1
|
Sherman SL, Gudeman AS, Kelly JD, Dimeff RJ, Farr J. Mechanisms of Action of Intra-articular Hyaluronic Acid Injections for Knee Osteoarthritis: A Targeted Review of the Literature. Am J Sports Med 2025:3635465241302820. [PMID: 40108507 DOI: 10.1177/03635465241302820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BACKGROUND The knee is the most commonly afflicted joint in osteoarthritis (OA). Injection of intra-articular of hyaluronic acid (IAHA) is a frequently used therapy for the management of knee OA with varying product characteristics. PURPOSE To describe and characterize the mechanism of action (MoA) of IAHA products concerning nociception, chondroprotection, and anti-inflammatory properties via a targeted literature review. STUDY DESIGN Systematic review; Level of evidence, 2. METHODS We followed the standard methodologies for conducting and reporting targeted reviews as recommended by the Cochrane Handbook for Systematic Reviews of Interventions, adapted for conducting a targeted literature review. Relevant studies were identified by searching the Embase database using predefined search strategies via the Ovid platform. The results of the review were reported according to the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-analyses). RESULTS A total of 182 studies were included in this targeted literature review. Of these, 107 reported chondroprotective action, 59 anti-inflammatory activity, 18 analgesic properties, 30 proteoglycan or glycosaminoglycan synthesis, 8 subchondral bone effects, 2 mechanical effects, and 1 other effects of IAHA. These MoAs were studied through diverse types of studies: in vitro biochemistry, animal physiological studies, or human physiological and clinical studies. The chondroprotective effect was the most studied MoA and showed an increase in anabolic biomarkers, such as collagen types II, IX, and XI, and a reduction in catabolic biomarkers, such as matrix metalloproteinases, which play a primary role in the downstream signaling pathways in OA and cartilage degradation in the synovial fluid. IAHA was widely reported by studies to reduce soluble inflammatory mediators, such as interleukins 1β and 6 and tumor necrosis factor α, thereby decreasing the production of degradative enzymes (eg, matrix metalloproteinases, aggrecanases). IAHA was also reported to enhance the synthesis of intrinsic proteoglycan (eg, aggrecan) and glycosaminoglycans, thus delaying the progression of OA. IAHA also reported improvement in the mechanical function of the knee by increasing the viscosity of the synovial fluid, reducing the coefficient of friction, and improving its lubrication. Overall, a significant decrease in knee pain was observed after IAHA treatments. CONCLUSION Preclinical and clinical studies established evidence for varied MoAs by which IAHA preparations may produce a desired effect in patients with knee OA.
Collapse
Affiliation(s)
| | - Andrew S Gudeman
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - John D Kelly
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
2
|
Pakpahan ND, Kyawsoewin M, Manokawinchoke J, Namangkalakul W, Termkwancharoen C, Egusa H, Limraksasin P, Osathanon T. Intermittent compressive force regulates matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human periodontal ligament cells. Arch Oral Biol 2024; 165:106011. [PMID: 38815450 DOI: 10.1016/j.archoralbio.2024.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE This study aims to evaluate the effects of intermittent compressive force (ICF) on the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by human periodontal ligament cells (hPDLCs). DESIGN hPDLCs were subjected to ICF with a magnitude of 1.5 g/cm2 and loaded for 24 h. mRNA and protein expression of several MMPs and TIMPs were assessed using RT-PCR and ELISA analyses. An inhibitor of TGF-β (SB431542) was used to assess a possible role of TGF-β in the expression of MMPs and TIMPs under ICF. RESULTS mRNA and protein analyses showed that ICF significantly induced expression of TIMP1 and TIMP3, but decreased expression of MMP1. Incubation with the TGF-β inhibitor and applied to ICF showed a downregulation of TIMP3, but expression of MMP1 was not affected. CONCLUSION ICF is likely to affect ECM homeostasis by hPDLCs by regulating the expression of MMP1 and TIMPs. Moreover, TGF-β1 regulated expression of TIMP3. These findings suggest ICF may decrease the degradation of ECM and may thus be essential for maintaining PDL homeostasis.
Collapse
Affiliation(s)
- Novena Dameria Pakpahan
- Oral Biology Graduate Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Worachat Namangkalakul
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chutimon Termkwancharoen
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Brassolatti P, de Castro CA, dos Santos HL, Simões IT, Almeida-Lopes L, da Silva JV, Duarte FO, Luna GLF, Beck WR, Bossini PS, Anibal FDF. Systemic and local inflammatory response after implantation of biomaterial in critical bone injuries. Acta Cir Bras 2023; 38:e383823. [PMID: 37851783 PMCID: PMC10578104 DOI: 10.1590/acb383823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE To evaluate inflammatory response in critical bone injuries after implantation of the biomaterial composed of hydroxyapatite (HA)/poly (lactic-coglycolic acid) (PLGA)/BLEED. METHODS Forty-eight male Wistar rats (280 ± 20 grams) were divided into two groups: control group (CG), in which the animals do not receive any type of treatment; and biomaterial group (BG), in which the animals received the HA/PLGA/BLEED scaffold. Critical bone injury was induced in the medial region of the skull calotte with the aid of a trephine drill 8 mm in diameter. The biomaterial was implanted in the form of 1.5-mm thick scaffolds. Serum and calotte were collected at one, three and seven days. RESULTS Biomaterial had a significant effect on the morphological structure of the bone, accelerating osteoblast activation within three days, without causing exacerbated systemic inflammation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that BG induced upregulation of osteogenic genes such as runt-related transcription factor 2, and stimulated genes of inflammatory pathways such as tumor necrosis factor-α, on the first day without overexpressing genes related to bone matrix degradation, such as tissue inhibitor of metalloproteinases-1 and matrix metalloproteinase-9. CONCLUSIONS The HA/PLGA/BLEED® association can be used as a bone graft to aid bone repair, as it is capable of modulating expression of important genes at this stage of the repair process.
