1
|
Pacini S. Mesangiogenic progenitor cells: a mesengenic and vasculogenic branch of hemopoiesis? A story of neglected plasticity. Front Cell Dev Biol 2025; 13:1513440. [PMID: 40196849 PMCID: PMC11973335 DOI: 10.3389/fcell.2025.1513440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
Mesangiogenic progenitor cells (MPCs) are mesengenic and vasculogenic cells isolated from human bone marrow mononuclear cell cultures. Although MPCs were first described over two decades ago and have demonstrated promising differentiation capabilities, these cells did not attract sufficient attention from experts in the field of tissue regeneration. Several reports from the first decade of the 2000s showed MPC-like cells co-isolated in primary mesenchymal stromal cell (MSC) cultures, applying human serum. However, in most cases, these rounded and firmly attached cells were described as "contaminating" cells of hemopoietic origin. Indeed, MPC morphology, phenotype, and functional features evoke but do not completely overlap with those of cultured peripheral macrophages, and their hemopoietic origin should not be excluded. The plasticity of cells from the monocyte lineage is surprising but not completely unprecedented. Underestimated data demonstrated that circulating monocyte/macrophages could acquire broader plasticity under specific and different culture conditions, and this plasticity could be a consequence of in vitro de-differentiation. The evidence discussed here suggests that MPCs could represent the cell identity toward which the de-differentiation process reprograms the circulating mature phagocytic compartment.
Collapse
Affiliation(s)
- Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Fujiwara Y, Kusakabe KT, Baba K, Sasaki N. Effect of platelet lysate on Schwann-like cell differentiation of equine bone marrow-derived mesenchymal stem cells. Res Vet Sci 2023; 159:11-18. [PMID: 37060838 DOI: 10.1016/j.rvsc.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Currently, treatment for peripheral nerve injuries in horses primarily relies upon physical therapy and anti-inflammatory drugs. In humans, various treatments using mesenchymal stem cells (MSCs) are being attempted. Therefore, in this study, Schwann-like cell differentiation cultures of equine MSCs were prepared using fetal bovine serum (FBS) and equine platelet lysate (ePL). ePL increased the platelet count to 1 × 106/μl, the optimal concentration for culture. In both groups, an elongated morphology at both ends, characteristic of Schwann cells, was observed under the microscope. Real-time PCR analysis of the expression levels of neuronal markers showed that the ePL group tended to express higher levels of Nestin, Musashi1, and Pax3 than the FBS group. p75 was expressed at low levels in both groups. Immunostaining results showed localization of Nestin in both groups of differentiated cells, but the positive cell rate was significantly higher in the ePL group than in the FBS group. Overall, the ePL gro showed good results for Schwann-like cell differentiation, which may be useful for future use in the treatment of equine motor neuron disease. This knowledge could be applied translationaly in the treatment of amyotrophic lateral sclerosis in humans.Overall, the ePL group showed good results for Schwann-like cell differentiation, which may be useful for future use in the treatment of equine motor neuron disease and in the treatment of amyotrophic lateral sclerosis in humans.
Collapse
|
3
|
Delabie W, De Bleser D, Vandewalle V, Vandekerckhove P, Compernolle V, Feys HB. Single step method for high yield human platelet lysate production. Transfusion 2023; 63:373-383. [PMID: 36426732 PMCID: PMC10099704 DOI: 10.1111/trf.17188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND We aimed to develop a single step method for the production of human platelet lysate (hPL). The method must result in high hPL yields, be closed system and avoid heparin use. STUDY DESIGN AND METHODS The method aimed at using glass beads and calcium. An optimal concentration of calcium and glass beads was determined by serial dilution. This was translated to a novel method and compared to known methods: freeze-thawing and high calcium. Quality outcome measures were transmittance, fibrinogen and growth factor content, and cell doubling time. RESULTS An optimal concentration of 5 mM Ca2+ and 0.2 g/ml glass beads resulted in hPL with yields of 92% ± 1% (n = 50) independent of source material (apheresis or buffy coat-derived). The transmittance was highest (56% ± 9%) compared to known methods (<39%). The fibrinogen concentration (7.0 ± 1.1 μg/ml) was well below the threshold, avoiding the need for heparin. Growth factor content was similar across hPL production methods. The cell doubling time of adipose derived stem cells was 25 ± 1 h and not different across methods. Batch consistency was determined across six batches of hPL (each n = 25 constituting concentrates) and was <11% for all parameters including cell doubling time. Calcium precipitation formed after 4 days of culturing stem cells in media with hPL prepared by the high (15 mM) Ca2+ method, but not with hPL prepared by glass bead method. DISCUSSION The novel method transforms platelet concentrates to hPL with little hands-on time. The method results in high yield, is closed system, without heparin and non-inferior to published methods.
Collapse
Affiliation(s)
- Willem Delabie
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Dominique De Bleser
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Vicky Vandewalle
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Philippe Vandekerckhove
- Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium.,Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Global Health, Stellenbosch University, Stellenbosch, South Africa
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
De Becker A, Heestermans R, De Brouwer W, Bockstaele K, Maes K, Van Riet I. Genetic profiling of human bone marrow mesenchymal stromal cells after in vitro expansion in clinical grade human platelet lysate. Front Bioeng Biotechnol 2022; 10:1008271. [DOI: 10.3389/fbioe.2022.1008271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are non-hematopoietic cells that have a broad therapeutic potential. To obtain sufficient cells for clinical application, they must be expanded ex vivo. In the initial expansion protocols described, fetal calf serum (FCS) was used as the reference growth supplement, but more recently different groups started to replace FCS with platelet lysate (PL). We investigated in this study the impact of the culture supplement on gene expression of MSCs. Human bone marrow derived MSCs were expanded in vitro in FCS and PL supplemented medium. We found that MSCs expanded in PL-containing medium (PL-MSCs) express typical MSC immunomorphological features and can migrate, as their counterparts expanded in FCS-containing medium, through a layer of endothelial cells in vitro. Additionally, they show an increased proliferation rate compared to MSCs expanded in FCS medium (FCS-MSCs). RNA sequencing performed for MSCs cultured in both types of expansion medium revealed a large impact of the choice of growth supplement on gene expression: 1974 genes were at least twofold up- or downregulated. We focused on impact of genes involved in apoptosis and senescence. Our data showed that PL-MSCs express more anti-apoptotic genes and FCS-MSCs more pro-apoptotic genes. FCS-MSCs showed upregulation of senescence-related genes after four passages whereas this was rarer in PL-MSCs at the same timepoint. Since PL-MSCs show higher proliferation rates and anti-apoptotic gene expression, they might acquire features that predispose them to malignant transformation. We screened 10 MSC samples expanded in PL-based medium for the presence of tumor-associated genetic variants using a 165 gene panel and detected only 21 different genetic variants. According to our analysis, none of these were established pathogenic mutations. Our data show that differences in culture conditions such as growth supplement have a significant impact on the gene expression profile of MSCs and favor the use of PL over FCS for expansion of MSCs.
Collapse
|
5
|
Weber T, Wiest J, Oredsson S, Bieback K. Case Studies Exemplifying the Transition to Animal Component-free Cell Culture. Altern Lab Anim 2022; 50:330-338. [PMID: 35983799 DOI: 10.1177/02611929221117999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell culture techniques are strongly connected with modern scientific laboratories and production facilities. Thus, choosing the most suitable medium for the cells involved is vital, not only directly to optimise cell viability but also indirectly to maximise the reliability of the experiments performed with the cells. Fetal bovine or calf serum (FBS or FCS, respectively) is the most commonly used cell culture medium supplement, providing various nutritional factors and macromolecules essential for cell growth. Yet, the use of FBS encompasses a number of disadvantages. Scientifically, one of the most severe disadvantages is the lot-to-lot variability of animal sera that hampers reproducibility. Therefore, transitioning from the use of these ill-defined, component-variable, inconsistent, xenogenic, ethically questionable and even potentially infectious media supplements, is key to achieving better data reproducibility and thus better science. To demonstrate that the transition to animal component-free cell culture is possible and achievable, we highlight three different scenarios and provide some case studies of each, namely: i) the adaptation of single cell lines to animal component-free culture conditions by the replacement of FBS and trypsin; ii) the adaptation of multicellular models to FBS-free conditions; and (iii) the replacement of FBS with human platelet lysate (hPL) for the generation of primary stem/stromal cell cultures for clinical purposes. By highlighting these examples, we aim to foster and support the global movement towards more consistent science and provide evidence that it is indeed possible to step out of the currently smouldering scientific reproducibility crisis.
