1
|
Goncalves K, Przyborski S. Modulation of the Nogo signaling pathway to overcome amyloid-β-mediated neurite inhibition in human pluripotent stem cell-derived neurites. Neural Regen Res 2025; 20:2645-2654. [PMID: 39105379 PMCID: PMC11801276 DOI: 10.4103/nrr.nrr-d-23-01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00026/figure1/v/2024-11-05T132919Z/r/image-tiff Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease. The accumulation of amyloid-β peptides, a key hallmark of Alzheimer's disease, is believed to induce neuritic abnormalities, including reduced growth, extension, and abnormal growth cone morphology, all of which contribute to decreased connectivity. However, the precise cellular and molecular mechanisms governing this response remain unknown. In this study, we used an innovative approach to demonstrate the effect of amyloid-β on neurite dynamics in both two-dimensional and three-dimensional culture systems, in order to provide more physiologically relevant culture geometry. We utilized various methodologies, including the addition of exogenous amyloid-β peptides to the culture medium, growth substrate coating, and the utilization of human-induced pluripotent stem cell technology, to investigate the effect of endogenous amyloid-β secretion on neurite outgrowth, thus paving the way for potential future applications in personalized medicine. Additionally, we also explore the involvement of the Nogo signaling cascade in amyloid-β-induced neurite inhibition. We demonstrate that inhibition of downstream ROCK and RhoA components of the Nogo signaling pathway, achieved through modulation with Y-27632 (a ROCK inhibitor) and Ibuprofen (a Rho A inhibitor), respectively, can restore and even enhance neuronal connectivity in the presence of amyloid-β. In summary, this study not only presents a novel culture approach that offers insights into the biological process of neurite growth and inhibition, but also proposes a specific mechanism for reduced neural connectivity in the presence of amyloid-β peptides, along with potential intervention points to restore neurite growth. Thereby, we aim to establish a culture system that has the potential to serve as an assay for measuring preclinical, predictive outcomes of drugs and their ability to promote neurite outgrowth, both generally and in a patient-specific manner.
Collapse
Affiliation(s)
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, UK
- Reprocell Europe Ltd., Glasgow, UK
| |
Collapse
|
2
|
Pelczarski M, Wolaniuk S, Zaborska M, Sadowski J, Sztangreciak-Lehun A, Bułdak RJ. The role of α-tocopherol in the prevention and treatment of Alzheimer's disease. Mol Cell Biochem 2025; 480:3385-3398. [PMID: 39832109 DOI: 10.1007/s11010-025-05214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Scientific reports from various areas of the world indicate the potential role of tocopherols (vitamin E) in particular α-tocopherol in the prevention and therapy of Alzheimer's disease. The current phenomenon is related to the growing global awareness of eating habits and is also determined by the need to develop the prevention, management and therapy of Alzheimer's disease. This article is a review of current research on the action of the active form of vitamin E-α-tocopherol and its impact on the development and course of Alzheimer's disease. Additionally, to contrast this information, selected primary research on this topic was included. The aim of this article is to analyze and summarize the available scientific information on the effects of the active form of vitamin E, α-tocopherol, on the development and course of Alzheimer's disease. In the structure of the review, particular attention was paid to the analysis of the pathophysiological processes of the disease and the biochemical features of the action of α-tocopherol. To discuss the relationship between the effect of α-tocopherol and the occurrence of Alzheimer's disease, a literature review was conducted using the following databases: PubMed, Google Scholar, and Elsevier. During the search process, the following keywords were used: "tocopherols", "vitamin E", "α-tocopherol", "Alzheimer's disease" in various combinations. The process was conducted in accordance with the adopted search strategy taking into account the inclusion and exclusion criteria. Alzheimer's disease (AD) is the most common, irreversible neurodegenerative disease, so many scientists are actively looking for substances and/or strategies to prevent its development and to slow down its course in patients. Alpha-tocopherols (ATF) are a factor that inhibits the pathophysiological processes associated with the development of AD by reducing the formation of atherogenic amyloid B (AB). Additionally, this type of tocopherols has antioxidant and anti-inflammatory properties and has a positive effect on the metabolic functioning of mitochondria. It has been shown that a higher intake of α-tocopherol (ATF) was associated with a reduced risk of developing dementia and the occurrence of mild types of cognitive impairment (MCI). Various sources indicate an insufficient supply of ATF in the diet. ATF supplementation may potentially help to slow down the course of Alzheimer's disease, which is why this substance may be popularized in the treatment of this disease in the future. However, there is a need for further research on this issue.
Collapse
Affiliation(s)
- Michał Pelczarski
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Szymon Wolaniuk
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Monika Zaborska
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Jakub Sadowski
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland.
| | - Anna Sztangreciak-Lehun
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Rafał Jakub Bułdak
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| |
Collapse
|
3
|
Campagna J, Jagodzinska B, Wi D, Zhu C, Lee J, Cohn W, Jun M, Elias C, Padder S, Descamps O, Peters-Libeu C, Zhang Q, Gorostiza O, Poksay K, Spilman P, Bredesen D, John V. Discovery of an APP-selective BACE1 inhibitor for Alzheimer's disease. Neurotherapeutics 2025:e00610. [PMID: 40399225 DOI: 10.1016/j.neurot.2025.e00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/16/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025] Open
Abstract
Inhibition of amyloid precursor protein (APP) beta-site cleaving enzyme 1 (BACE1) has been a target for Alzheimer's disease (AD) therapeutic development. Here, we report our identification of APP-selective BACE1 (ASBI) inhibitors that are selective for APP as the substrate and BACE1 as the target enzyme. A known fluoro aminohydantoin (FAH) inhibitor compound was identified by screening a compound library for inhibition of BACE1 cleavage of a maltose binding protein (MBP)-conjugated-APPC125 substrate followed by optimization and IC50 determination using the P5-P5' activity assay. Optimization of the screening hit led to candidate FAH65, which displays selectivity for inhibition of APP cleavage with little activity against other BACE1 substrates neuregulin 1 (NRG1) or p-selectin glycoprotein ligand-1 (PSGL1). FAH65 shows little inhibitory activity against other aspartyl proteases cathepsin D (Cat D) and BACE2. FAH65 reduces BACE1 cleavage products soluble APPβ (sAPPβ) and the β C-terminal fragment (βCTF), as well as amyloid-β (Aβ) 1-40 and 1-42, both in vitro in cells and in vivo in an animal model of AD. In a murine model of AD, FAH65 improved the discrimination score in the Novel Object Recognition (NOR) memory testing paradigm. The active enantiomer of racemate FAH65, FAH65E(-), displays good brain-penetrance and target engagement, meriting further pre-clinical development as an ASBI that may reduce Aβ levels and overcome the deleterious effects of the non-selective BACE1 inhibitors that have failed in the clinic. FAH65E(-) has the potential to be a first-in-class oral therapy that could be used in conjunction with an approved anti-Aβ antibody therapy for AD.
Collapse
Affiliation(s)
- Jesus Campagna
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA
| | - Barbara Jagodzinska
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA
| | - Dongwook Wi
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA
| | - Chunni Zhu
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA
| | - Jessica Lee
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA
| | - Whitaker Cohn
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA
| | - Michael Jun
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA
| | - Chris Elias
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA
| | - Samar Padder
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA
| | | | | | - Qiang Zhang
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Karen Poksay
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Patricia Spilman
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA
| | - Dale Bredesen
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA; Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Varghese John
- Drug Discovery Lab (DDL), Department of Neurology, Easton Center for Alzheimer's Disease Research and Care, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, 90095, USA.
| |
Collapse
|
4
|
Wu X, Yang Z, Zou J, Gao H, Shao Z, Li C, Lei P. Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery. Signal Transduct Target Ther 2025; 10:146. [PMID: 40328798 PMCID: PMC12056177 DOI: 10.1038/s41392-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases (e.g., Alzheimer's, Parkinson's, Huntington's disease, and Amyotrophic Lateral Sclerosis) are major health threats for the aging population and their prevalences continue to rise with the increasing of life expectancy. Although progress has been made, there is still a lack of effective cures to date, and an in-depth understanding of the molecular and cellular mechanisms of these neurodegenerative diseases is imperative for drug development. Protein phosphorylation, regulated by protein kinases and protein phosphatases, participates in most cellular events, whereas aberrant phosphorylation manifests as a main cause of diseases. As evidenced by pharmacological and pathological studies, protein kinases are proven to be promising therapeutic targets for various diseases, such as cancers, central nervous system disorders, and cardiovascular diseases. The mechanisms of protein phosphatases in pathophysiology have been extensively reviewed, but a systematic summary of the role of protein kinases in the nervous system is lacking. Here, we focus on the involvement of protein kinases in neurodegenerative diseases, by summarizing the current knowledge on the major kinases and related regulatory signal transduction pathways implicated in diseases. We further discuss the role and complexity of kinase-kinase networks in the pathogenesis of neurodegenerative diseases, illustrate the advances of clinical applications of protein kinase inhibitors or novel kinase-targeted therapeutic strategies (such as antisense oligonucleotides and gene therapy) for effective prevention and early intervention.
Collapse
Affiliation(s)
- Xiaolei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Siddiqui F, Mishra P, Khanam S, Ranjan S, Alam P, Albalawi T, Khan S, Mir SS. Nano-Chaperones: Bridging Therapeutics for Amyloid Aggregation in Alzheimer's Disease and Type-2 Diabetes Mellitus. Eur J Neurosci 2025; 61:e70142. [PMID: 40384055 DOI: 10.1111/ejn.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/12/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
Nano-chaperones represent an innovative therapeutic approach targeting amyloid aggregation in Alzheimer's disease (AD) and Type-2 diabetes mellitus (T2DM), two diseases linked by similar pathogenic mechanisms involving protein misfolding and insulin resistance. Current treatments primarily address symptoms, yet nano-chaperones can potentially intervene at the molecular level by mimicking natural chaperone proteins to prevent or reverse amyloid aggregation. In AD, nano-chaperones target amyloid-beta (Aβ) peptides, reducing neurotoxicity and preserving neuronal function, while in T2DM, they inhibit islet amyloid polypeptide (IAPP) aggregation, alleviating cytotoxic stress on pancreatic β-cells. These nanoparticles exhibit a dual capacity for cellular penetration and selectivity in interacting with misfolded proteins, showing promise in mitigating the shared amyloidogenic pathways of both diseases. Preclinical studies have demonstrated significant reductions in amyloid toxicity with potential applications in crossing the blood-brain barrier (BBB) to enhance central nervous system (CNS) delivery. Nano-chaperones transformative role in developing multi-targeted precision therapies for complex diseases is highlighted, underscoring their capacity to modulate disease progression through targeted biomimetic interactions. Nano-chaperone designs for clinical application focus on enhancing therapeutic efficacy and safety. This innovative approach may redefine treatment paradigms for amyloid-related diseases, offering a new frontier in personalized medicine.
