahna R Skop
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
26
|
Zhang Y, Lin Y, He J, Song S, Luo Y, Lu Y, Chen S, Wang Q, Li Y, Ren F, Guo H. Milk-derived small extracellular vesicles: a new perspective on dairy nutrition. Crit Rev Food Sci Nutr 2023; 64:13225-13246. [PMID: 37819268 DOI: 10.1080/10408398.2023.2263573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Milk contains bioactive compounds that have multiple essential benefits. Milk-derived small extracellular vesicles (M-sEVs) have emerged as novel bioactive milk components with various beneficial biological functions and broad applications. The M-sEVs from different mammalian sources have similar composition and bioactive functions. The digestive stability and biocompatibility of the M-sEVs provide a good foundation for their physiological functions. Evidence suggests that M-sEVs promote intestinal, immune, bone, neural, liver, and heart health and show therapeutic effects against cancer, indicating their potential for use in functional foods. In addition, M-sEVs can be developed as natural delivery carriers owing to their superior structural characteristics. Further studies are needed to elucidate the relationship between the specific components and functions of M-sEVs, standardize their extraction processes, and refine relevant clinical trials to advance the future applications of M-sEVs. This review summarizes the structure and composition of M-sEVs isolated from different milk sources and discusses several common extraction methods. Since the introduction of M-sEVs for digestion and absorption, studies have been conducted on their biological functions. Furthermore, we outline the theoretical industrial production route, potential application scenarios of M-sEVs, and the future perspectives of M-sEV research.
Collapse
Affiliation(s)
- Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Sijia Song
- Food Laboratory of Zhongyuan, Luohe, PR China
| | - Yujia Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yao Lu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | | | - Qingyu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| |
Collapse
|
27
|
Li K, Zhu Z, Sun X, Zhao L, Liu Z, Xing J. Harnessing the therapeutic potential of mesenchymal stem cell-derived exosomes in cardiac arrest: Current advances and future perspectives. Biomed Pharmacother 2023; 165:115201. [PMID: 37480828 DOI: 10.1016/j.biopha.2023.115201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Cardiac arrest (CA), characterized by sudden onset and high mortality rates, is one of the leading causes of death globally, with a survival rate of approximately 6-24%. Studies suggest that the restoration of spontaneous circulation (ROSC) hardly improved the mortality rate and prognosis of patients diagnosed with CA, largely due to ischemia-reperfusion injury. MAIN BODY Mesenchymal stem cells (MSCs) exhibit self-renewal and strong potential for multilineage differentiation. Their effects are largely mediated by extracellular vesicles (EVs). Exosomes are the most extensively studied subgroup of EVs. EVs mainly mediate intercellular communication by transferring vesicular proteins, lipids, nucleic acids, and other substances to regulate multiple processes, such as cytokine production, cell proliferation, apoptosis, and metabolism. Thus, exosomes exhibit significant potential for therapeutic application in wound repair, tissue reconstruction, inflammatory reaction, and ischemic diseases. CONCLUSION Based on similar pathological mechanisms underlying post-cardiac arrest syndrome involving various tissues and organs in many diseases, the review summarizes the therapeutic effects of MSC-derived exosomes and explores the prospects for their application in the treatment of CA.
Collapse
Affiliation(s)
- Ke Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhu Zhu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Xiumei Sun
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Linhong Zhao
- Northeast Normal University, Changchun 130022, China.
| | - Zuolong Liu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
28
|
Zou Z, Li H, Xu G, Hu Y, Zhang W, Tian K. Current Knowledge and Future Perspectives of Exosomes as Nanocarriers in Diagnosis and Treatment of Diseases. Int J Nanomedicine 2023; 18:4751-4778. [PMID: 37635911 PMCID: PMC10454833 DOI: 10.2147/ijn.s417422] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
Exosomes, as natural nanocarriers, characterized with low immunogenicity, non-cytotoxicity and targeted delivery capability, which have advantages over synthetic nanocarriers. Recently, exosomes have shown great potential as diagnostic markers for diseases and are also considered as a promising cell-free therapy. Engineered exosomes have significantly enhanced the efficacy and precision of delivering therapeutic agents, and are currently being extensively employed in targeted therapeutic investigations for various ailments, including oncology, inflammatory disorders, and degenerative conditions. Particularly, engineered exosomes enable therapeutic agent loading, targeted modification, evasion of MPS phagocytosis, intelligent control, and bioimaging, and have been developed as multifunctional nano-delivery platforms in recent years. The utilization of bioactive scaffolds that are loaded with exosome delivery has been shown to substantially augment retention, extend exosome release, and enhance efficacy. This approach has advanced from conventional hydrogels to nanocomposite hydrogels, nanofiber hydrogels, and 3D printing, resulting in superior physical and biological properties that effectively address the limitations of natural scaffolds. Additionally, plant-derived exosomes, which can participate in gut flora remodeling via oral administration, are considered as an ideal delivery platform for the treatment of intestinal diseases. Consequently, there is great interest in exosomes and exosomes as nanocarriers for therapeutic and diagnostic applications. This comprehensive review provides an overview of the biogenesis, composition, and isolation methods of exosomes. Additionally, it examines the pathological and diagnostic mechanisms of exosomes in various diseases, including tumors, degenerative disorders, and inflammatory conditions. Furthermore, this review highlights the significance of gut microbial-derived exosomes. Strategies and specific applications of engineered exosomes and bioactive scaffold-loaded exosome delivery are further summarized, especially some new techniques such as large-scale loading technique, macromolecular loading technique, development of multifunctional nano-delivery platforms and nano-scaffold-loaded exosome delivery. The potential benefits of using plant-derived exosomes for the treatment of gut-related diseases are also discussed. Additionally, the challenges, opportunities, and prospects of exosome-based nanocarriers for disease diagnosis and treatment are summarized from both preclinical and clinical viewpoints.
