1
|
Sharma A, Anand A, Ravins M, Zhang X, Horstmann N, Shelburne SA, McIver KS, Hanski E. Group A Streptococcal asparagine metabolism regulates bacterial virulence. EMBO Rep 2025; 26:2767-2791. [PMID: 40229432 DOI: 10.1038/s44319-025-00447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
Group A Streptococcus (GAS) causes various human diseases linked to virulome expression predominantly regulated by the two-component system (TCS), CovR/S. Here, we demonstrate that asparagine (Asn) presence in a minimal chemically defined medium increases virulence gene expression in a CovR-dependent fashion. It also decreases the transcription of asparagine synthetase (AsnA), the ABC transporter responsible for Asn uptake (GlnPQ), and that of the hemolysin toxins responsible for scavenging Asn from the host. Metabolomics data show that Asn availability increases intracellular ADP/ATP ratio, which enhances phosphatase activity in structurally related CovS sensors and is probably responsible for the Asn-mediated decrease in CovR phosphorylation. Mutants deficient in AsnA, GlnPQ, asparaginase, (AsnB) activities are attenuated in a mouse model of human GAS invasive soft tissue infection. The similarity between the mechanisms of Asn-mediated regulation of GAS virulence and tumor growth suggests that, as in cancer, components maintaining Asn homeostasis could be targeted for anti-GAS treatments.
Collapse
Affiliation(s)
- Abhinay Sharma
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Xiaolan Zhang
- Department of Physiology, College of Basic Medical Science, Harbin Medical University, Harbin, China
| | - Nicola Horstmann
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel A Shelburne
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel.
| |
Collapse
|
2
|
Guo S, Zhang L, Ren J, Lu Z, Ma X, Liu X, Jin H, Li J. The roles of enhancer, especially super-enhancer-driven genes in tumor metabolism and immunity. Int J Biol Macromol 2025; 308:142414. [PMID: 40132720 DOI: 10.1016/j.ijbiomac.2025.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Abnormal metabolism is a characteristic of malignant tumors. Numerous factors play roles in the regulation of tumor metabolism. As epigenetic regulators, enhancers, especially the super-enhancers (SEs), serve as platforms for transcription factors that regulate the expression of metabolism-related enzymes or transporters at the gene level. In this study, we review the effects of enhancer/ SE-driven genes on tumor metabolism and immunity. Enhancers/SEs play regulatory roles in glucose metabolism (glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, pyruvate, and pentose phosphate pathway, lipid metabolism (cholesterol, fatty acid, phosphatide, and sphingolipid), and amino acid metabolism (glutamine, tryptophan, arginine, and cystine). By regulating tumor metabolism, enhancers and SEs can reprogram tumor microenvironment, especially the status of various immune cells. Therefore, interfering enhancers/SEs that regulate the tumor metabolism is likely to enhance the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
3
|
Hou YJ, Yang XX, Meng HX. Mitochondrial metabolism in laryngeal cancer: therapeutic mechanisms and prospects. Biochim Biophys Acta Rev Cancer 2025; 1880:189335. [PMID: 40311711 DOI: 10.1016/j.bbcan.2025.189335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
Tumours reprogram pathways that regulate nutrient uptake and metabolism to meet the biosynthetic, bioenergetic, and redox requirements of cancer cells. This phenomenon is known as metabolic reprogramming and is edited by the deletion of oncogenes and the activation of proto-oncogenes. This article highlights the pathological mechanisms associated with metabolic reprogramming in laryngeal cancer (LC), including enhanced glycolysis, tricarboxylic acid cycle, nucleotide synthesis, lipid synthesis and metabolism, and amino acid metabolism, with a special emphasis on glutamine, tryptophan, and arginine metabolism. All these changes are regulated by HPV infection, hypoxia, and metabolic mediators in the tumour microenvironment. We analyzed the function of metabolic reprogramming in the development of drug resistance during standard LC treatment, which is challenging. In addition, we revealed recent advances in targeting metabolic strategies, assessing the strengths and weaknesses of clinical trials and treatment programs to attack resistance. This review summarises some currently important biomarkers and lays the foundation for therapeutic pathways in LC.