Collapse
Affiliation(s)
- Patricia Brassolatti
- Universidade Federal de São Carlos – Postgraduate Program in Evolutionary Genetics and Molecular Biology – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | - Cynthia Aparecida de Castro
- Universidade Federal de São Carlos – Postgraduate Program in Evolutionary Genetics and Molecular Biology – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | - Hugo Leonardo dos Santos
- Universidade Federal de São Carlos – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | - Isabelle Taira Simões
- Universidade Federal de São Carlos – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | | | | | - Fernanda Oliveira Duarte
- Universidade Federal de São Carlos – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | - Genoveva Lourdes Flores Luna
- Universidade Federal de São Carlos – Postgraduate Program in Evolutionary Genetics and Molecular Biology – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | - Wladimir Rafael Beck
- Universidade Federal de São Carlos – Department of Physiological Sciences – São Carlos (SP) – Brazil
| | - Paulo Sergio Bossini
- Institute of Research and Education in the Health Area – São Carlos (SP) – Brazil
| | | |
Collapse
|
4
|
Wang S, Meng P, Yuan L, Guo X. Analysis of N-glycosylation protein of Kashin-Beck disease chondrocytes derived from induced pluripotent stem cells based on label-free strategies with LC-MS/MS. Mol Omics 2023; 19:454-463. [PMID: 37186116 DOI: 10.1039/d3mo00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We aimed to compare N-glycosylation proteins in Kashin-Beck disease (KBD) chondrocytes and normal chondrocytes derived from induced pluripotent stem cells (iPSCs). KBD and normal iPSCs were reprogrammed from human KBD and normal dermal fibroblasts, respectively. Subsequently, chondrocytes were differentiated from KBD and normal iPSCs separately. Immunofluorescence was utilized to assay the protein markers of iPSCs and chondrocytes. Differential N-glycosylation proteins were screened using label-free strategies with LC-MS/MS. Bioinformatics analyses were utilized to interpret the functions of differential N-glycosylation proteins. Immunofluorescence staining revealed that both KBD-iPSCs and normal-iPSCs strongly expressed pluripotency markers OCT4 and NANOG. Meanwhile, chondrocyte markers collagen II and SOX9 are presented in KBD-iPSC-chondrocytes and normal-iPSC-chondrocytes. We obtained 87 differential N-glycosylation sites which corresponded to 68 differential proteins, which were constructed into 1 cluster. We obtained collagen type I trimer and 9 other biological processes; polysaccharide binding and 9 other molecular functions; regulation of transcription by RNA polymerase II and 9 other cellular components from GO; the Pl3K-Akt signaling pathway and 9 other KEGG pathways; peroxisome and 7 other subcellular locations; and integrin alpha chain, C-terminal cytoplasmic region, conserved site and 9 other classifications of domain annotations, and 2 networks. FGFR3 and LRP1 are expressed at higher levels in KBD-iPSC-chondrocytes, while the expressions of COL2A1, TIMP1, UNC5B, NOG, LEPR, and ITGA1 were down-regulated in KBD-iPSC-chondrocytes. The differential expressions of these N-glycosylation proteins may lead to the abnormal function of KBD chondrocytes.
Collapse
Affiliation(s)
- Sen Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission, Xi'an, Shaanxi, China.
| | - Peilin Meng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission, Xi'an, Shaanxi, China.
| | - Linlin Yuan
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission, Xi'an, Shaanxi, China.
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Delineating the glioblastoma stemness by genes involved in cytoskeletal rearrangements and metabolic alterations. World J Stem Cells 2023; 15:302-322. [PMID: 37342224 PMCID: PMC10277965 DOI: 10.4252/wjsc.v15.i5.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Literature data on glioblastoma ongoingly underline the link between metabolism and cancer stemness, the latter is one responsible for potentiating the resistance to treatment, inter alia due to increased invasiveness. In recent years, glioblastoma stemness research has bashfully introduced a key aspect of cytoskeletal rearrangements, whereas the impact of the cytoskeleton on invasiveness is well known. Although non-stem glioblastoma cells are less invasive than glioblastoma stem cells (GSCs), these cells also acquire stemness with greater ease if characterized as invasive cells and not tumor core cells. This suggests that glioblastoma stemness should be further investigated for any phenomena related to the cytoskeleton and metabolism, as they may provide new invasion-related insights. Previously, we proved that interplay between metabolism and cytoskeleton existed in glioblastoma. Despite searching for cytoskeleton-related processes in which the investigated genes might have been involved, not only did we stumble across the relation to metabolism but also reported genes that were found to be implicated in stemness. Thus, dedicated research on these genes in GSCs seems justifiable and might reveal novel directions and/or biomarkers that could be utilized in the future. Herein, we review the previously identified cytoskeleton/metabolism-related genes through the prism of glioblastoma stemness.
