1
|
Liu M, Lu Y, Sun F, Li Y, Wu J, Zou Q. The Nerve-Induced Adipose Stem Cells Promote Nerve Repair in Stress Urinary Incontinence by Regulating Schwann Cell Repair Phenotype Conversion Through Activation of the Notch Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04704-z. [PMID: 39881114 DOI: 10.1007/s12035-025-04704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Stress urinary incontinence (SUI) currently lacks effective treatment options, and the restoration of neurological function remains a major challenge, with unmet clinical needs. Research has indicated that adipose-derived stem cells (ADSCs) can be induced to differentiate into neural-induced adipose-derived stem cells (NI-ADSCs) under specific inductive conditions, exhibiting excellent neuroregenerative capabilities. ADSCs were obtained from female SD rats and induced into NI-ADSCs. In vitro, NI-ADSCs were co-cultured with Schwann cells (SCs) to investigate their effects on SC proliferation and repair phenotype transition and further explore its underlying mechanism. In vivo, a rat model of SUI was established using a bilateral pudendal nerve transection method. NI-ADSCs were injected into the urethral sphincter to evaluate their effects on urodynamics, muscle angiogenesis, and neural repair in SUI rats, while also exploring the mechanisms of neural repair. This study used EGF, FGF, and B27 to induce ADSCs into NI-ADSCs expressing neural induction markers (MAP, Nestin, and PAX6). In vitro experiments found no significant difference in the proliferation of L6 and RSC96 between NI-ADSCs and ADSCs (p > 0.05). However, when co-cultured with NI-ADSCs, SCs showed upregulated expression of repair-related phenotypic markers (BDNF, GDNF, and GFAP). In this phenotypic transformation process, the expression of Notch-related pathway proteins (Notch1, NICD, and Hes1) was increased, and the use of DAPT (a Notch pathway inhibitor) could suppress the SC repair phenotype transformation. In vivo, experiments revealed that intraurethral injection of NI-ADSCs significantly promoted the expression of neural marker (S100β) and demyelination markers (GFAP) and urodynamic recovery in SUI rats, while DAPT inhibited its neural repair effect. In summary, our study demonstrates that NI-ADSCs can promote nerve regeneration by promoting and maintaining the repair-related phenotype of SCs. The underlying mechanism may be related to the activation of the Notch signaling pathway.
Collapse
Affiliation(s)
- Ming Liu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China
- Second Clinical Medical College, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Youyi Lu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China
| | - Fengze Sun
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China
| | - Yongwei Li
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China
| | - Jitao Wu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China.
| | - Qingsong Zou
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
2
|
Selimoglu MN, Kocacan M, Tuncer S, Tosun Z, Erdogan E. Positive effect of ulnar nerve fascicle transfer to musculocutaneous nerve seeded with allogeneic adipose tissue derived stem cells on nerve regeneration for repairing upper brachial plexus injury in a rat model: A preliminary study. Microsurgery 2024; 44:e31208. [PMID: 39012167 DOI: 10.1002/micr.31208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Traumatic peripheral nerve injury, with an annual incidence reported to be approximately 13-23 per 100,000 people, is a serious clinical condition that can often lead to significant functional impairment and permanent disability. Although nerve transfer has become increasingly popular in the treatment of brachial plexus injuries, satisfactory results cannot be obtained even with total nerve root transfer, especially after serious injuries. To overcome this problem, we hypothesize that the application of stem cells in conjunction with nerve transfer procedures may be a viable alternative to more aggressive treatments that do not result in adequate improvement. Similarly, some preliminary studies have shown that adipose stem cells combined with acellular nerve allograft provide promising results in the repair of brachial plexus injury. The purpose of this study was to assess the efficacy of combining adipose-derived stem cells with nerve transfer procedure in a rat brachial plexus injury model. METHODS Twenty female Wistar rats weighing 300-350 g and aged 8-10 weeks were randomly divided into two groups: a nerve transfer group (NT group) and a nerve transfer combined adipose stem cell group (NT and ASC group). The upper brachial plexus injury model was established by gently avulsing the C5-C6 roots from the spinal cord with microforceps. A nerve transfer from the ulnar nerve to the musculocutaneous nerve (Oberlin procedure) was performed with or without seeded allogeneic adipose tissue-derived stem cells. Adipose tissue-derived stem cells at a rate of 2 × 106 cells were injected locally to the surface of the nerve transfer area with a 23-gauge needle. Immunohistochemistry (S100 and PGP 9.5 antibodies) and electrophysiological data were used to evaluate the effect of nerve repair 12 weeks after surgery. RESULTS The mean latency was significantly longer in the NT group (2.0 ± 0.0 ms, 95% CI: 1.96-2.06) than in the NT and ASC group (1.7 ± 0.0 ms, 95% CI: 1.7-1.7) (p < .001). The mean peak value was higher in the NT group (1.7 ± 0.0 mV, 95% CI: 1.7-1.7) than in the NT and ASC group (1.7 ± 0.3 mV, 95% CI: 1.6-1.9) with no significant difference (p = .61). Although S100 and PGP 9.5 positive areas were observed in higher amounts in the NT and ASC group compared to the NT group, the differences were not statistically significant (p = .26 and .08, respectively). CONCLUSIONS This study conducted on rats provides preliminary evidence that adipose-derived stem cells may have a positive effect on nerve transfer for the treatment of brachial plexus injury. Further studies with larger sample sizes and longer follow-up periods are needed to confirm these findings.
Collapse
Affiliation(s)
| | - Metin Kocacan
- Faculty of Medicine, Department of Histology and Embryology, Dumlupınar University, Kütahya, Turkey
| | - Seçkin Tuncer
- Faculty of Medicine, Department of Biophysics, Osmangazi University, Eskişehir, Turkey
| | - Zekeriya Tosun
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Selcuk University, Konya, Turkey
| | - Ender Erdogan
- Faculty of Medicine, Department of Histology and Embryology, Selcuk University, Konya, Turkey
| |
Collapse
|
3
|
Liu X, Zou D, Hu Y, He Y, Lu J. Research Progress of Low-Intensity Pulsed Ultrasound in the Repair of Peripheral Nerve Injury. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:414-428. [PMID: 36785967 DOI: 10.1089/ten.teb.2022.0194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Peripheral nerve injury (PNI) is a common disease that has profound impact on the health of patients, but has poor prognosis. The gold standard for the treatment of peripheral nerve defects is autologous nerve grafting; notwithstanding, due to the extremely high requirement for surgeons and medical facilities, there is great interest in developing better treatment strategies for PNI. Low-intensity pulsed ultrasound (LIPUS) is a noninterventional stimulation method characterized by low-intensity pulsed waves. It has good therapeutic effect on fractures, inflammation, soft tissue regeneration, and nerve regulation, and can participate in PNI repair from multiple perspectives. This review concentrates on the effects and mechanisms of LIPUS in the repair of PNI from the perspective of LIPUS stimulation of neural cells and stem cells, modulation of neurotrophic factors, signaling pathways, proinflammatory cytokines, and nerve-related molecules. In addition, the effects of LIPUS on nerve conduits are reviewed, as nerve conduits are expected to be a successful alternative treatment for PNI with the development of tissue engineering. Overall, the application advantages and prospects of LIPUS in the repair of PNI are highlighted by summarizing the effects of LIPUS on seed cells, neurotrophic factors, and nerve conduits for neural tissue engineering.
Collapse
Affiliation(s)
- Xuling Liu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Derong Zou
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yushi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
5
|
Peripheral Nerve Regeneration–Adipose-Tissue-Derived Stem Cells Differentiated by a Three-Step Protocol Promote Neurite Elongation via NGF Secretion. Cells 2022; 11:cells11182887. [PMID: 36139462 PMCID: PMC9496771 DOI: 10.3390/cells11182887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The lack of supportive Schwann cells in segmental nerve lesions seems to be one cornerstone for the problem of insufficient nerve regeneration. Lately, adipose-tissue-derived stem cells (ASCs) differentiated towards SC (Schwann cell)-like cells seem to fulfill some of the needs for ameliorated nerve recovery. In this study, three differentiation protocols were investigated for their ability to differentiate ASCs from rats into specialized SC phenotypes. The differentiated ASCs (dASCs) were compared for their expressions of neurotrophins (NGF, GDNF, BDNF), myelin markers (MBP, P0), as well as glial-marker proteins (S100, GFAP) by RT-PCR, ELISA, and Western blot. Additionally, the influence of the medium conditioned by dASCs on a neuron-like cell line was evaluated. The dASCs were highly diverse in their expression profiles. One protocol yielded relatively high expression rates of neurotrophins, whereas another protocol induced myelin-marker expression. These results were reproducible when the ASCs were differentiated on surfaces potentially used for nerve guidance conduits. The NGF secretion affected the neurite outgrowth significantly. It remains uncertain what features of these SC-like cells contribute the most to adequate functional recovery during the different phases of nerve recovery. Nevertheless, therapeutic applications should consider these diverse phenotypes as a potential approach for stem-cell-based nerve-injury treatment.
Collapse
|
6
|
Yang L, Shen XM, Wang ZF, Li K, Wang W. The Notch signalling pathway and miRNA regulation play important roles in the differentiation of Schwann cells from adipose-derived stem cells. J Transl Med 2022; 102:320-328. [PMID: 34795395 DOI: 10.1038/s41374-021-00687-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022] Open
Abstract
An exploration of the underlying mechanisms is necessary to improve nerve myelin-forming cell Schwann cell (SC) differentiation from adipose-derived stem cells (ADSCs). Primary rat ADSCs were isolated and characterised for cell surface markers using flow cytometry analysis. After treatment with a mixture of glial growth factors, ADSCs were induced to differentiate and subsequently identified by immunofluorescence staining and western blotting. A miRNA microarray analysis was performed to explore the genes and signalling pathways regulating ADSC differentiation into SCs. ELISAs were conducted to measure the expression of neurotrophic factors and changes in the level of nerve cell adhesion factor. Dual luciferase reporter assays and RIP assays were performed to explore the potential mechanism of miR-21-5p in ADSC differentiation. The isolated ADSCs were positive for CD29 and CD44 but negative for CD49. After induction with specific cytokines, the differentiated ADSCs presented a spindle-like morphology similar to SCs and expressed S100. RNA-sequencing analyses revealed that 9821 mRNAs of protein-coding genes and 175 miRNAs were differentially expressed in differentiated SC-like cells compared to primary cultures of ADSCs. KEGG and Gene Ontology analyses revealed that the involvement of the Notch signalling pathway and miRNA negative regulation may be associated with the differentiation of ADSCs into SCs. Treatment with a Notch inhibitor promoted the differentiation of ADSCs. Furthermore, mechanistic studies showed that Jag1 bound to miR-21-5p and upregulated its target gene Jag1, thus affecting ADSC differentiation. These results revealed the mechanism underlying the important roles of miRNAs and the Notch signalling pathway in the differentiation of SCs from ADSCs, enabling potential therapeutic applications of ADSCs in peripheral nerve regeneration in the future.