Collapse
Affiliation(s)
- Yun-Jing Hou
- Harbin Medical University, Harbin, China; Harbin Medical University Cancer Hospital, Harbin, China; Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Xin Yang
- Harbin Medical University, Harbin, China; Harbin Medical University Cancer Hospital, Harbin, China; Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong-Xue Meng
- Harbin Medical University, Harbin, China; Harbin Medical University Cancer Hospital, Harbin, China; Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
4
|
Wang H, Zhan J, Zhao S, Jiang H, Jia H, Pan Y, Zhong X, Huo J. A Comparison Between High- and Low-Performing Lambs and Their Impact on the Meat Quality and Development Level Using a Multi-Omics Analysis of Rumen Microbe-Muscle-Liver Interactions. Microorganisms 2025; 13:943. [PMID: 40284779 PMCID: PMC12029538 DOI: 10.3390/microorganisms13040943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
Through an integrated multi-omics analysis of rumen microbial communities, muscle transcriptomes, metabolic profiles, and liver metabolic profiles, this study systematically compared high- and low-performing lambs to elucidate their divergent effects on meat quality attributes and growth development. A total of 100 male lambs with similar birth weight (3.07 ± 0.06 kg) were selected within 72 h. All test lambs were synchronized weaning at 45 days of age and uniformly fed the same diet (total mixed ration) in the same pen until 180 days of age, with ad libitum access to food and water throughout this period. Subsequently, the eight lambs with the highest (HADG) and lowest (LADG) average daily gains were slaughtered for performance evaluation and multi-omics analysis. This study found that HADG lambs increased body weight, muscle fiber diameter, eye muscle area, improved amino acid (histidine, arginine, valine, isoleucine, essential amino acid/total amino acid, and essential amino acid/nonessential amino acid), and fatty acid (linoleic acid, behenic acid, and arachidonic acid) composition enhanced rumen enzymes (pepsase, lipase, xylanase, amylase, and carboxymethyl cellulose) and promoted efficient fermentation (p < 0.05). Analysis of microbial populations indicated a notable increase in Prevotella levels within the rumen of HADG lambs. Furthermore, the rumen markers Schwartzia and Streptococcus exhibited significant correlations with differential meat quality traits. Analysis of the muscle transcriptome indicated a significant correlation between the turquoise module and host phenotypes, particularly body weight. Additionally, muscle metabolism is primarily concentrated within the black module; however, it exhibits a significant correlation with the host body phenotype in the yellow module (p < 0.05). Moreover, liver metabolites, rumen microbes, host phenotype, and muscle transcripts were significantly correlated (p < 0.05). In conclusion, the interactions among rumen microbes, muscle, and liver in lambs promote rumen fermentation, which in turn regulate muscle transcriptional activity and modify metabolic profiles in both the liver and muscle. Moreover, PCK1, SPP1, FGF7, NR4A1, DUSP5, GADD45B, etc., can be candidate genes for muscle growth and development. This finding provides a theoretical basis for further exploiting the production potential of Hu lambs.
Collapse
Affiliation(s)
- Haibo Wang
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Provincial Development and Research Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Jinshun Zhan
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Provincial Development and Research Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Haoyun Jiang
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haobin Jia
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Yue Pan
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Xiaojun Zhong
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Junhong Huo
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| |
Collapse
|
5
|
Xu Q, Wang Z, Huang ST, Shi JY, Zhu Y, Pang HQ. New prognostic features and personalized treatment strategies of mitochondrial related genes in colorectal cancer patients. Front Pharmacol 2025; 16:1540767. [PMID: 40290445 PMCID: PMC12023264 DOI: 10.3389/fphar.2025.1540767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Colorectal cancer (CRC) is a common and aggressive malignancy with the complex and varied molecular landscape. Mitochondria play a pivotal role in the metabolic reprogramming of cancer cells, and their function can profoundly influence tumor progression. Therefore, identifying mitochondrial genes with immune-related features may offer a promising new approach for prognosis in CRC. Mitochondrial-associated genes were retrieved from the MITOCARTA 3.0 dataset. The LASSO regression method was applied to identify prognostic genes, while the area under the ROC curve and nomograms were used to assess the robustness of the model. Single-sample genomic enrichment analysis (ssGSEA) was utilized to explore the relationship between model genes and immune infiltration, and drug sensitivity analysis was conducted to identify potential therapeutic agents. Cellular assays were performed to validate the effectiveness of identified drugs. Key mitochondrial genes, including SUCLG2, ACACB, OSBPL1A, and TRAP1, have been identified as significant prognostic markers in CRC. The expression of ACACB and OSBPL1A progressively increased, while SUCLG2 and TRAP1 expression decreased in patients. ROC curve analysis of the TCGA dataset showed an area under the curve (AUC) greater than 0.6 for 1-, 2-, and 3-year survival predictions, demonstrating the strong prognostic potential of this model. Additionally, the model was strongly correlated with immune cells, particularly CD8+ T cells, and immune checkpoint regulators. Molecular docking analysis revealed that OSBPL1A binds to dabrafenib at glycine position 747. Cellular assays confirmed that dabrafenib effectively inhibited CRC cell migration and proliferation, providing a promising therapeutic avenue. Our findings suggested that the four mitochondrial-related genes identified in this study provide accurate survival predictions for CRC patients.