Collapse
Affiliation(s)
- Zaijun Zou
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Han Li
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Gang Xu
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Yunxiang Hu
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Weiguo Zhang
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Kang Tian
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| |
Collapse
|
29
|
Du S, Guan Y, Xie A, Yan Z, Gao S, Li W, Rao L, Chen X, Chen T. Extracellular vesicles: a rising star for therapeutics and drug delivery. J Nanobiotechnology 2023; 21:231. [PMID: 37475025 PMCID: PMC10360328 DOI: 10.1186/s12951-023-01973-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, natural, cell-derived vesicles that contain the same nucleic acids, proteins, and lipids as their source cells. Thus, they can serve as natural carriers for therapeutic agents and drugs, and have many advantages over conventional nanocarriers, including their low immunogenicity, good biocompatibility, natural blood-brain barrier penetration, and capacity for gene delivery. This review first introduces the classification of EVs and then discusses several currently popular methods for isolating and purifying EVs, EVs-mediated drug delivery, and the functionalization of EVs as carriers. Thereby, it provides new avenues for the development of EVs-based therapeutic strategies in different fields of medicine. Finally, it highlights some challenges and future perspectives with regard to the clinical application of EVs.
Collapse
Affiliation(s)
- Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Yucheng Guan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Aihua Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Zhao Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Sijia Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 6007, N22, Taipa, 999078, Macau SAR, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 6007, N22, Taipa, 999078, Macau SAR, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China.
| |
Collapse
|
30
|
Shami-shah A, Travis BG, Walt DR. Advances in extracellular vesicle isolation methods: a path towards cell-type specific EV isolation. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:447-460. [PMID: 39698024 PMCID: PMC11648483 DOI: 10.20517/evcna.2023.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles are small, heterogenous, phospholipid-rich vesicles that are secreted by all cells into the extracellular space. They play a key role in intercellular communication because they can transport a variety of biomolecules such as proteins, lipids, and nucleic acids between cells. As categorized by the International Society of Extracellular Vesicles (ISEV), the term EV encompasses different sub-types, including exosomes, microvesicles, and apoptotic bodies, which differ in their size, origin, and cargo. EVs can be isolated from biological fluids such as blood, urine, and cerebrospinal fluid, and their biomolecular content can be analyzed to monitor the progression of certain diseases. Therefore, EVs can be used as a new source of liquid biomarkers for advancing novel diagnostic and therapeutic tools. Isolating and analyzing EVs can be challenging due to their nanoscopic size and low abundance. Several techniques have been developed for the isolation and characterization of EVs, including ultracentrifugation, density gradient separation, size-exclusion chromatography, microfluidics, and magnetic bead-based/affinity methods. This review highlights advances in EV isolation techniques in the last decade and provides a perspective on their advantages, limitations, and potential application to cell-type specific EV isolation in the future.
Collapse
Affiliation(s)
- Adnan Shami-shah
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02120, USA
- Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02120, USA
| | - Benjamin G Travis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02120, USA
- Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02120, USA
| | - David R Walt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02120, USA
- Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02120, USA
| |
Collapse
|
31
|
Ribovski L, Joshi B, Gao J, Zuhorn I. Breaking free: endocytosis and endosomal escape of extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:283-305. [PMID: 39697985 PMCID: PMC11648447 DOI: 10.20517/evcna.2023.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are natural micro-/nanoparticles that play an important role in intercellular communication. They are secreted by producer/donor cells and subsequent uptake by recipient/acceptor cells may result in phenotypic changes in these cells due to the delivery of cargo molecules, including lipids, RNA, and proteins. The process of endocytosis is widely described as the main mechanism responsible for cellular uptake of EVs, with endosomal escape of cargo molecules being a necessity for the functional delivery of EV cargo. Equivalent to synthetic micro-/nanoparticles, the properties of EVs, such as size and composition, together with environmental factors such as temperature, pH, and extracellular fluid composition, codetermine the interactions of EVs with cells, from binding to uptake, intracellular trafficking, and cargo release. Innovative assays for detection and quantification of the different steps in the EV formation and EV-mediated cargo delivery process have provided valuable insight into the biogenesis and cellular processing of EVs and their cargo, revealing the occurrence of EV recycling and degradation, next to functional cargo delivery, with the back fusion of the EV with the endosomal membrane standing out as a common cargo release pathway. In view of the significant potential for developing EVs as drug delivery systems, this review discusses the interaction of EVs with biological membranes en route to cargo delivery, highlighting the reported techniques for studying EV internalization and intracellular trafficking, EV-membrane fusion, endosomal permeabilization, and cargo delivery, including functional delivery of RNA cargo.