Collapse
Affiliation(s)
- Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland.
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| |
Collapse
|
6
|
Alghamdi B, Jeon HH, Ni J, Qiu D, Liu A, Hong JJ, Ali M, Wang A, Troka M, Graves DT. Osteoimmunology in Periodontitis and Orthodontic Tooth Movement. Curr Osteoporos Rep 2023; 21:128-146. [PMID: 36862360 PMCID: PMC10696608 DOI: 10.1007/s11914-023-00774-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW To review the role of the immune cells and their interaction with cells found in gingiva, periodontal ligament, and bone that leads to net bone loss in periodontitis or bone remodeling in orthodontic tooth movement. RECENT FINDINGS Periodontal disease is one of the most common oral diseases causing inflammation in the soft and hard tissues of the periodontium and is initiated by bacteria that induce a host response. Although the innate and adaptive immune response function cooperatively to prevent bacterial dissemination, they also play a major role in gingival inflammation and destruction of the connective tissue, periodontal ligament, and alveolar bone characteristic of periodontitis. The inflammatory response is triggered by bacteria or their products that bind to pattern recognition receptors that induce transcription factor activity to stimulate cytokine and chemokine expression. Epithelial, fibroblast/stromal, and resident leukocytes play a key role in initiating the host response and contribute to periodontal disease. Single-cell RNA-seq (scRNA-seq) experiments have added new insight into the roles of various cell types in the response to bacterial challenge. This response is modified by systemic conditions such as diabetes and smoking. In contrast to periodontitis, orthodontic tooth movement (OTM) is a sterile inflammatory response induced by mechanical force. Orthodontic force application stimulates acute inflammatory responses in the periodontal ligament and alveolar bone stimulated by cytokines and chemokines that produce bone resorption on the compression side. On the tension side, orthodontic forces induce the production of osteogenic factors, stimulating new bone formation. A number of different cell types, cytokines, and signaling/pathways are involved in this complex process. Inflammatory and mechanical force-induced bone remodeling involves bone resorption and bone formation. The interaction of leukocytes with host stromal cells and osteoblastic cells plays a key role in both initiating the inflammatory events as well as inducing a cellular cascade that results in remodeling in orthodontic tooth movement or in tissue destruction in periodontitis.
Collapse
Affiliation(s)
- Bushra Alghamdi
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
- Department of Restorative Dental Sciences, College of Dentistry, Taibah University, Medina, 42353, Kingdom of Saudi Arabia
| | - Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dongxu Qiu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssia Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Julie J Hong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Mamoon Ali
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Albert Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Michael Troka
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA.
| |
Collapse
|
7
|
Badreldin AA, Bagheri L, Zhang B, Larson AN, van Wijnen AJ. Relative mRNA and protein stability of epigenetic regulators in musculoskeletal cell culture models. Gene 2021; 766:145032. [PMID: 32771387 DOI: 10.1016/j.gene.2020.145032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/04/2020] [Accepted: 08/04/2020] [Indexed: 11/19/2022]
Abstract
Control of gene expression by epigenetic regulators is fundamental to tissue development and homeostasis. Loss-of-function (LOF) studies using siRNAs for epigenetic regulators require that RNA interference rapidly reduces the cellular levels of the corresponding mRNAs and/or proteins. The most abundant chromatin structural proteins (i.e., the core histones H2A, H2B, H3 and H4) have relatively long half-lives and do not turn over rapidly, although their mRNAs are labile. The question arises whether epigenetic regulatory enzymes (e.g., Ezh2) or proteins that interact with histones via selective modifications (e.g., Cbx1 to Cbx8, Brd4) are stable or unstable. Therefore, we performed classical α-amanitin and cycloheximide inhibition assays that block, respectively, mRNA transcription and protein translation in mouse MC3T3 osteoblasts, ATDC5 chondrocytes and C2C12 myoblasts. We find that mRNA levels of Cbx proteins and Ezh2 were significantly depleted after 24 hrs, while their corresponding proteins remained relatively stable. As positive control, the half-life of the labile cyclin D1 protein was found to be less than 1 hr. Our study suggests that histone code readers and writers are relatively stable chromatin-related proteins, which is consistent with their long-term activities in maintaining chromatin organization and phenotype identity. These findings have conceptual ramifications for the interpretation of RNAi experiments that reduce the mRNA but not protein levels of epiregulatory proteins. We propose that siRNAs for at least some epigenetic regulatory proteins may exert their biological effects by blocking translation and new protein synthesis rather than by decreasing pre-existing protein pools.