Collapse
Affiliation(s)
- Tilo Weber
- 84510Animal Welfare Academy of the German Animal Welfare Federation, Neubiberg, Germany
| | | | - Stina Oredsson
- Department of Biology, 5193Lund University, Lund, Sweden
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, 99045Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Tiedemann K, Tsao S, Komarova SV. Platelets and osteoblasts: secretome connections. Am J Physiol Cell Physiol 2022; 323:C347-C353. [PMID: 35675640 DOI: 10.1152/ajpcell.00187.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Megakaryocyte hyperplasia associated with myeloproliferative neoplasms commonly leads to abnormal bone tissue deposition in the bone marrow, known as osteosclerosis. In this study, we aimed to synthesize the known proteomics literature describing factors released by megakaryocytes and platelets and to examine if any of the secreted factors have a known ability to stimulate the bone-forming cells, osteoblasts. Using a systematic search of Medline, we identified 77 articles reporting on factors secreted by platelets and megakaryocytes. After a full-text screening and analysis of the studies, we selected seven papers that reported proteomics data for factors secreted by platelets from healthy individuals. From 60 proteins reported in at least two studies, we focused on 23 that contained a putative signal peptide, which we searched for a potential osteoblast-stimulatory function. From nine proteins with a positive effect on osteoblast formation and function, two extracellular matrix (ECM) proteins, secreted protein acidic and rich in cysteine (SPARC) and tissue inhibitor of metalloproteinase-1 (TIMP1), and three cellular proteins with known extracellular function, the 70-kDa heat shock protein (HSP70), thymosin-β4 (TB4), and super dismutase (SOD), were identified as hypothetical candidate molecules to be examined as potential mediators in mouse models of osteomyelofibrosis. Thus, careful analysis of prior literature can be beneficial in assisting the planning of future experimental studies.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dental Medicine and Oral Health Sciences, Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Serena Tsao
- Faculty of Dental Medicine and Oral Health Sciences, Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dental Medicine and Oral Health Sciences, Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Platelet-Rich Plasma as an Alternative to Xenogeneic Sera in Cell-Based Therapies: A Need for Standardization. Int J Mol Sci 2022; 23:ijms23126552. [PMID: 35742995 PMCID: PMC9223511 DOI: 10.3390/ijms23126552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
There has been an explosion in scientific interest in using human-platelet-rich plasma (PRP) as a substitute of xenogeneic sera in cell-based therapies. However, there is a need to create standardization in this field. This systematic review is based on literature searches in PubMed and Web of Science databases until June 2021. Forty-one studies completed the selection criteria. The composition of PRP was completely reported in less than 30% of the studies. PRP has been used as PRP-derived supernatant or non-activated PRP. Two ranges could be identified for platelet concentration, the first between 0.14 × 106 and 0.80 × 106 platelets/µL and the second between 1.086 × 106 and 10 × 106 platelets/µL. Several studies have pooled PRP with a pool size varying from four to nine donors. The optimal dose for the PRP or PRP supernatant is 10%. PRP or PRP-derived supernatants a have positive effect on MSC colony number and size, cell proliferation, cell differentiation and genetic stability. The use of leukocyte-depleted PRP has been demonstrated to be a feasible alternative to xenogeneic sera. However, there is a need to improve the description of the PRP preparation methodology as well as its composition. Several items are identified and reported to create guidelines for future research.
Collapse
|
8
|
Palombella S, Perucca Orfei C, Castellini G, Gianola S, Lopa S, Mastrogiacomo M, Moretti M, de Girolamo L. Systematic review and meta-analysis on the use of human platelet lysate for mesenchymal stem cell cultures: comparison with fetal bovine serum and considerations on the production protocol. Stem Cell Res Ther 2022; 13:142. [PMID: 35379348 PMCID: PMC8981660 DOI: 10.1186/s13287-022-02815-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Mesenchymal stem cell (MSC) culturing for cell therapies needs a step forward to be routinely used in clinical settings. Main concerns regard the use of animal origin reagents, in particular supplementing the culture medium with FBS. Lately, Human Platelet Lysate (HPL) has been proposed as animal-free alternative, described as an excellent supplement for culturing MSCs. The aim of this systematic review was to analyze the current literature on the effect of HPL and FBS on ASCs and BMSCs. The primary outcome was the proliferation rate of cells cultured with FBS and HPL. Differences in terms of doubling time (DT) and population doubling (PD) were evaluated by meta-analysis, subgrouping data according to the cell type. A total of 35 articles were included. BMSCs and ASCs were used in 65.7% (23) and 28.6% (10) studies, respectively. Only two studies included both cell types. Overall, 22 studies were eligible for the meta-analysis. Among them, 9 articles described ASCs and 13 BMSCs. The results showed that BMSCs and ASCs cultured with 10% HPL and 5% HPL have lower DT and higher PD compared to cells cultured with 10% FBS. A possible correlation between the DT decrease and the application of at least 3 freeze/thaw cycles to induce platelet lysis was found. Additionally, HPL increased VEGF secretion and maintained the immuno-modulatory abilities for both cell types. The clarification reported here of the higher efficiency of HPL compared to FBS can help the transition of the scientific community towards clinical-related procedures.
Collapse
Affiliation(s)
- Silvia Palombella
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| | - Greta Castellini
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| | - Silvia Gianola
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| | | | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy.,Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, Laboratories for Translational Research (LRT), 6500, Bellinzona, Switzerland.,Department of Surgery, Ente Ospedaliero Cantonale, Service of Orthopaedics and Traumatology, 6962, Lugano, Switzerland.,Faculty of Biomedical Sciences, Euler Institute, USI, 6900, Lugano, Switzerland
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy.
| |
Collapse
|
9
|
Ito K, Matsuda Y, Mine A, Shikida N, Takahashi K, Miyairi K, Shimbo K, Kikuchi Y, Konishi A. Single-chain tandem macrocyclic peptides as a scaffold for growth factor and cytokine mimetics. Commun Biol 2022; 5:56. [PMID: 35031676 PMCID: PMC8760323 DOI: 10.1038/s42003-022-03015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
Mimetics of growth factors and cytokines are promising tools for culturing large numbers of cells and manufacturing regenerative medicine products. In this study, we report single-chain tandem macrocyclic peptides (STaMPtides) as mimetics in a new multivalent peptide format. STaMPtides, which contain two or more macrocyclic peptides with a disulfide-closed backbone and peptide linkers, are successfully secreted into the supernatant by Corynebacterium glutamicum-based secretion technology. Without post-secretion modification steps, such as macrocyclization or enzymatic treatment, bacterially secreted STaMPtides form disulfide bonds, as designed; are biologically active; and show agonistic activities against respective target receptors. We also demonstrate, by cell-based assays, the potential of STaMPtides, which mimic growth factors and cytokines, in cell culture. The STaMPtide technology can be applied to the design, screening, and production of growth factor and cytokine mimetics.
Collapse
Affiliation(s)
- Kenichiro Ito
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan.
| | - Yoshihiko Matsuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Ayako Mine
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Natsuki Shikida
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Kazutoshi Takahashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Kyohei Miyairi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Kazutaka Shimbo
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Atsushi Konishi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| |
Collapse
|
10
|
Towards Physiologic Culture Approaches to Improve Standard Cultivation of Mesenchymal Stem Cells. Cells 2021; 10:cells10040886. [PMID: 33924517 PMCID: PMC8069108 DOI: 10.3390/cells10040886] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest for their use in cell-based therapies due to their multipotent differentiation and immunomodulatory capacities. In consequence of limited numbers following their isolation from the donor tissue, MSCs require extensive expansion performed in traditional 2D cell culture setups to reach adequate amounts for therapeutic use. However, prolonged culture of MSCs in vitro has been shown to decrease their differentiation potential and alter their immunomodulatory properties. For that reason, preservation of these physiological characteristics of MSCs throughout their in vitro culture is essential for improving the efficiency of therapeutic and in vitro modeling applications. With this objective in mind, many studies already investigated certain parameters for enhancing current standard MSC culture protocols with regard to the effects of specific culture media components or culture conditions. Although there is a lot of diversity in the final therapeutic uses of the cells, the primary stage of standard isolation and expansion is imperative. Therefore, we want to review on approaches for optimizing standard MSC culture protocols during this essential primary step of in vitro expansion. The reviewed studies investigate and suggest improvements focused on culture media components (amino acids, ascorbic acid, glucose level, growth factors, lipids, platelet lysate, trace elements, serum, and xenogeneic components) as well as culture conditions and processes (hypoxia, cell seeding, and dissociation during passaging), in order to preserve the MSC phenotype and functionality during the primary phase of in vitro culture.
Collapse
|
11
|
Meftahpour V, Malekghasemi S, Baghbanzadeh A, Aghebati-Maleki A, Pourakbari R, Fotouhi A, Aghebati-Maleki L. Platelet lysate: a promising candidate in regenerative medicine. Regen Med 2021; 16:71-85. [PMID: 33543999 DOI: 10.2217/rme-2020-0065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human platelet lysate has attracted much interest from many researchers as it is growth-factor rich for cell expansion, which is employed as a new therapeutic strategy. Not only are human platelet lysates used for cell therapy, but they are also used for the completion of basal media in mesenchymal stem cell cultures. Due to the presence of a large number of growth factors, platelet lysates have potential roles in wound healing, treatment of ocular graft-versus-host disease, osteoarthritis, Parkinson's disease, tendon regeneration, infertility, androgenetic alopecia, nerve repair and regenerative tissue, such as bone regeneration. In this review, we summarize that platelet lysates could be valuable candidates for the treatment of a variety of diseases in regenerative medicine.