Collapse
Affiliation(s)
- Laís Ribovski
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
- Authors contributed equally
| | - Bhagyashree Joshi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, the Netherlands
- Authors contributed equally
| | - Jie Gao
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Inge Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| |
Collapse
|
32
|
Khanam A, Ngu A, Zempleni J. Bioavailability of orally administered small extracellular vesicles from bovine milk in C57BL/6J mice. Int J Pharm 2023; 639:122974. [PMID: 37105241 PMCID: PMC10175213 DOI: 10.1016/j.ijpharm.2023.122974] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Small extracellular vesicles (sMEVs) from bovine milk are studied for delivering therapeutics. Here, we estimated sMEV bioavailability of an oral dose of sMEVs. Bovine sMEVs were labeled covalently with HiLyteTM 750 (MEV-750) and administered by oral gavage to C57BL/6J mice. Plasma, urine, feces, and tissues were harvested at timed intervals for up to 24 h and fluorescence was assessed. Fecal excretion amounted to approximately 55% of the oral MEV-750 dose in males and females. The levels of MEV-750 peaked in the intestinal mucosa and plasma approximately 6 h after oral gavage and returned to baseline at time point 24 h. MEV-750 were detectable in peripheral tissues approximately 12 h after gavage. MEV-750 excretion in urine peaked approximately 6 h after oral gavage and returned to background levels after 24 h. Analysis by size exclusion chromatography suggested that HiLyteTM detached from sMEVs in artificial gastric fluid but not in plasma, i.e., HiLyteTM allows to estimate sMEV bioavailability with comparably high confidence. We conclude that the apparent bioavailability of sMEVs is 45%, and sMEVs are transported to peripheral tissues in C57BL/6J mice; excretion in feces and urine are the main routes of sMEV elimination.
Collapse
Affiliation(s)
- Afsana Khanam
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Alice Ngu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE 68583-0806, USA.
| |
Collapse
|
33
|
Park SH, Lee EK, Yim J, Lee MH, Lee E, Lee YS, Seo W. Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases. Biomol Ther (Seoul) 2023; 31:253-263. [PMID: 37095734 PMCID: PMC10129856 DOI: 10.4062/biomolther.2022.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Seol Hee Park
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Eun Kyeong Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Joowon Yim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Min Hoo Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eojin Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Medical Center, Seoul 08308, Republic of Korea
| | - Wonhyo Seo
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
34
|
Wang DR, Pan J. Extracellular vesicles: Emerged as a promising strategy for regenerative medicine. World J Stem Cells 2023; 15:165-181. [PMID: 37181006 PMCID: PMC10173817 DOI: 10.4252/wjsc.v15.i4.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Cell transplantation therapy has certain limitations including immune rejection and limited cell viability, which seriously hinder the transformation of stem cell-based tissue regeneration into clinical practice. Extracellular vesicles (EVs) not only possess the advantages of its derived cells, but also can avoid the risks of cell transplantation. EVs are intelligent and controllable biomaterials that can participate in a variety of physiological and pathological activities, tissue repair and regeneration by transmitting a variety of biological signals, showing great potential in cell-free tissue regeneration. In this review, we summarized the origins and characteristics of EVs, introduced the pivotal role of EVs in diverse tissues regeneration, discussed the underlying mechanisms, prospects, and challenges of EVs. We also pointed out the problems that need to be solved, application directions, and prospects of EVs in the future and shed new light on the novel cell-free strategy for using EVs in the field of regenerative medicine.
Collapse
Affiliation(s)
- Dian-Ri Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
35
|
Khazaei F, Rezakhani L, Alizadeh M, Mahdavian E, Khazaei M. Exosomes and exosome-loaded scaffolds: Characterization and application in modern regenerative medicine. Tissue Cell 2023; 80:102007. [PMID: 36577349 DOI: 10.1016/j.tice.2022.102007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Exosomes (EXOs) are extracellular vesicles derived from the endosome. These heterogeneous nanoparticles (30-150 nm) are secreted from various cells and play important biological roles in intercellular communication. EXOs have received much attention for application in regenerative therapies and tissue repair due to their stability, biosafety, and functional versatility. However, in their free forms, "EXOs have poor bioavailability" at the site of action and are devoid of controlled-release mechanisms. These issues have been largely remedied by scaffolding EXOs with appropriate biomaterials such as hydrogels to create EXOs -loaded scaffold (ELS). These biomaterial-based scaffolds can be rationally designed and functionalized to enhance various aspects of ELS including bioavailability, biocompatibility, and loading/release control. Additionally, the ELS are superior to free EXOs due to reduced injection-related side effects. This review article provides a comprehensive and updated account of EXOs and ELS isolation, characterization, and application in regenerative medicine with a focus on soft tissue repair. We also offer insights into the advantages of ELS therapy compared to stem cell therapy towards application in wound healing, cardiac and bone repair. ELS promotes cell migration to the scaffold and will cause better homing of exosomes. Different types of scaffolds are made and each one can be modified based on the repair in the target tissues so that the reactions between the scaffold and exosome take place properly and effective signals are created for tissue repair.