Collapse
Affiliation(s)
- Amr A Badreldin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Bangke Zhang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Hypoxia influences the effects of magnesium degradation products on the interactions between endothelial and mesenchymal stem cells. Acta Biomater 2020; 101:624-636. [PMID: 31622779 DOI: 10.1016/j.actbio.2019.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
Abstract
Biodegradable materials like well-documented Magnesium (Mg) are promising for their biocompatibility and tissue regeneration. Since Mg degradation is reported to be oxygen related, the effects of Mg were hypothesised to be influenced by oxygen. As two vital components of bone marrow, endothelial cells (EC) and mesenchymal stem cells (MSC), their interactions represent high scientific interest for tissue engineering and biodegradable Mg application. Human umbilical cord perivascular (HUCPV) and umbilical vein endothelial cell (HUVEC) were selected as sources of MSC and EC, respectively. Two types of coculture models were established to represent different phases of MSC-EC interaction: (i) where cells were physically separated thanks to a transwell and (ii) where cells were allowed to have heterotypic cellular contacts. Cell migration, gene, cytokines, and proliferation were investigated in HUCPV-HUVEC coculture using DNA, flow cytometry, wound healing assay, semi-quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA). Mg degradation products increased HUCPV migration in transwell under hypoxia. Oxygen tension changed the gene regulation of migratory, angiogenetic or osteogenic regulators. Under contacting coculture and hypoxia, Mg degradation products remarkably increased cytokines (e.g., c-c motif chemokine ligand 2 and vascular endothelial growth factor) and MSC mineralisation. Mg degradation products decreased and increased the MSC proliferation in transwell and in heterotypic-contact coculture, respectively. In summary, this study indicates the roles of low oxygen and heterotypic contact to effects of Mg materials facilitating HUVEC and HUCPV. STATEMENT OF SIGNIFICANCE.
Collapse
|
9
|
Abstract
Many proteins in cells and in the extracellular matrix assemble into force-bearing networks, and some proteins clearly transduce mechanical stimuli into biochemical signals. Although structural mechanisms remain poorly understood, the designs of such proteins enable mechanical forces to either inhibit or facilitate interactions of protein domains with other proteins, including small molecules and enzymes, including proteases and kinases. Here, we review some of the structural proteins and processes that exhibit distinct modes of force-dependent signal conversion.
Collapse
Affiliation(s)
- Karanvir Saini
- Molecular and Cell Biophysics Lab , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
10
|
Tension in fibrils suppresses their enzymatic degradation - A molecular mechanism for 'use it or lose it'. Matrix Biol 2019; 85-86:34-46. [PMID: 31201857 DOI: 10.1016/j.matbio.2019.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022]
Abstract
Tissue homeostasis depends on a balance of synthesis and degradation of constituent proteins, with turnover of a given protein potentially regulated by its use. Extracellular matrix (ECM) is predominantly composed of fibrillar collagens that exhibit tension-sensitive degradation, which we review here at different levels of hierarchy. Past experiments and recent proteomics measurements together suggest that mechanical strain stabilizes collagen against enzymatic degradation at the scale of tissues and fibrils whereas isolated collagen molecules exhibit a biphasic behavior that depends on load magnitude. Within a Michaelis-Menten framework, collagenases at constant concentration effectively exhibit a low activity on substrate fibrils when the fibrils are strained by tension. Mechanisms of such mechanosensitive regulation are surveyed together with relevant interactions of collagen fibrils with cells.
Collapse
|
11
|
Expression of tissue inhibitor of metalloproteinases and matrix metalloproteinases in the ischemic brain of photothrombosis model mice. Neuroreport 2019; 29:174-180. [PMID: 29215465 DOI: 10.1097/wnr.0000000000000946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Middle cerebral artery occlusion (MCAO) is the most widely used animal model of ischemic stroke. This model well recapitulates the pathological features of most human cases; however, MCAO is technically difficult to achieve in mice and has some disadvantages for investigating the molecular mechanisms of pathological progression in stroke. The recently developed photothrombosis model may be more suitable for research on the molecular mechanisms of ischemic stroke in mice. Yet, similarities and differences between the photothrombosis and MCAO models are not well characterized. In the present study, we examined the expression of tissue inhibitor of metalloproteinases (TIMPs) and matrix metalloproteinases (MMPs) in the brains of photothrombosis model mice. Our results indicated that the gene expression of TIMP-1 was upregulated in endothelial cells in the pathological area surrounding the infarction, similar to the MCAO model. Yet, pathologically induced changes in TIMP-1 were not affected by treatment with aspirin or etodolac. Whereas MMP-2 and MMP-8 mRNA were upregulated after infarction in both models, MMP-9 expression, which is induced in the infarct area in the MCAO model, was unchanged in the photothrombosis model. These findings suggest that the expression patterns of TIMP-1 and MMP-9 are regulated independently in photothrombosis model mice.