Collapse
Affiliation(s)
- Vafa Meftahpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Somaiyeh Malekghasemi
- Department of Basic Oncology, Oncology Institute, Hacettepe University, Sihhiye, Ankara, TR-06100, Turkey
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| |
Collapse
|
12
|
de Almeida Fuzeta M, Bernardes N, Oliveira FD, Costa AC, Fernandes-Platzgummer A, Farinha JP, Rodrigues CAV, Jung S, Tseng RJ, Milligan W, Lee B, Castanho MARB, Gaspar D, Cabral JMS, da Silva CL. Scalable Production of Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Under Serum-/Xeno-Free Conditions in a Microcarrier-Based Bioreactor Culture System. Front Cell Dev Biol 2020; 8:553444. [PMID: 33224943 PMCID: PMC7669752 DOI: 10.3389/fcell.2020.553444] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSC) hold great promise for tissue engineering and cell-based therapies due to their multilineage differentiation potential and intrinsic immunomodulatory and trophic activities. Over the past years, increasing evidence has proposed extracellular vesicles (EVs) as mediators of many of the MSC-associated therapeutic features. EVs have emerged as mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. EVs are derived from cell membranes, allowing high biocompatibility to target cells, while their small size makes them ideal candidates to cross biological barriers. Despite the promising potential of EVs for therapeutic applications, robust manufacturing processes that would increase the consistency and scalability of EV production are still lacking. In this work, EVs were produced by MSC isolated from different human tissue sources [bone marrow (BM), adipose tissue (AT), and umbilical cord matrix (UCM)]. A serum-/xeno-free microcarrier-based culture system was implemented in a Vertical-WheelTM bioreactor (VWBR), employing a human platelet lysate culture supplement (UltraGROTM-PURE), toward the scalable production of MSC-derived EVs (MSC-EVs). The morphology and structure of the manufactured EVs were assessed by atomic force microscopy, while EV protein markers were successfully identified in EVs by Western blot, and EV surface charge was maintained relatively constant (between −15.5 ± 1.6 mV and −19.4 ± 1.4 mV), as determined by zeta potential measurements. When compared to traditional culture systems under static conditions (T-flasks), the VWBR system allowed the production of EVs at higher concentration (i.e., EV concentration in the conditioned medium) (5.7-fold increase overall) and productivity (i.e., amount of EVs generated per cell) (3-fold increase overall). BM, AT and UCM MSC cultured in the VWBR system yielded an average of 2.8 ± 0.1 × 1011, 3.1 ± 1.3 × 1011, and 4.1 ± 1.7 × 1011 EV particles (n = 3), respectively, in a 60 mL final volume. This bioreactor system also allowed to obtain a more robust MSC-EV production, regarding their purity, compared to static culture. Overall, we demonstrate that this scalable culture system can robustly manufacture EVs from MSC derived from different tissue sources, toward the development of novel therapeutic products.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa D Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Catarina Costa
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Fernandes-Platzgummer
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - José Paulo Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | - Brian Lee
- PBS Biotech Inc., Camarillo, CA, United States
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Lobato da Silva
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Guiotto M, Raffoul W, Hart AM, Riehle MO, di Summa PG. Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: a systematic review. J Transl Med 2020; 18:351. [PMID: 32933520 PMCID: PMC7493356 DOI: 10.1186/s12967-020-02489-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Foetal bovine serum (FBS), is the most commonly used culture medium additive for in vitro cultures, despite its undefined composition, its potential immunogenicity and possible prion/zoonotic transmission. For these reasons, significant efforts have been targeted at finding a substitute, such as serum free-media or human platelet-lysates (hPL). Our aim is to critically appraise the state-of-art for hPL in the published literature, comparing its impact with FBS. MATERIALS AND METHODS In June 2019 a systematic search of the entire Web of Science, Medline and PubMed database was performed with the following search terms: (mesenchymal stem cells) AND (fetal bovine serum OR fetal bovine calf) AND (human platelet lysate). Excluded from this search were review articles that were published before 2005, manuscripts in which mesenchymal stem cells (MSCs) were not from human sources, and when the FBS controls were missing. RESULTS Based on our search algorithm, 56 papers were selected. A review of these papers indicated that hMSCs cultured with hPL showed a spindle-shaped elongated morphology, had higher proliferation indexes, similar cluster of differentiation (CD) markers and no significant variation in differentiation lineage (osteocyte, adipocyte, and chondrocyte) compared to those cultured with FBS. Main sources of primary hMSCs were either fat tissue or bone marrow; in a few studies cells isolated from alternative sources showed no relevant difference in their response. CONCLUSION Despite the difference in medium choice and a lack of standardization of hPL manufacturing, the majority of publications support that hPL was at least as effective as FBS in promoting adhesion, survival and proliferation of hMSCs. We conclude that hPL should be considered a viable alternative to FBS in hMSCs culture-especially with a view for their clinical use.
Collapse
Affiliation(s)
- M Guiotto
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. .,Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.
| | - W Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - A M Hart
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.,Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - M O Riehle
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| | - P G di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
14
|
Marzaro M, Algeri M, Tomao L, Tedesco S, Caldaro T, Balassone V, Contini AC, Guerra L, Federici D’Abriola G, Francalanci P, Caristo ME, Lupoi L, Boskoski I, Bozza A, Astori G, Pozzato G, Pozzato A, Costamagna G, Dall’Oglio L. Successful muscle regeneration by a homologous microperforated scaffold seeded with autologous mesenchymal stromal cells in a porcine esophageal substitution model. Therap Adv Gastroenterol 2020; 13:1756284820923220. [PMID: 32523626 PMCID: PMC7257852 DOI: 10.1177/1756284820923220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/06/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Since the esophagus has no redundancy, congenital and acquired esophageal diseases often require esophageal substitution, with complicated surgery and intestinal or gastric transposition. Peri-and-post-operative complications are frequent, with major problems related to the food transit and reflux. During the last years tissue engineering products became an interesting therapeutic alternative for esophageal replacement, since they could mimic the organ structure and potentially help to restore the native functions and physiology. The use of acellular matrices pre-seeded with cells showed promising results for esophageal replacement approaches, but cell homing and adhesion to the scaffold remain an important issue and were investigated. METHODS A porcine esophageal substitute constituted of a decellularized scaffold seeded with autologous bone marrow-derived mesenchymal stromal cells (BM-MSCs) was developed. In order to improve cell seeding and distribution throughout the scaffolds, they were micro-perforated by Quantum Molecular Resonance (QMR) technology (Telea Electronic Engineering). RESULTS The treatment created a microporous network and cells were able to colonize both outer and inner layers of the scaffolds. Non seeded (NSS) and BM-MSCs seeded scaffolds (SS) were implanted on the thoracic esophagus of 4 and 8 pigs respectively, substituting only the muscle layer in a mucosal sparing technique. After 3 months from surgery, we observed an esophageal substenosis in 2/4 NSS pigs and in 6/8 SS pigs and a non-practicable stricture in 1/4 NSS pigs and 2/8 SS pigs. All the animals exhibited a normal weight increase, except one case in the SS group. Actin and desmin staining of the post-implant scaffolds evidenced the regeneration of a muscular layer from one anastomosis to another in the SS group but not in the NSS one. CONCLUSIONS A muscle esophageal substitute starting from a porcine scaffold was developed and it was fully repopulated by BM-MSCs after seeding. The substitute was able to recapitulate in shape and function the original esophageal muscle layer.
Collapse
Affiliation(s)
| | - Mattia Algeri
- Hemato-Oncology, Ospedale Pediatrico Bambino
Gesù, Roma, Italy
| | - Luigi Tomao
- Hemato-Oncology, Ospedale Pediatrico Bambino
Gesù, Roma, Italy
| | | | - Tamara Caldaro
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | - Valerio Balassone
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | - Anna Chiara Contini
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | - Luciano Guerra
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | | | | | | | | | | | - Angela Bozza
- LTCA, ULSS 8 Berica, Vicenza, Italy,Laboratorio di Terapie Cellulari Avanzate,
Vicenza, Italy
| | - Giuseppe Astori
- LTCA, ULSS 8 Berica, Vicenza, Italy,Laboratorio di Terapie Cellulari Avanzate,
Vicenza, Italy
| | | | | | - Guido Costamagna
- Digestive Endoscopy Unit, Fondazione
Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luigi Dall’Oglio
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| |
Collapse
|
15
|
Xu J, Lian W, Chen J, Li W, Li L, Huang Z. Chemical-defined medium supporting the expansion of human mesenchymal stem cells. Stem Cell Res Ther 2020; 11:125. [PMID: 32192530 PMCID: PMC7083066 DOI: 10.1186/s13287-020-01641-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) have been intensively investigated as to their therapeutic potentials. However, the full chemical-defined medium supporting the isolation and expansion of human MSCs has not been developed yet. MATERIALS AND METHODS Here, we developed the full chemical-defined medium, NBVbe medium, via RNA sequencing, bioinformatic analysis, and growth factor screening. RESULTS The NBVbe medium contains N2B27 medium with the BSA (bovine serum albumin) replaced by the recombinant human albumin, bFGF (basic fibroblast growth factor), vitamin C, and EGF (epidermal growth factor). The NBVbe medium could support the isolation and expansion of human MSCs from the umbilical cords. CONCLUSIONS The full chemical-defined medium supporting the isolation and expansion of human MSCs has been developed. This would be helpful for further optimization of the MSC medium, their clinical applications, and molecular characterization.
Collapse
Affiliation(s)
- Jianyong Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, Guangdong, People's Republic of China.
| | - Wei Lian
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Jieting Chen
- Department of Obstetrics, People's Hospital of Baoan, Shenzhen, 518055, People's Republic of China
| | - Wenlei Li
- Department of Obstetrics, Women and Children Health Institute of Futian, Shenzhen, 518055, People's Republic of China
| | - Lingyun Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Zhong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, Guangdong, People's Republic of China
| |
Collapse
|
16
|
Bisceglia G, Santodirocco M, Faienza A, Mastrodonato N, Urbano F, Totaro A, Bazzocchi F, Mauro LD. First endocavitary treatment with cord blood platelet gel for perianal fistula. Regen Med 2020; 15:1171-1176. [PMID: 32046600 DOI: 10.2217/rme-2019-0074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cord blood platelet gel is prepared by activation of coagulation in a platelet concentrate obtained from cord blood. During the process of clot formation, platelet alpha-granules release growth factors that promote tissue repair. However, in the form of gel, it is not possible to inject it into small, narrow and deep cavities. Therefore, we analyzed gelification kinetics and developed an application technique of platelet gel in liquid form. This semi-activated form provides for the activation of the coagulation process but not the gelification of the platelet concentrate. In this way, it can be easily inoculated in an endocavitary space, and then complete in vivo the gelification process. We report the successful use of this procedure to heal a recurrent perianal fistula.