Collapse
Affiliation(s)
- Faiza Siddiqui
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Pooja Mishra
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Sheeba Khanam
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Sachin Ranjan
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salman Khan
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Snober S Mir
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Küpeli Akkol E, Karatoprak GŞ, Dumlupınar B, Bahadır Acıkara Ö, Arıcı R, Yücel Ç, Aynal LC, Sobarzo Sánchez E. Stilbenes Against Alzheimer's Disease: A Comprehensive Review of Preclinical Studies of Natural and Synthetic Compounds Combined with the Contributions of Developed Nanodrug Delivery Systems. Molecules 2025; 30:1982. [PMID: 40363789 PMCID: PMC12073496 DOI: 10.3390/molecules30091982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
This review covers preclinical studies of stilbene derivative compounds (both natural and synthetic) with potential preventive and therapeutic effects against Alzheimer's disease (AD). AD is a worldwide neurodegenerative disease characterized by the destruction of nerve cells in the brain and the loss of cognitive function due to aging. Stilbenes are a unique class of natural phenolic compounds distinguished by a C6-C2-C6 (1,2-diphenylethylene) structure and two aromatic rings connected by an ethylene bridge. Stilbenes' distinct features make them an intriguing subject for pharmacological research and development. Several preclinical studies have suggested that stilbenes may have neuroprotective effects by reducing Aβ generation and oligomerization, enhancing Aβ clearance, and regulating tau neuropathology through the prevention of aberrant tau phosphorylation and aggregation, as well as scavenging reactive oxygen species. Synthetic stilbene derivatives also target multiple pathways involved in neuroprotection and have demonstrated promising biological activity in vitro. However, some properties of stilbenes, such as sensitivity to physiological conditions, low solubility, poor permeability, instability, and low bioavailability, limit their usefulness in clinical applications. To address this issue, current investigations have developed new drug delivery systems based on stilbene derivative molecules. This review aims to shed light on the development of next-generation treatment strategies by examining in detail the role of stilbenes in Alzheimer's pathophysiology and their therapeutic potential.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Türkiye;
| | - Berrak Dumlupınar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Okan University, İstanbul 34959, Türkiye;
| | - Özlem Bahadır Acıkara
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye;
| | - Reyhan Arıcı
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara Medipol University, Ankara 06570, Türkiye;
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Türkiye;
| | - Leyli Can Aynal
- Etlik City Hospital, Department of Neurology, Ankara 06170, Türkiye;
| | - Eduardo Sobarzo Sánchez
- Centro de Investigación en Ingeniería de Materiales, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Vela Navarro N, De Nadai Mundim G, Cudic M. Implications of Mucin-Type O-Glycosylation in Alzheimer's Disease. Molecules 2025; 30:1895. [PMID: 40363702 PMCID: PMC12073284 DOI: 10.3390/molecules30091895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders linked to aging. Major hallmarks of AD pathogenesis include amyloid-β peptide (Aβ) plaques, which are extracellular deposits originating from the processing of the amyloid precursor protein (APP), and neurofibrillary tangles (NFTs), which are intracellular aggregates of tau protein. Recent evidence indicates that disruptions in metal homeostasis and impaired immune recognition of these aggregates trigger neuroinflammation, ultimately driving disease progression. Therefore, a more comprehensive approach is needed to understand the underlying causes of the disease. Patients with AD present abnormal glycan profiles, and most known AD-related molecules are either modified with glycans or involved in glycan regulation. A deeper understanding of how O-glycosylation influences the balance between amyloid-beta peptide production and clearance, as well as microglia's pro- and anti-inflammatory responses, is crucial for deciphering the early pathogenic events of AD. This review aims to provide a comprehensive summary of the extensive research conducted on the role of mucin-type O-glycosylation in the pathogenesis of AD, discussing its role in disease onset and immune recognition.
Collapse
Affiliation(s)
| | | | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA; (N.V.N.); (G.D.N.M.)
| |
Collapse
|
8
|
Luo M, Zhou J, Sun C, Chen W, Fu C, Si C, Zhang Y, Geng Y, Chen Y. APP β-CTF triggers cell-autonomous synaptic toxicity independent of Aβ. eLife 2025; 13:RP100968. [PMID: 40266681 PMCID: PMC12017768 DOI: 10.7554/elife.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Aβ is believed to play a significant role in synaptic degeneration observed in Alzheimer's disease and is primarily investigated as a secreted peptide. However, the contribution of intracellular Aβ or other cleavage products of its precursor protein (APP) to synaptic loss remains uncertain. In this study, we conducted a systematic examination of their cell-autonomous impact using a sparse expression system in rat hippocampal slice culture. Here, these proteins/peptides were overexpressed in a single neuron, surrounded by thousands of untransfected neurons. Surprisingly, we found that APP induced dendritic spine loss only when co-expressed with BACE1. This effect was mediated by β-CTF, a β-cleavage product of APP, through an endosome-related pathway independent of Aβ. Neuronal expression of β-CTF in mouse brains resulted in defective synaptic transmission and cognitive impairments, even in the absence of amyloid plaques. These findings unveil a β-CTF-initiated mechanism driving synaptic toxicity irrespective of amyloid plaque formation and suggest a potential intervention by inhibiting the endosomal GTPase Rab5.
Collapse
Affiliation(s)
- Menguxn Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jia Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cailu Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wanjia Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chaoying Fu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chenfang Si
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
9
|
Cathoud G, Hashemi M, Lyubchenko Y, Simões P. Uncovering Amyloid-β Interactions: Gray versus White Matter. ACS Chem Neurosci 2025; 16:1433-1441. [PMID: 40143654 DOI: 10.1021/acschemneuro.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid plaques in the brain. Recent studies suggest that amyloid-β (Aβ) peptides interact with cell membranes, potentially catalyzing plaque formation. However, the effect of varying cell membrane compositions on this catalytic process requires further investigation. Using molecular dynamics simulations, we demonstrate that a model gray matter membrane significantly influences the secondary structure of β-amyloid peptides. Notably, residues Asp1 and Glu22 play crucial roles in the membrane interaction. Glutamic acid at position 22, located in the middle of the peptide chain, appears to promote the formation of β-hairpin conformations, which are critical for aggregation. Additionally, our simulations reveal that the model white matter membrane allows a spontaneous insertion of segments of the peptide into the membrane, suggesting that membrane interaction not only alters the peptide structure but may also compromise membrane integrity. Our results show that the different membrane compositions in the brain may play different roles when interacting with β-amyloid peptides.
Collapse
Affiliation(s)
- Gabriel Cathoud
- CERES, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Mohtadin Hashemi
- Department of Physics, Auburn University, Auburn, Alabama 36849-5318, United States
| | - Yuri Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Pedro Simões
- CERES, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| |
Collapse
|
10
|
Hussain MK, Ahmad M, Khatoon S, Khan MV, Azmi S, Arshad M, Ahamad S, Saquib M. Phytomolecules as Alzheimer's therapeutics: A comprehensive review. Eur J Med Chem 2025; 288:117401. [PMID: 39999743 DOI: 10.1016/j.ejmech.2025.117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder recognized by progressive cognitive decline and behavioral changes. The pathology of AD is characterized by the accumulation of amyloid-β (Aβ) plaques and the hyperphosphorylation of tau protein, which leads to synaptic loss and subsequent neurodegeneration. Additional contributors to disease progression include metabolic, vascular, and inflammatory factors. Glycogen synthase kinase-3β (GSK-3β) is also implicated, as it plays a crucial role in tau phosphorylation and the progression of neurodegeneration. This review provides a comprehensive analysis of various phytomolecules and their potential to target multiple aspects of AD pathology. We examined natural products from diverse classes, including stilbenes, flavonoids, phenolic acids, alkaloids, coumarins, terpenoids, chromenes, cannabinoids, chalcones, phloroglucinols, and polycyclic polyprenylated acylphloroglucinols (PPAPs). The key mechanisms of action of these phytomolecules include modulating tau protein dynamics to reduce aggregation, inhibiting acetylcholinesterase (AChE) to maintain neurotransmitter levels and enhance cognitive function, and inhibiting β-secretase (BACE1) to decrease Aβ production. Additionally, some phytomolecules were found to influence GSK-3β activity, thereby impacting tau phosphorylation and neurodegeneration. By addressing multiple targets, Aβ production, tau hyperphosphorylation, AChE activity, and GSK-3β, these natural products offer a promising multi-targeted approach to AD therapy. This review highlights their potential to develop effective treatments that not only mitigate core pathological features but also manage the complex, multifactorial aspects of AD progression.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt Raza P.G. College, M.J.P Rohilkahand University, Rampur, Bareilly, 244901, India.
| | - Moazzam Ahmad
- Defence Research & Development Organization, Selection Centre East, Prayagraj, 211001, India
| | | | - Mohsin Vahid Khan
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Sarfuddin Azmi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Md Arshad
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad), 211010, UP, India.
| |
Collapse
|
11
|
de Ceballos ML. The endocannabinoid system offers a target for Alzheimer's disease treatment through inhibition of fatty acid amide hydrolase (FAAH). FEBS J 2025. [PMID: 40172080 DOI: 10.1111/febs.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
Oddi et al. report the effects of chronic treatment via intranasal delivery with URB597, a fatty acid amide hydrolase (FAAH) inhibitor, on an Alzheimer's disease (AD) transgenic mouse model. They found that prolonged treatment with URB597 reduced the learning and memory deficits of these mice. Mechanistically, the inhibitor modified several genes related to amyloidosis and inflammatory responses or anandamide signaling. FAAH inhibition induced a decrease in the accumulation, synthesis, and release of β-Amyloid, along with diminished expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), and this change may be associated with epigenetic changes induced by the drug. In summary, prolonged treatment with URB597 impinges on different aspects of AD pathophysiology, suggesting its therapeutic relevance in treating AD.
Collapse
Affiliation(s)
- Maria L de Ceballos
- Department of Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain
| |
Collapse
|
12
|
Esawii HA, Mamatkulov K, Mahran HA, Arzumanyan G, Mohamed N. Investigation into Alzheimer's-related amyloid-β conformational transformations and stability influenced by green iron oxide nanoparticles (GIONP). Int J Biol Macromol 2025; 298:140124. [PMID: 39837164 DOI: 10.1016/j.ijbiomac.2025.140124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/23/2025]
Abstract
Alzheimer's disease (AD) is popularly believed to be triggered by the aggregation of amyloid beta 1-42 (Aβ - 42) peptides, eventually leading to neurodegeneration. Our study delves into the influential role played by Green Iron Oxide Nanoparticles (GIONP). GIONP are typically synthesized using a green chemistry approach, imposing curcumin as a biocompatible reducing and capping agent, leveraging its inherent antioxidant, anti-inflammatory, and neuroprotective attributes. Herein, our research particularly aims to decipher whether GIONP modulates the secondary structure of Aβ1-42 peptides with a close consideration to the surrounding physiological factors, as well as the membrane bilayer probable conformation changes. Raman spectroscopy was employed to investigate the interaction between GIONP and Aβ1-42 aggregates, demonstrating significant alterations in secondary structure dynamics of Aβ1-42 polypeptide. Fourier-transform infrared (FTIR) spectroscopy shed light on the chemical interactions between GIONP and curcumin, a capping agent. X-ray diffraction (XRD) analysis was performed to determine the crystalline structure and phase purity of the synthesized GIONP, providing insights into their stability and structural integrity. GIONP particle size distribution investigations and membrane architectures surrounding GIONP were carried out for their impact on membrane integrity and stability. The morphology of GIONP, membrane mimetic liposomal structures formation, and integrity were studied using transmission electron microscopy (TEM), accompanied with energy-dispersive X-ray spectroscopy (EDS), which displayed the elements distribution within each of the structures. The study uncovered that GIONP stabilizes the secondary structure of Aβ1-42, potentially offering modulation to the aggregation process. Furthermore, GIONP proved to have no negative impact on membrane integrity, implying that they could be safely employed as a therapeutic option for the modulation of peptide aggregation's pathological pathway of Alzheimer's disease. This study may contribute to broadening our understanding of nanoparticle-mediated therapies in modulating neurodegenerative disorders, highlighting their dual involvement in amyloid aggregation regulation and membrane structure maintenance.