Collapse
|
12
|
Zhang W, Zhang C, Luo C, Zhan Y, Zhong B. Design, cyclization, and optimization of MMP13-TIMP1 interaction-derived self-inhibitory peptides against chondrocyte senescence in osteoarthritis. Int J Biol Macromol 2018; 121:921-929. [PMID: 30352228 DOI: 10.1016/j.ijbiomac.2018.10.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
The matrix metallopeptidase 13 (MMP13) is a central regulator of chondrocyte senescence that contributes to the development and progression of osteoarthritis (OA). In the present study, the native inhibitory structure of MMP13 in complex with its natural cognate inhibitor, the tissue inhibitor of metalloproteinases 1 (TIMP1), was modeled at atomic level using a grafting-based structural bioinformatics method with existing crystal structures. The modeled complex structure was then examined in detail, from which a TIMP1 inhibitory site that directly inserts into the active site of MMP13 enzyme was identified. The inhibitory site contains a coiled inhibitory loop (ILP) and a stretched N-terminal tail (NTT); they are highly structured in the intact MMP13-TIMP1 complex interface, but exhibit a large flexibility and intrinsic disorder when split from the interface context. In vitro binding assays demonstrated that the isolated ILP and NTT peptides cannot effectively rebind at the MMP13 active site (Kd > ~100 μM or = n.d.), although they have all key interacting residues in the enzyme inhibition. In silico simulations revealed that splitting of the peptide segments from TIMP1 inhibitory site does not influence the direct intermolecular interaction between MMP13 and the peptides substantially; instead, the large conformational flexibility of these isolated peptides in absence of interface context is primarily responsible for the affinity impairment, which would incur a considerable entropy penalty upon the peptide binding to MMP13. An extended version of ILP peptide, namely eILP (63TPAMESVCGY72), was redesigned with a rational strategy to derive a number of its cyclized counterparts by introducing a disulfide bridge across the peptide two-termini; the redesign reduces the peptide flexibility in free state and constrains the peptide pre-folding to a native-like conformation, which would help the peptide binding with minimized entropy penalty. Binding assays substantiated that the affinity Kd values of four designed cyclic peptides (, , and ) were improved to 23, 67, 42 and 18 μM, respectively, from the 96 μM of linear eILP peptide.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Chi Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Congfeng Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yulin Zhan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Biao Zhong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
13
|
Yao W, Li X, Zhao B, Du G, Feng P, Chen W. Combined effect of TNF-α and cyclic stretching on gene and protein expression associated with mineral metabolism in cementoblasts. Arch Oral Biol 2017; 73:88-93. [DOI: 10.1016/j.archoralbio.2016.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/14/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
|
14
|
Karasawa Y, Tanaka H, Nakai K, Tanabe N, Kawato T, Maeno M, Shimizu N. Tension Force Downregulates Matrix Metalloproteinase Expression and Upregulates the Expression of Their Inhibitors through MAPK Signaling Pathways in MC3T3-E1 cells. Int J Med Sci 2015; 12:905-13. [PMID: 26640410 PMCID: PMC4643081 DOI: 10.7150/ijms.13263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/20/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Matrix metalloproteinases (MMPs), produced by osteoblasts, catalyze the turnover of extracellular matrix (ECM) molecules in osteoid, and the regulation of MMP activity depends on interactions between MMPs and tissue inhibitors of metalloproteinases (TIMPs). We focused on the degradation process of ECM in osteoid that was exposed to mechanical strain, and conducted an in vitro study using MC3T3-E1 osteoblastic cells to examine the effects of tension force (TF) on the expression of MMPs and TIMPs, and activation of mitogen-activated protein kinase (MAPK) pathways. DESIGN Cells were incubated on flexible-bottomed culture plates and stimulated with or without cyclic TF for 24 hours. The expression of MMPs and TIMPs was examined at mRNA and protein levels by real-time RT-PCR and Western blotting, respectively. The phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and stress-activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) were examined by Western blotting. RESULTS TF decreased the expression of MMP-1, -3, -13 and phosphorylated ERK1/2. In contrast, TF increased the expression of TIMP-2, -3 and phosphorylated SAPK/JNK. The expression of MMP-2, -14, TIMP-1, -4 and phosphorylated p38 MAPK was unaffected by TF. MMP-1, -3 and -13 expression decreased in cells treated with the ERK inhibitor PD98059 compared with untreated control cells. The JNK inhibitor SP600125 inhibited the TF-induced upregulation of TIMP-2 and -3. CONCLUSIONS The results suggest that TF suppresses the degradation process that occurs during ECM turnover in osteoid via decreased production of MMP-1, -3 and -13, and increased production of TIMP-2 and -3 through the MAPK signaling pathways in osteoblasts.
Collapse
Affiliation(s)
- Yoko Karasawa
- 1. Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Hideki Tanaka
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Kumiko Nakai
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Natsuko Tanabe
- 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan ; 4. Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Takayuki Kawato
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masao Maeno
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Noriyoshi Shimizu
- 5. Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan ; 6. Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
15
|
Langjahr P, Díaz-Jiménez D, De la Fuente M, Rubio E, Golenbock D, Bronfman FC, Quera R, González MJ, Hermoso MA. Metalloproteinase-dependent TLR2 ectodomain shedding is involved in soluble toll-like receptor 2 (sTLR2) production. PLoS One 2014; 9:e104624. [PMID: 25531754 PMCID: PMC4273945 DOI: 10.1371/journal.pone.0104624] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 07/15/2014] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor (TLR) 2, a type I membrane receptor that plays a key role in innate immunity, recognizes conserved molecules in pathogens, and triggering an inflammatory response. It has been associated with inflammatory and autoimmune diseases. Soluble TLR2 (sTLR2) variants have been identified in human body fluids, and the TLR2 ectodomain can negatively regulate TLR2 activation by behaving as a decoy receptor. sTLR2 generation does not involve alternative splicing mechanisms, indicating that this process might involve a post-translational modification of the full-length receptor; however, the specific mechanism has not been studied. Using CD14+ peripheral human monocytes and the THP-1 monocytic leukemia-derived cell line, we confirm that sTLR2 generation increases upon treatment with pro-inflammatory agents and requires a post-translational mechanism. We also find that the constitutive and ligand-induced release of sTLR2 is sensitive to pharmacological metalloproteinase activator and inhibitors leading us to conclude that metalloproteinase TLR2 shedding contributes to soluble receptor production. By expressing human TLR2 in ADAM10- or ADAM17-deficient MEF cells, we find both enzymes to be implicated in TLR2 ectodomain shedding. Moreover, using a deletion mutant of the TLR2 juxtamembrane region, we demonstrate that this domain is required for sTLR2 generation. Functional analysis suggests that sTLR2 generated by metalloproteinase activation inhibitsTLR2-induced cytokine production by this monocytic leukemia-derived cell line. The identification of the mechanisms involved in regulating the availability of soluble TLR2 ectodomain and cell surface receptors may contribute further research on TLR2-mediated processes in innate immunity and inflammatory disorders.