Collapse
Affiliation(s)
- Giovanni Bisceglia
- Abdominal Surgery Department, Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | - Michele Santodirocco
- Trasfusional Medicine Department, Puglia CBB, Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | - Augusta Faienza
- Trasfusional Medicine Department, Puglia CBB, Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | - Nicola Mastrodonato
- Abdominal Surgery Department, Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | - Filomena Urbano
- Radiology Department, Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | - Angela Totaro
- Trasfusional Medicine Department, Puglia CBB, Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | - Francesca Bazzocchi
- Abdominal Surgery Department, Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | - Lazzaro Di Mauro
- Trasfusional Medicine Department, Puglia CBB, Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
17
|
Mendes BB, Gómez-Florit M, Osório H, Vilaça A, Domingues RMA, Reis RL, Gomes ME. Cellulose nanocrystals of variable sulfation degrees can sequester specific platelet lysate-derived biomolecules to modulate stem cell response. Chem Commun (Camb) 2020; 56:6882-6885. [DOI: 10.1039/d0cc01850c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cellulose nanocrystals can bind different patterns of platelet lysate-derived protein in a surface sulfation dependent manner. The potential to direct stem cell fate by solid-phase presentation of defined protein coronas is demonstrated.
Collapse
Affiliation(s)
- Bárbara B. Mendes
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Manuel Gómez-Florit
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (I3S)
- Universidade do Porto
- Porto
- Portugal
| | - Adriana Vilaça
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Rui M. A. Domingues
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Rui L. Reis
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Manuela E. Gomes
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| |
Collapse
|
18
|
Laner-Plamberger S, Oeller M, Mrazek C, Hartl A, Sonderegger A, Rohde E, Strunk D, Schallmoser K. Upregulation of mitotic bookmarking factors during enhanced proliferation of human stromal cells in human platelet lysate. J Transl Med 2019; 17:432. [PMID: 31888679 PMCID: PMC6936143 DOI: 10.1186/s12967-019-02183-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Innovative human stromal cell therapeutics require xeno-free culture conditions. Various formulations of human platelet lysate (HPL) are efficient alternatives for fetal bovine serum (FBS). However, a consistent lack of standardized manufacturing protocols and quality criteria hampers comparability of HPL-products. Aim of this study was to compare the biochemical composition of three differential HPL-preparations with FBS and to investigate their impact on stromal cell biology. METHODS Stromal cells were isolated from bone marrow (BM), white adipose tissue (WAT) and umbilical cord (UC) and cultured in medium supplemented with pooled HPL (pHPL), fibrinogen-depleted serum-converted pHPL (pHPLS), mechanically fibrinogen-depleted pHPL (mcpHPL) and FBS. Biochemical parameters were analyzed in comparison to standard values in whole blood. Distinct growth factors and cytokines were measured by bead-based multiplex technology. Flow cytometry of stromal cell immunophenotype, in vitro differentiation, and mRNA expression analysis of transcription factors SOX2, KLF4, cMYC, OCT4 and NANOG were performed. RESULTS Biochemical parameters were comparable in all pHPL preparations, but to some extent different to FBS. Total protein, glucose, cholesterol and Na+ were elevated in pHPL preparations, K+ and Fe3+ levels were higher in FBS. Compared to FBS, pHPL-based media significantly enhanced stromal cell propagation. Characteristic immunophenotype and in vitro differentiation potential were maintained in all four culture conditions. The analysis of growth factors and cytokines revealed distinct levels depending on the pre-existence in pHPL, consumption or secretion by the stromal cells. Interestingly, mRNA expression of the transcription and mitotic bookmarking factors cMYC and KLF4 was significantly enhanced in a source dependent manner in stromal cells cultured in pHPL- compared to FBS-supplemented media. SOX2 mRNA expression of all stromal cell types was increased in all pHPL culture conditions. CONCLUSION All pHPL-supplemented media equally supported proliferation of WAT- and UC-derived stromal cells significantly better than FBS. Mitotic bookmarking factors, known to enable a quick re-entry to the cell cycle, were significantly enhanced in pHPL-expanded cells. Our results support a better characterization and standardization of humanized culture media for stromal cell-based medicinal products.
Collapse
Affiliation(s)
- Sandra Laner-Plamberger
- Department of Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
| | - Michaela Oeller
- Department of Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
| | - Cornelia Mrazek
- Department of Laboratory Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University, Salzburg, Austria
| | - Arnulf Hartl
- Institute of Ecomedicine, Paracelsus Medical University, Salzburg, Austria
| | - Alina Sonderegger
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.,Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Eva Rohde
- Department of Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.,Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Schallmoser
- Department of Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University, Salzburg, Austria. .,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.
| |
Collapse
|
19
|
Bieback K, Fernandez-Muñoz B, Pati S, Schäfer R. Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Gene Therapy. Transfusion 2019; 59:3448-3460. [PMID: 31412158 DOI: 10.1111/trf.15483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Karen Bieback
- Institute for Transfusion Medicine and Immunology, Flowcore Mannheim, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen gGmbH, Mannheim, Germany
| | - Beatriz Fernandez-Muñoz
- Unidad de Producción y Reprogramación Celular (UPRC)/Laboratorio Andaluz de Reprogramación Celular (LARCEL), Sevilla, Spain.,Iniciativa Andaluza de Terapias Avanzadas, Sevilla, Spain.,IBiS, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Shibani Pati
- Blood Systems Research Institute (BSRI), Blood Systems Inc. (BSI), and the University of California at San Francisco, San Francisco, California
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt, Germany
| |
Collapse
|
20
|
Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells 2019; 8:cells8070724. [PMID: 31311198 PMCID: PMC6679214 DOI: 10.3390/cells8070724] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Adipose derived stromal/stem cells (ASCs) hold potential as cell therapeutics for a wide range of disease states; however, many expansion protocols rely on the use of fetal bovine serum (FBS) as a cell culture nutrient supplement. The current study explores the substitution of lysates from expired human platelets (HPLs) as an FBS substitute. METHODS Expired human platelets from an authorized blood center were lysed by freeze/thawing and used to examine human ASCs with respect to proliferation using hematocytometer cell counts, colony forming unit-fibroblast (CFU-F) frequency, surface immunophenotype by flow cytometry, and tri-lineage (adipocyte, chondrocyte, osteoblast) differentiation potential by histochemical staining. RESULTS The proliferation assays demonstrated that HPLs supported ASC proliferation in a concentration dependent manner, reaching levels that exceeded that observed in the presence of 10% FBS. The concentration of 0.75% HPLs was equivalent to 10% FBS when utilized in cell culture media with respect to proliferation, immunophenotype, and CFU-F frequency. When added to osteogenic, adipogenic, and chondrogenic differentiation media, both supplements showed appropriate differentiation by staining. CONCLUSION HPLs is an effective substitute for FBS in the culture, expansion and differentiation of human ASCs suitable for pre-clinical studies; however, additional assays and analyses will be necessary to validate HPLs for clinical applications and regulatory approval.
Collapse
|
21
|
Bieback K, Fernandez-Muñoz B, Pati S, Schäfer R. Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Gene Therapy. Cytotherapy 2019; 21:911-924. [PMID: 31307904 DOI: 10.1016/j.jcyt.2019.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
Abstract
Fetal bovine serum (FBS) is used as a growth supplement in a wide range of cell culture applications for cell-based research and therapy. However, as a xenogenic product, FBS can potentially transmit prions and adventitious viruses as well as induce undesirable immunologic reactions. In addition, the use of bovine fetuses for FBS production raises concerns as society looks for ways to replace animal testing and reduce the use of animal products for scientific purposes, in particular for the manufacture of clinical products intended for human use. Until chemically defined media are available for these purposes, human platelet lysate (hPL) has been introduced as an attractive alternative for replacing FBS as a cell culture supplement. hPL is a human product that can be produced from outdated platelets avoiding ethical, medical and animal welfare concerns. An increasing number of studies demonstrate that hPL can promote cell growth similarly or even better than FBS in specific cell types. Due to increasing interest in hPL, the AABB and the International Society of Cell Therapy (ISCT) established a joint working group to address its potential. With this article, we aim to present an overview of hPL, identifying the gaps in information on how hPL is produced and tested and the barriers to its translational use in the production of clinical-grade cell therapy products.