Collapse
Affiliation(s)
- Heba A Esawii
- Frank Laboratory of Neutron Physics, Nano Photonics Centre, Department of Raman Spectroscopy, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia; Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt; Academy of Scientific Research and Technology (ASRT), Cairo, Egypt.
| | - Kahramon Mamatkulov
- Frank Laboratory of Neutron Physics, Nano Photonics Centre, Department of Raman Spectroscopy, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia.
| | - Hanan A Mahran
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Grigory Arzumanyan
- Frank Laboratory of Neutron Physics, Nano Photonics Centre, Department of Raman Spectroscopy, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia.
| | - Noha Mohamed
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
13
|
Yeapuri P, Machhi J, Foster EG, Kadry R, Bhattarai S, Lu Y, Sil S, Sapkota R, Srivastava S, Kumar M, Ikezu T, Poluektova LY, Gendelman HE, Mosley RL. Amyloid precursor protein and presenilin-1 knock-in immunodeficient mice exhibit intraneuronal Aβ pathology, microgliosis, and extensive neuronal loss. Alzheimers Dement 2025; 21:e70084. [PMID: 40195277 PMCID: PMC11975631 DOI: 10.1002/alz.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 04/09/2025]
Abstract
INTRODUCTION Transgenic mice overexpressing familial Alzheimer's disease (AD) mutations (FAD) show non-physiological traits, and their immunocompetent backgrounds limit their use in AD immunotherapy research. Preclinical models that reflect human immune responses in AD are needed. METHODS Using CRISPR-Cas9, we developed single (NA) and double (NAPS) knock-in (KI) amyloid precursor protein (APP)KM670,671NL (Swedish) and presenilin 1 (PS 1)M146VFAD mutations on an immunodeficient NOG (NOD.Cg-PrkdcscidIl2rgtm1Sug/JicTac) background. The models were confirmed by Sanger sequencing and evaluated for AD-like pathology. RESULTS Both NA and NAPS mice developed pathology without overexpression artifacts. Mutation-induced upregulation of APP-CTF-β led to intraneuronal human amyloid beta (Aβ) (6E10) deposits and amyloid-associated microgliosis as early as 3 months, which increased with age. The addition of the PS 1M146V mutation doubled the amyloid load. The models displayed broad neuronal loss, resulting in brain atrophy in older mice. DISCUSSION These models replicate intraneuronal amyloid pathology and, with human immune reconstitution potential, enable novel studies of human immune responses in AD. HIGHLIGHTS A novel Alzheimer's disease (AD) knock-in (KI) mouse was developed and characterized on an immunodeficient NOG background. The model provides a platform for human immune studies and the evaluation of immunotherapies for AD. The KI mice demonstrate intraneuronal Aβ deposits and amyloid-associated microglial reactions. KI mice demonstrate extensive neuronal loss. Human immune reconstitution enables studies of infectious AD co-morbidities, such as the human immunodeficiency and herpes simplex viruses.
Collapse
Affiliation(s)
- Pravin Yeapuri
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jatin Machhi
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Emma G. Foster
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Rana Kadry
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shaurav Bhattarai
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Yaman Lu
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Susmita Sil
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Roshan Sapkota
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shefali Srivastava
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Mohit Kumar
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Rodney Lee Mosley
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
14
|
Hacker RM, Smith JJ, Platt DC, Brennessel WW, Jones MA, Webb MI. Ruthenium(II)-Arene Complexes with a 2,2'-Bipyridine Ligand as Anti-Aβ Agents. Biomolecules 2025; 15:475. [PMID: 40305171 PMCID: PMC12024814 DOI: 10.3390/biom15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
Agents that target the amyloid-β (Aβ) peptide associated with Alzheimer's disease have seen renewed interest following the clinical success of antibody therapeutics. Small molecules, specifically metal-based complexes, are excellent candidates for advancement, given their relative ease of preparation and modular scaffold. Herein, several ruthenium-arene complexes containing 2,2-bipyridine (bpy) ligands were prepared and evaluated for their respective ability to modulate the aggregation of Aβ. This was carried out using the three sequential methods of thioflavin T (ThT) fluorescence, dynamic ligand scattering (DLS), and transmission electron microscopy (TEM). Overall, it was observed that RuBA, the complex with a 4,4-diamino-2,2-bipyridine ligand, had the greatest impact on Aβ aggregation. Further evaluation of the complexes was performed to determine their relative affinity for serum albumin and biocompatibility towards two neuronal cell lines. Ultimately, RuBA outperformed the other Ru complexes, where the structure-activity relationship codified the importance of the amino groups on the bpy for anti-Aβ activity.
Collapse
Affiliation(s)
- Ryan M. Hacker
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY 14454, USA; (R.M.H.); (J.J.S.)
| | - Jacob J. Smith
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY 14454, USA; (R.M.H.); (J.J.S.)
| | - David C. Platt
- Department of Chemistry, Illinois State University, Normal, IL 69701, USA; (D.C.P.); (M.A.J.)
| | | | - Marjorie A. Jones
- Department of Chemistry, Illinois State University, Normal, IL 69701, USA; (D.C.P.); (M.A.J.)
| | - Michael I. Webb
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY 14454, USA; (R.M.H.); (J.J.S.)
| |
Collapse
|
15
|
Zhou Q, Wang W, Deng C. Advancements in Proteolysis Targeting Chimeras for Targeted Therapeutic Strategies in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04838-0. [PMID: 40133753 DOI: 10.1007/s12035-025-04838-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/09/2025] [Indexed: 03/27/2025]
Abstract
The presence of hyperphosphorylated Tau proteins, which mislocalize and form neurofibrillary tangles, and the accumulation of amyloid-β plaques are hallmark features of Alzheimer's disease (AD). These toxic protein aggregates contribute to synaptic impairment and neuronal dysfunction, underscoring the need for strategies aimed at effectively clearing or reducing these aggregates in the treatment of AD. In recent years, proteolysis targeting chimera (PROTAC) technology has emerged as a promising approach for selectively degrading dysfunctional proteins rather than merely inhibiting their function. This approach holds great potential for developing more effective interventions that could slow AD progression and improve patient outcomes. In this review, we first examine the pathological mechanisms underlying AD, focusing on abnormal protein degradation and accumulation. We then explore the evolution of PROTAC technology, its mechanisms of action, and the current status of drug development. Finally, we discuss the latest findings regarding the application of PROTACs in AD therapy, highlighting the potential benefits and limitations of this technology. Although promising, further clinical research is necessary to fully assess the safety and efficacy of PROTAC-based therapies for AD treatment.
Collapse
Affiliation(s)
- Qiuzhi Zhou
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weixia Wang
- School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Chinnathambi S, Malik S, Chandrashekar M. Tau PET probes for Alzheimer's disease detection and their structural characterization. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 145:255-285. [PMID: 40324849 DOI: 10.1016/bs.apcsb.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
There are two hallmarks for the Alzheimer's disease that are currently used to identify the disease- the presence of the proteins Amyloid-β and Tau. Amyloid PET has been studied for a long time and many effective probes have been introduced, some approved by the FDA, including [18F]-florbetaben (Neuraceq), [18F]-florbetapir (Amyvid), [18F]-flutemetamol (Vizamyl). However, it was found that imaging of NFTs could give more accurate results as the accumulation of Tau could directly be correlated with neurodegeneration, which isn't the case for Amyloid-β. Amyloid PET is thereby a diagnostic tool, which can rather be used for confirming the absence of Alzheimer's Disease. Tau PET, which was found to be a potentially useful diagnostic tool was explored further as it can directly be associated with the extent of spread of the disease. This led to the discovery of many probes for Tau PET. The initial ones were non-selective for Tau over Aβ. Further exploration suggested two generations of Tau probes, both with higher selectivity for Tau over Aβ. A second generation was introduced to overcome the shortcomings of the first generation which are examined in this review. Much research on effective Tau PET probes has led to an FDA-approved Tau probe, 18F-flortaucipir. This systematic review discusses the characteristics and effectiveness of the first-generation probes, second-generation probes and other newer probes. It discusses the structural changes made in the probes over time that led to the enhancement of their properties as a Tau probe, that is, increased affinity and selectivity for Tau. It also discusses the shortcomings of probes developed so far and the ideal characteristics for Tau probes.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Hosur Road, Bangalore, Karnataka, India.
| | - Sneha Malik
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Hosur Road, Bangalore, Karnataka, India
| | - Madhura Chandrashekar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Hosur Road, Bangalore, Karnataka, India
| |
Collapse
|
17
|
Ashwini P, Subhash B, Amol M, Kumar D, Atmaram P, Ravindra K. Comprehensive investigation of multiple targets in the development of newer drugs for the Alzheimer's disease. Acta Pharm Sin B 2025; 15:1281-1310. [PMID: 40370532 PMCID: PMC12069117 DOI: 10.1016/j.apsb.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 05/16/2025] Open
Abstract
Alzheimer's disease, a significant contributor to dementia, is rapidly becoming a serious healthcare concern in the 21st century. The alarming number of patients with Alzheimer's disease is steadily increasing, which is contributed by the dearth of treatment options. The current treatment for Alzheimer's disease is heavily dependent on symptomatic treatment that has failed to cure the disease despite huge investments in the development of drugs. The clinical treatment of Alzheimer's disease with limited drugs is generally targeted towards the inhibition of N-methyl-d-aspartate receptor and acetylcholine esterase, which only elevate cognition levels for a limited period. Beyond the aforementioned molecular targets, β-amyloid was much explored with little success and thus created a feel and palpable growing emphasis on discovering new putative and novel targets for AD. This has inspired medicinal chemists to explore new targets, including microglia, triggering receptors expressed on myeloid cells 2 (Trem-2), and notum carboxylesterase, to discover new lead compounds. This review explores the functions, pathophysiological roles, and importance of all AD-related targets that address therapeutic and preventive approaches for the treatment and protection of Alzheimer's disease.
Collapse
Affiliation(s)
- Patil Ashwini
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Bodhankar Subhash
- Department of Pharmacology, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Muthal Amol
- Department of Pharmacology, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
- University of California, Davis, CA 95616, USA
| | - Pawar Atmaram
- Department of Pharmaceutics, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Kulkarni Ravindra
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| |
Collapse
|
18
|
Yan X, Yang Y, Huang W, Fu S, Cui B, Chu M, Dong Y, Peng Y, Song H, Shi J, Liu Q. Beneficial effects of the herbal medicine zuo gui wan in a mice model of Alzheimer's disease via Drp1-Mediated inhibition of mitochondrial fission and activation of AMPK/PGC-1α-regulated mitochondrial bioenergetics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119425. [PMID: 39884486 DOI: 10.1016/j.jep.2025.119425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuo Gui Wan (ZGW) is a well-known traditional Chinese medicine decoction used for approximately 400 years to treat age-related degenerative conditions, including cognitive impairment in older adults, osteoporosis, and general aging. However, the mechanism of action for ZGW remains unclear. AIMS OF THE STUDY This study aims to investigate the efficacy of ZGW in improving cognitive function in Alzheimer's disease (AD) animal models and to explore the underlying mechanisms, presenting a novel perspective in the field. MATERIALS AND METHODS Six-month-old male APP/PS1 mice were divided into three groups that received either metformin (200 mg/kg daily) or ZGW (6 and 12 g/kg daily). High-performance liquid chromatography was conducted for ZGW's quality control. Cognitive function was assessed using the Morris water maze test. Neuronal loss, synaptic plasticity, and β-amyloid (Aβ) deposition were evaluated through Western blot or immunofluorescence staining. The underlying molecular mechanisms were investigated using ELISA, Western blot, qRT-PCR, co-immunoprecipitation assay, ATP assay, and cytochrome c oxidase assay. RESULTS ZGW, administered in both low and high doses, significantly enhanced cognitive performance, notably decreased neuronal loss and Aβ deposition, and reduced levels of Aβ1-40/42. It also inhibited excessive mitochondrial division primarily by suppressing phosphorylated dynamin-related protein 1 (Drp1), especially at high doses of ZGW. Co-immunoprecipitation experiments further confirmed that ZGW inhibited the interaction between Aβ and p-Drp1. Furthermore, similar to the effects of the AMP-activated Protein Kinase (AMPK) activator metformin, ZGW led to a marked increase in the mitochondrial DNA copy number and upregulated the AMPK/PGC-1α/NRF1/TFAM pathway. Improvements in mitochondrial function were evident from the increased ATP production, elevated expression of superoxide dismutase 2, and upregulated cytochrome c oxidase activity. Additionally, the excess byproduct of reactive oxygen species, 4-hydroxy-2-nonenal, decreased in the group treated with ZGW. CONCLUSION This study provides compelling evidence that ZGW improves cognitive impairment in APP/PS1 mice by activating AMPK/PGC-1α-regulated mitochondrial bioenergetics and inhibiting Aβ-induced mitochondrial fragmentation, highlighting its potential as an effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Xirui Yan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifang Yang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weiling Huang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bo Cui
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min Chu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yang Dong
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yinting Peng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiyan Song
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianrong Shi
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qing Liu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
19
|
Atanasova M. Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics-Part A: Endogenous Compounds and Repurposed Drugs. Pharmaceuticals (Basel) 2025; 18:306. [PMID: 40143085 PMCID: PMC11944459 DOI: 10.3390/ph18030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The amyloid hypothesis is the predominant model of Alzheimer's disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various processes, such as vascular damage, inflammation-induced astrocyte and microglia activation, disrupted neuronal ionic homeostasis, oxidative stress, abnormal kinase and phosphatase activity, tau phosphorylation, neurofibrillary tangle formation, cognitive dysfunction, synaptic loss, cell death, and, ultimately, dementia. Molecular dynamics (MD) is a powerful structure-based drug design (SBDD) approach that aids in understanding the properties, functions, and mechanisms of action or inhibition of biomolecules. As the only method capable of simulating atomic-level internal motions, MD provides unique insights that cannot be obtained through other techniques. Integrating experimental data with MD simulations allows for a more comprehensive understanding of biological processes and molecular interactions. This review summarizes and evaluates MD studies from the past decade on small molecules, including endogenous compounds and repurposed drugs, that inhibit amyloid beta. Furthermore, it outlines key considerations for future MD simulations of amyloid inhibitors, offering a potential framework for studies aimed at elucidating the mechanisms of amyloid beta inhibition by small molecules.