Collapse
Affiliation(s)
- Patricia Langjahr
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - David Díaz-Jiménez
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marjorie De la Fuente
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Estefhany Rubio
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Douglas Golenbock
- Division of Infectious Diseases & Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Francisca C. Bronfman
- Physiology Department, Millennium Nucleus in Regenerative Biology (MINREB), Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Quera
- Gastroenterology Unit, Clínica Las Condes, Santiago, Chile
| | - María-Julieta González
- Cell and Molecular Biology Program, Biomedical Sciences Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcela A. Hermoso
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
16
|
Huang Q, Gao B, Jie Q, Wei BY, Fan J, Zhang HY, Zhang JK, Li XJ, Shi J, Luo ZJ, Yang L, Liu J. Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis. Bone 2014; 66:306-14. [PMID: 24933344 DOI: 10.1016/j.bone.2014.06.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) are a significant pathogenic factor of osteoporosis. Ginsenoside-Rb2 (Rb2), a 20(S)-protopanaxadiol glycoside extracted from ginseng, is a potent antioxidant that generates interest regarding the bone metabolism area. We tested the potential anti-osteoporosis effects of Rb2 and its underlying mechanism in this study. We produced an oxidative damage model induced by hydrogen peroxide (H2O2) in osteoblastic MC3T3-E1 cells to test the essential anti-osteoporosis effects of Rb2in vitro. The results indicated that treatment of 0.1 to 10μM Rb2 promoted the proliferation of MC3T3-E1 cells, improved alkaline phosphatase (ALP) expression, elevated calcium mineralization and mRNA expressions of Alp, Col1a1, osteocalcin (Ocn) and osteopontin (Opn) against oxidative damage induced by H2O2. Importantly, Rb2 reduced the expression levels of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and inhibited the H2O2-induced production of ROS. The in vivo study indicated that the Rb2 administered for 12weeks partially decreased blood malondialdehyde (MDA) activity and elevated the activity of reduced glutathione (GSH) in ovariectomized (OVX) mice. Moreover, Rb2 improved the micro-architecture of trabecular bones and increased bone mineral density (BMD) of the 4th lumbar vertebrae (L4) and the distal femur. Altogether, these results demonstrated that the potential anti-osteoporosis effects of Rb2 were linked to a reduction of oxidative damage and bone-resorbing cytokines, which suggests that Rb2 might be effective in preventing and alleviating osteoporosis.
Collapse
Affiliation(s)
- Qiang Huang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Qiang Jie
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Bo-Yuan Wei
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Hong-Yang Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Jin-Kang Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xiao-Jie Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Jun Shi
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Zhuo-Jing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Jian Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China.
| |
Collapse
|
17
|
Johnson RW, White JD, Walker EC, Martin TJ, Sims NA. Myokines (muscle-derived cytokines and chemokines) including ciliary neurotrophic factor (CNTF) inhibit osteoblast differentiation. Bone 2014; 64:47-56. [PMID: 24721701 DOI: 10.1016/j.bone.2014.03.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/12/2014] [Accepted: 03/25/2014] [Indexed: 02/05/2023]
Abstract
Muscle and bone are intimately linked by bi-directional signals regulating both muscle and bone cell gene expression and proliferation. It is generally accepted that muscle cells secrete factors (myokines) that influence adjacent bone cells, but these myokines are yet to be identified. We have previously shown that osteocyte-specific deletion of the co-receptor subunit utilized by IL-6 family cytokines, glycoprotein 130 (gp130), resulted in impaired bone formation in the trabecular bone, but enhanced periosteal expansion, suggesting a gp130-dependent periosteum-specific inhibition of osteoblast function, potentially induced by the local muscle fibres. We report here that differentiated primary calvarial osteoblasts cultured in myotube-conditioned media (CM) from myogenic C2C12 cells show reduced mRNA levels of genes associated with osteoblast differentiation. Alkaline phosphatase protein activity and all mRNA markers of osteoblast differentiation in the tested panel (runx2, osterix, alkaline phosphatase, parathyroid hormone (PTH) receptor, osteoprotegerin, osteocalcin, sclerostin) were reduced following culture with myotube CM. The exception was RANKL, which was significantly elevated in differentiated primary osteoblast cultures expressing osteocytic genes. A cytokine array of the C2C12 myotube-conditioned media identified TIMP-1 and MCP-1 as the most abundant myokines, but treatment with recombinant TIMP-1 or MCP-1 did not inhibit osteoblast gene expression. Rather, the IL-6 family cytokine ciliary neurotrophic factor (CNTF), which we found abundantly expressed by mouse muscle at the transcript and protein level, reduced osteoblast gene expression, although not to the same extent as the myotube-conditioned media. These data indicate that muscle cells secrete abundant TIMP-1, MCP-1, and CNTF, and that of these, only CNTF has the ability to suppress osteoblast function and gene expression in a similar manner to myotube-conditioned medium. This suggests that CNTF is an inhibitory myokine for osteoblasts.