Collapse
Affiliation(s)
- Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, the Islamic Republic of Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, the Islamic Republic of Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, the Islamic Republic of Iran.
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, the Islamic Republic of Iran
| | - Elahe Mahdavian
- Louisiana State University in Shreveport, One University Place, Shreveport, LA 71115, USA
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, the Islamic Republic of Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, the Islamic Republic of Iran.
| |
Collapse
|
36
|
Biagiotti S, Abbas F, Montanari M, Barattini C, Rossi L, Magnani M, Papa S, Canonico B. Extracellular Vesicles as New Players in Drug Delivery: A Focus on Red Blood Cells-Derived EVs. Pharmaceutics 2023; 15:365. [PMID: 36839687 PMCID: PMC9961903 DOI: 10.3390/pharmaceutics15020365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The article is divided into several sections, focusing on extracellular vesicles' (EVs) nature, features, commonly employed methodologies and strategies for their isolation/preparation, and their characterization/visualization. This work aims to give an overview of advances in EVs' extensive nanomedical-drug delivery applications. Furthermore, considerations for EVs translation to clinical application are summarized here, before focusing the review on a special kind of extracellular vesicles, the ones derived from red blood cells (RBCEVs). Generally, employing EVs as drug carriers means managing entities with advantageous properties over synthetic vehicles or nanoparticles. Besides the fact that certain EVs also reveal intrinsic therapeutic characteristics, in regenerative medicine, EVs nanosize, lipidomic and proteomic profiles enable them to pass biologic barriers and display cell/tissue tropisms; indeed, EVs engineering can further optimize their organ targeting. In the second part of the review, we focus our attention on RBCEVs. First, we describe the biogenesis and composition of those naturally produced by red blood cells (RBCs) under physiological and pathological conditions. Afterwards, we discuss the current procedures to isolate and/or produce RBCEVs in the lab and to load a specific cargo for therapeutic exploitation. Finally, we disclose the most recent applications of RBCEVs at the in vitro and preclinical research level and their potential industrial exploitation. In conclusion, RBCEVs can be, in the near future, a very promising and versatile platform for several clinical applications and pharmaceutical exploitations.
Collapse
Affiliation(s)
- Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Faiza Abbas
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Chiara Barattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
- AcZon s.r.l., 40050 Monte San Pietro, BO, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| |
Collapse
|
37
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
38
|
Reddy SK, Ballal AR, Shailaja S, Seetharam RN, Raghu CH, Sankhe R, Pai K, Tender T, Mathew M, Aroor A, Shetty AK, Adiga S, Devi V, Muttigi MS, Upadhya D. Small extracellular vesicle-loaded bevacizumab reduces the frequency of intravitreal injection required for diabetic retinopathy. Theranostics 2023; 13:2241-2255. [PMID: 37153730 PMCID: PMC10157735 DOI: 10.7150/thno.78426] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/01/2023] [Indexed: 05/10/2023] Open
Abstract
Diabetic retinopathy (DR) is associated with retinal neovascularization, hard exudates, inflammation, oxidative stress and cell death, leading to vision loss. Anti-vascular endothelial growth factor (Anti-VEGF) therapy through repeated intravitreal injections is an established treatment for reducing VEGF levels in the retina for inhibiting neovascularization and leakage of hard exudates to prevent vision loss. Although anti-VEGF therapy has several clinical benefits, its monthly injection potentially causes devastating ocular complications, including trauma, intraocular hemorrhage, retinal detachment, endophthalmitis, etc. Methods: As mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) demonstrated safety in clinical studies, we have tested the efficacy of MSC-derived small EVs (MSC-sEVs) loaded anti-VEGF drug bevacizumab in a rat model of DR. Results: The study identified a clinically significant finding that sEV loaded with bevacizumab reduces the frequency of intravitreal injection required for treating diabetic retinopathy. The sustained effect is observed from the reduced levels of VEGF, exudates and leukostasis for more than two months following intravitreal injection of sEV loaded with bevacizumab, while bevacizumab alone could maintain reduced levels for about one month. Furthermore, retinal cell death was consistently lower in this period than only bevacizumab. Conclusion: This study provided significant evidence for the prolonged benefits of sEVs as a drug delivery system. Also, EV-mediated drug delivery systems could be considered for clinical application of retinal diseases as they maintain vitreous clarity in the light path due to their composition being similar to cells.