Collapse
|
20
|
Xavier-de-Britto I, Gomes-da-Silva NC, Gomes Soares MA, Follmer C, Dabkiewicz D, Alencar LMR, Sant’Anna C, Ferreira TPT, Martins PRES, Ricci-Junior E, Fechine PBA, Santos-Oliveira R. Therapeutic Potential of Arimoclomol Nanomicelles: In Vitro Impact on Alzheimer's and Parkinson's Pathology and Correlation with In Vivo Inflammatory Response. ACS Chem Neurosci 2025; 16:699-710. [PMID: 39907698 PMCID: PMC11843614 DOI: 10.1021/acschemneuro.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
This study investigates the potential of arimoclomol-loaded nanomicelles for the treatment of neurodegenerative diseases like Alzheimer's and Parkinson's, as well as their anti-inflammatory properties. Arimoclomol, a coinducer of heat shock proteins (HSPs), has shown clinical promise in mitigating protein misfolding, a hallmark of these diseases. In this work, arimoclomol nanomicelles significantly reduced the aggregation of β-amyloid (Aβ1-42) and α-synuclein (α-syn), key pathological proteins in Alzheimer's and Parkinson's. Additionally, the nanomicelles demonstrated potent anti-inflammatory effects, reducing leukocyte and neutrophil counts in an acute inflammation model. These results suggest that arimoclomol nanomicelles could enhance clinical outcomes by targeting both neurodegenerative and inflammatory processes, offering a promising therapeutic strategy for long-term disease management.
Collapse
Affiliation(s)
- Isabelle Xavier-de-Britto
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Natália Cristina Gomes-da-Silva
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Marilia Amável Gomes Soares
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Cristian Follmer
- Laboratory
of Biological Chemistry of Neurodegenerative Disorders, Department
of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - David Dabkiewicz
- Laboratory
of Biological Chemistry of Neurodegenerative Disorders, Department
of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Biophysics
and Nanosystems Laboratory, Federal University of Maranhão, Department of Physics, São Luis, Maranhão 65065690, Brazil
| | - Celso Sant’Anna
- Laboratory
of Microscopy Applied to Life Science–Lamav, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de
Janeiro 25250-020, Brazil
| | | | | | - Eduardo Ricci-Junior
- Federal
University of Rio de Janeiro, School of
Pharmacy, Rio de Janeiro, Rio de Janeiro 21941900, Brazil
| | - Pierre Basílio Almeida Fechine
- Group
of Chemistry of Advanced Materials (GQMat)–Department of Analytical
Chemistry and Physical-Chemistry, Federal
University of Ceará, Fortaleza, Ceará 451-970, Brazil
| | - Ralph Santos-Oliveira
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
- Rio
de Janeiro State University, Laboratory
of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro 23070200, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Al-Jaf S, Soliman AY, El-Yazbi AF, Abd-Elrahman KS. Unveiling the Interplay: Neurovascular Coupling, Astrocytes and G Protein-Coupled Receptors in Alzheimer's Disease. ACS Pharmacol Transl Sci 2025; 8:271-285. [PMID: 39974631 PMCID: PMC11833731 DOI: 10.1021/acsptsci.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 02/21/2025]
Abstract
Astrocytes are a type of glial cell that are involved in actively modulating synaptic plasticity, neurotransmitter homeostasis, and neuroinflammatory responses. More importantly, they coordinate neuronal activity and cerebral blood flow (CBF) in what is known as neurovascular coupling (NVC). NVC is an essential mechanism that maintains the high energy demand the brain requires by supplying continuous and rapid supply of oxygen and nutrients through CBF. Impairment in NVC is one of the key events that triggers a spiral of occurrences that lead to the clinical advancement of Alzheimer's disease (AD). It is yet to be determined what the molecular manifestations of NVC impairment relate to; nonetheless, it is believed that alterations in G protein-coupled receptors (GPCRs) are responsible for exacerbating these effects. In this review, we summarize the current evidence supporting the involvement of GPCRs on astrocytes in NVC and the pathophysiology of AD. Additionally, we propose potential research directions to further elucidate the underlying mechanisms and evaluate the feasibility of targeting specific GPCRs as a therapeutic strategy to correct brain blood flow and memory impairments associated with AD.
Collapse
Affiliation(s)
- Sanarya Al-Jaf
- Department
of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian
Centre for Brain Health, The University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alaa Y. Soliman
- Faculty
of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh 51718, Egypt
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed F. El-Yazbi
- Faculty
of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh 51718, Egypt
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Khaled S. Abd-Elrahman
- Department
of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian
Centre for Brain Health, The University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Medical Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
22
|
Porel P, Bala K, Aran KR. Exploring the role of HIF-1α on pathogenesis in Alzheimer's disease and potential therapeutic approaches. Inflammopharmacology 2025; 33:669-678. [PMID: 39465478 DOI: 10.1007/s10787-024-01585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a crucial transcription factor that regulates cellular responses to low oxygen levels (hypoxia). In Alzheimer's disease (AD), emerging evidence suggests a significant involvement of HIF-1α in disease pathogenesis. AD is characterized by the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), leading to neuronal dysfunction and cognitive decline. HIF-1α is implicated in AD through its multifaceted roles in various cellular processes. Firstly, in response to hypoxia, HIF-1α promotes the expression of genes involved in angiogenesis, which is crucial for maintaining cerebral blood flow and oxygen delivery to the brain. However, in the context of AD, dysregulated HIF-1α activation may exacerbate cerebral hypoperfusion, contributing to neuronal damage. Moreover, HIF-1α is implicated in the regulation of Aβ metabolism. It can influence the production and clearance of Aβ peptides, potentially modulating their accumulation and toxicity in the brain. Additionally, HIF-1α activation has been linked to neuroinflammation, a key feature of AD pathology. It can promote the expression of pro-inflammatory cytokines and exacerbate neuronal damage. Furthermore, HIF-1α may play a role in synaptic plasticity and neuronal survival, which are impaired in AD. Dysregulated HIF-1α signaling could disrupt these processes, contributing to cognitive decline and neurodegeneration. Overall, the involvement of HIF-1α in various aspects of AD pathophysiology highlights its potential as a therapeutic target. Modulating HIF-1α activity could offer novel strategies for mitigating neurodegeneration and preserving cognitive function in AD patients. However, further research is needed to elucidate the precise mechanisms underlying HIF-1α dysregulation in AD and to develop targeted interventions.
Collapse
Affiliation(s)
- Pratyush Porel
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
23
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Li J, Huang D, Liao W, Wang Y, Liu Y, Luan P. Advanced Nanopharmaceutical Intervention for the Reduction of Inflammatory Responses and the Enhancement of Behavioral Outcomes in APP/PS1 Transgenic Mouse Models. Pharmaceutics 2025; 17:177. [PMID: 40006544 PMCID: PMC11859494 DOI: 10.3390/pharmaceutics17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The excessive accumulation of Aβ plays a critical role in the development of Alzheimer's disease. However, the therapeutic potential of drugs like curcumin is often limited by low biocompatibility and BBB permeability. In this study, we developed a nanomaterial, BP-PEG-Tar@Cur, which was designed to enhance the biocompatibility of (curcumin) Cur, target Aβ, and augment BBB permeability through near-infrared (NIR) photothermal effects. Methods: Soluble Aβ, ThT fluorescence, and Aβ depolymerization fluorescence experiments were conducted to evaluate the ability of BP-PEG-Tar@Cur to inhibit Aβ aggregation and dissociate Aβ fibrils. Cell uptake assays were performed to confirm the targeting ability of BP-PEG-Tar@Cur towards Aβ. In vitro mitochondrial ROS clearance and in vivo detection of inflammatory factors were used to assess the anti-inflammatory and antioxidant properties of the nanodrug. Water maze behavioral experiments were conducted to evaluate the effect of BP-PEG-Tar@Cur on spatial memory, learning ability, and behavioral disorders in AD mice. Results: The nanodrug effectively inhibited Aβ aggregation and dissociated Aβ fibrils in vitro. BP-PEG-Tar@Cur demonstrated efficiency in curbing ROS overproduction in mitochondria and dampening the activation of microglia and astrocytes triggered by Aβ aggregation. Water maze behavioral experiments revealed that BP-PEG-Tar@Cur enhanced spatial memory, learning ability, and alleviated behavioral disorders in AD mice. Conclusions: Collectively, these findings demonstrate that BP-PEG-Tar@Cur has the potential to be an effective targeted drug for inhibiting Aβ aggregation and improving cognitive impairment in AD mice.
Collapse
Affiliation(s)
- Jun Li
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Dongqing Huang
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wanchen Liao
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yulin Wang
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510260, China
| | - Yibiao Liu
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Ping Luan
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
25
|
Dhariwal R, Jain M, Mir YR, Singh A, Jain B, Kumar P, Tariq M, Verma D, Deshmukh K, Yadav VK, Malik T. Targeted drug delivery in neurodegenerative diseases: the role of nanotechnology. Front Med (Lausanne) 2025; 12:1522223. [PMID: 39963432 PMCID: PMC11831571 DOI: 10.3389/fmed.2025.1522223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases, characterized by progressive neuronal loss and cognitive impairments, pose a significant global health challenge. This study explores the potential of nanotherapeutics as a promising approach to enhance drug delivery across physiological barriers, particularly the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (B-CSFB). By employing nanoparticles, this research aims to address critical challenges in the diagnosis and treatment of conditions such as Alzheimer's, Parkinson's, and Huntington's diseases. The multifactorial nature of these disorders necessitates innovative solutions that leverage nanomedicine to improve drug solubility, circulation time, and targeted delivery while minimizing off-target effects. The findings underscore the importance of advancing nanomedicine applications to develop effective therapeutic strategies that can alleviate the burden of neurodegenerative diseases on individuals and healthcare systems.