Collapse
Affiliation(s)
- Qizheng Xu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Zhiwen Wang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Shan-Tao Huang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jia-Yu Shi
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yan Zhu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Han-Qing Pang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Montagne A, Kotta K, Kielbassa-Elkadi K, Martins I, Martinez-Climent JÁ, Kroemer G, Thieblemont C, Baud V. Fatty Acid Metabolism Provides an Essential Survival Signal in OxPhos and BCR DLBCL Cells. Biomedicines 2025; 13:707. [PMID: 40149683 PMCID: PMC11940118 DOI: 10.3390/biomedicines13030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Backgroung/objectives: Diffuse large B-cell lymphoma (DLBCL) is the most frequent subtype of malignant lymphoma and is a heterogeneous disease with various gene and chromosomal abnormalities. The development of novel therapeutic treatments has improved DLBCL prognosis, but patients with early relapse or refractory disease have a poor outcome (with a mortality of around 40%). Metabolic reprogramming is a hallmark of cancer cells. Fatty acid (FA) metabolism is frequently altered in cancer cells and recently emerged as a critical survival path for cancer cell survival. Methods: We first performed the metabolic characterization of an extended panel of DLBCL cell lines, including lipid droplet content. Then, we investigated the effect of drugs targeting FA metabolism on DLBCL cell survival. Further, we studied how the combination of drugs targeting FA and either mitochondrial metabolism or mTOR pathway impacts on DLBCL cell death. Results: Here, we reveal, using a large panel of DLBCL cell lines characterized by their metabolic status, that targeting of FA metabolism induces massive DLBCL cell death regardless of their OxPhos or BCR/glycolytic subtype. Further, FA drives resistance of DLBCL cell death induced by mitochondrial stress upon treatment with either metformin or L-asparaginase, two FDA-approved antimetabolic drugs. Interestingly, combining inhibition of FA metabolism with that of the mTOR oncogenic pathway strongly potentiates DLBCL cell death. Conclusion: Altogether, our data highlight the central role played by FA metabolism in DLBCL cell survival, independently of their metabolic subtype, and provide the framework for the use of drugs targeting this metabolic vulnerability to overcome resistance in DLBCL patients.
Collapse
Affiliation(s)
- Aurélie Montagne
- NF-κB, Differentiation and Cancer, Université Paris Cité, 75006 Paris, France; (A.M.); (K.K.); (K.K.-E.); (C.T.)
| | - Konstantina Kotta
- NF-κB, Differentiation and Cancer, Université Paris Cité, 75006 Paris, France; (A.M.); (K.K.); (K.K.-E.); (C.T.)
| | - Karoline Kielbassa-Elkadi
- NF-κB, Differentiation and Cancer, Université Paris Cité, 75006 Paris, France; (A.M.); (K.K.); (K.K.-E.); (C.T.)
| | - Isabelle Martins
- Equipe Labellisée Ligue contre le Cancer, Cordeliers Research Center, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (G.K.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94800 Villejuif, France
| | - José Ángel Martinez-Climent
- Department of Hematology, Center for Applied Medical Research, University of Navarra, IDISNA, CIBERONC, 31071 Pamplona, Spain;
| | - Guido Kroemer
- Equipe Labellisée Ligue contre le Cancer, Cordeliers Research Center, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (G.K.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94800 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Catherine Thieblemont
- NF-κB, Differentiation and Cancer, Université Paris Cité, 75006 Paris, France; (A.M.); (K.K.); (K.K.-E.); (C.T.)