Collapse
Affiliation(s)
- Shivakumar K Reddy
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Abhijna R Ballal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - S Shailaja
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Raviraja N Seetharam
- Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Chandrashekar H Raghu
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kanthilatha Pai
- Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mary Mathew
- Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Annayya Aroor
- Divison of Endocrinology, Diabetes and Metabolism, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, United States
| | - Shalini Adiga
- Department of Pharmacology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Manjunatha S Muttigi
- Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
- ✉ Corresponding author: Dr. Dinesh Upadhya, Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India. ; Phone: +91 820 2923611; Total word count: 9923
| |
Collapse
|
39
|
Rackles E, Lopez PH, Falcon-Perez JM. Extracellular vesicles as source for the identification of minimally invasive molecular signatures in glioblastoma. Semin Cancer Biol 2022; 87:148-159. [PMID: 36375777 DOI: 10.1016/j.semcancer.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The analysis of extracellular vesicles (EVs) as a source of cancer biomarkers is an emerging field since low-invasive biomarkers are highly demanded. EVs constitute a heterogeneous population of small membrane-contained vesicles that are present in most of body fluids. They are released by all cell types, including cancer cells and their cargo consists of nucleic acids, proteins and metabolites and varies depending on the biological-pathological state of the secretory cell. Therefore, EVs are considered as a potential source of reliable biomarkers for cancer. EV biomarkers in liquid biopsy can be a valuable tool to complement current medical technologies for cancer diagnosis, as their sampling is minimally invasive and can be repeated over time to monitor disease progression. In this review, we highlight the advances in EV biomarker research for cancer diagnosis, prognosis, and therapy monitoring. We especially focus on EV derived biomarkers for glioblastoma. The diagnosis and monitoring of glioblastoma still relies on imaging techniques, which are not sufficient to reflect the highly heterogenous and invasive nature of glioblastoma. Therefore, we discuss how the use of EV biomarkers could overcome the challenges faced in diagnosis and monitoring of glioblastoma.
Collapse
Affiliation(s)
- Elisabeth Rackles
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Patricia Hernández Lopez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Juan M Falcon-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Metabolomics Platform, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
40
|
Yong T, Wei Z, Gan L, Yang X. Extracellular-Vesicle-Based Drug Delivery Systems for Enhanced Antitumor Therapies through Modulating the Cancer-Immunity Cycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201054. [PMID: 35726204 DOI: 10.1002/adma.202201054] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Although immunotherapy harnessing activity of the immune system against tumors has made great progress, the treatment efficacy remains limited in most cancers. Current anticancer immunotherapy is primarily based on T-cell-mediated cellular immunity, which highly relies on efficiency of triggering the cancer-immunity cycle, namely, tumor antigen release, antigen presentation by antigen presenting cells, T cell activation, recruitment and infiltration of T cells into tumors, and recognition and killing of tumor cells by T cells. Unfortunately, these immunotherapies are restricted by inefficient drug delivery and acting on only a single step of the cancer-immunity cycle. Due to high biocompatibility, low immunogenicity, intrinsic cell targeting, and easy chemical and genetic manipulation, extracellular vesicle (EV)-based drug delivery systems are widely used to amplify anticancer immune responses by serving as an integrated platform for multiple drugs or therapeutic strategies to synergistically activate several steps of cancer-immunity cycle. This review summarizes various mechanisms related to affecting cancer-immunity cycle disorders. Meanwhile, preparation and application of EV-based drug delivery systems in modulating cancer-immunity cycle are introduced, especially in the improvement of T cell recruitment and infiltration into tumors. Finally, opportunities and challenges of EV-based drug delivery systems in translational clinical applications are briefly discussed.
Collapse
Affiliation(s)
- Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
41
|
Tangwattanachuleeporn M, Muanwien P, Teethaisong Y, Somparn P. Optimizing Concentration of Polyethelene Glycol for Exosome Isolation from Plasma for Downstream Application. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1600. [PMID: 36363557 PMCID: PMC9694916 DOI: 10.3390/medicina58111600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 10/03/2024]
Abstract
BACKGROUND Exosomes are ubiquitous extracellular nanovesicles secreted from almost all living cells that are thought to be involved in several important cellular processes, including cell-cell communication and signaling. Exosomes serve as a liquid biopsy tool for clinical and translational research. Although many techniques have been used to isolate exosomes, including ultracentrigation, size-exclusion chromatography, and immunocapturing-based techniques, these techniques are not convenient, they require expensive instrumentation, and they are unhandy for clinical samples. Precipitation techniques from available commercial kits that contain polyethelene glycol (PEG) are now widely used, but these kits are expensive, especially if a large number of biological samples are to be processed. OBJECTIVE the purpose of this study is to compare and optimize the efficacy of different concentrations of PEG with two commercial kits ExoQuick (SBI) and Total Exosome Isolation (TEI) from Invitrogen in human plasma. METHODS AND MATERIALS we determined exosome quantity, size distribution, marker expression, and downstream application. RESULTS among the precipitation methods, we found the size of particles and concentrations with 10-20% PEG are similar to ExoQuick and better than TEI. Interestingly, we detected cfDNA with ExoQuick and 10-20% PEG but not TEI and 5% PEG. Moreover, 10% PEG detection of miR-122 and miR-16 expression was superior to ExoQuick and TEI. Furthermore, in proteomics results it also found the identified proteins better than commercial kits but there was a high level of contamination of other proteins in serum. CONCLUSIONS together, these findings show that an optimal concentration of 10% PEG serves as a guide for use with clinical samples in exosome isolation for downstream applications.