Collapse
Affiliation(s)
- Rupal Dhariwal
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mukul Jain
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Abhayveer Singh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Bhavik Jain
- Chitkara Centre for Research and Development, Chitkara University, Baddi, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mohd Tariq
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Khemraj Deshmukh
- Department of Biomedical Engineering, Parul Institute of Technology, Parul University, Vadodara, India
| | | | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research & Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
26
|
Oddi S, Scipioni L, Totaro A, Giacovazzo G, Ciaramellano F, Tortolani D, Leuti A, Businaro R, Armeli F, Bilkei-Gorzo A, Coccurello R, Zimmer A, Maccarrone M. Fatty-acid amide hydrolase inhibition mitigates Alzheimer's disease progression in mouse models of amyloidosis. FEBS J 2025. [PMID: 39822137 DOI: 10.1111/febs.17403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 01/19/2025]
Abstract
The endocannabinoid N-arachidonoylethanolamine (AEA) is a pro-homeostatic bioactive lipid known for its anti-inflammatory, anti-oxidative, immunomodulatory, and neuroprotective properties, which may contrast/mitigate Alzheimer's disease (AD) pathology. This study explores the therapeutic potential of targeting fatty acid amide hydrolase (FAAH), the major enzyme degrading AEA, in mouse models of amyloidosis (APP/PS1 and Tg2576). Enhancing AEA signaling by genetic deletion of FAAH delayed cognitive deficits in APP/PS1 mice and improved cognitive symptoms in 12-month-old AD-like mice. Chronic pharmacological FAAH inhibition fully reverted neurocognitive decline, attenuated neuroinflammation, and promoted neuroprotective mechanisms in Tg2576 mice. Additionally, pharmacological FAAH inhibition robustly suppressed β-amyloid production and accumulation, associated with decreased expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), possibly through a cannabinoid receptor 1-dependent epigenetic mechanism. These findings improve our understanding of AEA signaling in AD pathogenesis and provide proof of concept that selective targeting of FAAH activity could be a promising therapeutic strategy against AD.
Collapse
Affiliation(s)
- Sergio Oddi
- Department of Veterinary Medicine, University of Teramo, Italy
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Lucia Scipioni
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Antonio Totaro
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Giacomo Giacovazzo
- Department of Veterinary Medicine, University of Teramo, Italy
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Francesca Ciaramellano
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Daniel Tortolani
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Leuti
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Germany
| | - Roberto Coccurello
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
- National Research Council (CNR), Institute for Complex System (ISC), Rome, Italy
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Germany
| | - Mauro Maccarrone
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| |
Collapse
|
27
|
Chew CS, Lee JY, Ng KY, Koh RY, Chye SM. Resilience mechanisms underlying Alzheimer's disease. Metab Brain Dis 2025; 40:86. [PMID: 39760900 DOI: 10.1007/s11011-024-01507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/14/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) consists of two main pathologies, which are the deposition of amyloid plaque as well as tau protein aggregation. Evidence suggests that not everyone who carries the AD-causing genes displays AD-related symptoms; they might never acquire AD as well. These individuals are referred to as non-demented individuals with AD neuropathology (NDAN). Despite the presence of extensive AD pathology in their brain, it was found that NDAN had better cognitive function than was expected, suggesting that they were more resilient (better at coping) to AD due to differences in their brains compared to other demented or cognitively impaired patients. Thus, identification of the mechanisms underlying resilience is crucial since it represents a promising therapeutic strategy for AD. In this review, we will explore the molecular mechanisms underpinning the role of genetic and molecular resilience factors in improving resilience to AD. These include protective genes and proteins such as APOE2, BDNF, RAB10, actin network proteins, scaffolding proteins, and the basal forebrain cholinergic system. A thorough understanding of these resilience mechanisms is crucial for not just comprehending the development of AD but may also open new treatment possibilities for AD by enhancing the neuroprotective pathway and targeting the pathogenic process.
Collapse
Affiliation(s)
- Chu Shi Chew
- School of Health Science, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Jia Yee Lee
- School of Health Science, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, IMU University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, IMU University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
28
|
Song X, Wang X, Gao Y, Xu G, Yan X, Chen Z, Song G. Exploring the Therapeutic Potential of Glycyrrhiza Compounds in Alzheimer's Disease: A Comprehensive Review. Curr Top Med Chem 2025; 25:286-310. [PMID: 39323338 DOI: 10.2174/0115680266322320240911194626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Research shows that the development of AD is linked to neuroinflammation, endoplasmic reticulum stress, mitochondrial dysfunction, cell death, and abnormal cholinergic signaling. Glycyrrhiza compounds contain active ingredients and extracts that offer multiple benefits, including targeting various pathways, high efficacy with low toxicity, and long-lasting therapeutic effects. These benefits highlight the significant potential of Glycyrrhiza compounds for preventing and treating AD. This review summarizes recent advancements in Glycyrrhiza compounds for preventing and treating AD. It focuses on their inhibitory effects on key signaling pathways, such as Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and cholinergic signaling. This study aims to establish a scientific framework for using Glycyrrhiza compounds in the clinical prevention and treatment of AD and to support the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Xiaona Song
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| | - Xiaotang Wang
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, No. 85 Jiefang South Rd, Taiyuan, 030001, China
| | - Guoqiang Xu
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| | - Xiaoru Yan
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| | - Zhaoyang Chen
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| | - Guohua Song
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| |
Collapse
|
29
|
Xin Y, Zhou S, Chu T, Zhou Y, Xu A. Protective Role of Electroacupuncture Against Cognitive Impairment in Neurological Diseases. Curr Neuropharmacol 2025; 23:145-171. [PMID: 38379403 PMCID: PMC11793074 DOI: 10.2174/1570159x22999240209102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 02/22/2024] Open
Abstract
Many neurological diseases can lead to cognitive impairment in patients, which includes dementia and mild cognitive impairment and thus create a heavy burden both to their families and public health. Due to the limited effectiveness of medications in treating cognitive impairment, it is imperative to develop alternative treatments. Electroacupuncture (EA), a required method for Traditional Chinese Medicine, has the potential treatment of cognitive impairment. However, the molecular mechanisms involved have not been fully elucidated. Considering the current research status, preclinical literature published within the ten years until October 2022 was systematically searched through PubMed, Web of Science, MEDLINE, Ovid, and Embase. By reading the titles and abstracts, a total of 56 studies were initially included. It is concluded that EA can effectively ameliorate cognitive impairment in preclinical research of neurological diseases and induce potentially beneficial changes in molecular pathways, including Alzheimer's disease, vascular cognitive impairment, chronic pain, and Parkinson's disease. Moreover, EA exerts beneficial effects through the same or diverse mechanisms for different disease types, including but not limited to neuroinflammation, neuronal apoptosis, neurogenesis, synaptic plasticity, and autophagy. However, these findings raise further questions that need to be elucidated. Overall, EA therapy for cognitive impairment is an area with great promise, even though more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Yueyang Xin
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siqi Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Chu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aijun Xu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Kumari S, Kamiya A, Karnik SS, Rohilla S, Dubey SK, Taliyan R. Novel Gene Therapy Approaches for Targeting Neurodegenerative Disorders: Focusing on Delivering Neurotrophic Genes. Mol Neurobiol 2025; 62:386-411. [PMID: 38856793 DOI: 10.1007/s12035-024-04260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative illnesses (NDDs) like Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, spinal muscular atrophy, and Huntington's disease have demonstrated considerable potential for gene therapy as a viable therapeutic intervention. NDDs are marked by the decline of neurons, resulting in changes in both behavior and pathology within the body. Strikingly, only symptomatic management is available without a cure for the NDDs. There is an unmet need for a permanent therapeutic approach. Many studies have been going on to target the newer therapeutic molecular targets for NDDs including gene-based therapy. Gene therapy has the potential to provide therapeutic benefits to a large number of patients with NDDs by offering mechanisms including neuroprotection, neuro-restoration, and rectification of pathogenic pathways. Gene therapy is a medical approach that aims to modify the biological characteristics of living cells by controlling the expression of specific genes in certain neurological disorders. Despite being the most complex and well-protected organ in the human body, there is clinical evidence to show that it is possible to specifically target the central nervous system (CNS). This provides hope for the prospective application of gene therapy in treating NDDs in the future. There are several advanced techniques available for using viral or non-viral vectors to deliver the therapeutic gene to the afflicted region. Neurotrophic factors (NTF) in the brain are crucial for the development, differentiation, and survival of neurons in the CNS, making them important in the context of various neurological illnesses. Gene delivery of NTF has the potential to be used as a therapeutic approach for the treatment of neurological problems in the brain. This review primarily focuses on the methodologies employed for delivering the genes of different NTFs to treat neurological disorders. These techniques are currently being explored as a viable therapeutic approach for neurodegenerative diseases. The article exclusively addresses gene delivery approaches and does not cover additional therapy strategies for NDDs. Gene therapy offers a promising alternative treatment for NDDs by stimulating neuronal growth instead of solely relying on symptom relief from drugs and their associated adverse effects. It can serve as a long-lasting and advantageous treatment choice for the management of NDDs. The likelihood of developing NDDs increases with age as a result of neuronal degradation in the brain. Gene therapy is an optimal approach for promoting neuronal growth through the introduction of nerve growth factor genes.
Collapse
Affiliation(s)
- Shobha Kumari
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Aayush Kamiya
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Sanika Sanjay Karnik
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Sumedha Rohilla
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | | | - Rajeev Taliyan
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
31
|
Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Piscopo S, Beley N, Dzyha S, Smetanina K, Shanaida V, Resimont S, Bjorklund G. The Possible Roles of β-alanine and L-carnosine in Anti-aging. Curr Med Chem 2025; 32:6-22. [PMID: 38243982 DOI: 10.2174/0109298673263561231117054447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024]
Abstract
β-alanine (BA), being a non-proteinogenic amino acid, is an important constituent of L-carnosine (LC), which is necessary for maintaining the muscle buffering capacity and preventing a loss of muscle mass associated with aging effects. BA is also very important for normal human metabolism due to the formation of a part of pantothenate, which is incorporated into coenzyme A. BA is synthesized in the liver, and its combination with histidine results in the formation of LC, which accumulates in the muscles and brain tissues and has a well-defined physiological role as a good buffer for the pH range of muscles that caused its rapidly increased popularity as ergogenic support to sports performance. The main antioxidant mechanisms of LC include reactive oxygen species (ROS) scavenging and chelation of metal ions. With age, the buffering capacity of muscles also declines due to reduced concentration of LC and sarcopenia. Moreover, LC acts as an antiglycation agent, ultimately reducing the development of degenerative diseases. LC has an anti-inflammatory effect in autoimmune diseases such as osteoarthritis. As histidine is always present in the human body in higher concentrations than BA, humans have to get BA from dietary sources to support the required amount of this critical constituent to supply the necessary amount of LC synthesis. Also, BA has other beneficial effects, such as preventing skin aging and intestinal damage, improving the stress-- fighting capability of the muscle cells, and managing an age-related decline in memory and learning. In this review, the results of a detailed analysis of the role and various beneficial properties of BA and LC from the anti-aging perspective are presented.
Collapse
Affiliation(s)
- Amin Gasmi
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Svitlana Dzyha
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Kateryna Smetanina
- Faculty of Postgraduate Education, Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | - Stephane Resimont
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Geir Bjorklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
32
|
Larrañaga-SanMiguel A, Bengoa-Vergniory N, Flores-Romero H. Crosstalk between mitochondria-ER contact sites and the apoptotic machinery as a novel health meter. Trends Cell Biol 2025; 35:33-45. [PMID: 39379268 DOI: 10.1016/j.tcb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) function as transient signaling platforms that regulate essential cellular functions. MERCS are enriched in specific proteins and lipids that connect mitochondria and the ER together and modulate their activities. Dysregulation of MERCS is associated with several human pathologies including Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. BCL-2 family proteins can locate at MERCS and control essential cellular functions such as calcium signaling and autophagy in addition to their role in mitochondrial apoptosis. Moreover, the BCL-2-mediated apoptotic machinery was recently found to trigger cGAS-STING pathway activation and a proinflammatory response, a recognized hallmark of these diseases that requires mitochondria-ER interplay. This review underscores the pivotal role of MERCS in regulating essential cellular functions, focusing on their crosstalk with BCL-2 family proteins, and discusses how their dysregulation is linked to disease.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hector Flores-Romero
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
33
|
Chen H, Chang X, Zhou J, Zhang G, Cheng J, Zhang Z, Xing J, Yan C, Liu Z. Anti-neuroinflammatory and Neuroprotective Effects of T-006 on Alzheimer's Disease Models by Modulating TLR4-Mediated MyD88/ NF-κB Signaling. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:382-396. [PMID: 39791155 DOI: 10.2174/0118715273337232241121113048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice. Therefore, we have further investigated the effects of T-006 on neuroinflammation in AD-like pathology. METHODS The anti-inflammatory effects of T-006 and its underlying mechanisms were evaluated in Lipopolysaccharide (LPS)-induced AD rats. The potential protective effects against LPS-activated microglia-mediated neurotoxicity were also measured. RESULTS T-006 significantly improved the cognitive impairment in LPS-induced AD rats by inhibiting the microglia/astrocyte activation. Further cellular assays found that T-006 significantly reserved the anomalous elevation of inflammatory cytokines in LPS-induced BV2 microglial cells in a concentration-dependent manner, while T-006 treatment alone showed no effects on the normal cultured cells. T-006 also reduced the levels of Toll-like Receptor 4 (TLR4)/Myeloid Differentiation protein-88 (MyD88)/NF-κB signaling-related proteins in BV2 cells exposed to LPS stimulation. TAK242, which selectively inhibits TLR4, slightly lessened the effects of T-006 in LPS-treatment BV2 cells without significance. Importantly, T-006 protected neurons against LPS-induced neuroinflammation by inhibiting the Reactive Oxygen Species (ROS) production and maintaining mitochondrial function. CONCLUSION T-006 inhibited TLR4-mediated MyD88/NF-κB signaling pathways to suppress neuroinflammation in the LPS-induced AD rat model.