Collapse
Affiliation(s)
- Karen Bieback
- Institute for Transfusion Medicine and Immunology, Flowcore Mannheim, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen gGmbH, Mannheim, Germany.
| | - Beatriz Fernandez-Muñoz
- Unidad de Producción y Reprogramación Celular (UPRC)/Laboratorio Andaluz de Reprogramación Celular (LARCEL), Sevilla, Spain; Iniciativa Andaluza de Terapias Avanzadas, Sevilla, Spain; IBiS, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Shibani Pati
- Blood Systems Research Institute (BSRI), Blood Systems Inc. (BSI) and University of California San Francisco, San Francisco, California, USA
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Addressing the Manufacturing Challenges of Cell-Based Therapies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:225-278. [PMID: 31844924 DOI: 10.1007/10_2019_118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exciting developments in the cell therapy field over the last decades have led to an increasing number of clinical trials and the first cell products receiving marketing authorization. In spite of substantial progress in the field, manufacturing of cell-based therapies presents multiple challenges that need to be addressed in order to assure the development of safe, efficacious, and cost-effective cell therapies.The manufacturing process of cell-based therapies generally requires tissue collection, cell isolation, culture and expansion (upstream processing), cell harvest, separation and purification (downstream processing), and, finally, product formulation and storage. Each one of these stages presents significant challenges that have been the focus of study over the years, leading to innovative and groundbreaking technological advances, as discussed throughout this chapter.Delivery of cell-based therapies relies on defining product targets while controlling process variable impact on cellular features. Moreover, commercial viability is a critical issue that has had damaging consequences for some therapies. Implementation of cost-effectiveness measures facilitates healthy process development, potentially being able to influence end product pricing.Although cell-based therapies represent a new level in bioprocessing complexity in every manufacturing stage, they also show unprecedented levels of therapeutic potential, already radically changing the landscape of medical care.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - André Dargen de Matos Branco
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Smith OJ, Jell G, Mosahebi A. The use of fat grafting and platelet-rich plasma for wound healing: A review of the current evidence. Int Wound J 2018; 16:275-285. [PMID: 30460739 DOI: 10.1111/iwj.13029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Fat grafting is becoming a common procedure in regenerative medicine because of its high content of growth factors and adipose derived stem cells (ADSCs) and the ease of harvest, safety, and low cost. The high concentration of ADSCs found in fat has the potential to differentiate into a wide range of wound-healing cells including fibroblasts and keratinocytes as well as demonstrating proangiogenic qualities. This suggests that fat could play an important role in wound healing. However retention rates of fat grafts are highly variable due in part to inconsistent vascularisation of the transplanted fat. Furthermore, conditions such as diabetes, which have a high prevalence of chronic wounds, reduce the potency and regenerative potential of ADSCs. Platelet-rich plasma (PRP) is an autologous blood product rich in growth factors, cell adhesion molecules, and cytokines. It has been hypothesised that PRP may have a positive effect on the survival and retention of fat grafts because of improved proliferation and differentiations of ADSCs, reduced inflammation, and improved vascularisation. There is also increasing interest in a possible synergistic effect that PRP may have on the healing potential of fat, although the evidence for this is very limited. In this review, we evaluate the evidence in both in vitro and animal studies on the mechanistic relationship between fat and PRP and how this translates to a benefit in wound healing. We also discuss future directions for both research and clinical practice on how to enhance the regenerative potential of the combination of PRP and fat.
Collapse
Affiliation(s)
- Oliver J Smith
- Department of Plastic Surgery, Royal Free Hospital, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Gavin Jell
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Ash Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
24
|
Current Strategies to Generate Human Mesenchymal Stem Cells In Vitro. Stem Cells Int 2018; 2018:6726185. [PMID: 30224922 PMCID: PMC6129345 DOI: 10.1155/2018/6726185] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are heterogeneous multipotent stem cells that are involved in the development of mesenchyme-derived evolving structures and organs during ontogeny. In the adult organism, reservoirs of MSCs can be found in almost all tissues where MSCs contribute to the maintenance of organ integrity. The use of these different MSCs for cell-based therapies has been extensively studied over the past years, which highlights the use of MSCs as a promising option for the treatment of various diseases including autoimmune and cardiovascular disorders. However, the proportion of MSCs contained in primary isolates of adult tissue biopsies is rather low and, thus, vigorous ex vivo expansion is needed especially for therapies that may require extensive and repetitive cell substitution. Therefore, more easily and accessible sources of MSCs are needed. This review summarizes the current knowledge of the different strategies to generate human MSCs in vitro as an alternative method for their applications in regenerative therapy.
Collapse
|
25
|
Baigger A, Eicke D, Yuzefovych Y, Pogozhykh D, Blasczyk R, Figueiredo C. Characterization of induced pluripotent stem cell-derived megakaryocyte lysates for potential regenerative applications. J Cell Mol Med 2018; 22:4545-4549. [PMID: 29893509 PMCID: PMC6111809 DOI: 10.1111/jcmm.13698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Recently, platelet‐derived growth factors present in lysates became an extreme interest in the field of regenerative medicine such as in wound healing and as substitutes to foetal bovine serum in xeno‐free cell culture systems. However, the generation of such platelet lysates completely depends on the availability of platelet donors. In this study, the possibility to use in vitro‐generated megakaryocytes derived from induced pluripotent stem cells (iPSCs) as a cell source for typical platelet growth factors was investigated. Therefore, the presence and levels of those factors were characterized in in vitro‐produced megakaryocytes. In comparison with platelets, in vitro‐generated megakaryocytes showed a multifold increased content in transcript and protein levels of typical platelet growth factors including platelet‐derived growth factors (PDGFs), transforming growth factor (TGF)‐1β, vascular endothelial cell factor (VEGF)‐A, epidermal growth factor (EGF), insulin‐like growth factor (IGF)‐1 and tissue factor (TF). Hence, iPSC‐derived megakaryocytes may serve as an efficient cell source for a donor‐independent generation of growth factor‐rich lysates with a broad application potential in innovative cell culture systems and regenerative therapies.
Collapse
Affiliation(s)
- Anja Baigger
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Dorothee Eicke
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Yuliia Yuzefovych
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Denys Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
26
|
Strunk D, Lozano M, Marks DC, Loh YS, Gstraunthaler G, Schennach H, Rohde E, Laner-Plamberger S, Öller M, Nystedt J, Lotfi R, Rojewski M, Schrezenmeier H, Bieback K, Schäfer R, Bakchoul T, Waidmann M, Jonsdottir-Buch SM, Montazeri H, Sigurjonsson OE, Iudicone P, Fioravanti D, Pierelli L, Introna M, Capelli C, Falanga A, Takanashi M, López-Villar O, Burnouf T, Reems JA, Pierce J, Preslar AM, Schallmoser K. International Forum on GMP-grade human platelet lysate for cell propagation. Vox Sang 2017; 113:e1-e25. [PMID: 29071726 DOI: 10.1111/vox.12594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - D C Marks
- Australian Red Cross Blood Service, Research and Development, 17 O'Riordan Street, Sydney, New South Wales, 2015, Australia
| | - Y S Loh
- Australian Red Cross Blood Service, Research and Development, 17 O'Riordan Street, Sydney, New South Wales, 2015, Australia
| | - G Gstraunthaler
- Division of Physiology, Medical University Innsbruck, Schöpfstr. 41, Innsbruck, A-6020, Austria
| | - H Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Anichstr. 35, Innsbruck, A-6020, Austria
| | - E Rohde
- Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, Salzburg, 5020, Austria
| | - S Laner-Plamberger
- Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, Salzburg, 5020, Austria
| | - M Öller
- Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, Salzburg, 5020, Austria
| | - J Nystedt
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Kivihaantie 7, FI-00310, Helsinki, Finland
| | - R Lotfi
- Institute for Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Wuerttemberg-Hessen , University Hospital Ulm, University of Ulm, Helmholtzstr. 10, Ulm, 89081, Germany
| | - M Rojewski
- Institute for Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Wuerttemberg-Hessen , University Hospital Ulm, University of Ulm, Helmholtzstr. 10, Ulm, 89081, Germany
| | - H Schrezenmeier
- Institute for Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Wuerttemberg-Hessen , University Hospital Ulm, University of Ulm, Helmholtzstr. 10, Ulm, 89081, Germany
| | - K Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Heidelberg University, Friedrich-Ebert Str. 107, Mannheim, D-68167, Germany
| | - R Schäfer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg- Hessen gGmbH, Goethe-University Hospital, Sandhofstrasse 1, Frankfurt am Main, D-60528, Germany
| | - T Bakchoul
- Center for Clinical Transfusion Medicine, Otfried-Müller-Strasse 4/1, D-72076 , Tuebingen, Germany
| | - M Waidmann
- Center for Clinical Transfusion Medicine, Otfried-Müller-Strasse 4/1, D-72076 , Tuebingen, Germany
| | - S M Jonsdottir-Buch
- The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101, Reykjavik, Iceland.,Platome Biotechnology, Alfaskeid 27, 220, Hafnarfjordur, Iceland
| | - H Montazeri
- The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 101, Reykjavik, Iceland.,Platome Biotechnology, Alfaskeid 27, 220, Hafnarfjordur, Iceland
| | - O E Sigurjonsson
- The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 101, Reykjavik, Iceland.,Platome Biotechnology, Alfaskeid 27, 220, Hafnarfjordur, Iceland.,School of Science and Engineering, University of Reykjavik, Menntavegur 1, 101, Reykjavik, Iceland
| | - P Iudicone
- San Camillo Forlanini Hospital, Circonvallazione Gianicolense 87, Rome, 00152, Italy
| | - D Fioravanti
- San Camillo Forlanini Hospital, Circonvallazione Gianicolense 87, Rome, 00152, Italy
| | - L Pierelli
- Department of Experimental Medicine, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - M Introna
- QP USS Centro di Terapia Cellulare 'G. Lanzani', USC Ematologia, ASST Papa Giovanni XXIII, Via Garibaldi 11/13, Bergamo, 24124, Italy
| | - C Capelli
- USS Centro di Terapia Cellulare 'G. Lanzani', USC Ematologia, ASST Papa Giovanni XXIII, Via Garibaldi 11/13, Bergamo, 24124, Italy
| | - A Falanga
- Division of Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Piazza OMS 1, Bergamo, 24127, Italy
| | - M Takanashi
- Japanese Red Cross Blood Service Headquarters, 1-2-1 Shiba-koen, Minato-ku, Tokyo, 105-0011, Japan
| | - O López-Villar
- Department of Hematology, University Hospital of Salamanca, P/San Vicente 58-182, Salamanca, 37007, Spain
| | - T Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Shin Street, Taipei, 101, Taiwan
| | - J A Reems
- Division of Hematology and Hematologic Malignancies, Department of Medicine, University of Utah Cell Therapy and Regenerative Medicine, 675 Arapeen, Suite 300, Salt Lake City, Utah, 84108, USA
| | - J Pierce
- Division of Hematology and Hematologic Malignancies, Department of Medicine, University of Utah Cell Therapy and Regenerative Medicine, 675 Arapeen, Suite 300, Salt Lake City, Utah, 84108, USA
| | - A M Preslar
- Division of Hematology and Hematologic Malignancies, Department of Medicine, University of Utah Cell Therapy and Regenerative Medicine, 675 Arapeen, Suite 300, Salt Lake City, Utah, 84108, USA
| | | |
Collapse
|
27
|
Abstract
Mesenchymal stem cell (MSC) therapy is being increasingly used to treat dogs and horses with naturally-occurring diseases. However these animals also serve as critical large animal models for ongoing translation of cell therapy products to the human market. MSC manufacture for clinical use mandates improvement in cell culture systems to meet demands for higher MSC numbers and removal of xeno-proteins (i.e. fetal bovine serum, FBS). While serum-free media (SFM) is commercially available, its affects on MSC phenotype and immunomodulatory functions are not fully known. The objective of this study was to determine if specific MSC culture conditions, MSC expansion in HYPERFlasks® or MSC expansion in a commercially available SFM, would alter MSC proliferation, phenotype or immunomodulatory properties in vitro. MSCs cultured in HYPERFlasks® were similar in phenotype, proliferative capacity and immunomodulatory functions to MSCs grown in standard flasks however MSC yield was markedly increased. HYPERFlasks® therefore provide a viable option to generate greater cell numbers in a streamlined manner. Canine and equine MSCs expanded in SFM displayed similar proliferation, surface phenotype and inhibitory effect on lymphocyte proliferation in vitro. However, MSCs cultured in the absence of FBS secreted significantly less PGE2, and were significantly less able to inhibit IFNγ secretion by activated T-cells. Immunomodulatory functions altered by expansion in SFM were species dependent. Unlike equine MSCs, in canine adipose-derived MSCs, the inhibition of lymphocyte proliferation was not principally modulated by PGE2. The removal of FBS from both canine and equine MSC culture systems resulted in altered immunomodulatory properties in vitro and warrants further investigation prior to moving towards FBS-free culture conditions.