Collapse
Affiliation(s)
- Marut Tangwattanachuleeporn
- Faculty of Allied Health Sciences, Burapha University, Chon Buri 20130, Thailand
- Research Unit for Sensor Innovation, Burapha University, Chon Buri 20130, Thailand
| | - Phijitra Muanwien
- Faculty of Allied Health Sciences, Burapha University, Chon Buri 20130, Thailand
| | - Yothin Teethaisong
- Faculty of Allied Health Sciences, Burapha University, Chon Buri 20130, Thailand
- Research Unit for Sensor Innovation, Burapha University, Chon Buri 20130, Thailand
| | - Poorichya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
42
|
Srivastava A, Rathore S, Munshi A, Ramesh R. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment. Semin Cancer Biol 2022; 86:80-100. [PMID: 35192929 PMCID: PMC9388703 DOI: 10.1016/j.semcancer.2022.02.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), is the umbrella term used for different types of vesicles produced by the cells, among which exosomes form the largest group. Exosomes perform intercellular communication by carrying several biologics from donor or parental cells and delivering them to recipient cells. Their unique cargo-carrying capacity has recently been explored for use as delivery vehicles of anticancer drugs and imaging agents. Being naturally produced, exosomes have many advantages over synthetic lipid-based nanoparticles currently being used clinically to treat cancer and other diseases. The finding of the role of exosomes in human diseases has led to numerous preclinical and clinical studies exploring their use as an amenable drug delivery vehicle and a theranostic in cancer diagnosis and treatment. However, there are certain limitations associated with exosomes, with the most important being the selection of the biological source for producing highly biocompatible exosomes on a large scale. This review article explores the various sources from which therapeutically viable exosomes can be isolated for use as drug carriers for cancer treatment. The methods of exosome isolation and the process of loading them with cancer therapeutics and imaging agents are also discussed in the follow-up sections. Finally, the article concludes with future directions for exosome-based applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shipra Rathore
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
43
|
Ma T, Li W, Chen Y, Cobo E, Windeyer C, Gamsjäger L, Diao Q, Tu Y, Guan L. Assessment of microRNA profiles in small extracellular vesicles isolated from bovine colostrum with different immunoglobulin G concentrations. JDS COMMUNICATIONS 2022; 3:328-333. [PMID: 36340908 PMCID: PMC9623635 DOI: 10.3168/jdsc.2022-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/19/2022] [Indexed: 12/03/2022]
Abstract
The RNA concentration in sEV isolated from bovine colostrum was highest using the combination of the miRCURY Cell/Urine/CSF and miRNeasy Mini kits. The top 50 miRNA were the same using miRDeep2 and sRNAbench, predominated by let-7b, let-7a-5p, miR-30a-5p, and miR-148a. Predicted target genes of the top 50 miRNA regulate PI3K-Akt and MAPK signaling pathways, axon guidance, and focal adhesion. The abundance of miR-27a-3p was higher in colostrum with high IgG concentrations. The consumption of bovine colostrum by newborn calves during the first days of life is essential to ensure the transfer of passive immunity. In addition to critical IgG, colostrum also contains non-IgG biomolecules, including microRNA (miRNA). The present study investigated the profiles of miRNA in small extracellular vesicles (sEV) isolated from bovine colostrum with high (256.5 ± 5.7 mg/mL, mean ± standard deviation, n = 4) and low (62.8 ± 3.6 mg/mL, n = 4) concentrations of IgG. Different combination of sEV extraction methods and bioinformatic pipelines (miRDeep2 and sRNAbench) for miRNA analysis were evaluated. Results showed that miRCURY exosome Cell/Urine/CSF and miRNeasy Mini kits yielded the highest RNA concentration. The miRNA-seq data analysis showed miRDeep2 yielded more comprehensive miRNAome compared with sRNAbench (527 versus 392 unique miRNA), whereas 389 shared miRNA were identified using both approaches. The profiles of top 50 miRNA were the same using both approaches, and their abundance contributed to 91.7% and 94.3% of total abundance of miRNA using miRDeep2 and sRNAbennch, respectively. These core miRNA were predicted to target 2,655 genes, which regulate 78 KEGG (Kyoto Encyclopedia of Genes and Genomes) level-3 pathways including PI3K-Akt and MAPK signaling pathway, axon guidance, and focal adhesion. The expression profiles of sEV-associated miRNA were similar between high- and low-IgG colostrum samples, despite the fact that the abundance of miR-27a-3p was higher in colostrum with high concentrations of IgG. In conclusion, a core miRNAome in bovine colostrum may play a role in regulating health and developmental stages in neonatal calves, independent of IgG concentration.
Collapse
Affiliation(s)
- T. Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - W. Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Y. Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - E.R. Cobo
- Department of Production Animal Health, University of Calgary, Faculty of Veterinary Medicine, Calgary, AB T2N1N4, Canada
| | - C. Windeyer
- Department of Production Animal Health, University of Calgary, Faculty of Veterinary Medicine, Calgary, AB T2N1N4, Canada
| | - L. Gamsjäger
- Department of Ruminant Medicine, Vetsuisse Faculty of Veterinary Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Q. Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Y. Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - L.L. Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
- Corresponding author
| |
Collapse
|
44
|
Chen K, Li Y, Xu L, Qian Y, Liu N, Zhou C, Liu J, Zhou L, Xu Z, Jia R, Ge YZ. Comprehensive insight into endothelial progenitor cell-derived extracellular vesicles as a promising candidate for disease treatment. Stem Cell Res Ther 2022; 13:238. [PMID: 35672766 PMCID: PMC9172199 DOI: 10.1186/s13287-022-02921-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/29/2022] [Indexed: 12/21/2022] Open
Abstract
Endothelial progenitor cells (EPCs), which are a type of stem cell, have been found to have strong angiogenic and tissue repair capabilities. Extracellular vesicles (EVs) contain many effective components, such as cellular proteins, microRNAs, messenger RNAs, and long noncoding RNAs, and can be secreted by different cell types. The functions of EVs depend mainly on their parent cells. Many researchers have conducted functional studies of EPC-derived EVs (EPC-EVs) and showed that they exhibit therapeutic effects on many diseases, such as cardiovascular disease, acute kidney injury, acute lung injury, and sepsis. In this review article, we comprehensively summarized the biogenesis and functions of EPCs and EVs and the potent role of EPC-EVs in the treatment of various diseases. Furthermore, the current problems and future prospects have been discussed, and further studies are needed to compare the therapeutic effects of EVs derived from various stem cells, which will contribute to the accelerated translation of these applications in a clinical setting.