Collapse
Affiliation(s)
- Liang Yang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, Changsha, 410078, P.R. China
| | - Xiang-Min Shen
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, P.R. China
| | - Zhi-Fei Wang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, Changsha, 410078, P.R. China
| | - Ke Li
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, P.R. China
| | - Wei Wang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, P.R. China.
| |
Collapse
|
7
|
Augmenting Peripheral Nerve Regeneration with Adipose-Derived Stem Cells. Stem Cell Rev Rep 2022; 18:544-558. [PMID: 34417730 PMCID: PMC8858329 DOI: 10.1007/s12015-021-10236-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 02/03/2023]
Abstract
Peripheral nerve injuries (PNIs) are common and debilitating, cause significant health care costs for society, and rely predominately on autografts, which necessitate grafting a nerve section non-locally to repair the nerve injury. One possible approach to improving treatment is bolstering endogenous regenerative mechanisms or bioengineering new nervous tissue in the peripheral nervous system. In this review, we discuss critical-sized nerve gaps and nerve regeneration in rats, and summarize the roles of adipose-derived stem cells (ADSCs) in the treatment of PNIs. Several regenerative treatment modalities for PNI are described: ADSCs differentiating into Schwann cells (SCs), ADSCs secreting growth factors to promote peripheral nerve growth, ADSCs promoting myelination growth, and ADSCs treatments with scaffolds. ADSCs' roles in regenerative treatment and features are compared to mesenchymal stem cells, and the administration routes, cell dosages, and cell fates are discussed. ADSCs secrete neurotrophic factors and exosomes and can differentiate into Schwann cell-like cells (SCLCs) that share features with naturally occurring SCs, including the ability to promote nerve regeneration in the PNS. Future clinical applications are also discussed.
Collapse
|
8
|
Wang W, Gu MF, Wang ZF, Shen XM, Zhang J, Yang L. Let-7a-5p regulated by lncRNA-MEG3 promotes functional differentiation to Schwann cells from adipose derived stem cells via directly inhibiting RBPJ-mediating Notch pathway. Apoptosis 2021; 26:548-560. [PMID: 34409556 DOI: 10.1007/s10495-021-01685-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
Schwann cells (SCs) have important roles in supporting and repairing peripheral neurons, and thus have great potential for nerve injury treatment. Adipose tissue-derived stem cells (ADSCs) can be reliably induced to differentiate into SCs. However, the underlying molecular mechanisms are unclear. We explored the roles of MEG3/let-7a-5p/RBPJ axis in the differentiation into SCs from ADSCs. Primary ADSCs were induced to differentiate into SCs by appropriate reagents. ELISA, immunostaining, Western blotting, and qRT-PCR were employed to examine levels of SC-markers such as S100, GFAP, SOX10, p75NTR, GAP43, MPZ, β-NGF, BDNF, and NCAM and let-7 family, MEG3, RBPJ, and Notch signaling related proteins. Dual luciferase assay and RNA immunoprecipitation were performed to validate interactions of let-7a-5p/RBPJ mRNA and MEG3/let-7a-5p. Cultured ADSCs could be induced to differentiate into functional SCs. Let-7a-5p and let-7d-5p were elevated during the differentiation while MEG3 and RBPJ/Notch-signaling were suppressed. Let-7a-5p mimics promoted ADSC differentiation into SCs and up-regulated the levels of SC-related markers including S100, GFAP, SOX10, p75NTR, GAP43, MPZ, β-NGF, and NCAM, while RBPJ or MEG3 overexpression retarded the differentiation and reduced those levels. Let-7a-5p directly targeted RBPJ and MEG3 disinhibited Notch-RBPJ signaling via sponging let-7a-5p. RBPJ overexpression reversed the acceleration of let-7a-5p mimics on SC differentiation while let-7a-5p mimics blocked MEG3-mediated suppression on SC differentiation. Let-7a-5p sponged by MEG3 promotes differentiation of ADSCs into SCs via suppressing Notch signaling by targeting RBPJ. These findings shed light on mechanisms underlying the differentiation of ADSCs to SCs and provide avenues to accelerate the process.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Mei-Feng Gu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhi-Fei Wang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410078, Hunan, China
| | - Xiang-Min Shen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jie Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Liang Yang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410078, Hunan, China.
| |
Collapse
|
9
|
Yao X, Yan Z, Wang X, Jiang H, Qian Y, Fan C. The influence of reduced graphene oxide on stem cells: a perspective in peripheral nerve regeneration. Regen Biomater 2021; 8:rbab032. [PMID: 34188955 PMCID: PMC8226110 DOI: 10.1093/rb/rbab032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Graphene and its derivatives are fascinating materials for their extraordinary electrochemical and mechanical properties. In recent decades, many researchers explored their applications in tissue engineering and regenerative medicine. Reduced graphene oxide (rGO) possesses remarkable structural and functional resemblance to graphene, although some residual oxygen-containing groups and defects exist in the structure. Such structure holds great potential since the remnant-oxygenated groups can further be functionalized or modified. Moreover, oxygen-containing groups can improve the dispersion of rGO in organic or aqueous media. Therefore, it is preferable to utilize rGO in the production of composite materials. The rGO composite scaffolds provide favorable extracellular microenvironment and affect the cellular behavior of cultured cells in the peripheral nerve regeneration. On the one hand, rGO impacts on Schwann cells and neurons which are major components of peripheral nerves. On the other hand, rGO-incorporated composite scaffolds promote the neurogenic differentiation of several stem cells, including embryonic stem cells, mesenchymal stem cells, adipose-derived stem cells and neural stem cells. This review will briefly introduce the production and major properties of rGO, and its potential in modulating the cellular behaviors of specific stem cells. Finally, we present its emerging roles in the production of composite scaffolds for nerve tissue engineering.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Metro loop Road Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
10
|
Ye K, Yu J, Li L, Wang H, Tang B, Ni W, Zhou J, Ling Y, Lu X, Niu D, Ramalingam M, Hu J. Microvesicles from Schwann-Like Cells as a New Biomaterial Promote Axonal Growth. J Biomed Nanotechnol 2021; 17:291-302. [PMID: 33785099 DOI: 10.1166/jbn.2021.3037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Schwann cells promote axonal regeneration following peripheral nerve injury. However, in terms of clinical treatment, the therapeutic effects of Schwann cells are limited by their source. The transmission of microvesicles from neuroglia cells to axons is a novel communication mechanism in axon regeneration.To evaluate the effect of microvesicles released from Schwann-like cells on axonal regeneration, neural stem cells derived from human embryonic stem cells differentiated into Schwann-like cells, which presented a typical morphology and characteristics similar to those of schwann cells. The glial markers like MBP, P0, P75NTR, PMP-22, GFAP, HNK-1 and S100 were upregulated, whereas the neural stem markers like NESTIN, SOX1 and SOX2 were significantly downregulated in schwann-like cells. Microvesicles enhanced axonal growth in dorsal root ganglia neurons and regulated GAP43 expression in neuron-like cells (N2A and PC12) through the PTEN/PI3 K/Akt signaling pathway. A 5 mm section of sciatic nerve was transected in Sprague-Dawley rats. With microvesicles transplantation, regenerative nerves were evaluated after 6 weeks. Microvesicles increased sciatic function index scores, delayed gastrocnemius muscle atrophy and elevated βIII-tubulin-labeled axons in vivo. Schwann-like cells serve as a convenient source and promote axonal growth by secreting microvesicles, which may potentially be used as bioengineering materials for nerve tissue repair.
Collapse
Affiliation(s)
- Kai Ye
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jiahong Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Li Li
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Bin Tang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Wei Ni
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jiqin Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yating Ling
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaorui Lu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongdong Niu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
11
|
Neurospheres: a potential in vitro model for the study of central nervous system disorders. Mol Biol Rep 2021; 48:3649-3663. [PMID: 33765252 DOI: 10.1007/s11033-021-06301-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Neurogenesis was believed to end after the period of embryonic development. However, the possibility of obtaining an expressive number of cells with functional neuronal characteristics implied a great advance in experimental research. New techniques have emerged to demonstrate that the birth of new neurons continues to occur in the adult brain. Two main rich sources of these cells are the subventricular zone (SVZ) and the subgranular zone of the hippocampal dentate gyrus (SGZ) where adult neural stem cells (aNSCs) have the ability to proliferate and differentiate into mature cell lines. The cultivation of neurospheres is a method to isolate, maintain and expand neural stem cells (NSCs) and has been used extensively by several research groups to analyze the biological properties of NSCs and their potential use in injured brains from animal models. Throughout this review, we highlight the areas where this type of cell culture has been applied and the advantages and limitations of using this model in experimental studies for the neurological clinical scenario.
Collapse
|
12
|
Kadkhodaeian HA. Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells. Basic Clin Neurosci 2021; 12:29-42. [PMID: 33995925 PMCID: PMC8114861 DOI: 10.32598/bcn.9.10.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/25/2018] [Accepted: 02/02/2020] [Indexed: 11/29/2022] Open
Abstract
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these cells from mesenchymal stem cells is an ideal goal. The purpose of the paper is to review novel methods for retinal progenitor cell production and selecting a set of signaling molecules in the presence of adult retinal pigment epithelium and extraocular mesenchyme acting as inducers of retinal cell differentiation.