Collapse
Affiliation(s)
- Haiyun Chen
- School of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Chang
- School of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiemei Zhou
- School of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guiliang Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Jiehong Cheng
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Jieyu Xing
- School of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chunyan Yan
- School of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan, 528000, China
| |
Collapse
|
34
|
Radosinska D, Radosinska J. The Link Between Matrix Metalloproteinases and Alzheimer's Disease Pathophysiology. Mol Neurobiol 2025; 62:885-899. [PMID: 38935232 PMCID: PMC11711632 DOI: 10.1007/s12035-024-04315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is a major contributor to dementia and the most common neurodegenerative disorder. In AD pathophysiology, matrix metalloproteinases (MMPs)-proteolytic enzymes, best known to be responsible for remodeling and degradation of the extracellular matrix-were suggested to play an important role. Due to the diverse nature of the published data and frequent inconsistent results presented in available papers, it was considered essential to analyze all aspects of MMP literature with respect to AD pathophysiology and attempt to outline a unifying concept for understanding their role in AD. Thus, the main contribution of this review article is to summarize the most recent research on the participation of MMP in AD pathophysiology obtained using the cell cultures to understand the molecular principles of their action. Furthermore, an updated comprehensive view regarding this topic based exclusively on papers from human studies is provided as well. It can be concluded that determining the exact role of any particular MMPs in the AD pathophysiology holds promise for establishing their role as potential biomarkers reflecting the severity or progression of this disease or for developing new therapeutic agents targeting the processes that lead to AD.
Collapse
Affiliation(s)
- Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 81372, Bratislava, Slovak Republic.
| |
Collapse
|
35
|
Parker J, Moris JM, Goodman LC, Paidisetty VK, Vanegas V, Turner HA, Melgar D, Koh Y. A multifactorial lens on risk factors promoting the progression of Alzheimer's disease. Brain Res 2025; 1846:149262. [PMID: 39374837 DOI: 10.1016/j.brainres.2024.149262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The prevalence of Alzheimer's disease (AD) among adults has continued to increase over the last two decades, which has sparked a significant increase in research that focuses on the topic of "brain health." While AD is partially determined by a genetic predisposition, there are still numerous pathophysiological factors that require further research. This research requirement stems from the acknowledgment that AD is a multifactorial disease that to date, cannot be prevented. Therefore, addressing and understanding the potential AD risk factors is necessary to increase the quality of life of an aging population. To raise awareness of critical pathways that impact AD progression, this review manuscript describes AD etiologies, structural impairments, and biomolecular changes that can significantly increase the risk of AD. Among them, a special highlight is given to inflammasomes, which have been shown to bolster neuroinflammation. Alike, the role of brain-derived neurotrophic factor, an essential neuropeptide that promotes the preservation of cognition is presented. In addition, the functional role of neurovascular units to regulate brain health is highlighted and contrasted to inflammatory conditions, such as cellular senescence, vascular damage, and increased visceral adiposity, who all increase the risk of neuroinflammation. Altogether, a multifactorial interventional approach is warranted to reduce the risk of AD.
Collapse
Affiliation(s)
- Jenna Parker
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Jose M Moris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Lily C Goodman
- School of Medicine, Creighton University, Phoenix, AZ, USA
| | - Vineet K Paidisetty
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Vicente Vanegas
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Haley A Turner
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Daniel Melgar
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA.
| |
Collapse
|
36
|
Cheng R, Bai N, Liu S, Zhao X, Jiang B, Guo W, Cao S, Liu J, Li N, Li X, Wu X, Yi F, Wang Z, Guo Q, Wei J, Bai M, Jiang X, Song X, Wang Z, Miao Q, Wang D, Di Y, Liu H, Cao L. The deacetylase SIRT6 reduces amyloid pathology and supports cognition in mice by reducing the stability of APP in neurons. Sci Signal 2024; 17:eado1035. [PMID: 39656860 DOI: 10.1126/scisignal.ado1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/10/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder that results in progressively impaired memory and is often associated with amyloid plaques. Previous studies implicate the deacetylases SIRT1 and SIRT2 in regulating the processing of amyloid precursor protein (APP). Here, we investigated whether APP is regulated by the related deacetylase SIRT6, which shows aging-associated decreases in activity. We found that the abundance of SIRT6 was reduced in the cortex and hippocampus of aged and AD model mice and negatively correlated with that of APP. In mouse hippocampal neurons and transfected human cells, SIRT6 interacted with and deacetylated APP at three consecutive Lys residues (Lys649, Lys650, and Lys651). This deacetylation, in turn, increased the ubiquitylation of APP, leading to its proteasomal degradation. SIRT6 abundance in neurons was reduced by oxidative stress and DNA damage, both of which are implicated in neurodegenerative pathology. Systemic pharmacological activation of SIRT6 ameliorated both amyloid pathology and cognitive deficits in APP/PS1 mice, a mouse model of AD. The findings demonstrate that the activity of SIRT6 destabilizes APP and suggest that activating SIRT6 has therapeutic potential to reduce amyloid-associated pathology in patients with AD.
Collapse
Affiliation(s)
- Rong Cheng
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Ning Bai
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuhui Liu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiong Zhao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Bo Jiang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Wendong Guo
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Sunrun Cao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Jingwei Liu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Na Li
- Department of Gerontology and Geriatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoman Li
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xuan Wu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Yi
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhuo Wang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Qiqiang Guo
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Jiayi Wei
- Department of Developmental Cell Biology, School of Life Sciences; Key Laboratory of Cell Biology, Ministry of Public Health; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Ming Bai
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyou Jiang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyu Song
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhuo Wang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Qi Miao
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Hua Liu
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Liu Cao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| |
Collapse
|
37
|
Negi M, Amulya E, Phatale V, Abraham N, Hedaoo A, Srinivasarao DA, Srivastava S. Surface engineered nano architectonics: An evolving paradigm for tackling Alzheimer's disease. Life Sci 2024; 358:123155. [PMID: 39433085 DOI: 10.1016/j.lfs.2024.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/21/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As per the World Health Organization (WHO) estimation, Alzheimer's disease (AD) will affect 100 million population across the globe by 2050. AD is an incurable neurodegenerative disease that remains a mystery for neurologists owing to its complex pathophysiology. Currently, available therapeutic regimens will only cause symptomatic relief by improving the cognitive and behavioral functions of AD. However, the major pitfalls in managing AD include tight junctions in the endothelial cells of the blood-brain barrier (BBB), diminished neuronal bioavailability, enzymatic degradation and reduced stability of the therapeutic moiety. In an effort to surmount the drawbacks mentioned above, researchers shifted their focus toward nanocarriers (NCs). Nevertheless, non-specific targeting of NCs imparts toxicity to the peripheral organs, thereby reducing the bioavailability of therapeutic moiety at the target site. To unravel this unmet clinical need, scientists came up with the idea of a novel intriguing strategy of surface engineering by targeting ligands. Surface-decorated NCs provide targeted drug delivery, controlled drug release, enhanced penetration and bioavailability. In this state-of-the-art review, we have highlighted in detail various molecular signalling pathways involved in AD pathogenesis. The significance of surface functionalization and its application in AD management have been deliberated. We have elaborated on the regulatory bottlenecks and clinical hurdles faced during lab-to-industrial scale translation along with possible solutions.
Collapse
Affiliation(s)
- Mansi Negi
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
38
|
Behl T, Kyada A, Roopashree R, Nathiya D, Arya R, Kumar MR, Khalid M, Gulati M, Sachdeva M, Fareed M, Patra PK, Agrawal A, Wal P, Gasmi A. Epigenetic biomarkers in Alzheimer's disease: Diagnostic and prognostic relevance. Ageing Res Rev 2024; 102:102556. [PMID: 39490904 DOI: 10.1016/j.arr.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive decline in the aging population, presenting a critical need for early diagnosis and effective prognostic tools. Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, have emerged as promising biomarkers for AD due to their roles in regulating gene expression and potential for reversibility. This review examines the current landscape of epigenetic biomarkers in AD, emphasizing their diagnostic and prognostic relevance. DNA methylation patterns in genes such as APP, PSEN1, and PSEN2 are highlighted for their strong associations with AD pathology. Alterations in DNA methylation at specific CpG sites have been consistently observed in AD patients, suggesting their utility in early detection. Histone modifications, such as acetylation and methylation, also play a crucial role in chromatin remodelling and gene expression regulation in AD. Dysregulated histone acetylation and methylation have been linked to AD progression, making these modifications valuable biomarkers. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), further contribute to the epigenetic regulation in AD. miRNAs can modulate gene expression post-transcriptionally and have been found in altered levels in AD, while lncRNAs can influence chromatin structure and gene expression. The presence of these non-coding RNAs in biofluids like blood and cerebrospinal fluid positions them as accessible and minimally invasive biomarkers. Technological advancements in detecting and quantifying epigenetic modifications have propelled the field forward. Techniques such as next-generation sequencing, bisulfite sequencing, and chromatin immunoprecipitation assays offer high sensitivity and specificity, enabling the detailed analysis of epigenetic changes in clinical samples. These tools are instrumental in translating epigenetic research into clinical practice. This review underscores the potential of epigenetic biomarkers to enhance the early diagnosis and prognosis of AD, paving the way for personalized therapeutic strategies and improved patient outcomes. The integration of these biomarkers into clinical workflows promises to revolutionize AD management, offering hope for better disease monitoring and intervention.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India.
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mohammad Khalid
- Department of pharmacognosy, College of pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box No. 71666, Riyadh 11597, Saudi Arabia
| | - Pratap Kumar Patra
- School of Pharmacy & Life Sciences, Centurion University of Technology & Managemnet, Bhubaneswar, Odisha 752050, India
| | - Ankur Agrawal
- Jai Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh 474001, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP 209305, India
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint-Étienne, France
| |
Collapse
|
39
|
Sankaran S, Dubey R, Gomatam A, Chakor R, Kshirsagar A, Lohidasan S. Deciphering the multi-functional role of Indian propolis for the management of Alzheimer's disease by integrating LC-MS/MS, network pharmacology, molecular docking, and in-vitro studies. Mol Divers 2024; 28:4325-4342. [PMID: 38466554 DOI: 10.1007/s11030-024-10818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/27/2024] [Indexed: 03/13/2024]
Abstract
The conventional one-drug-one-disease theory has lost its sheen in multigenic diseases such as Alzheimer's disease (AD). Propolis, a honeybee-derived product has ethnopharmacological evidence of antioxidant, anti-inflammatory, antimicrobial and neuroprotective properties. However, the chemical composition is complex and highly variable geographically. So, to leverage the potential of propolis as an effective treatment modality, it is essential to understand the role of each phytochemical in the AD pathophysiology. Therefore, the present study was aimed at investigating the anti-Alzheimer effect of bioactive in Indian propolis (IP) by combining LC-MS/MS fingerprinting, with network-based analysis and experimental validation. First, phytoconstituents in IP extract were identified using an in-house LC-MS/MS method. The drug likeness and toxicity were assessed, followed by identification of AD targets. The constituent-target-gene network was then constructed along with protein-protein interactions, gene pathway, ontology, and enrichment analysis. LC-MS/MS analysis identified 16 known metabolites with druggable properties except for luteolin-5-methyl ether. The network pharmacology-based analysis revealed that the hit propolis constituents were majorly flavonoids, whereas the main AD-associated targets were MAOB, ESR1, BACE1, AChE, CDK5, GSK3β, and PTGS2. A total of 18 gene pathways were identified to be associated, with the pathways related to AD among the topmost enriched. Molecular docking analysis against top AD targets resulted in suitable binding interactions at the active site of target proteins. Further, the protective role of IP in AD was confirmed with cell-line studies on PC-12, in situ AChE inhibition, and antioxidant assays.