Collapse
Affiliation(s)
- Rachelle W Johnson
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Jason D White
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; School of Veterinary Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Emma C Walker
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| |
Collapse
|
18
|
Gao B, Huang Q, Lin YS, Wei BY, Guo YS, Sun Z, Wang L, Fan J, Zhang HY, Han YH, Li XJ, Shi J, Liu J, Yang L, Luo ZJ. Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical Wnt signaling pathway. PLoS One 2014; 9:e99137. [PMID: 24918446 PMCID: PMC4053448 DOI: 10.1371/journal.pone.0099137] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/11/2014] [Indexed: 12/26/2022] Open
Abstract
Fat infiltration within marrow cavity is one of multitudinous features of estrogen deficiency, which leads to a decline in bone formation functionality. The origin of this fat is unclear, but one possibility is that it is derived from osteoblasts, which transdifferentiate into adipocytes that produce bone marrow fat. We examined the dose-dependent effect of 17β-estradiol on the ability of MC3T3-E1 cells and murine bone marrow-derived mesenchymal stem cell (BMMSC)-derived osteoblasts to undergo osteo-adipogenic transdifferentiation. We found that 17β-estradiol significantly increased alkaline phosphatase activity (P<0.05); calcium deposition; and Alp, Col1a1, Runx2, and Ocn expression levels dose-dependently. By contrast, 17β-estradiol significantly decreased the number and size of lipid droplets, and Fabp4 and PPARγ expression levels during osteo-adipogenic transdifferentiation (P<0.05). Moreover, the expression levels of brown adipocyte markers (Myf5, Elovl3, and Cidea) and undifferentiated adipocyte markers (Dlk1, Gata2, and Wnt10b) were also affected by 17β-estradiol during osteo-adipogenic transdifferentiation. Western blotting and immunostaining further showed that canonical Wnt signaling can be activated by estrogen to exert its inhibitory effect of osteo-adipogenesis. This is the first study to demonstrate the dose-dependent effect of 17β-estradiol on the osteo-adipogenic transdifferentiation of MC3T3-E1 cells and BMMSCs likely via canonical Wnt signaling. In summary, our results indicate that osteo-adipogenic transdifferentiation modulated by canonical Wnt signaling pathway in bone metabolism may be a new explanation for the gradually increased bone marrow fat in estrogen-inefficient condition.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Qiang Huang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yan-Shui Lin
- Department of Orthopaedics, First Affiliated Hospital, Chengdu Medical College, Chengdu, People’s Republic of China
| | - Bo-Yuan Wei
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yun-Shan Guo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhen Sun
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Long Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hong-Yang Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yue-Hu Han
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xiao-Jie Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jun Shi
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jian Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (ZJL); (LY); (JL)
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (ZJL); (LY); (JL)
| | - Zhuo-Jing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (ZJL); (LY); (JL)
| |
Collapse
|
19
|
Jacobs C, Walter C, Ziebart T, Grimm S, Meila D, Krieger E, Wehrbein H. Induction of IL-6 and MMP-8 in human periodontal fibroblasts by static tensile strain. Clin Oral Investig 2013; 18:901-8. [PMID: 23851938 DOI: 10.1007/s00784-013-1032-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 07/01/2013] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Mechanical loading is a potential activator of inflammation and able to stimulate factors for periodontal and alveolar bone destruction. Aim of this study was to investigate the inflammatory response and synthesis of proteinases by human periodontal ligament fibroblast (HPdLF) dependent on different strengths of static tensile strain (STS). MATERIALS AND METHODS HPdLFs were loaded with different STS strengths (1, 5, and 10 %) in vitro. Gene expressions of cyclooxygenase (COX)-2 and interleukin (IL)-6 were analyzed by quantitative real-time polymerase chain reaction. Production of IL-6, prostaglandin E2 (PGE2), matrix metalloproteinase (MMP)-8, and tissue inhibitors of matrix metalloproteinase (TIMP)-1 were measured by enzyme-linked immunosorbent assay. Receptor activator of nuclear factor-kappa ligand (RANKL) synthesis was detected by immunocytochemical staining. RESULTS Ten percent STS led to an increased gene expression of IL-6 and COX-2 (34.4-fold) in HPdLF, and 1 and 5 % STS slightly reduced the gene expression of IL-6. Synthesis of IL-6 was significantly reduced by 1 % STS and stimulated by 10 % STS. Ten percent STS significantly induced PGE2 production. RANKL was not detectable at any strength of STS. MMP-8 synthesis showed significantly higher values only at 10 % STS, but TIMP-1 was stimulated by 5 and 10 % STS, resulting into highest TIMP-1/MMP-8 ratio at 5 % STS. CONCLUSIONS High-strength STS is a potent inducer of periodontal inflammation and MMP-8, whereas low-strength STS shows an anti-inflammatory effect. Moderate-strength STS causes the highest TIMP-1/MMP-8 ratio, leading to appropriate conditions for reformation of the extracellular matrix. CLINICAL RELEVANCE Furthermore, this study points out that the strength of force plays a pivotal role to achieve orthodontic tooth movement without inducing periodontal inflammation and to activate extracellular matrix regeneration.