Collapse
|
13
|
Juan CH, Chen MH, Lin FH, Wong CS, Chien CC, Chen MH. In Vitro Differentiation of Human Placenta-Derived Multipotent Cells into Schwann-Like Cells. Biomolecules 2020; 10:biom10121657. [PMID: 33322066 PMCID: PMC7763858 DOI: 10.3390/biom10121657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Human placenta-derived multipotent stem cells (PDMCs) resembling embryonic stem cells can differentiate into three germ layer cells, including ectodermal lineage cells, such as neurons, astrocytes, and oligodendrocytes. The favorable characteristics of noninvasive cell harvesting include fewer ethical, religious, and legal considerations as well as accessible and limitless supply. Thus, PDMCs are attractive for cell-based therapy. The Schwann cell (SC) is the most common cell type used for tissue engineering such as nerve regeneration. However, the differentiation potential of human PDMCs into SCs has not been demonstrated until now. In this study, we evaluated the potential of PDMCs to differentiate into SC-like cells in a differentiation medium. After induction, PDMCs not only exhibited typical SC spindle-shaped morphology but also expressed SC markers, including S100, GFAP, p75, MBP, and Sox 10, as revealed by immunocytochemistry. Moreover, a reverse transcription-quantitative polymerase chain reaction analysis revealed the elevated gene expression of S100, GFAP, p75, MBP, Sox-10, and Krox-20 after SC induction. A neuroblastoma cell line, SH-SY5Y, was cultured in the conditioned medium (CM) collected from PDMC-differentiated SCs. The growth rate of the SH-SY5Y increased in the CM, indicating the function of PDMC-induced SCs. In conclusion, human PDMCs can be differentiated into SC-like cells and thus are an attractive alternative to SCs for cell-based therapy in the future.
Collapse
Affiliation(s)
- Chung-Hau Juan
- Department of Anesthesiology, Cathay General Hospital, Taipei 106438, Taiwan; (C.-H.J.); (C.-S.W.); (C.-C.C.)
- Department of Biomedical Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Mei-Hsiu Chen
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
- Department of Biomedical Engineering, Ming Chuan University, Taoyuan 333321, Taiwan
| | - Feng-Hui Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 106319, Taiwan;
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 106438, Taiwan; (C.-H.J.); (C.-S.W.); (C.-C.C.)
| | - Chih-Cheng Chien
- Department of Anesthesiology, Cathay General Hospital, Taipei 106438, Taiwan; (C.-H.J.); (C.-S.W.); (C.-C.C.)
| | - Ming-Hong Chen
- Department of Neurosurgery, Taipei Municipal Wangfang Hospital, Taipei 116081, Taiwan
- Department of Biomedical Sciences, Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence:
| |
Collapse
|
14
|
Dehdashtian A, Bratley JV, Svientek SR, Kung TA, Awan TM, Cederna PS, Kemp SW. Autologous fat grafting for nerve regeneration and neuropathic pain: current state from bench-to-bedside. Regen Med 2020; 15:2209-2228. [PMID: 33264053 DOI: 10.2217/rme-2020-0103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite recent advances in microsurgical techniques, functional recovery following peripheral nerve injury remains slow and inadequate. Poor peripheral nerve regeneration not only leaves patients with significant impairments, but also commonly leads to the development of debilitating neuropathic pain. Recent research has demonstrated the potential therapeutic benefits of adipose-derived stem cells, to enhance nerve regeneration. However, clinical translation remains limited due to the current regulatory burdens of the US FDA. A reliable and immediately translatable alternative is autologous fat grafting, where native adipose-derived stem cells present in the transferred tissue can potentially act upon regenerating axons. This review presents the scope of adipose tissue-based therapies to enhance outcomes following peripheral nerve injury, specifically focusing on their role in regeneration and ameliorating neuropathic pain.
Collapse
Affiliation(s)
- Amir Dehdashtian
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jarred V Bratley
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shelby R Svientek
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Theodore A Kung
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tariq M Awan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul S Cederna
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen Wp Kemp
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Ravenkamp M, Tchoukalova YD, Myers CE, Madsen CS, Shah MK, Zhang N, Lal D, Lott DG. The neurotrophic potential of human platelet lysate substitution for fetal bovine serum in glial induction culture medium. Neurosci Lett 2020; 730:135025. [PMID: 32387720 DOI: 10.1016/j.neulet.2020.135025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Maile Ravenkamp
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Yourka D Tchoukalova
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Cheryl E Myers
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Cathy S Madsen
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Manisha K Shah
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Nan Zhang
- Department of Health Science Research, Section of Biostatistics, Mayo Clinic, Scottsdale, AZ 85059, USA.
| | - Devyani Lal
- Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - David G Lott
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic, Phoenix, AZ 85054, USA.
| |
Collapse
|
16
|
Lin Y, Li X, Fan C, Yang F, Hao D, Ge W, Gao Y. Cardioprotective effects of rat adipose‑derived stem cells differ under normoxic/physioxic conditions and are associated with paracrine factor secretion. Int J Mol Med 2020; 45:1591-1600. [PMID: 32323745 DOI: 10.3892/ijmm.2020.4524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/13/2020] [Indexed: 11/06/2022] Open
Abstract
Adipose tissue‑derived stem cells (ASCs) are beneficial for myocardial regeneration. The physiological oxygen content of human organs is estimated to range between 1 and 11%. However, in the majority of previous in vitro studies with cultured ASCs, the O2 concentration was artificially set to 21%. The present study aimed to compare the protective effects of rat ASCs on neonatal rat ventricular myocytes (NRVMs) under normoxic (21% O2) and physioxic (5% O2) conditions. Rat NRVMs cultured under normoxia or physioxia were treated with H2O2 or left untreated, and further co‑cultured with ASCs in 21% or 5% O2. The apoptosis of NRVMs was evaluated by Annexin V staining and quantitating the protein levels of Bcl‑2 and Bax by western blotting. The oxidative stress of NRVMs was determined by a glutathione/oxidized glutathione assay kit. The concentrations of secreted vascular endothelium growth factor (VEGF), insulin like growth factor‑1 (IGF‑1) and basic fibroblast growth factor (bFGF) in the culture medium were quantified by enzyme‑linked immunosorbent assay. Under both normoxia and physioxia, co‑culture with ASCs protected H2O2‑exposed NRVMs from apoptosis and significantly alleviated the oxidative stress in NRVMs. The protective effects of ASCs were associated with increased secretion of VEGF, IGF‑1 and bFGF. ASCs cultured in 5% O2 exhibited certain cardioprotective effects against H2O2 stress. The results of the present study suggested that O2 concentrations influenced the cardioprotective effects of ASCs. VEGF, IGF‑1 and bFGF may serve a role in the myocardial regeneration mediated by transplanted ASCs.
Collapse
Affiliation(s)
- Yuanyuan Lin
- Department of Cardiology, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Xuewen Li
- Department of Cardiology, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Chunhui Fan
- Department of Information, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Fan Yang
- Department of Cardiology, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Dajie Hao
- Department of Cardiology, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Wenjia Ge
- Department of Science Research and Education, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yuping Gao
- Department of Cardiology, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
17
|
Icariside II facilitates the differentiation of ADSCs to schwann cells and restores erectile dysfunction through regulation of miR-33/GDNF axis. Biomed Pharmacother 2020; 125:109888. [PMID: 32066039 DOI: 10.1016/j.biopha.2020.109888] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Adipose derived stem cells (ADSCs) have the property to differentiate into neuron-like cells, which may provide a novel insight for the restoration of erectile dysfunction (ED) mainly induced by cavernous nerve injury. Icariside II (ICA II) has been reported to play a key role in the regulation of erectile function via stimulating the differentiation of ADSCs to Schwann Cells (SCs). However, the function and molecular mechanisms of ICA II in ED remains to be further clarified. METHODS The expression of S100, P75, GDNF and miR-33 was detected by qRT-PCR. And the relative proteins expression was determined by western blot. Cell viability was measured by Cell Counting Kit-8 (CCK-8) assay. Bioinformatics, luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the interaction between miR-33 and GDNF. Intracavernosal pressure (ICP), the ratio of ICP and mean arterial pressure (MAP), as well as nNOS expression were examined to evaluate the erectile function of SD rats with bilateral cavernous nerve injury (BCNI). RESULTS ICA II and miR-33 respectively promoted and inhibited the differentiation of ADSCs to SCs. MiR-33 could negatively regulate P75 and GDNF expression. ICA II exerted promotion effects on differentiation of ADSCs to SCs via regulating miR-33. GDNF was identified to be a target of miR-33. MiR-33 overexpression abrogated the stimulatory effect of ICA II on ADSCs' differentiation, which was blocked by GDNF overexpression. treated with ICA II recovered the erectile function of BCNI model rats through regulation of miR-33. CONCLUSION ICA II contributed to the differentiation of ADSCs to SCs viamiR-33/GDNF axis, contributing to the recovery of erectile function in BCNI rats.
Collapse
|
18
|
Mehrotra P, Tseropoulos G, Bronner ME, Andreadis ST. Adult tissue-derived neural crest-like stem cells: Sources, regulatory networks, and translational potential. Stem Cells Transl Med 2019; 9:328-341. [PMID: 31738018 PMCID: PMC7031649 DOI: 10.1002/sctm.19-0173] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Neural crest (NC) cells are a multipotent stem cell population that give rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Premigratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NC‐like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a postmigratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC in vivo provides insights into means for differentiating NC‐like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| |
Collapse
|
19
|
Doering L, Khatri R, Petry SF, Sauer H, Howaldt HP, Linn T. Regulation of somatostatin expression by vitamin D3 and valproic acid in human adipose-derived mesenchymal stem cells. Stem Cell Res Ther 2019; 10:240. [PMID: 31387633 PMCID: PMC6685151 DOI: 10.1186/s13287-019-1330-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/19/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ADMSC) are non-haematopoietic, fibroblast-like multipotent progenitor cells. They have the potential for trilineage (adipocyte, chondrocyte and osteocyte) differentiation as well as differentiation into endocrine pancreatic progenitors. In diabetic or cancer therapy, somatostatin (SST) expression plays a vital role. Small molecules such as valproic acid (VPA) and micronutrients like vitamin D3 have differentiation potential in ADMSC. Therefore, the aim of this study was to investigate the role of vitamin D3 machinery and its metabolic enzymes in ADMSC. Furthermore, the reprogramming effect of vitamin D3 and VPA was evaluated on somatostatin expression in pancreatic lineage differentiation. METHODS ADMSC were characterised based on their cell surface marker profile using flow cytometry. Specific adipogenic and osteogenic differentiation protocols were used in this study. Gene expression of several pluripotent, endodermal, pancreatic progenitor and pancreatic endocrine lineage markers were investigated in native ADMSC and after stimulation with different concentration of vitamin D3 for five consecutive days (0, 50, 100, 150 nM) and VPA (0.5, 1, 1.5, 2 mM) by real-time PCR. Furthermore, somatostatin expression was confirmed with ELISA and immunocytochemistry. RESULTS In ADMSC, the expression of somatostatin mRNA, the vitamin D receptor (VDR) and its metabolising enzymes 1 α-Hydroxylase, 24-Hydroxylase and 25-Hydroxylase were detected. Upon stimulation with vitamin D3, nuclear translocation of vitamin D receptor (VDR) was observed. Interestingly, the presence of vitamin D3 reduced the transcription of the somatostatin gene. By contrast, VPA treatment of cultivated ADMSC showed enhancing effect on somatostatin gene expression. No other pluripotent, endodermal, pancreatic progenitor or pancreatic endocrine lineage mRNA expression was modulated under the influence of vitamin D3 and VPA. CONCLUSION Human ADMSC carry the VDR. The vitamin D metabolising enzyme 25-Hydroxylase responded to the addition of vitamin D3. Moreover, our results demonstrate that somatostatin expression in ADMSC is constitutive, partially secreted and regulated by vitamin D3 and VPA.