- Hemato-Oncology, AP-HP, Hôpital Saint-Louis, Université Paris Cité, 75006 Paris, France
| | - Véronique Baud
- NF-κB, Differentiation and Cancer, Université Paris Cité, 75006 Paris, France; (A.M.); (K.K.); (K.K.-E.); (C.T.)
| |
Collapse
|
7
|
Yan F, Wang S, Wang Y, Sun Y, Yang J, Sun L, Zaytseva YY, Deng P, Wang L. LC-MS analysis of serum lipidomic and metabolomic signatures in pediatric patients with acute lymphoblastic leukemia. Ital J Pediatr 2025; 51:74. [PMID: 40075508 PMCID: PMC11905700 DOI: 10.1186/s13052-025-01921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is a prevalent hematologic malignancy that primarily affects children. The diagnosis and treatment of pediatric ALL remain challenging. This study aimed to identify differential lipids and metabolites that may hold potential for improving ALL treatment. METHODS In this retrospective case-control study, serum samples obtained from children with ALL and healthy controls were analyzed. Serum lipidome and metabolome alterations of ALL were analyzed by comparing pediatric patients with ALL with healthy controls based on liquid chromatography high-resolution mass spectrometry analysis of serum lipidomic and metabolomic signatures. RESULTS We identified 2,298 lipid features in the serum. Among them, 72 (3.13%) differed significantly in pediatric patients with ALL compared to healthy controls. Notably, sphingolipids (ceramide and sphingomyelin) and phospholipids exhibited the most pronounced changes. Targeted analysis of ceramides revealed significantly elevated levels of Cer 18:0 and Cer 20:0 in the serum of pediatric patients with ALL. Additionally, gut microbial-related lipids (such as sulfonolipids and fatty acid esters of hydroxy fatty acids) showed significant alterations. Metabolomic analysis identified 15 differential metabolites, indicating disrupted nucleotide and amino acid metabolism. Furthermore, the dysregulated lipids and metabolites correlated with various blood indicators, with ceramide and nucleosides positively associated with white blood cell count but negatively correlated with hemoglobin and platelet. CONCLUSION These findings shed light on abnormal molecular signatures contributing to pediatric ALL and may serve as potential biomarker panel for therapy of ALL.
Collapse
Affiliation(s)
- Feiyu Yan
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Shengnan Wang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yilin Wang
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Yan Sun
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Jing Yang
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Lirong Sun
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Yekaterina Y Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Pan Deng
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lingzhen Wang
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China.
| |
Collapse
|
8
|
Soncini D, Becherini P, Ladisa F, Ravera S, Chedere A, Gelli E, Giorgetti G, Martinuzzi C, Piacente F, Mastracci L, Veneziano C, Santamaria G, Monacelli F, Ghanem MS, Cagnetta A, Guolo F, Garibotto M, Aquino S, Passalaqua M, Bruzzone S, Bellotti A, Duchosal MA, Nahimana A, Angelucci E, Nagasuma C, Nencioni A, Lemoli RM, Cea M. NAD+ metabolism restriction boosts high-dose melphalan efficacy in patients with multiple myeloma. Blood Adv 2025; 9:1024-1039. [PMID: 39661983 PMCID: PMC11909440 DOI: 10.1182/bloodadvances.2024013425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
ABSTRACT Elevated levels of the NAD+-generating enzyme nicotinamide phosphoribosyltransferase (NAMPT) are a common feature across numerous cancer types. Accordingly, we previously reported pervasive NAD+ dysregulation in multiple myeloma (MM) cells in association with upregulated NAMPT expression. Unfortunately, albeit being effective in preclinical models of cancer, NAMPT inhibition has proven ineffective in clinical trials because of the existence of alternative NAD+ production routes using NAD+ precursors other than nicotinamide. Here, by leveraging mathematical modeling approaches integrated with transcriptome data, we defined the specific NAD+ landscape of MM cells and established that the Preiss-Handler pathway for NAD+ biosynthesis, which uses nicotinic acid as a precursor, supports NAD+ synthesis in MM cells via its key enzyme nicotinate phosphoribosyltransferase (NAPRT). Accordingly, we found that NAPRT confers resistance to NAD+-depleting agents. Transcriptomic, metabolic, and bioenergetic profiling of NAPRT-knockout (KO) MM cells showed these to have weakened endogenous antioxidant defenses, increased propensity to oxidative stress, and enhanced genomic instability. Concomitant NAMPT inhibition further compounded the effects of NAPRT-KO, effectively sensitizing MM cells to the chemotherapeutic drug, melphalan; NAPRT added-back fully rescues these phenotypes. Overall, our results propose comprehensive NAD+ biosynthesis inhibition, through simultaneously targeting NAMPT and NAPRT, as a promising strategy to be tested in randomized clinical trials involving transplant-eligible patients with MM, especially those with more aggressive disease.