Collapse
Affiliation(s)
- Ke Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yiguan Qian
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ning Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
45
|
Yakubovich EI, Polischouk AG, Evtushenko VI. Principles and Problems of Exosome Isolation from Biological Fluids. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022; 16:115-126. [PMID: 35730027 PMCID: PMC9202659 DOI: 10.1134/s1990747822030096] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/03/2022]
Abstract
Exosomes, the subclass of small membrane extracellular vesicles, have great diagnostic and therapeutic potential, but the lack of standardized methods for their efficient isolation and analysis limits the introduction of exosomal technologies into clinical practice. This review discusses the problems associated with the isolation of exosomes from biological fluids, as well as the principles of traditional and alternative methods of isolation. The aim of the presented review is to illustrate the variety of approaches based on the physical and biochemical properties of exosomes that can be used for exosome isolation. The advantages and disadvantages of different methods are discussed.
Collapse
Affiliation(s)
- E. I. Yakubovich
- Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 197758 St. Petersburg, Russia
| | - A. G. Polischouk
- Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 197758 St. Petersburg, Russia
| | - V. I. Evtushenko
- Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 197758 St. Petersburg, Russia
| |
Collapse
|
46
|
Wang J, Yue BL, Huang YZ, Lan XY, Liu WJ, Chen H. Exosomal RNAs: Novel Potential Biomarkers for Diseases-A Review. Int J Mol Sci 2022; 23:2461. [PMID: 35269604 PMCID: PMC8910301 DOI: 10.3390/ijms23052461] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Exosomes are a subset of nano-sized extracellular vesicles originating from endosomes. Exosomes mediate cell-to-cell communication with their cargos, which includes mRNAs, miRNAs, lncRNAs, and circRNAs. Exosomal RNAs have cell specificity and reflect the conditions of their donor cells. Notably, their detection in biofluids can be used as a diagnostic marker for various diseases. Exosomal RNAs are ideal biomarkers because their surrounding membranes confer stability and they are detectable in almost all biofluids, which helps to reduce trauma and avoid invasive examinations. However, knowledge of exosomal biomarkers remains scarce. The present review summarizes the biogenesis, secretion, and uptake of exosomes, the current researches exploring exosomal mRNAs, miRNAs, lncRNAs, and circRNAs as potential biomarkers for the diagnosis of human diseases, as well as recent techniques of exosome isolation.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Bing-Lin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China;
| | - Yong-Zhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Xian-Yong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Wu-Jun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
47
|
Mills J, Erdmann S. Isolation, Purification, and Characterization of Membrane Vesicles from Haloarchaea. Methods Mol Biol 2022; 2522:435-448. [PMID: 36125769 DOI: 10.1007/978-1-0716-2445-6_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane vesicles (MVs), also described as extracellular vesicles (EVs), exosomes, or outer membrane vesicles (OMVs), are nano-sized (10-300 nm) spherical, membrane-bound structures deriving from the cell envelope. MVs have been studied extensively in both eukaryotic and prokaryotic systems, revealing a plethora of unique functions including cell-to-cell communication and protection of the cell. They are able to encapsulate specific cargos from nucleic acids to proteins, thereby concentrating cargo and providing protection from the extracellular environment. While MV production has been identified for all domains of life, with extensive investigation particularly for Bacteria and Eukaryota, it has only been studied in a few members of the archaeal domain, leaving a void of information concerning the role of MVs for the majority of Archaea. In addition, several discrepancies exist in the process of MV preparation and analysis between studies of MV production in different archaeal organisms. To further encourage the investigation of MVs in Archaea among the scientific community, we present a standardized method for the isolation, purification, and characterization of MVs based on the archaeal model organism, Haloferax volcanii. However, the described protocol can be applied to other Archaea with the appropriate modifications that are highlighted in Subheading 4.