Collapse
Affiliation(s)
- Luise Doering
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany
| | - Rahul Khatri
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany
| | - Heinrich Sauer
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Hans-Peter Howaldt
- Department of Oral and Maxillofacial Surgery, University Hospital of Giessen and Marburg, Klinikstrasse. 33, 35392, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
20
|
Liu CY, Yin G, Sun YD, Lin YF, Xie Z, English AW, Li QF, Lin HD. Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury. CNS Neurosci Ther 2019; 26:189-196. [PMID: 31278850 PMCID: PMC6978230 DOI: 10.1111/cns.13187] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Aims Recovery after peripheral nerve injury (PNI) is often difficult, and there is no optimal treatment. Schwann cells (SCs) are important for peripheral nerve regeneration, so SC‐targeting treatments have gained importance. Adipose‐derived stem cells (ADSCs) and their exosomes can promote peripheral nerve repair, but their interactions with SCs are unclear. Methods Purified SCs from sciatic nerve injury sites were harvested, and apoptosis and proliferation of SCs at post‐PNI 24 hours were analyzed. The effects of coculture with ADSCs and different concentrations of ADSC‐derived exosomes (ADSC‐Exo) were studied through in vitro experiments by flow cytometry, CCK8 assay, immunofluorescence staining, and histological analysis. The expression of the apoptosis‐related genes Bcl‐2 and Bax was also analyzed by qRT‐PCR. Results ADSC‐Exo reduced the apoptosis of SCs after PNI by upregulating the anti‐apoptotic Bcl‐2 mRNA expression and downregulating the pro‐apoptotic Bax mRNA expression. Further, it also improved the proliferation rate of SCs. This effect was confirmed by the morphological and histological findings in PNI model rats. Conclusion Our results present a novel exosome‐mediated mechanism for ADSC‐SC cross talk that reduces the apoptosis and promotes the proliferation of SCs and may have therapeutic potential in the future.
Collapse
Affiliation(s)
- Cai-Yue Liu
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Plastic Surgery, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Gang Yin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-Dan Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yao-Fa Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopedic Surgery, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Zheng Xie
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopedic Surgery, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Arthur W English
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao-Dong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Stem cell/cellular interventions in human spinal cord injury: Is it time to move from guidelines to regulations and legislations? Literature review and Spinal Cord Society position statement. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:1837-1845. [PMID: 31098715 DOI: 10.1007/s00586-019-06003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 05/05/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE In preclinical studies, many stem cell/cellular interventions demonstrated robust regeneration and/or repair in case of SCI and were considered a promising therapeutic candidate. However, data from clinical studies are not robust. Despite lack of substantial evidence for the efficacy of these interventions in spinal cord injury (SCI), many clinics around the world offer them as "therapy." These "clinics" claim efficacy through patient testimonials and self-advertisement without any scientific evidence to validate their claims. Thus, SCS established a panel of experts to review published preclinical studies, clinical studies and current global guidelines/regulations on usage of cellular transplants and make recommendations for their clinical use. METHODS The literature review and draft position statement was compiled and circulated among the panel and relevant suggestions incorporated to reach consensus. This was discussed and finalized in an open forum during the SCS Annual Meeting, ISSICON. RESULTS Preclinical evidence suggests safety and clinical potency of cellular interventions after SCI. However, evidence from clinical studies consisted of mostly case reports or uncontrolled case series/studies. Data from animal studies cannot be generalized to human SCI with regard to toxicity prediction after auto/allograft transplantation. CONCLUSIONS Currently, cellular/stem cell transplantation for human SCI is experimental and needs to be tested through a valid clinical trial program. It is not ethical to provide unproven transplantation as therapy with commercial implications. To stop the malpractice of marketing such "unproven therapies" to a vulnerable population, it is crucial that all countries unite to form common, well-defined regulations/legislation on their use in SCI. These slides can be retrieved from Electronic Supplementary Material.
Collapse
|
22
|
The Use and Delivery of Stem Cells in Nerve Regeneration: Preclinical Evidence and Regulatory Considerations. Ann Plast Surg 2019; 80:448-456. [PMID: 29166311 DOI: 10.1097/sap.0000000000001259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Outcomes following peripheral nerve injury remain poor despite the regenerative capacity displayed by the peripheral nervous system. Current therapies are limited and do not provide satisfactory functional recovery in a multitude of cases. Biomaterials have decreased the need for nerve autograft across small nerve gaps in small-caliber nerves, but the lack of a cellular substrate presents a limiting factor to the effectiveness of this therapy. Schwann cells are the supportive cells in the peripheral nervous system and play an integral role in the physiological response and regeneration following nerve injury. Limitations to autologous Schwann cells include donor site morbidity during harvesting, limited expansion capability, and finite source. Stem cells are multipotent or pluripotent cells with self-renewing capabilities that show promise to improve functional recovery following nerve injury. Differentiation of stem cells into supportive Schwann cells could provide additional trophic support without the disadvantages of autologous Schwann cells, providing an avenue to improve existing therapies. A variety of stem cells have been evaluated in animal models for this clinical application; the current options, along with their clinical feasibility, are summarized in this article.
Collapse
|
23
|
Pilny E, Smolarczyk R, Jarosz-Biej M, Hadyk A, Skorupa A, Ciszek M, Krakowczyk Ł, Kułach N, Gillner D, Sokół M, Szala S, Cichoń T. Human ADSC xenograft through IL-6 secretion activates M2 macrophages responsible for the repair of damaged muscle tissue. Stem Cell Res Ther 2019; 10:93. [PMID: 30867059 PMCID: PMC6417195 DOI: 10.1186/s13287-019-1188-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stromal cells (ADSCs) are multipotent stromal cells. The cells secrete a number of cytokines and growth factors and show immunoregulatory and proangiogenic properties. Their properties may be used to repair damaged tissues. The aim of our work is to explain the muscle damage repair mechanism with the utilization of the human adipose-derived mesenchymal stromal cells (hADSCs). METHODS For the hADSCs isolation, we used the subcutaneous adipose tissue collected during the surgery. The murine hind limb ischemia was used as a model. The unilateral femoral artery ligation was performed on 10-12-week-old male C57BL/6NCrl and NOD SCID mice. The mice received PBS- (controls) or 1 × 106 hADSCs. One, 3, 7, 14 and 21 days after the surgery, we collected the gastrocnemius muscles for the immunohistochemical analysis. The results were analyzed with relevant tests using the Statistica software. RESULTS The retention time of hADSCs in the limb lasted about 14 days. In the mice receiving hADSCs, the improvement in the functionality of the damaged limb occurred faster than in the control mice. More new blood vessels were formed in the limbs of the mice receiving hADSCs than in limbs of the control mice. hADSCs also increased the infiltration of the macrophages with the M2 phenotype (7-AAD-/CD45+/F4/80+/CD206+) into the ischemic limbs. hADSCs introduced into the limb of mice secreted interleukin-6. This cytokine stimulates the emergence of the proangiogenic M2 macrophages, involved, among others, in the repair of a damaged tissue. Both macrophage depletion and IL-6 blockage suppressed the therapeutic effect of hADSCs. In the mice treated with hADSCs and liposomes with clodronate (macrophages depletion), the number of capillaries formed was lower than in the mice treated with hADSCs alone. Administration of hADSCs to the mice that received siltuximab (human IL-6 blocker) did not cause an influx of the M2 macrophages, and the number of capillaries formed was at the level of the control group, as in contrast to the mice that received only the hADSCs. CONCLUSIONS The proposed mechanism for the repair of the damaged muscle using hADSCs is based on the activity of IL-6. In our opinion, the cytokine, secreted by the hADSCs, stimulates the M2 macrophages responsible for repairing damaged muscle and forming new blood vessels.