Collapse
|
28
|
Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 951:77-98. [PMID: 27837556 DOI: 10.1007/978-3-319-45457-3_7] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) harbor great therapeutic potential for numerous diseases. From early clinical trials, success and failure analysis, bench-to-bedside and back-to-bench approaches, there has been a great gain in knowledge, still leaving a number of questions to be answered regarding optimal manufacturing and quality of MSCs for clinical application. For treatment of many acute indications, cryobanking may remain a prerequisite, but great uncertainty exists considering the therapeutic value of freshly thawed (thawed) and continuously cultured (fresh) MSCs. The field has seen an explosion of new literature lately, outlining the relevance of the topic. MSCs appear to have compromised immunomodulatory activity directly after thawing for clinical application. This may provide a possible explanation for failure of early clinical trials. It is not clear if and how quickly MSCs recover their full therapeutic activity, and if the "cryo stun effect" is relevant for clinical success. Here, we will share our latest insights into the relevance of these observations for clinical practice that will be discussed in the context of the published literature. We argue that the differences of fresh and thawed MSCs are limited but significant. A key issue in evaluating potency differences is the time point of analysis after thawing. To date, prospective double-blinded randomized clinical studies to evaluate potency of both products are lacking, although recent progress was made with preclinical assessment. We suggest refocusing therapeutic MSC development on potency and safety assays with close resemblance of the clinical reality.
Collapse
|
29
|
Shanbhag S, Stavropoulos A, Suliman S, Hervig T, Mustafa K. Efficacy of Humanized Mesenchymal Stem Cell Cultures for Bone Tissue Engineering: A Systematic Review with a Focus on Platelet Derivatives. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:552-569. [PMID: 28610481 DOI: 10.1089/ten.teb.2017.0093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fetal bovine serum (FBS) is the most commonly used supplement for ex vivo expansion of human mesenchymal stem cells (hMSCs) for bone tissue engineering applications. However, from a clinical standpoint, it is important to substitute animal-derived products according to current good manufacturing practice (cGMP) guidelines. Humanized alternatives to FBS include three categories of products: human serum (HS), human platelet derivatives (HPDs)-including platelet lysate (PL) or platelet releasate (PR), produced by freeze/thawing or chemical activation of platelet concentrates, respectively, and chemically defined media (serum-free) (CDM). In this systematic literature review, the in vitro and in vivo osteogenic potential of hMSCs expanded in humanized (HS-, HPD-, or CDM-supplemented) media versus hMSCs expanded in FBS-supplemented media, was compared. In addition, PL and PR were compared in terms of their growth factor (GF)/cytokine-content and cell-culture efficacy. When using either 10-20% autologous or pooled HS, 3-10% pooled HPDs or CDM supplemented with GFs, in comparison with 10-20% FBS, a majority of studies reported similar or superior in vitro proliferation and osteogenic differentiation, and in vivo bone formation in ectopic or orthotopic rodent models. Moreover, a trend for higher GF content was observed in PL versus PR, although evidence for cell culture efficacy is limited. In summary, humanized supplements seem at least equally effective as FBS for hMSC expansion and osteogenic differentiation. Although pooled HPDs appear to be the most favorable supplement for large-scale hMSC expansion, further efforts are needed to standardize the preparation and composition of these products in compliance with cGMP standards.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Andreas Stavropoulos
- 2 Department of Periodontology, Faculty of Odontology, Malmö University , Malmö, Sweden
| | - Salwa Suliman
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Tor Hervig
- 3 Department of Immunology and Transfusion Medicine, Haukeland University Hospital , Bergen, Norway
| | - Kamal Mustafa
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| |
Collapse
|
30
|
Rogulska O, Petrenko Y, Petrenko A. DMSO-free cryopreservation of adipose-derived mesenchymal stromal cells: expansion medium affects post-thaw survival. Cytotechnology 2016; 69:265-276. [PMID: 28013442 DOI: 10.1007/s10616-016-0055-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022] Open
Abstract
Off-the-shelf availability of human adipose-derived mesenchymal stromal cells (ASCs) for regenerative medicine application requires the development of nontoxic, safe, and efficient protocols for cryopreservation. Favorably, such cell processing protocols should not contain xenogeneic or toxic components, such as fetal bovine serum (FS) and dimethyl sulfoxide (DMSO). The objective of the study was to assess the sensitivity of ASCs to DMSO-free cryopreservation protocol depending on their expansion conditions: conventional, based on the application of FS or xeno-free, using PL as a medium supplement. ASCs expansion was carried out in α-MEM supplemented either with FS or PL. For DMSO- and xeno-free cryopreservation ASCs were pretreated with different concentrations of sucrose during 24 h of culture. Pretreated ASCs were cryopreserved in α-MEM containing 100-300 mM of sucrose with the cooling rate of 1 degree/min. ASCs were tested for survival (Trypan Blue test), viability (MTT test), recovery (Alamar Blue test), proliferation and ability to multilineage differentiation. The optimal concentrations of sucrose for ASCs pretreatment and as an additive in cryoprotective solution, which provided highest cell survival, comprised 100 and 200 mM, correspondingly. Survival and recovery rates of platelet lysate (PL)-expanded ASCs after DMSO-free cryopreservation comprised 59 and 51%, and were higher than in FS-cultured cells. After DMSO-free cryopreservation PL-processed ASCs had a shorter population doubling time and higher capacity for osteogenic differentiation than FS-processed cultures. The described DMSO- and xeno-free processing may form the basis for the development of safe and efficient protocols for manufacturing and banking of ASCs, providing their off-the-shelf availability for regenerative medicine applications.
Collapse
Affiliation(s)
- Olena Rogulska
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine of National Academic of Sciences of Ukraine, Pereyaslavskaya 23, Kharkiv, 61015, Ukraine.
| | - Yuri Petrenko
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine of National Academic of Sciences of Ukraine, Pereyaslavskaya 23, Kharkiv, 61015, Ukraine.,Institute of Experimental Medicine AS CR, v. v. i., Vídeňská 1083, 142 20, Prague 4-Krč, Czech Republic
| | - Alexander Petrenko
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine of National Academic of Sciences of Ukraine, Pereyaslavskaya 23, Kharkiv, 61015, Ukraine
| |
Collapse
|
31
|
Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schäfer R, Sella S, Rodeghiero F. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther 2016; 7:93. [PMID: 27411942 PMCID: PMC4944312 DOI: 10.1186/s13287-016-0352-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The use of fetal bovine serum (FBS) as a cell culture supplement is discouraged by regulatory authorities to limit the risk of zoonoses and xenogeneic immune reactions in the transplanted host. Additionally, FBS production came under scrutiny due to animal welfare concerns. Platelet derivatives have been proposed as FBS substitutes for the ex-vivo expansion of mesenchymal stem/stromal cells (MSCs) since platelet-derived growth factors can promote MSC ex-vivo expansion. Platelet-derived growth factors are present in platelet lysate (PL) obtained after repeated freezing–thawing cycles of the platelet-rich plasma or by applying physiological stimuli such as thrombin or CaCl2. PL-expanded MSCs have been used already in the clinic, taking advantage of their faster proliferation compared with FBS-expanded preparations. Should PL be applied to other biopharmaceutical products, its demand is likely to increase dramatically. The use of fresh platelet units for the production of PL raises concerns due to limited availability of platelet donors. Expired units might represent an alternative, but further data are needed to define safety, including pathogen reduction, and functionality of the obtained PL. In addition, relevant questions concerning the definition of PL release criteria, including concentration ranges of specific growth factors in PL batches for various clinical indications, also need to be addressed. We are still far from a common definition of PL and standardized PL manufacture due to our limited knowledge of the mechanisms that mediate PL-promoting cell growth. Here, we concisely discuss aspects of PL as MSC culture supplement as a preliminary step towards an agreed definition of the required characteristics of PL for the requirements of manufacturers and users.