Collapse
Affiliation(s)
- Joshua Mills
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - Susanne Erdmann
- Max-Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
48
|
Improving Isolation of Extracellular Vesicles by Utilizing Nanomaterials. MEMBRANES 2021; 12:membranes12010055. [PMID: 35054584 PMCID: PMC8780510 DOI: 10.3390/membranes12010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023]
Abstract
Extracellular vesicles (EVs) as the new form of cellular communication have been demonstrated their potential use for disease diagnosis, prognosis and treatment. EVs are vesicles with a lipid bilayer and are present in various biofluids, such as blood, saliva and urine. Therefore, EVs have emerged as one of the most appealing sources for the discovery of clinical biomarkers. However, isolation of the target EVs from different biofluids is required for the use of EVs as diagnostic and therapeutic entities in clinical settings. Owing to their unique properties and versatile functionalities, nanomaterials have been widely investigated for EV isolation with the aim to provide rapid, simple, and efficient EV enrichment. Herein, this review presents the progress of nanomaterial-based isolations for EVs over the past five years (from 2017 to 2021) and discusses the use of nanomaterials for EV isolations based on the underlying mechanism in order to offer insights into the design of nanomaterials for EV isolations.
Collapse
|
49
|
Tesovnik T, Jenko Bizjan B, Šket R, Debeljak M, Battelino T, Kovač J. Technological Approaches in the Analysis of Extracellular Vesicle Nucleotide Sequences. Front Bioeng Biotechnol 2021; 9:787551. [PMID: 35004647 PMCID: PMC8733665 DOI: 10.3389/fbioe.2021.787551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Together with metabolites, proteins, and lipid components, the EV cargo consists of DNA and RNA nucleotide sequence species, which are part of the intracellular communication network regulating specific cellular processes and provoking distinct target cell responses. The extracellular vesicle (EV) nucleotide sequence cargo molecules are often investigated in association with a particular pathology and may provide an insight into the physiological and pathological processes in hard-to-access organs and tissues. The diversity and biological function of EV nucleotide sequences are distinct regarding EV subgroups and differ in tissue- and cell-released EVs. EV DNA is present mainly in apoptotic bodies, while there are different species of EV RNAs in all subgroups of EVs. A limited sample volume of unique human liquid biopsy provides a small amount of EVs with limited isolated DNA and RNA, which can be a challenging factor for EV nucleotide sequence analysis, while the additional difficulty is technical variability of molecular nucleotide detection. Every EV study is challenged with its first step of the EV isolation procedure, which determines the EV's purity, yield, and diameter range and has an impact on the EV's downstream analysis with a significant impact on the final result. The gold standard EV isolation procedure with ultracentrifugation provides a low output and not highly pure isolated EVs, while modern techniques increase EV's yield and purity. Different EV DNA and RNA detection techniques include the PCR procedure for nucleotide sequence replication of the molecules of interest, which can undergo a small-input EV DNA or RNA material. The nucleotide sequence detection approaches with their advantages and disadvantages should be considered to appropriately address the study problem and to extract specific EV nucleotide sequence information with the detection using qPCR or next-generation sequencing. Advanced next-generation sequencing techniques allow the detection of total EV genomic or transcriptomic data even at the single-molecule resolution and thus, offering a sensitive and accurate EV DNA or RNA biomarker detection. Additionally, with the processes where the EV genomic or transcriptomic data profiles are compared to identify characteristic EV differences in specific conditions, novel biomarkers could be discovered. Therefore, a suitable differential expression analysis is crucial to define the EV DNA or RNA differences between conditions under investigation. Further bioinformatics analysis can predict molecular cell targets and identify targeted and affected cellular pathways. The prediction target tools with functional studies are essential to help specify the role of the investigated EV-targeted nucleotide sequences in health and disease and support further development of EV-related therapeutics. This review will discuss the biological diversity of human liquid biopsy-obtained EV nucleotide sequences DNA and RNA species reported as potential biomarkers in health and disease and methodological principles of their detection, from human liquid biopsy EV isolation, EV nucleotide sequence extraction, techniques for their detection, and their cell target prediction.
Collapse
Affiliation(s)
- Tine Tesovnik
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Robert Šket
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Maruša Debeljak
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
- Faculty of Medicine, Chair of Paediatrics, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovač
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| |
Collapse
|
50
|
Boireau W, Elie-Caille C. [Extracellular vesicles: Definition, isolation and characterization]. Med Sci (Paris) 2021; 37:1092-1100. [PMID: 34928211 DOI: 10.1051/medsci/2021201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Extracellular vesicles (EVs) originate from eukaryotic and prokaryotic cells and play a crucial role in intercellular communications. They are found in the environment of cells and tissues, and contribute to the complexity of different biological media, in particular biofluids. Due to their high diversity of cell origin, size range, concentration and composition, EVs offer some of the most important challenges in (pre-)analytical fields. To tackle these challenges, many works deal with the development and implementation of a wide variety of approaches, technologies and methodologies to enrich, isolate, quantify and characterize EVs and their subsets. Nevertheless, other components such as lipoproteins or viruses in complex samples, can interfere with EVs qualification, and make difficult, even today, to standardize biochemical and physical approaches for this purpose. The present chapter presents EVs and the mostly used technics for their isolation and characterization. Performances of methods in terms of resolution, discrimination, throughput and also ability to be or not applied in clinics, are also discussed.
Collapse
Affiliation(s)
- Wilfrid Boireau
- Institut FEMTO-ST, UMR 6174 CNRS-Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Céline Elie-Caille
- Institut FEMTO-ST, UMR 6174 CNRS-Université de Bourgogne Franche-Comté, 25030 Besançon, France
| |
Collapse
|