Collapse
Affiliation(s)
- Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland.,Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Księdza Marcina Strzody 9 Street, 44-100, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Alina Hadyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Agnieszka Skorupa
- Department of Medical Physics Maria Sklodowska-Curie Institute -Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Mateusz Ciszek
- Department of Medical Physics Maria Sklodowska-Curie Institute -Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Łukasz Krakowczyk
- Department of Oncologic and Reconstructive Surgery, Maria Sklodowska-Curie Institute -Oncology Center, Wybrzeże Armii Krajowej 15 Street, 44-101 Gliwice Branch, Gliwice, Poland
| | - Natalia Kułach
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland.,Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 12 Street, 40-007, Katowice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Księdza Marcina Strzody 9 Street, 44-100, Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics Maria Sklodowska-Curie Institute -Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Stanisław Szala
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland.
| |
Collapse
|
24
|
Zhang M, Li Z, Wang H, Wang S, Yu X, Wu J, Pang X, Wu J, Yang X, Tang Y, Li L, Liang X, Zheng M, Tang Y. MIF promotes perineural invasion through EMT in salivary adenoid cystic carcinoma. Mol Carcinog 2019; 58:898-912. [PMID: 30667094 DOI: 10.1002/mc.22979] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Zhu‐feng Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Hao‐fan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Sha‐sha Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xiang‐hua Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jing‐biao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xin Pang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jia‐shun Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xiao Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ya‐jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education)Hubei Provincial Cooperative Innovation Center of Industrial FermentationHubei Key Laboratory of Industrial MicrobiologyHubei University of TechnologyWuhanChina
| | - Li Li
- Department of StomatologyZhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Xin‐hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Min Zheng
- Department of StomatologyZhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Ya‐ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
25
|
Ramli K, Aminath Gasim I, Ahmad AA, Hassan S, Law ZK, Tan GC, Baharuddin A, Naicker AS, Htwe O, Mohammed Haflah NH, B H Idrus R, Abdullah S, Ng MH. Human bone marrow-derived MSCs spontaneously express specific Schwann cell markers. Cell Biol Int 2019; 43:233-252. [PMID: 30362196 DOI: 10.1002/cbin.11067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
In peripheral nerve injuries, Schwann cells (SC) play pivotal roles in regenerating damaged nerve. However, the use of SC in clinical cell-based therapy is hampered due to its limited availability. In this study, we aim to evaluate the effectiveness of using an established induction protocol for human bone marrow derived-MSC (hBM-MSCs) transdifferentiation into a SC lineage. A relatively homogenous culture of hBM-MSCs was first established after serial passaging (P3), with profiles conforming to the minimal criteria set by International Society for Cellular Therapy (ISCT). The cultures (n = 3) were then subjected to a series of induction media containing β-mercaptoethanol, retinoic acid, and growth factors. Quantitative RT-PCR, flow cytometry, and immunocytochemistry analyses were performed to quantify the expression of specific SC markers, that is, S100, GFAP, MPZ and p75 NGFR, in both undifferentiated and transdifferentiated hBM-MSCs. Based on these analyses, all markers were expressed in undifferentiated hBM-MSCs and MPZ expression (mRNA transcripts) was consistently detected before and after transdifferentiation across all samples. There was upregulation at the transcript level of more than twofolds for NGF, MPB, GDNF, p75 NGFR post-transdifferentiation. This study highlights the existence of spontaneous expression of specific SC markers in cultured hBM-MSCs, inter-donor variability and that MSC transdifferentiation is a heterogenous process. These findings strongly oppose the use of a single marker to indicate SC fate. The heterogenous nature of MSC may influence the efficiency of SC transdifferentiation protocols. Therefore, there is an urgent need to re-define the MSC subpopulations and revise the minimal criteria for MSC identification.
Collapse
Affiliation(s)
- Khairunnisa Ramli
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ifasha Aminath Gasim
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amir Adham Ahmad
- Department of Orthopaedics, School of Medicine, International Medical University, Negeri Sembilan, Malaysia
| | - Shariful Hassan
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhe Kang Law
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azmi Baharuddin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amaramalar Selvi Naicker
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ohnmar Htwe
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Hazla Mohammed Haflah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah B H Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shalimar Abdullah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Yang JT, Fang JT, Li L, Chen G, Qin BG, Gu LQ. Contralateral C7 transfer combined with acellular nerve allografts seeded with differentiated adipose stem cells for repairing upper brachial plexus injury in rats. Neural Regen Res 2019; 14:1932-1940. [PMID: 31290451 PMCID: PMC6676869 DOI: 10.4103/1673-5374.259626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nerve grafting has always been necessary when the contralateral C7 nerve root is transferred to treat brachial plexus injury. Acellular nerve allograft is a promising alternative for the treatment of nerve defects, and results were improved by grafts laden with differentiated adipose stem cells. However, use of these tissue-engineered nerve grafts has not been reported for the treatment of brachial plexus injury. The aim of the present study was to evaluate the outcome of acellular nerve allografts seeded with differentiated adipose stem cells to improve nerve regeneration in a rat model in which the contralateral C7 nerve was transferred to repair an upper brachial plexus injury. Differentiated adipose stem cells were obtained from Sprague-Dawley rats and transdifferentiated into a Schwann cell-like phenotype. Acellular nerve allografts were prepared from 15-mm bilateral sections of rat sciatic nerves. Rats were randomly divided into three groups: acellular nerve allograft, acellular nerve allograft + differentiated adipose stem cells, and autograft. The upper brachial plexus injury model was established by traction applied away from the intervertebral foramen with micro-hemostat forceps. Acellular nerve allografts with or without seeded cells were used to bridge the gap between the contralateral C7 nerve root and C5–6 nerve. Histological staining, electrophysiology, and neurological function tests were used to evaluate the effect of nerve repair 16 weeks after surgery. Results showed that the onset of discernible functional recovery occurred earlier in the autograft group first, followed by the acellular nerve allograft + differentiated adipose stem cells group, and then the acellular nerve allograft group; moreover, there was a significant difference between autograft and acellular nerve allograft groups. Compared with the acellular nerve allograft group, compound muscle action potential, motor conduction velocity, positivity for neurofilament and S100, diameter of regenerating axons, myelin sheath thickness, and density of myelinated fibers were remarkably increased in autograft and acellular nerve allograft + differentiated adipose stem cells groups. These findings confirm that acellular nerve allografts seeded with differentiated adipose stem cells effectively promoted nerve repair after brachial plexus injuries, and the effect was better than that of acellular nerve repair alone. This study was approved by the Animal Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University of China (approval No. 2016-150) in June 2016.
Collapse
Affiliation(s)
- Jian-Tao Yang
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jin-Tao Fang
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liang Li
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Gang Chen
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ben-Gang Qin
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li-Qiang Gu
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
27
|
El-Habta R, Sloniecka M, Kingham PJ, Backman LJ. The adipose tissue stromal vascular fraction secretome enhances the proliferation but inhibits the differentiation of myoblasts. Stem Cell Res Ther 2018; 9:352. [PMID: 30572954 PMCID: PMC6302486 DOI: 10.1186/s13287-018-1096-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/14/2018] [Accepted: 12/02/2018] [Indexed: 12/12/2022] Open
Abstract
Background Adipose tissue is an excellent source for isolation of stem cells for treating various clinical conditions including injuries to the neuromuscular system. Many previous studies have focused on differentiating these adipose stem cells (ASCs) towards a Schwann cell-like phenotype (dASCs), which can enhance axon regeneration and reduce muscle atrophy. However, the stromal vascular fraction (SVF), from which the ASCs are derived, also exerts broad regenerative potential and might provide a faster route to clinical translation of the cell therapies for treatment of neuromuscular disorders. Methods The aim of this study was to establish the effects of SVF cells on the proliferation and differentiation of myoblasts using indirect co-culture experiments. A Growth Factor PCR Array was used to compare the secretomes of SVF and dASCs, and the downstream signaling pathways were investigated. Results SVF cells, unlike culture-expanded dASCs, expressed and secreted hepatocyte growth factor (HGF) at concentrations sufficient to enhance the proliferation of myoblasts. Pharmacological inhibitor studies revealed that the signal is mediated via ERK1/2 phosphorylation and that the effect is significantly reduced by the addition of 100 pM Norleual, a specific HGF inhibitor. When myoblasts were differentiated into multinucleated myotubes, the SVF cells reduced the expression levels of fast-type myosin heavy chain (MyHC2) suggesting an inhibition of the differentiation process. Conclusions In summary, this study shows the importance of HGF as a mediator of the SVF effects on myoblasts and provides further evidence for the importance of the secretome in cell therapy and regenerative medicine applications. Electronic supplementary material The online version of this article (10.1186/s13287-018-1096-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R El-Habta
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87, Umeå, Sweden.
| | - M Sloniecka
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| | - P J Kingham
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| | - L J Backman
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
28
|
Yu Z, Wenyan T, Xuewen S, Baixiang D, Qian W, Zhaoyan W, Yinxiang Y, Suqing Q, Zuo L. Immunological effects of the intraparenchymal administration of allogeneic and autologous adipose-derived mesenchymal stem cells after the acute phase of middle cerebral artery occlusion in rats. J Transl Med 2018; 16:339. [PMID: 30518375 PMCID: PMC6280522 DOI: 10.1186/s12967-018-1709-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cell (ADMSC) therapy can promote recovery from cerebral ischemia; however, more information regarding appropriate sources of ADMSCs is required. This study was aimed at analyzing the immunogenicity of rat ADMSCs by comparing the immunological effects of intraparenchymal administration of allogeneic ADMSCs (allo-ADMSCs) and autologous ADMSCs (auto-ADMSCs) after the acute phase of middle cerebral artery occlusion (MCAO) in rats. METHODS Allo- or auto-ADMSCs from rats (1 × 106 cells) were transplanted into Lewis rats 8 days post MCAO. The immunogenicity of ADMSCs was analyzed using coculture with T lymphocytes. The in vivo immune response induced by rat ADMSCs and the viability, migration, and differentiation of transplanted ADMSCs were detected using immunohistochemistry. Apoptosis within the populations of transplanted cells were detected using a TUNEL assay. Infarct volume was detected by 2,3,5-triphenyltetrazolium chloride staining. Post-treatment neurological function was evaluated using a modified neurological severity score and rotarod test. Data were analyzed using Kruskal-Wallis and Mann-Whitney U tests. RESULTS Compared with allo-ADMSCs, auto-ADMSCs showed lower immunogenicity and evoked weaker immunological responses. Allo-ADMSCs evoked significantly stronger protein expression of interleukin-2 and interferon-gamma, as well as the local accumulation of CD4+ T lymphocytes, CD8+ T lymphocytes, and microglial cells. This indicates that auto-ADMSCs may contribute to higher survival rates, longer survival time, wider migratory scope, and fewer apoptotic cells. In addition, a small number of transplanted auto-ADMSCs expressed astrocyte-like and neuron-like markers 28 days after transplantation. We did not observe surviving transplanted allo-ADMSCs at this time point. We also found that auto-ADMSCs induced a greater degree of functional recovery and a greater reduction in infarct volume than allo-ADMSCs 28 days after transplantation. CONCLUSIONS Auto-ADMSCs were more effective than allo-ADMSCs in promoting recovery and reducing the infarct volume of MCAO rats. This could be associated with better viability, migratory ability, and differentiation potential, as well as a lower rate of apoptosis. Confirmation of the superiority of auto-ADMSCs and clarification of the underlying mechanisms will provide a theoretical basis for the improved clinical treatment of cerebral infarction.