Collapse
Affiliation(s)
- Collin Jacobs
- Department of Orthodontics, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany,
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang JK, Yang L, Meng GL, Yuan Z, Fan J, Li D, Chen JZ, Shi TY, Hu HM, Wei BY, Luo ZJ, Liu J. Protection by salidroside against bone loss via inhibition of oxidative stress and bone-resorbing mediators. PLoS One 2013; 8:e57251. [PMID: 23437352 PMCID: PMC3577746 DOI: 10.1371/journal.pone.0057251] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/23/2013] [Indexed: 01/23/2023] Open
Abstract
Oxidative stress is a pivotal pathogenic factor for bone loss in mouse model. Salidroside, a phenylpropanoid glycoside extracted from Rhodiola rosea L, exhibits potent antioxidative effects. In the present study, we used an in vitro oxidative stress model induced by hydrogen peroxide (H2O2) in MC3T3-E1 cells and a murine ovariectomized (OVX) osteoporosis model to investigate the protective effects of salidroside on bone loss and the related mechanisms. We demonstrated that salidroside caused a significant (P<0.05) elevation of cell survival, alkaline phosphatase (ALP) staining and activity, calcium deposition, and the transcriptional expression of Alp, Col1a1 and Osteocalcin (Ocn) in the presence of H2O2. Moreover, salidroside decreased the production of intracellular reactive oxygen species (ROS), and osteoclast differentiation inducing factors such as receptor activator of nuclear factor-kB ligand (RANKL) and IL-6 induced by H2O2. In vivo studies further demonstrated that salidroside supplementation for 3 months caused a decrease in malondialdehyde (MDA) and an increase in reduced glutathione (GSH) concentration in blood of ovariectomized mouse (P<0.05), it also improved trabecular bone microarchitecture and bone mineral density in the fourth lumbar vertebra and distal femur. Our study indicated that the protection provided by salidroside in alleviating bone loss was mediated, at least in part, via inhibition of the release of bone-resorbing mediators and oxidative damage to bone-forming cells, suggesting that salidroside can be used as an effective remedy in the treatment or prevention of osteoporosis.
Collapse
Affiliation(s)
- Jin-Kang Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi′an, People's Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi′an, People's Republic of China
| | - Guo-Lin Meng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi′an, People's Republic of China
| | - Zhi Yuan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi′an, People's Republic of China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi′an, People's Republic of China
| | - Dan Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi′an, People's Republic of China
| | - Jian-Zong Chen
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi′an, People's Republic of China
| | - Tian-Yao Shi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Hui-Min Hu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi′an, People's Republic of China
| | - Bo-Yuan Wei
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi′an, People's Republic of China
| | - Zhuo-Jing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi′an, People's Republic of China
- * E-mail: (JL); (ZJL)
| | - Jian Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi′an, People's Republic of China
- * E-mail: (JL); (ZJL)
| |
Collapse
|
21
|
Naito S, Takahashi T, Onoda J, Yamauchi A, Kawai T, Kishino J, Yamane S, Fujii I, Fukui N, Numata Y. Development of a Neutralizing Antibody Specific for the Active Form of Matrix Metalloproteinase-13. Biochemistry 2012; 51:8877-84. [DOI: 10.1021/bi301228d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shoichi Naito
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tatsuya Takahashi
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Junji Onoda
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Akira Yamauchi
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Taeko Kawai
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Junji Kishino
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shoji Yamane
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Ikuo Fujii
- School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku,
Sakai, Osaka 599-8531, Japan
| | - Naoshi Fukui
- Clinical Research Center for Allergy
and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Sakuradai 18-1, Sagamihara, Kanagawa
228-8522, Japan
| | - Yoshito Numata
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
22
|
Yang B, Gao J, Rao Z, Shen Q. Clinicopathological significance and prognostic value of MMP-13 expression in colorectal cancer. Scandinavian Journal of Clinical and Laboratory Investigation 2012; 72:501-5. [PMID: 22950625 DOI: 10.3109/00365513.2012.699638] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to evaluate the association of matrix metalloproteinase-13 (MMP-13) expression with clinicopathological features and prognosis in colorectal cancer (CRC) patients. CRC tissues and distal normal mucosa tissues of 158 CRC patients were detected by immunohistochemistry. The correlations between MMP-13 expression, the patients' clinicopathological features, and overall survival rate were analyzed. It was found that positive expression rate of MMP-13 in distal normal mucosa tissues was significantly lower than that in CRC tissues (36.7% vs 60.8%, p < 0.001). Poor histological differentiation, advanced clinical stage and lymph node metastasis were significantly correlated with the MMP-13 expression in CRC. The overall survival rate of the MMP-13-negative group was significantly higher than the positive group (Log-rank test = 12.452, p < 0.001). Collectively, we found that MMP-13 was correlated with progression and metastasis of CRC and could be used as a prognostic marker in CRC.
Collapse
Affiliation(s)
- Bo Yang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command PLA, Wuhan, P.R. China
| | | | | | | |
Collapse
|