Collapse
Affiliation(s)
- Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.
| | - Eliana Amati
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Martina Bernardi
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.,Hematology Project Foundation, Contrà S. Francesco 41, Vicenza, Italy
| | - Katia Chieregato
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.,Hematology Project Foundation, Contrà S. Francesco 41, Vicenza, Italy
| | - Richard Schäfer
- Department of Cell Therapeutics & Cell Processing, Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service, Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Sandhofstrasse 1, Frankfurt am Main, Germany
| | - Sabrina Sella
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy
| | - Francesco Rodeghiero
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.,Hematology Project Foundation, Contrà S. Francesco 41, Vicenza, Italy
| |
Collapse
|
32
|
Osteogenic differentiation of adipose tissue-derived mesenchymal stem cells cultured on a scaffold made of silk fibroin and cord blood platelet gel. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 14:206-11. [PMID: 27177408 DOI: 10.2450/2016.0209-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/01/2015] [Indexed: 01/22/2023]
|
33
|
Altaie A, Owston H, Jones E. Use of platelet lysate for bone regeneration - are we ready for clinical translation? World J Stem Cells 2016; 8:47-55. [PMID: 26981170 PMCID: PMC4766250 DOI: 10.4252/wjsc.v8.i2.47] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/14/2016] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
Current techniques to improve bone regeneration following trauma or tumour resection involve the use of autograft bone or its substitutes supplemented with osteoinductive growth factors and/or osteogenic cells such as mesenchymal stem cells (MSCs). Although MSCs are most commonly grown in media containing fetal calf serum, human platelet lysate (PL) offers an effective alternative. Bone marrow - derived MSCs grown in PL-containing media display faster proliferation whilst maintaining good osteogenic differentiation capacity. Limited pre-clinical investigations using PL-expanded MSCs seeded onto osteoconductive scaffolds indicate good potential of such constructs to repair bone in vivo. In an alternative approach, nude PL-coated scaffolds without seeded MSCs have been proposed as novel regenerative medicine devices. Even though methods to coat scaffolds with PL vary, in vitro studies suggest that PL allows for MSC adhesion, migration and differentiation inside these scaffolds. Increased new bone formation and vascularisation in comparison to uncoated scaffolds have also been observed in vivo. This review outlines the state-of-the-art research in the field of PL for ex vivo MSC expansion and in vivo bone regeneration. To minimise inconsistency between the studies, further work is required towards standardisation of PL preparation in terms of the starting material, platelet concentration, leukocyte depletion, and the method of platelet lysis. PL quality control procedures and its "potency" assessment are urgently needed, which could include measurements of key growth and attachment factors important for MSC maintenance and differentiation. Furthermore, different PL formulations could be tailor-made for specific bone repair indications. Such measures would undoubtedly speed up clinical translation of PL-based treatments for bone regeneration.
Collapse
Affiliation(s)
- Ala Altaie
- Ala Altaie, Heather Owston, Elena Jones, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Heather Owston
- Ala Altaie, Heather Owston, Elena Jones, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Elena Jones
- Ala Altaie, Heather Owston, Elena Jones, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
34
|
Wuchter P, Vetter M, Saffrich R, Diehlmann A, Bieback K, Ho AD, Horn P. Evaluation of GMP-compliant culture media for in vitro expansion of human bone marrow mesenchymal stromal cells. Exp Hematol 2016; 44:508-18. [PMID: 26911671 DOI: 10.1016/j.exphem.2016.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/31/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Abstract
Mesenchymal stromal cells (MSCs) from human bone marrow serve as a resource for cell-based therapies in regenerative medicine. Clinical applications require standardized protocols according to good manufacturing practice (GMP) guidelines. Donor variability as well as the intrinsic heterogeneity of MSC populations must be taken into consideration. The composition of the culture medium is a key factor in successful MSC expansion. The aim of this study was to comparatively assess the efficiency of xeno-free human platelet lysate (HPL)-based cell expansion with two commercially available media-StemPro MSC SFM CTS (for human ex vivo tissue and cell culture processing applications) and MSCGM (non-GMP-compliant, for research only)-in an academic setting as the first optimization step toward GMP-compliant manufacturing. We report the feasibility of MSC expansion up to the yielded cell number with all three media. MSCs exhibited the typical fibroblastoid morphology, with distinct differences in cell size depending on the medium. The differentiation capacity and characteristic immunophenotype were confirmed for all MSC populations. Proliferation was highest using StemPro MSC SFM CTS, whereas HPL medium was more cost-effective and its composition could be adjusted individually according to the respective needs. In summary, we present a comprehensive evaluation of GMP-compatible culture media for MSC expansion. Both StemPro and HPL medium proved to be suitable for clinical application and allowed sufficient cell proliferation. Specific differences were observed and should be considered according to the intended use. This study provides a detailed cost analysis and tools that may be helpful for the establishment of GMP-compliant MSC expansion.
Collapse
Affiliation(s)
- Patrick Wuchter
- Department of Medicine V, Heidelberg University, Heidelberg, Germany.
| | - Marcel Vetter
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| | - Rainer Saffrich
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| | - Anke Diehlmann
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Anthony D Ho
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| | - Patrick Horn
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
35
|
Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells. Stem Cells Int 2015; 2016:7183734. [PMID: 26823671 PMCID: PMC4707349 DOI: 10.1155/2016/7183734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/01/2015] [Indexed: 01/03/2023] Open
Abstract
The administration of human adipose-derived stem cells (ASCs) represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR). ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase) and BMP-2 (4.7 ± 1.3-fold increase) and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease) and FGF-2 (33 ± 9.0-fold decrease). No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications.
Collapse
|
36
|
Muraglia A, Todeschi MR, Papait A, Poggi A, Spanò R, Strada P, Cancedda R, Mastrogiacomo M. Combined platelet and plasma derivatives enhance proliferation of stem/progenitor cells maintaining their differentiation potential. Cytotherapy 2015; 17:1793-1806. [PMID: 26589754 DOI: 10.1016/j.jcyt.2015.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND AIMS Platelet derivatives have been proposed as alternatives to animal sera given that for cell therapy applications, the use of fetal bovine/calf serum (FBS/FCS) is subjected to severe limitations for safety and ethical concerns. We developed a cell culture medium additive obtained by the combination of two blood-derived standardized components. METHODS A platelet lysate (PL) and a platelet-poor plasma (PPP) were produced in a lyophilized form. Each component was characterized for its growth factor content (platelet-derived growth factor-BB/vascular endothelial growth factor). PL and PPP were used as single components or in combination in different ratio at cumulative 5% final concentration in the culture medium. RESULTS The single components were less effective than the component combination. In primary cell cultures (bone marrow stromal cells, adipose derived adult stem cells, osteoblasts, chondrocytes, umbilical cord-derived mesenchymal stromal cells, lymphocytes), the PL/PPP supplement promoted an increased cell proliferation in respect to the standard FCS culture in a dose-dependent manner, maintaining the cell functionality, clonogenicity, phenotype and differentiative properties throughout the culture. At a different component ratio, the supplement was also used to support proliferation of a cell line (U-937). CONCLUSIONS The PL/PPP supplement is an efficient cell culture medium additive that can replace FCS to promote cell proliferation. It can outdo FCS, especially when adopted in primary cultures from tissue biopsies. Moreover, the dual component nature of the supplement allows the researcher to determine the more appropriate ratio of the two components for the nutritional and functional requirements of the cell type of interest.
Collapse
Affiliation(s)
| | | | - Andrea Papait
- DIMES, University of Genoa, Genoa, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Alessandro Poggi
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Raffaele Spanò
- DIMES, University of Genoa, Genoa, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Paolo Strada
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Ranieri Cancedda
- DIMES, University of Genoa, Genoa, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Maddalena Mastrogiacomo
- DIMES, University of Genoa, Genoa, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.
| |
Collapse
|
37
|
Laner-Plamberger S, Lener T, Schmid D, Streif DA, Salzer T, Öller M, Hauser-Kronberger C, Fischer T, Jacobs VR, Schallmoser K, Gimona M, Rohde E. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. J Transl Med 2015; 13:354. [PMID: 26554451 PMCID: PMC4641400 DOI: 10.1186/s12967-015-0717-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/29/2015] [Indexed: 01/10/2023] Open
Abstract
Background Pooled human platelet lysate (pHPL) is an efficient alternative to xenogenic supplements for ex vivo expansion of mesenchymal stem cells (MSCs) in clinical studies. Currently, porcine heparin is used in pHPL-supplemented medium to prevent clotting due to plasmatic coagulation factors. We therefore searched for an efficient and reproducible medium preparation method that avoids clot formation while omitting animal-derived heparin. Methods We established a protocol to deplete fibrinogen by clotting of pHPL in medium, subsequent mechanical hydrogel disruption and removal of the fibrin pellet. After primary culture, bone-marrow and umbilical cord derived MSCs were tested for surface markers by flow cytometry and for trilineage differentiation capacity. Proliferation and clonogenicity were analyzed for three passages. Results The proposed clotting procedure reduced fibrinogen more than 1000-fold, while a volume recovery of 99.5 % was obtained. All MSC types were propagated in standard and fibrinogen-depleted medium. Flow cytometric phenotype profiles and adipogenic, osteogenic and chondrogenic differentiation potential in vitro were independent of MSC-source or medium type. Enhanced proliferation of MSCs was observed in the absence of fibrinogen but presence of heparin compared to standard medium. Interestingly, this proliferative response to heparin was not detected after an initial contact with fibrinogen during the isolation procedure. Conclusions Here, we present an efficient, reproducible and economical method in compliance to good manufacturing practice for the preparation of MSC media avoiding xenogenic components and suitable for clinical studies. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0717-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Laner-Plamberger
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria. .,Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, 5020, Salzburg, Austria.