Collapse
Affiliation(s)
- Sandeep Sankaran
- Department of Quality Assurance Techniques, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Anish Gomatam
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, Maharashtra, 400098, India
| | - Rishikesh Chakor
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Ashwini Kshirsagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Sathiyanarayanan Lohidasan
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India.
| |
Collapse
|
40
|
Seifar F, Fox EJ, Shantaraman A, Liu Y, Dammer EB, Modeste E, Duong DM, Yin L, Trautwig AN, Guo Q, Xu K, Ping L, Reddy JS, Allen M, Quicksall Z, Heath L, Scanlan J, Wang E, Wang M, Linden AV, Poehlman W, Chen X, Baheti S, Ho C, Nguyen T, Yepez G, Mitchell AO, Oatman SR, Wang X, Carrasquillo MM, Runnels A, Beach T, Serrano GE, Dickson DW, Lee EB, Golde TE, Prokop S, Barnes LL, Zhang B, Haroutunian V, Gearing M, Lah JJ, De Jager P, Bennett DA, Greenwood A, Ertekin‐Taner N, Levey AI, Wingo A, Wingo T, Seyfried NT. Large-scale deep proteomic analysis in Alzheimer's disease brain regions across race and ethnicity. Alzheimers Dement 2024; 20:8878-8897. [PMID: 39535480 PMCID: PMC11667503 DOI: 10.1002/alz.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within non-Hispanic White (NHW) populations. Here we provide an extensive survey of the proteomic landscape of AD across diverse racial/ethnic groups. METHODS Two cortical regions, from multiple centers, were harmonized by uniform neuropathological diagnosis. Among 998 unique donors, 273 donors self-identified as African American, 229 as Latino American, and 434 as NHW. RESULTS While amyloid precursor protein and the microtubule-associated protein tau demonstrated higher abundance in AD brains, no significant race-related differences were observed. Further proteome-wide and focused analyses (specific amyloid beta [Aβ] species and the tau domains) supported the absence of racial differences in these AD pathologies within the brain proteome. DISCUSSION Our findings indicate that the racial differences in AD risk and clinical presentation are not underpinned by dramatically divergent patterns in the brain proteome, suggesting that other determinants account for these clinical disparities. HIGHLIGHTS We present a large-scale proteome (∼10,000 proteins) of DLPFC (998) and STG (244) across AD cases. About 50% of samples were from racially and ethnically diverse brain donors. Key AD proteins (amyloid and tau) correlated with CERAD and Braak stages. No significant race-related differences in amyloid and tau protein levels were observed in AD brains. AD-associated protein changes showed a strong correlation between the brain proteomes of African American and White individuals. This dataset advances understanding of ethnoracial-specific AD pathways and potential therapies.
Collapse
|
41
|
Miskalis A, Shirguppe S, Winter J, Elias G, Swami D, Nambiar A, Stilger M, Woods WS, Gosstola N, Gapinske M, Zeballos A, Moore H, Maslov S, Gaj T, Perez-Pinera P. SPLICER: a highly efficient base editing toolbox that enables in vivo therapeutic exon skipping. Nat Commun 2024; 15:10354. [PMID: 39609418 PMCID: PMC11604662 DOI: 10.1038/s41467-024-54529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Exon skipping technologies enable exclusion of targeted exons from mature mRNA transcripts, which have broad applications in medicine and biotechnology. Existing techniques including antisense oligonucleotides, targetable nucleases, and base editors, while effective for specific applications, remain hindered by transient effects, genotoxicity, and inconsistent exon skipping. To overcome these limitations, here we develop SPLICER, a toolbox of next-generation base editors containing near-PAMless Cas9 nickase variants fused to adenosine or cytosine deaminases for the simultaneous editing of splice acceptor (SA) and splice donor (SD) sequences. Synchronized SA and SD editing improves exon skipping, reduces aberrant splicing, and enables skipping of exons refractory to single splice site editing. To demonstrate the therapeutic potential of SPLICER, we target APP exon 17, which encodes amino acids that are cleaved to form Aβ plaques in Alzheimer's disease. SPLICER reduces the formation of Aβ42 peptides in vitro and enables efficient exon skipping in a mouse model of Alzheimer's disease. Overall, SPLICER is a widely applicable and efficient exon skipping toolbox.
Collapse
Affiliation(s)
- Angelo Miskalis
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shraddha Shirguppe
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jackson Winter
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Gianna Elias
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Devyani Swami
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ananthan Nambiar
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michelle Stilger
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Wendy S Woods
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nicholas Gosstola
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael Gapinske
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alejandra Zeballos
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hayden Moore
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sergei Maslov
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thomas Gaj
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pablo Perez-Pinera
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
42
|
Qin B, Chen X, Wang F, Wang Y. DUBs in Alzheimer's disease: mechanisms and therapeutic implications. Cell Death Discov 2024; 10:475. [PMID: 39562545 DOI: 10.1038/s41420-024-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by the accumulation of amyloid β protein (Aβ) and the hyper-phosphorylation of the microtubule-associated protein Tau. The ubiquitin-proteasome system (UPS) plays a pivotal role in determining the fate of proteins, and its dysregulation can contribute to the buildup of Aβ and Tau. Deubiquitinating enzymes (DUBs), working in conjunction with activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3), actively maintain the delicate balance of protein homeostasis. DUBs specifically remove ubiquitin tags from proteins marked for degradation, thereby averting their proteasomal breakdown. Several DUBs have demonstrated their capacity to regulate the levels of Aβ and Tau by modulating their degree of ubiquitination, underscoring their potential as therapeutic targets for AD. In this context, we present a comprehensive review of AD-associated DUBs and elucidate their physiological roles. Moreover, we delve into the current advancements in developing inhibitors targeting these DUBs, including the determination of cocrystal structures with their respective targets. Additionally, we assess the therapeutic efficacy of these inhibitors in AD, aiming to establish a theoretical foundation for future AD treatments.
Collapse
Affiliation(s)
- Biying Qin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaodong Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China.
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, Hebei, China.
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, Shandong, China.
| |
Collapse
|
43
|
Gehlot P, Pathak R, Kumar S, Choudhary NK, Vyas VK. A review on synthetic inhibitors of dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) for the treatment of Alzheimer's disease (AD). Bioorg Med Chem 2024; 113:117925. [PMID: 39357433 DOI: 10.1016/j.bmc.2024.117925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease (AD) is a complex disorder that is influenced by a number of variables, such as age, gender, environmental factors, disease, lifestyle, infections, and many more. The main characteristic of AD is the formation of amyloid plaque and neurofibrillary tangles (NFT), which are caused by various reasons such as inflammation, impairment of neurotransmitters, hyperphosphorylation of tau protein, generation of toxic amyloid beta (Aβ) 40/42, oxidative stress, etc. Protein kinases located in chromosome 21, namely dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A), play an essential role in the pathogenesis of AD. DYRK1A stimulates the Aβ peptide aggregation and phosphorylation of tau protein to generate the NFT formation that causes neurodegeneration. Thus, DYRK1A is associated with AD, and inhibition of DYRK1A has the potential to treat AD. In this review, we discussed the pathophysiology of AD, various factors responsible for AD, and the role of DYRK1A in AD. We have also discussed the latest therapeutic potential of DYRK1A inhibitors for neurogenerative disease, along with their structure-activity relationship (SAR) studies. This article provides valuable information for guiding the future discovery of novel and target-specific DYRK1A inhibitors over other kinases and their structural optimization to treat AD.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Rekha Pathak
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India; Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Naveen Kumar Choudhary
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
44
|
Lin YY, Chang WH, Hsieh SL, Cheng IHJ. The deficient CLEC5A ameliorates the behavioral and pathological deficits via the microglial Aβ clearance in Alzheimer's disease mouse model. J Neuroinflammation 2024; 21:273. [PMID: 39443966 PMCID: PMC11515658 DOI: 10.1186/s12974-024-03253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that causes cognitive dysfunction in older adults. One of the AD pathological factors, β-Amyloid (Aβ), triggers inflammatory responses and phagocytosis of microglia. C-type lectin domain family 5 member A (CLEC5A) induces over-reactive inflammatory responses in several virus infections. Yet, the role of CLEC5A in AD progression remains unknown. This study aimed to elucidate the contribution of CLEC5A to Aβ-induced microglial activation and behavioral deficits. METHODS The AD mouse model was crossed with Clec5a knockout mice for subsequent behavioral and pathological tests. The memory deficit was revealed by the Morris water maze, while the nociception abnormalities were examined by the von Frey filament and hotplate test. The Aβ deposition and microglia recruitment were identified by ELISA and immunohistochemistry. The inflammatory signals were identified by ELISA and western blotting. In the Clec5a knockdown microglial cell model and Clec5a knockout primary microglia, the microglial phagocytosis was revealed using the fluorescent-labeled Aβ. RESULTS The AD mice with Clec5a knockout improved Aβ-induced memory deficit and abnormal nociception. These mice have reduced Aβ deposition and increased microglia coverage surrounding the amyloid plaque, suggesting the involvement of CLEC5A in AD progression and Aβ clearance. Moreover, the phagocytosis was also increased in the Aβ-stressed Clec5a knockdown microglial cell lines and Clec5a knockout primary microglia. CONCLUSION The Clec5a knockout ameliorates AD-like deficits by modulating microglial Aβ clearance. This study implies that targeting microglial Clec5a could offer a promising approach to mitigate AD progression.
Collapse
MESH Headings
- Animals
- Lectins, C-Type/metabolism
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Microglia/metabolism
- Microglia/pathology
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Alzheimer Disease/genetics
- Mice
- Amyloid beta-Peptides/metabolism
- Disease Models, Animal
- Mice, Knockout
- Mice, Inbred C57BL
- Male
- Mice, Transgenic
- Maze Learning/physiology
- Phagocytosis
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
Collapse
Affiliation(s)
- Yu-Yi Lin
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Han Chang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.