Collapse
Affiliation(s)
- Zhang Yu
- Department of Pediatrics, Navy General Hospital, No. 6, Fucheng Road, Haidian District, Beijing, 100048, China.,Department of Neonatal Intensive Care Unit, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No. 251, Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Tang Wenyan
- Department of Pediatrics, Navy General Hospital, No. 6, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Su Xuewen
- Department of Pediatrics, Navy General Hospital, No. 6, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Dong Baixiang
- Beijing Yinfeng Dingcheng Bioengineering Technology Co., Ltd., No. 14, Zhonghe Street, Yizhuang Economic and Technological Development Zone, Daxing District, Beijing, 100176, China
| | - Wang Qian
- Department of Pediatrics, Navy General Hospital, No. 6, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Wang Zhaoyan
- Department of Pediatrics, Navy General Hospital, No. 6, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yang Yinxiang
- Department of Pediatrics, Navy General Hospital, No. 6, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Qu Suqing
- Department of Pediatrics, Navy General Hospital, No. 6, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Luan Zuo
- Department of Pediatrics, Navy General Hospital, No. 6, Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
29
|
Nanofiber-acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds. Cell Tissue Res 2018; 375:709-721. [PMID: 30338376 DOI: 10.1007/s00441-018-2927-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Full-thickness skin defect is one of the main clinical problems, which cannot be repaired spontaneously. The aim of this study was to evaluate the feasibility of combining nanofibers with ADM as a bilayer scaffold for treatment of full-thickness skin wounds in a single-step procedure. The nanofibrous polycaprolactone/fibrinogen scaffolds were fabricated by electrospinning. Subsequently, mesenchymal stem cells were isolated from rat adipose tissues and characterized by flow cytometry. Cell adhesion, proliferation, and the epidermal differentiation potential of adipose-derived stem cells (ADSCs) on nanofibrous scaffolds were investigated by scanning electron microscopy (SEM), alamarBlue, and real-time PCR, respectively. In animal studies, full-thickness excisional wounds were created on the back of rats and treated with following groups: ADM, ADM-ADSCs, nanofiber, nanofiber-ADSCs, bilayer, and bilayer-ADSCs. In all groups, wounds were harvested on days 14 and 21 after treatment to evaluate re-epithelialization, blood vessel density, and collagen content. The results indicated that ADSCs seeded on ADM, nanofiber, and bilayer scaffolds can promote re-epithelialization, angiogenesis, and collagen remodeling in comparison with cell-free scaffolds. In conclusion, nanofiber-ADSCs showed the best results for re-epithelialization (according to histological scoring), average blood vessel density (92.7 ± 6.8), and collagen density (87.4 ± 4.9%) when compared to the control and other experimental groups.
Collapse
|
30
|
Louwen F, Ritter A, Kreis NN, Yuan J. Insight into the development of obesity: functional alterations of adipose-derived mesenchymal stem cells. Obes Rev 2018. [PMID: 29521029 DOI: 10.1111/obr.12679] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a variety of disorders including cardiovascular diseases, diabetes mellitus and cancer. Obesity changes the composition and structure of adipose tissue, linked to pro-inflammatory environment, endocrine/metabolic dysfunction, insulin resistance and oxidative stress. Adipose-derived mesenchymal stem cells (ASCs) have multiple functions like cell renewal, spontaneous repair and homeostasis in adipose tissue. In this review article, we have summarized the recent data highlighting that ASCs in obesity are defective in various functionalities and properties including differentiation, angiogenesis, motility, multipotent state, metabolism and immunomodulation. Inflammatory milieu, hypoxia and abnormal metabolites in obese tissue are crucial for impairing the functions of ASCs. Further work is required to explore the precise molecular mechanisms underlying its alterations and impairments. Based on these data, we suggest that deregulated ASCs, possibly also other mesenchymal stem cells, are important in promoting the development of obesity. Restoration of ASCs/mesenchymal stem cells might be an additional strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- F Louwen
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - A Ritter
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - N N Kreis
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
31
|
Petersen ED, Zenchak JR, Lossia OV, Hochgeschwender U. Neural Stem Cells Derived Directly from Adipose Tissue. Stem Cells Dev 2018; 27:637-647. [PMID: 29649413 DOI: 10.1089/scd.2017.0195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Neural stem cells (NSCs) are characterized as self-renewing cell populations with the ability to differentiate into the multiple tissue types of the central nervous system. These cells can differentiate into mature neurons, astrocytes, and oligodendrocytes. This category of stem cells has been shown to be a promisingly effective treatment for neurodegenerative diseases and neuronal injury. Most treatment studies with NSCs in animal models use embryonic brain-derived NSCs. This approach presents both ethical and feasibility issues for translation to human patients. Adult tissue is a more practical source of stem cells for transplantation therapies in humans. Some adult tissues such as adipose tissue and bone marrow contain a wide variety of stem cell populations, some of which have been shown to be similar to embryonic stem cells, possessing many pluripotent properties. Of these stem cell populations, some are able to respond to neuronal growth factors and can be expanded in vitro, forming neurospheres analogous to cells harvested from embryonic brain tissue. In this study, we describe a method for the collection and culture of cells from adipose tissue that directly, without going through intermediates such as mesenchymal stem cells, results in a population of NSCs that are able to be expanded in vitro and be differentiated into functional neuronal cells. These adipose-derived NSCs display a similar phenotype to those directly derived from embryonic brain. When differentiated into neurons, cells derived from adipose tissue have spontaneous spiking activity with network characteristics similar to that of neuronal cultures.
Collapse
Affiliation(s)
- Eric D Petersen
- Program in Neuroscience, Central Michigan University , College of Medicine, Mount Pleasant, Michigan
| | - Jessica R Zenchak
- Program in Neuroscience, Central Michigan University , College of Medicine, Mount Pleasant, Michigan
| | - Olivia V Lossia
- Program in Neuroscience, Central Michigan University , College of Medicine, Mount Pleasant, Michigan
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University , College of Medicine, Mount Pleasant, Michigan
| |
Collapse
|
32
|
Petcu EB, Midha R, McColl E, Popa-Wagner A, Chirila TV, Dalton PD. 3D printing strategies for peripheral nerve regeneration. Biofabrication 2018; 10:032001. [DOI: 10.1088/1758-5090/aaaf50] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Kohn-Polster C, Bhatnagar D, Woloszyn DJ, Richtmyer M, Starke A, Springwald AH, Franz S, Schulz-Siegmund M, Kaplan HM, Kohn J, Hacker MC. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration. Int J Mol Sci 2017; 18:E1104. [PMID: 28531139 PMCID: PMC5455012 DOI: 10.3390/ijms18051104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 02/01/2023] Open
Abstract
Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.
Collapse
Affiliation(s)
- Caroline Kohn-Polster
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany.
- Collaborative Research Center (SFB-TR67), Matrixengineering Leipzig and Dresden, Germany.
| | - Divya Bhatnagar
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8066, USA.
| | - Derek J Woloszyn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8066, USA.
- Boston University School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Matthew Richtmyer
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8066, USA.
| | - Annett Starke
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany.
| | - Alexandra H Springwald
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany.
| | - Sandra Franz
- Collaborative Research Center (SFB-TR67), Matrixengineering Leipzig and Dresden, Germany.
- Department of Dermatology, Venereology and Allergology of Medical Faculty of Leipzig University, 04317 Leipzig, Germany.
| | - Michaela Schulz-Siegmund
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany.
- Collaborative Research Center (SFB-TR67), Matrixengineering Leipzig and Dresden, Germany.
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8066, USA.
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8066, USA.
| | - Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany.
- Collaborative Research Center (SFB-TR67), Matrixengineering Leipzig and Dresden, Germany.
| |
Collapse
|
34
|
Tonsil-Derived Mesenchymal Stem Cells Differentiate into a Schwann Cell Phenotype and Promote Peripheral Nerve Regeneration. Int J Mol Sci 2016; 17:ijms17111867. [PMID: 27834852 PMCID: PMC5133867 DOI: 10.3390/ijms17111867] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/30/2022] Open
Abstract
Schwann cells (SCs), which produce neurotropic factors and adhesive molecules, have been reported previously to contribute to structural support and guidance during axonal regeneration; therefore, they are potentially a crucial target in the restoration of injured nervous tissues. Autologous SC transplantation has been performed and has shown promising clinical results for treating nerve injuries and donor site morbidity, and insufficient production of the cells have been considered as a major issue. Here, we performed differentiation of tonsil-derived mesenchymal stem cells (T-MSCs) into SC-like cells (T-MSC-SCs), to evaluate T-MSC-SCs as an alternative to SCs. Using SC markers such as CAD19, GFAP, MBP, NGFR, S100B, and KROX20 during quantitative real-time PCR we detected the upregulation of NGFR, S100B, and KROX20 and the downregulation of CAD19 and MBP at the fully differentiated stage. Furthermore, we found myelination of axons when differentiated SCs were cocultured with mouse dorsal root ganglion neurons. The application of T-MSC-SCs to a mouse model of sciatic nerve injury produced marked improvements in gait and promoted regeneration of damaged nerves. Thus, the transplantation of human T-MSCs might be suitable for assisting in peripheral nerve regeneration.
Collapse
|
35
|
Peripheral Motor and Sensory Nerve Conduction following Transplantation of Undifferentiated Autologous Adipose Tissue–Derived Stem Cells in a Biodegradable U.S. Food and Drug Administration–Approved Nerve Conduit. Plast Reconstr Surg 2016; 138:132-139. [DOI: 10.1097/prs.0000000000002291] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Wu SH, Huang SH, Lo YC, Chai CY, Lee SS, Chang KP, Lin SD, Lai CS, Yeh JL, Kwan AL. Autologous adipose-derived stem cells attenuate muscular atrophy and protect spinal cord ventral horn motor neurons in an animal model of burn injury. Cytotherapy 2016; 17:1066-75. [PMID: 26139546 DOI: 10.1016/j.jcyt.2015.03.687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND AIMS Burn injuries might increase muscle mass loss, but the mechanisms are still unclear. In this study, we demonstrated that burn injury induced spinal cord ventral horn motor neuron (VHMN) apoptosis and subsequently caused muscle atrophy and revealed the potential protection of autologous adipose-derived stem cells (ASCs) transplantation on spinal cord VHMNs and muscle against burn injury. METHODS Third-degree hind-paw burns were established by contact with a 75°C metal surface for 10 seconds. Adipose tissues were harvested from the groin fat pad, expanded in culture and labeled with chloromethyl-benzamido/1,1'-dioctadecyl-3,3,3',3'- tetramethyl indocarbocyanine perchlorate. The ASCs were transplanted into the injured hind paw at 4 weeks after burn injury. The lumbar spinal cord, sciatic nerve, gastrocnemius muscle and hind-paw skin were processed for immunofluorescent staining at 4 weeks after transplantation, including terminal deoxynucleotidyl transferase (TUNEL) assay, caspase-3, caspase-9, CD 90 and S100, and the gastrocnemius muscle was evaluated through the use of hematoxylin and eosin staining. RESULTS Caspase-3-positive, caspase-9-positive and TUNEL-positive cells were significantly increased in the corresponding dermatome spinal cord VHMNs after burn injury. Moreover, the decrease of Schwann cells in sciatic nerve and the increase of denervation atrophy in gastrocnemius muscle were observed. Furthermore, ASCs transplantation significantly attenuated apoptotic death of VHMNs and the area of muscle denervation atrophy in the gastrocnemius muscle fibers. CONCLUSIONS The animal model of third-degree burns in the hind paw showed significant apoptosis in the corresponding spinal cord VHMNs, which suggests that neuroprotection might be the potentially therapeutic target in burn-induced muscle atrophy. ASCs have potential neuroprotection against burn injuries through its anti-apoptotic effects.