| | - Thomas Lener
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria. .,Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, 5020, Salzburg, Austria.
| | - Doris Schmid
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria. .,Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, 5020, Salzburg, Austria.
| | - Doris A Streif
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria. .,Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, 5020, Salzburg, Austria.
| | - Tina Salzer
- Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, 5020, Salzburg, Austria.
| | - Michaela Öller
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria. .,Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, 5020, Salzburg, Austria.
| | | | - Thorsten Fischer
- Department of Gynecology and Obstetrics, Paracelsus Medical University, Salzburg, Austria.
| | - Volker R Jacobs
- Department of Gynecology and Obstetrics, Paracelsus Medical University, Salzburg, Austria.
| | - Katharina Schallmoser
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria. .,Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, 5020, Salzburg, Austria.
| | - Mario Gimona
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria. .,Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, 5020, Salzburg, Austria.
| | - Eva Rohde
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria. .,Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, 5020, Salzburg, Austria.
| |
Collapse
|
38
|
Burnouf T, Strunk D, Koh MBC, Schallmoser K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2015; 76:371-87. [PMID: 26561934 DOI: 10.1016/j.biomaterials.2015.10.065] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Dirk Strunk
- Experimental & Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Mickey B C Koh
- Blood Services Group, Health Sciences Authority, Singapore; Department for Hematology, St George's Hospital and Medical School, London, UK
| | - Katharina Schallmoser
- Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Department for Blood Group Serology and Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
39
|
Tchang LA, Pippenger BE, Todorov A, Wolf F, Burger MG, Jaquiery C, Bieback K, Martin I, Schaefer DJ, Scherberich A. Pooled thrombin-activated platelet-rich plasma: a substitute for fetal bovine serum in the engineering of osteogenic/vasculogenic grafts. J Tissue Eng Regen Med 2015; 11:1542-1552. [DOI: 10.1002/term.2054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/08/2015] [Accepted: 04/29/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Laurent A. Tchang
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery; University Hospital of Basel; Switzerland
- Laboratory of Tissue Engineering, Department of Biomedicine; University and University Hospital of Basel; Switzerland
| | - Benjamin E. Pippenger
- Laboratory of Tissue Engineering, Department of Biomedicine; University and University Hospital of Basel; Switzerland
| | - Atanas Todorov
- Laboratory of Tissue Engineering, Department of Biomedicine; University and University Hospital of Basel; Switzerland
| | - Francine Wolf
- Laboratory of Tissue Engineering, Department of Biomedicine; University and University Hospital of Basel; Switzerland
| | - Maximilian G. Burger
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery; University Hospital of Basel; Switzerland
| | - Claude Jaquiery
- Laboratory of Tissue Engineering, Department of Biomedicine; University and University Hospital of Basel; Switzerland
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim; Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen; Mannheim Germany
| | - Ivan Martin
- Laboratory of Tissue Engineering, Department of Biomedicine; University and University Hospital of Basel; Switzerland
| | - Dirk J. Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery; University Hospital of Basel; Switzerland
| | - Arnaud Scherberich
- Laboratory of Tissue Engineering, Department of Biomedicine; University and University Hospital of Basel; Switzerland
| |
Collapse
|
40
|
Luzzani C, Neiman G, Garate X, Questa M, Solari C, Fernandez Espinosa D, García M, Errecalde AL, Guberman A, Scassa ME, Sevlever GE, Romorini L, Miriuka SG. A therapy-grade protocol for differentiation of pluripotent stem cells into mesenchymal stem cells using platelet lysate as supplement. Stem Cell Res Ther 2015; 6:6. [PMID: 25582222 PMCID: PMC4417240 DOI: 10.1186/scrt540] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are a promising source of cells for regenerative therapies. Although they can be isolated easily from several tissues, cell expansion is limited since their properties are lost with successive passages. Hence, pluripotent derived MSCs (PD-MSCs) arise as a suitable alternative for MSC production. Nevertheless, at present, PD-MSC derivation protocols are either expensive or not suitable for clinical purposes. Methods In this work we present a therapy-grade, inexpensive and simple protocol to derive MSCs from pluripotent stem cells (PSCs) based on the use of platelet lysate (PL) as medium supplement. Results We showed that the PD-MSCPL expressed multiple MSC markers, including CD90, CD73, CD105, CD166, and CD271, among others. These cells also show multilineage differentiation ability and immunomodulatory effects on pre-stimulated lymphocytes. Thorough characterization of these cells showed that a PD-MSCPL resembles an umbilical cord (UC) MSC and differs from a PSC in surface marker and extracellular matrix proteins and integrin expression. Moreover, the OCT-4 promoter is re-methylated with mesenchymal differentiation comparable with the methylation levels of UC-MSCs and fibroblasts. Lastly, the use of PL-supplemented medium generates significantly more MSCs than the use of fetal bovine serum. Conclusions This protocol can be used to generate a large amount of PD-MSCs with low cost and is compatible with clinical therapies. Electronic supplementary material The online version of this article (doi:10.1186/scrt540) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlos Luzzani
- Laboratorio de Biología del Desarrollo Celular, LIAN-Unidad Asociada al CONICET, Fundación FLENI, Ruta 9, Km53, Belen de Escobar, Argentina.
| | - Gabriel Neiman
- Laboratorio de Biología del Desarrollo Celular, LIAN-Unidad Asociada al CONICET, Fundación FLENI, Ruta 9, Km53, Belen de Escobar, Argentina.
| | - Ximena Garate
- Laboratorio de Biología del Desarrollo Celular, LIAN-Unidad Asociada al CONICET, Fundación FLENI, Ruta 9, Km53, Belen de Escobar, Argentina.
| | - María Questa
- Laboratorio de Biología del Desarrollo Celular, LIAN-Unidad Asociada al CONICET, Fundación FLENI, Ruta 9, Km53, Belen de Escobar, Argentina.
| | - Claudia Solari
- Laboratorio de Regulación de Expresión Génica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires, Argentina.
| | - Darío Fernandez Espinosa
- Laboratorio de Biología del Desarrollo Celular, LIAN-Unidad Asociada al CONICET, Fundación FLENI, Ruta 9, Km53, Belen de Escobar, Argentina.
| | - Marcela García
- Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 s/n, 1900, La Plata, Argentina.
| | - Ana Lía Errecalde
- Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 s/n, 1900, La Plata, Argentina.
| | - Alejandra Guberman
- Laboratorio de Regulación de Expresión Génica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires, Argentina. .,Investigador, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - María Elida Scassa
- Laboratorio de Biología del Desarrollo Celular, LIAN-Unidad Asociada al CONICET, Fundación FLENI, Ruta 9, Km53, Belen de Escobar, Argentina.
| | - Gustavo Emilio Sevlever
- Laboratorio de Biología del Desarrollo Celular, LIAN-Unidad Asociada al CONICET, Fundación FLENI, Ruta 9, Km53, Belen de Escobar, Argentina.
| | - Leonardo Romorini
- Laboratorio de Biología del Desarrollo Celular, LIAN-Unidad Asociada al CONICET, Fundación FLENI, Ruta 9, Km53, Belen de Escobar, Argentina. .,Investigador, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Santiago Gabriel Miriuka
- Laboratorio de Biología del Desarrollo Celular, LIAN-Unidad Asociada al CONICET, Fundación FLENI, Ruta 9, Km53, Belen de Escobar, Argentina. .,Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 s/n, 1900, La Plata, Argentina. .,Investigador, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
41
|
Shih DTB, Burnouf T. Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. N Biotechnol 2014; 32:199-211. [PMID: 24929129 PMCID: PMC7102808 DOI: 10.1016/j.nbt.2014.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023]
Abstract
Most clinical applications of human multipotent mesenchymal stromal cells (MSCs) for cell therapy, tissue engineering, regenerative medicine, and treatment of immune and inflammatory diseases require a phase of isolation and ex vivo expansion allowing a clinically meaningful cell number to be reached. Conditions used for cell isolation and expansion should meet strict quality and safety requirements. This is particularly true for the growth medium used for MSC isolation and expansion. Basal growth media used for MSC expansion are supplemented with multiple nutrients and growth factors. Fetal bovine serum (FBS) has long been the gold standard medium supplement for laboratory-scale MSC culture. However, FBS has a poorly characterized composition and poses risk factors, as it may be a source of xenogenic antigens and zoonotic infections. FBS has therefore become undesirable as a growth medium supplement for isolating and expanding MSCs for human therapy protocols. In recent years, human blood materials, and most particularly lysates and releasates of platelet concentrates have emerged as efficient medium supplements for isolating and expanding MSCs from various origins. This review analyzes the advantages and limits of using human platelet materials as medium supplements for MSC isolation and expansion. We present the modes of production of allogeneic and autologous platelet concentrates, measures taken to ensure optimal pathogen safety profiles, and methods of preparing PLs for MSC expansion. We also discuss the supply of such blood preparations. Produced under optimal conditions of standardization and safety, human platelet materials can become the future 'gold standard' supplement for ex vivo production of MSCs for translational medicine and cell therapy applications.
Collapse
Affiliation(s)
- Daniel Tzu-Bi Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pediatrics Department, Taipei Medical University Hospital, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|