- Institute of Clinical Medicine, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
45
|
Popescu C, Munteanu C, Anghelescu A, Ciobanu V, Spînu A, Andone I, Mandu M, Bistriceanu R, Băilă M, Postoiu RL, Vlădulescu-Trandafir AI, Giuvara S, Malaelea AD, Onose G. Novelties on Neuroinflammation in Alzheimer's Disease-Focus on Gut and Oral Microbiota Involvement. Int J Mol Sci 2024; 25:11272. [PMID: 39457054 PMCID: PMC11508522 DOI: 10.3390/ijms252011272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Recent studies underscore the role of gut and oral microbiota in influencing neuroinflammation through the microbiota-gut-brain axis, including in Alzheimer's disease (AD). This review aims to provide a comprehensive synthesis of recent findings on the involvement of gut and oral microbiota in the neuroinflammatory processes associated with AD, emphasizing novel insights and therapeutic implications. This review reveals that dysbiosis in AD patients' gut and oral microbiota is linked to heightened peripheral and central inflammatory responses. Specific bacterial taxa, such as Bacteroides and Firmicutes in the gut, as well as Porphyromonas gingivalis in the oral cavity, are notably altered in AD, leading to significant changes in microglial activation and cytokine production. Gut microbiota alterations are associated with increased intestinal permeability, facilitating the translocation of endotoxins like lipopolysaccharides (LPS) into the bloodstream and exacerbating neuroinflammation by activating the brain's toll-like receptor 4 (TLR4) pathways. Furthermore, microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and amyloid peptides, can cross the blood-brain barrier and modulate neuroinflammatory responses. While microbial amyloids may contribute to amyloid-beta aggregation in the brain, certain SCFAs like butyrate exhibit anti-inflammatory properties, suggesting a potential therapeutic avenue to mitigate neuroinflammation. This review not only highlights the critical role of microbiota in AD pathology but also offers a ray of hope by suggesting that modulating gut and oral microbiota could represent a novel therapeutic strategy for reducing neuroinflammation and slowing disease progression.
Collapse
Affiliation(s)
- Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Aurelian Anghelescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Vlad Ciobanu
- Department of Computer Science and Engineering, Faculty for Automatic Control and Computers, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Aura Spînu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ioana Andone
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihaela Mandu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Roxana Bistriceanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihai Băilă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ruxandra-Luciana Postoiu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Andreea-Iulia Vlădulescu-Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Sebastian Giuvara
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Alin-Daniel Malaelea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| |
Collapse
|
46
|
Jeon BN, Kim S, Kim Y, Yu H, Park C, Kim G, Ha Y, Kim GY, Kim H, Palucka KA, Lee C, Cha M, Park H. Contactin-4 suppresses antitumor T cell responses by engaging amyloid precursor protein. Sci Immunol 2024; 9:eadk7237. [PMID: 39392894 DOI: 10.1126/sciimmunol.adk7237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/02/2024] [Accepted: 09/03/2024] [Indexed: 10/13/2024]
Abstract
Immune checkpoint inhibitors have substantial advanced tumor treatment, but their limited benefits and strong responses in only a subset of patients remain challenging. In this study, we explored the immunomodulatory function of contactin-4 (CNTN4). CNTN4 was highly expressed in tumor tissues, and expression impaired the antitumor function of T cells. CNTN4 bound to amyloid precursor protein (APP) on T cells, which attenuated conjugation between cancer cells and T cells, and diminished T cell receptor signaling cascades. We developed an anti-CNTN4 antibody (GENA-104A16) and an anti-APP antibody (5A7) that blocked the binding between CNTN4 and APP. Administration of either GENA-104A16 or 5A7 promoted antitumor T cell responses in a syngeneic mouse model and increased tumor-infiltrating lymphocytes in vivo. Furthermore, elevated CNTN4 levels were associated with poor prognosis and negatively correlated with various cytotoxic immune-related markers. These results suggest that CNTN4-APP is an inhibitory checkpoint in T cells and represents a promising therapeutic strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Bu-Nam Jeon
- Genome and Company, 8F Gwanggyo Flax Desian, 50 Changnyong-daero, 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Sujeong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hyunkyung Yu
- Genome and Company, 8F Gwanggyo Flax Desian, 50 Changnyong-daero, 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Changho Park
- Genome and Company, 8F Gwanggyo Flax Desian, 50 Changnyong-daero, 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Gihyeon Kim
- Genome and Company, 8F Gwanggyo Flax Desian, 50 Changnyong-daero, 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Youngeun Ha
- Genome and Company, 8F Gwanggyo Flax Desian, 50 Changnyong-daero, 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Gyeong-Yeon Kim
- Genome and Company, 8F Gwanggyo Flax Desian, 50 Changnyong-daero, 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Hyunuk Kim
- Genome and Company, 8F Gwanggyo Flax Desian, 50 Changnyong-daero, 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Karolina A Palucka
- Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Charles Lee
- Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Miyoung Cha
- Genome and Company, 8F Gwanggyo Flax Desian, 50 Changnyong-daero, 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Hansoo Park
- Genome and Company, 8F Gwanggyo Flax Desian, 50 Changnyong-daero, 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
47
|
Wang J, Fourriere L, Gleeson PA. Advances in the cell biology of the trafficking and processing of amyloid precursor protein: impact of familial Alzheimer's disease mutations. Biochem J 2024; 481:1297-1325. [PMID: 39302110 PMCID: PMC11555708 DOI: 10.1042/bcj20240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The production of neurotoxic amyloid-β peptides (Aβ) is central to the initiation and progression of Alzheimer's disease (AD) and involves sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. APP and the secretases are transmembrane proteins and their co-localisation in the same membrane-bound sub-compartment is necessary for APP cleavage. The intracellular trafficking of APP and the β-secretase, BACE1, is critical in regulating APP processing and Aβ production and has been studied in several cellular systems. Here, we summarise the intracellular distribution and transport of APP and its secretases, and the intracellular location for APP cleavage in non-polarised cells and neuronal models. In addition, we review recent advances on the potential impact of familial AD mutations on APP trafficking and processing. This is critical information in understanding the molecular mechanisms of AD progression and in supporting the development of novel strategies for clinical treatment.
Collapse
Affiliation(s)
- Jingqi Wang
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lou Fourriere
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A. Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
48
|
Rincón-Arias N, Romo JA, Galvis KA, Sierra MA, Pulido PA, Espinosa S, Castro E, Zorro-Guio OF, Ordoñez-Rubiano EG. Long-Term Progression of a Residual Cerebral Amyloidoma: An Illustrative Case and Systematic Review. World Neurosurg 2024; 190:e1100-e1115. [PMID: 39179025 DOI: 10.1016/j.wneu.2024.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE Cerebral amyloidomas (CA) are exceptionally rare tumor-like lesions composed of cerebral amyloid-beta, which is derived from the cleavage of the amyloid precursor protein. METHODS We presented a case of recurrent CA and performed a systematic review, comparing their initial presentation, imaging features, neurosurgical treatment, and natural history of the disease. ILLUSTRATIVE CASE A 65-year-old male with a history of right homonymous hemianopsia, who underwent subtotal resection of a CA 19 years before, presents to the emergency department with right hemiparesis, dysarthria, and a new onset of clonic seizures. Imaging revealed a left parieto-occipital lesion with calcifications and vasogenic edema. A gross-total resection was performed. Histopathology revealed a hypocellular eosinophilic lesion consistent with CA. Postoperatively, the patient recovered without new neurological deficits. One-year follow-up magnetic resonance imaging showed no residual or recurrence lesion. SEARCH RESULTS Eighty-seven cases, including ours, revealed that 65.5% (n = 57) were females with a median age of 54 years (IQR: 46-62). Most lesions were solitary (82.7%; 72 of 87 lesions). Frontal and parietal lobes were most commonly affected with 32.9% (n = 28) and 30.5% (n = 26), respectively. Seizures were the most common symptom followed by visual compromise. Calcifications were present in 19.5% (n = 17) of the lesions. CONCLUSIONS This systematic review provides insights into the epidemiological, clinical, and neurosurgical characteristics, as well as the long-term prognosis of CA. This marks the first case in the reviewed literature with a 19-year period of follow-up where the patient had reoperation due to disease progression.
Collapse
Affiliation(s)
- Nicolás Rincón-Arias
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia; Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital Infantil Universitario de San José, Bogotá, Colombia.
| | - Jorge Alberto Romo
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia; Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Katty Andrea Galvis
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia; Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | | | - Paula Andrea Pulido
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia; Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Sebastián Espinosa
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia; Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Esteban Castro
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud, Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia
| | - Oscar F Zorro-Guio
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia; Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Edgar G Ordoñez-Rubiano
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud, Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia; Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| |
Collapse
|
49
|
Moberg I, McCarthy SF, Bellaflor S, Finch MS, Hazell TJ, MacPherson REK. Lactate increases ADAM10 activity and reduces BACE1 activity in mouse brain. J Physiol 2024; 602:5217-5228. [PMID: 39298105 DOI: 10.1113/jp286962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024] Open
Abstract
The accumulation and aggregation of beta-amyloid (Aβ) peptides contributes to neuronal dysfunction and death. These Aβ peptides originate from a transmembrane protein known as amyloid precursor protein (APP), which can be processed via two competing pathways. Alpha-secretase (ADAM10) cleavage is thought to be neuroprotective while beta-secretase (BACE1) cleavage results in the production of Aβ. Aerobic exercise reduces BACE1 activity, but the mechanisms involved are unknown though several exercise-induced mediators such as lactate may be involved. The current study examined whether systemic lactate can alter APP processing and BACE1 and ADAM10 activity. Mice were randomly assigned to one of four groups (n = 10 per group): (1) sedentary; (2) lactate-injection (1.0 g kg-1 body mass); (3) exercise; and (4) exercise and oxamate (lactate dehydrogenase inhibitor; 750 mg kg-1 body mass). Two hours following intervention, the hippocampus and prefrontal cortex (PFC) were collected. In the PFC lactate-injection and exercise resulted in higher ADAM10 activity compared to sedentary (exercise P = 0.0215, lactate P = 0.0038), in the hippocampus lactate-injection was higher compared to sedentary (lactate P = 0.011), and this was absent in the presence of oxamate. Hippocampal BACE1 activity was lower in the lactate group compared to the exercise group (P = 0.01). Oxamate resulted in higher BACE1 protein content compared to sedentary in the PFC (vs. sedentary P = 0.048). These findings suggest that lactate is important for regulating ADAM10 activity and thereby shifts APP processing away from Aβ production. KEY POINTS: Exercise is known to alter the processing of amyloid precursor protein by reducing the activity of the rate-limiting enzyme BACE1 and increasing the activity of ADAM10. It is thought that exercise-induced factors are responsible for these enzymatic changes. This study examined if lactate accumulation plays a role in this process. Mice were assigned to one of four groups: sedentary, lactate, exercise and exercise + lactate. The findings demonstrate that lactate accumulation alters brain BACE1 and ADAM10 and shifts amyloid precursor protein processing away from beta-amyloid production.
Collapse
Affiliation(s)
| | - Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sarah Bellaflor
- Department of Health Sciences, Brock University, St. Catherines, Ontario, Canada
| | - Michael S Finch
- Department of Health Sciences, Brock University, St. Catherines, Ontario, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catherines, Ontario, Canada
- Centre for Neuroscience, Brock University, St. Catherines, Ontario, Canada
| |
Collapse
|
50
|
Zhaliazka K, Kurouski D. Nanoscale Structural Characterization of Amyloid β 1-42 Oligomers and Fibrils Grown in the Presence of Fatty Acids. ACS Chem Neurosci 2024; 15:3344-3353. [PMID: 39222387 PMCID: PMC11413849 DOI: 10.1021/acschemneuro.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Mono- and polyunsaturated fatty acids (FAs) are broadly used as food supplements. However, their effect on the aggregation of amyloidogenic proteins remains unclear. In this study, we investigated the effect of a large number of mono- and polyunsaturated, as well as fully saturated FAs on the aggregation of amyloid β1-42 (Aβ1-42) peptide. A progressive aggregation of this peptide is the expected molecular cause of Alzheimer's disease (AD), one of the most common neurodegenerative pathologies in the world. We found that arachidonic and stearic acids delayed the aggregation of Aβ1-42. Using Nano-Infrared spectroscopy, we found that FAs caused very little if any changes in the secondary structure of Aβ1-42 oligomers and fibrils formed at different stages of protein aggregation. However, the analyzed mono- and polyunsaturated, as well as fully saturated FAs uniquely altered the toxicity of Aβ1-42 fibrils. We found a direct relationship between the degree of FAs unsaturation and toxicity of Aβ1-42 fibrils formed in their presence. Specifically, with an increase in the degree of unsaturation, the toxicity Aβ1-42/FA fibrils increased. These results indicate that fully saturated or monounsaturated FAs could be used to decrease the toxicity of amyloid aggregates and, consequently, decelerate the development of AD.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|