Collapse
Affiliation(s)
- Sheng-Hua Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Anesthesia, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Su-Shin Lee
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kao-Ping Chang
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sin-Daw Lin
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Sheng Lai
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
37
|
Specific marker expression and cell state of Schwann cells during culture in vitro. PLoS One 2015; 10:e0123278. [PMID: 25859851 PMCID: PMC4393255 DOI: 10.1371/journal.pone.0123278] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/18/2015] [Indexed: 12/12/2022] Open
Abstract
Schwann cells (SCs) in animals exist in different developmental stages or wound repair phases, distinguished mainly by the expression of SC-specific markers. No study has yet determined SC state under in vitro culture conditions, and the specific markers expressed in SC are obscure as well. In this study, we harvested sciatic nerves from newborn mice and isolated SCs by an enzyme-digestion method, then we examined the expression profiles of ten markers (S100, p75NTR, Sox10, Sox2, GAP43, NCAM, Krox20, Oct6, MBP, and MPZ) at both the RNA and protein levels in in vitro mouse SCs and speculated their relation with in vivo SC stages. We assayed RNA and protein levels of SC specific markers by immunofluorescence, Western Blot, and real-time quantitative RT-PCR. The results show that the expression of most markers (S100, p75NTR, GAP43, NCAM, Krox20, Oct6, MBP and MPZ) was not detectable in all of early stage cultured SCs. The expression of transcription factors Sox10 and Sox2 was, however, detectable in all SCs. After 8 days, the positive expression rate of all markers except GAP43 and Oct6 was almost 100%.These results indicates Sox10 is a necessary marker for SC identification, while S100 is not reliable. SCs cultured in vitro express Sox2, P75NTR, NCAM, GAP43, Oct6, and MPZ, suggesting that they are similar to in vivo undifferentiated iSCs or dedifferentiated iSCs after nerve injury.
Collapse
|
38
|
Kingham PJ, Reid AJ, Wiberg M. Adipose-derived stem cells for nerve repair: hype or reality? Cells Tissues Organs 2015; 200:23-30. [PMID: 25825218 DOI: 10.1159/000369336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
Peripheral nerve injury is a relatively commonly occurring trauma which seriously compromises the quality of life for many individuals. There is a major need to devise new treatment strategies, and one possible approach is to develop cellular therapies to bioengineer new nerve tissue and/or modulate the endogenous regenerative mechanisms within the peripheral nervous system. In this short review we describe how stem cells isolated from adipose tissue could be a suitable element of this approach. We describe the possible mechanisms through which the stem cells might exert a positive influence on peripheral nerve regeneration. These include their ability to differentiate into cells resembling Schwann cells and their secretion of a plethora of neurotrophic growth factors. We also review the literature describing the effects of these cells when tested using in vivo peripheral nerve injury models.
Collapse
|
39
|
Generation of neurospheres from human adipose-derived stem cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:743714. [PMID: 25815334 PMCID: PMC4357140 DOI: 10.1155/2015/743714] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 01/29/2023]
Abstract
Transplantation of neural stem cells (NSCs) to treat neurodegenerative disease shows promise; however, the clinical application of NSCs is limited by the invasive procurement and ethical concerns. Adipose-derived stem cells (ADSCs) are a source of multipotent stem cells that can self-renew and differentiate into various kinds of cells; this study intends to generate neurospheres from human ADSCs by culturing ADSCs on uncoated culture flasks in serum-free neurobasal medium supplemented with B27, basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF); the ADSCs-derived neurospheres were terminally differentiated after growth factor withdrawal. Expression of Nestin, NeuN, MAP2, and GFAP in ADSCs and terminally differentiated neurospheres was shown by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, and immunocytochemistry; cell proliferation in neurospheres was evaluated by cell cycle analyses, immunostaining, and flow cytometry. These data strongly support the conclusion that human ADSCs can successfully differentiate into neurospheres efficiently on uncoated culture flasks, which present similar molecular marker pattern and proliferative ability with NSCs derived from embryonic and adult brain tissues. Therefore, human ADSCs may be an ideal alternative source of stem cells for the treatment of neurodegenerative diseases.
Collapse
|
40
|
Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: A review of current opinion. World J Stem Cells 2015; 7:11-26. [PMID: 25621102 PMCID: PMC4300921 DOI: 10.4252/wjsc.v7.i1.11] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/18/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Outcomes following peripheral nerve injury remain frustratingly poor. The reasons for this are multifactorial, although maintaining a growth permissive environment in the distal nerve stump following repair is arguably the most important. The optimal environment for axonal regeneration relies on the synthesis and release of many biochemical mediators that are temporally and spatially regulated with a high level of incompletely understood complexity. The Schwann cell (SC) has emerged as a key player in this process. Prolonged periods of distal nerve stump denervation, characteristic of large gaps and proximal injuries, have been associated with a reduction in SC number and ability to support regenerating axons. Cell based therapy offers a potential therapy for the improvement of outcomes following peripheral nerve reconstruction. Stem cells have the potential to increase the number of SCs and prolong their ability to support regeneration. They may also have the ability to rescue and replenish populations of chromatolytic and apoptotic neurons following axotomy. Finally, they can be used in non-physiologic ways to preserve injured tissues such as denervated muscle while neuronal ingrowth has not yet occurred. Aside from stem cell type, careful consideration must be given to differentiation status, how stem cells are supported following transplantation and how they will be delivered to the site of injury. It is the aim of this article to review current opinions on the strategies of stem cell based therapy for the augmentation of peripheral nerve regeneration.
Collapse
|
41
|
Adipose-Derived Stem Cells for Therapeutic Applications. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
42
|
Abstract
Stem cell-based interventions aim to use special regenerative cells (stem cells) to facilitate neuronal function beyond the site of the injury. Many studies involving animal models of spinal cord injury (SCI) suggest that certain stem cell-based therapies may restore function after SCI. Currently, in case of spinal cord injuries, new discoveries with clinical implications have been continuously made in basic stem cell research, and stem cell-based approaches are advancing rapidly toward application in patients. There is a huge base of preclinical evidence in vitro and in animal models which suggests the safety and clinical efficacy of cellular therapies after SCI. Despite this, data from clinical studies is not very encouraging and at times confounding. Here, we have attempted to cover preclinical and clinical evidence base dealing with safety, feasibility and efficacy of cell based interventions after SCI. The limitations of preclinical data and the reasons underlying its failure to translate in a clinical setting are also discussed. Based on the evidence base, it is suggested that a multifactorial approach is required to address this situation. Need for standardized, stringently designed multi-centric clinical trials for obtaining validated proof of evidence is also highlighted.
Collapse
Affiliation(s)
- Harvinder Singh Chhabra
- Spine Service, Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, India,Address for correspondence: Dr. Harvinder Singh Chhabra, Indian Spinal Injuries Centre, Sector C, Vasant Kunj, New Delhi - 110 070, India. E-mail:
| | - Kanchan Sarda
- Spine Service, Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, India
| |
Collapse
|
43
|
XIAO YUZHOU, WANG SHENG. Differentiation of Schwann-like cells from human umbilical cord blood mesenchymal stem cells in vitro. Mol Med Rep 2014; 11:1146-52. [DOI: 10.3892/mmr.2014.2840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 08/08/2014] [Indexed: 11/05/2022] Open
|
44
|
Franceschini V, Bettini S, Pifferi S, Menini A, Siciliano G, Ognio E, Brini AT, Di Oto E, Revoltella RP. Transplanted human adipose tissue-derived stem cells engraft and induce regeneration in mice olfactory neuroepithelium in response to dichlobenil subministration. Chem Senses 2014; 39:617-29. [PMID: 25056732 DOI: 10.1093/chemse/bju035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used immunodeficient mice, whose dorsomedial olfactory region was permanently damaged by dichlobenil inoculation, to test the neuroregenerative properties of transplanted human adipose tissue-derived stem cells after 30 and 60 days. Analysis of polymerase chain reaction bands revealed that stem cells preferentially engrafted in the lesioned olfactory epithelium compared with undamaged mucosa of untreated transplanted mice. Although basal cell proliferation in untransplanted lesioned mice did not give rise to neuronal cells in the olfactory mucosa, we observed clusters of differentiating olfactory cells in transplanted mice. After 30 days, and even more at 60 days, epithelial thickness was partially recovered to normal values, as also the immunohistochemical properties. Functional reactivity to odorant stimulation was also confirmed through electro-olfactogram recording in the dorsomedial epithelium. Furthermore, we demonstrated that engrafted stem cells fused with mouse cells in the olfactory organ, even if heterokaryons detected were too rare to hypothesize they directly repopulated the lesioned epithelium. The data reported prove that the migrating transplanted stem cells were able to induce a neuroregenerative process in a specific lesioned sensory area, enforcing the perspective that they could become an available tool for stem cell therapy.
Collapse
Affiliation(s)
- Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, and Foundation Onlus Stem Cells and Life, Via Selmi 3, 40126 Bologna, Italy,
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, and Foundation Onlus Stem Cells and Life, Via Selmi 3, 40126 Bologna, Italy
| | - Simone Pifferi
- International School for Advanced Studies, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Anna Menini
- International School for Advanced Studies, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Emanuela Ognio
- IRCCS San Martino, National Institute for Cancer Research (IST), Largo Rosanna Benzi 10, 16132 Genua, Italy
| | - Anna Teresa Brini
- Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milan, Via Vanvitelli 32, 2019 Milan, Italy
| | - Enrico Di Oto
- Department of Hematology and Oncology "L. and A. Seragnoli," Section of Anatomic Pathology at Bellaria Hospital, University of Bologna, Via Altura 3, 40139 Bologna, Italy and
| | - Roberto P Revoltella
- Institute for Chemical, Physical Processes, C.N.R. and Foundation Onlus Stem Cells and Life, Via L.L. Zamenhof 8, 56127 Pisa, Italy
| |
Collapse
|
45
|
Fan L, Yu Z, Li J, Dang X, Wang K. Schwann-like cells seeded in acellular nerve grafts improve nerve regeneration. BMC Musculoskelet Disord 2014; 15:165. [PMID: 24885337 PMCID: PMC4036644 DOI: 10.1186/1471-2474-15-165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND This study evaluated whether Schwann-like cells (SLCs) induced from bone marrow-derived mesenchymal stem cells (BM-MSCs) transplanted into acellular nerve grafts (ANGs) could repair nerve defects compared with nerve isografts and ANGs with BM-MSCs. METHODS BM-MSCs extracted, separated and purified from the bone marrow of rats, and some of the BM-MSCs were cultured with mixed induction agents that could induce BM-MSCs into SLCs. Either SLCs or BM-MSCs were seeded onto 10-mm ANGs, and the isografts were chosen as the control. The walking-track test, tibialis anterior muscle weight measurement, electrophysiological examination, toluidine blue staining, transmission electron micrographs and immunostaining of S-100 and VEGF in these three groups were evaluated in a 10-mm rat sciatic injury-repair model. RESULTS The walking-track test, tibialis anterior muscle weight measurement and electrophysiological examination of the sciatic nerve suggested the groups of ANGs with SLCs and isografts obtained better results than the BM-MSC group (P<0.05). Meanwhile, the results of the SLCs and isograft groups were similar (P>0.05). All the histomorphometric analyses (toluidine blue staining, transmission electron micrographs and immunostaining of S-100 and VEGF) showed that there were more regenerating nerve fibers in the group of ANGs with SLCs than the BM-MSCs (P<0.05), but there was no significant difference between the SLC and isograft groups (P>0.05). CONCLUSIONS SLCs seeded in ANGs and isografts show better functional regeneration compared with BM-MSCs seeded in ANGs. Additionally, SLCs combined with ANGs present almost the same outcome as the isografts. Therefore, SLCs with ANGs can be a good choice in nerve defect repairs.
Collapse
Affiliation(s)
- Lihong Fan
- The first department of Orthopedics, the Second Affilliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, Shaanxi Province 710004, China
| | - Zefeng Yu
- The first department of Orthopedics, the Second Affilliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, Shaanxi Province 710004, China
| | - Jia Li
- The first department of Orthopedics, the Second Affilliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, Shaanxi Province 710004, China
| | - Xiaoqian Dang
- The first department of Orthopedics, the Second Affilliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, Shaanxi Province 710004, China
| | - Kunzheng Wang
- The first department of Orthopedics, the Second Affilliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, Shaanxi Province 710004, China
| |
Collapse
|
46
|
Lavasani M, Thompson SD, Pollett JB, Usas A, Lu A, Stolz DB, Clark KA, Sun B, Péault B, Huard J. Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration. J Clin Invest 2014; 124:1745-56. [PMID: 24642464 DOI: 10.1172/jci44071] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/16/2014] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerve injuries and neuropathies lead to profound functional deficits. Here, we have demonstrated that muscle-derived stem/progenitor cells (MDSPCs) isolated from adult human skeletal muscle (hMDSPCs) can adopt neuronal and glial phenotypes in vitro and ameliorate a critical-sized sciatic nerve injury and its associated defects in a murine model. Transplanted hMDSPCs surrounded the axonal growth cone, while hMDSPCs infiltrating the regenerating nerve differentiated into myelinating Schwann cells. Engraftment of hMDSPCs into the area of the damaged nerve promoted axonal regeneration, which led to functional recovery as measured by sustained gait improvement. Furthermore, no adverse effects were observed in these animals up to 18 months after transplantation. Following hMDSPC therapy, gastrocnemius muscles from mice exhibited substantially less muscle atrophy, an increase in muscle mass after denervation, and reorganization of motor endplates at the postsynaptic sites compared with those from PBS-treated mice. Evaluation of nerve defects in animals transplanted with vehicle-only or myoblast-like cells did not reveal histological or functional recovery. These data demonstrate the efficacy of hMDSPC-based therapy for peripheral nerve injury and suggest that hMDSPC transplantation has potential to be translated for use in human neuropathies.
Collapse
|
47
|
Widgerow AD, Salibian AA, Kohan E, Sartiniferreira T, Afzel H, Tham T, Evans GRD. "Strategic sequences" in adipose-derived stem cell nerve regeneration. Microsurgery 2013; 34:324-30. [PMID: 24375471 DOI: 10.1002/micr.22219] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Peripheral nerve injuries (PNI) are a major source of morbidity worldwide. The development of cellular regenerative therapies has the potential to improve outcomes of nerve injuries. However, an ideal therapy has yet to be found. The purpose of this study is to examine the current literature key points of regenerative techniques using human adipose-derived stem cells (hADSCs) for nerve regeneration and derive a comprehensive approach to hADSC therapy for PNI. METHODS A literature review was conducted using the electronic database PubMed to search for current experimental approaches to repairing PNI using hADSCs. Key search elements focused on specific components of nerve regeneration paradigms, including (1) support cells, (2) scaffolds, and (3) nerve conduits. RESULTS Strategic sequences were developed by optimizing the components of different experimental regenerative therapies. These sequences focus on priming hADSCs within a specialized growth medium, a hydrogel matrix base, and a collagen nerve conduit to achieve neuromodulatory nerve regeneration. hADSCs may exert their neuroregenerative influence through paracrine effects on surrounding Schwann cells in addition to physical interactions with injured tissue. CONCLUSIONS hADSCs may play a key role in nerve regeneration by acting primarily as support for local neurotrophic mediation and modulation of nerve growth rather than that of a primary neuronal differentiation agent.
Collapse
Affiliation(s)
- Alan D Widgerow
- Department of Aesthetic and Plastic Surgery, University of California, Irvine, CA
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhu H, Yang A, Du J, Li D, Liu M, Ding F, Gu X, Liu Y. Basic fibroblast growth factor is a key factor that induces bone marrow mesenchymal stem cells towards cells with Schwann cell phenotype. Neurosci Lett 2013; 559:82-7. [PMID: 24309293 DOI: 10.1016/j.neulet.2013.11.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 11/11/2013] [Accepted: 11/22/2013] [Indexed: 01/22/2023]
Abstract
Bone marrow mesenchymal stem cells (MSCs) can be differentiate towards a Schwann cells (SCs) lineage when exposed to pre-inducing reagents β-mercaptoethanol (BME) and retinoic acid (RA), followed by inducing factors: forskolin (FSK), basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF), and heregulin (HRG). However, the underlying mechanisms remain unclear. Here, we investigated the individual effects of these inducing factors on the differentiation of MSCs towards SC phenotype in rats. We show that the omission of either HRG or PDGF from the induction medium is not sufficient to change the SC-like phenotype or the expression level of the SC marker, S100β. However, the omission of bFGF from the induction medium effectively blocked neural induction of the MSCs. Moreover, only bFGF was found to inhibit MSC proliferation during differentiation. To clarify the mechanism responsible for the effect of bFGF, we also investigated the activation of the extracellular signal-regulated kinase (ERK) pathway in the induced cells. Our results suggest that morphological changes in MSCs induced by bFGF depend on the activation of ERK, and bFGF may be an indispensable factor that induces MSCs to differentiate into cells with SCs phenotype.
Collapse
Affiliation(s)
- Hui Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, PR China; Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Jiangsu Province 226001, PR China
| | - Aizhen Yang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jinfeng Du
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Donghui Li
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Mei Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yan Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
49
|
Kuroda Y, Dezawa M. Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine. Anat Rec (Hoboken) 2013; 297:98-110. [PMID: 24293378 DOI: 10.1002/ar.22798] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained a great deal of attention for regenerative medicine because they can be obtained from easy accessible mesenchymal tissues, such as bone marrow, adipose tissue, and the umbilical cord, and have trophic and immunosuppressive effects to protect tissues. The most outstanding property of MSCs is their potential for differentiation into cells of all three germ layers. MSCs belong to the mesodermal lineage, but they are known to cross boundaries from mesodermal to ectodermal and endodermal lineages, and differentiate into a variety of cell types both in vitro and in vivo. Such behavior is exceptional for tissue stem cells. As observed with hematopoietic and neural stem cells, tissue stem cells usually generate cells that belong to the tissue in which they reside, and do not show triploblastic differentiation. However, the scientific basis for the broad multipotent differentiation of MSCs still remains an enigma. This review summarizes the properties of MSCs from representative mesenchymal tissues, including bone marrow, adipose tissue, and the umbilical cord, to demonstrate their similarities and differences. Finally, we introduce a novel type of pluripotent stem cell, multilineage-differentiating stress-enduring (Muse) cells, a small subpopulation of MSCs, which can explain the broad spectrum of differentiation ability in MSCs.
Collapse
Affiliation(s)
- Yasumasa Kuroda
- Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
50
|
Abstract
Since the last update on nerve conduits and allograft in 2000, investigations have established the efficacy of these alternatives to autograft in the repair of small sensory neural gaps. However, limited insights into the biology of the regenerating nerve continue to preclude intelligent conduit design. Ongoing discoveries in neuroscience and biomaterial engineering hold promise for the eventual development of allograft and conduits with potential of surpassing nerve autografts in clinical efficacy. In this review, we summarize the history, recent advances, and emerging developments in nerve conduits and allograft.
Collapse
Affiliation(s)
- Michael Y Lin
- Department of Orthopaedic Surgery, University of California Irvine, 2226 Gillespie Neuroscience Research Facility, Irvine, CA 92697, USA
| | | | | |
Collapse
|