Collapse
Affiliation(s)
| | - Pamela Becherini
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Francesco Ladisa
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Silvia Ravera
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Adithya Chedere
- Biological Science Division, Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Elisa Gelli
- Genetics and Epigenetics of Behavior Laboratory, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giulia Giorgetti
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Fiammetta Monacelli
- Geriatrics Clinic, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Moustafa S. Ghanem
- Geriatrics Clinic, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Fabio Guolo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Matteo Garibotto
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Sara Aquino
- Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Passalaqua
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Axel Bellotti
- Service and Central Laboratory of Hematology, Departments of Oncology and Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michel A. Duchosal
- Service and Central Laboratory of Hematology, Departments of Oncology and Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, Departments of Oncology and Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emanuele Angelucci
- Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chandra Nagasuma
- Biological Science Division, Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Geriatrics Clinic, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Roberto Massimo Lemoli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Michele Cea
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| |
Collapse
|
9
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Marcos M, Salete-Granado D, Chacón-Arnaude M, Pérez-Nieto MÁ, Kemmerling U, Concepción JL, Michels PAM, Quiñones W. Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections. Open Biol 2025; 15:240239. [PMID: 39904372 PMCID: PMC11793985 DOI: 10.1098/rsob.240239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Glycolysis, present in most organisms, is evolutionarily one of the oldest metabolic pathways. It has great relevance at a physiological level because it is responsible for generating ATP in the cell through the conversion of glucose into pyruvate and reducing nicotinamide adenine dinucleotide (NADH) (that may be fed into the electron chain in the mitochondria to produce additional ATP by oxidative phosphorylation), as well as for producing intermediates that can serve as substrates for other metabolic processes. Glycolysis takes place through 10 consecutive chemical reactions, each of which is catalysed by a specific enzyme. Although energy transduction by glucose metabolism is the main function of this pathway, involvement in virulence, growth, pathogen-host interactions, immunomodulation and adaptation to environmental conditions are other functions attributed to this metabolic pathway. In humans, where glycolysis occurs mainly in the cytosol, the mislocalization of some glycolytic enzymes in various other subcellular locations, as well as alterations in their expression and regulation, has been associated with the development and progression of various diseases. In this review, we describe the role of glycolytic enzymes in the pathogenesis of diseases of clinical interest. In addition, the potential role of these enzymes as targets for drug development and their potential for use as diagnostic and prognostic markers of some pathologies are also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso2373223, Chile
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
| | - Marirene Chacón-Arnaude
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - María Á. Pérez-Nieto
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria42002, Spain
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile8380453, Chile
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Paul A. M. Michels
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, EdinburghEH9 3FL, UK
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| |
Collapse
|
10
|
Nan D, Yao W, Huang L, Liu R, Chen X, Xia W, Sheng H, Zhang H, Liang X, Lu Y. Glutamine and cancer: metabolism, immune microenvironment, and therapeutic targets. Cell Commun Signal 2025; 23:45. [PMID: 39856712 PMCID: PMC11760113 DOI: 10.1186/s12964-024-02018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Glutamine is the most abundant amino acid in human serum, and it can provide carbon and nitrogen for biosynthesis, which is crucial for proliferating cells. Moreover, it is widely known that glutamine metabolism is reprogrammed in cancer cells. Many cancer cells undergo metabolic reprogramming targeting glutamine, increasing its uptake to meet their rapid proliferation demands. An increasing amount of study is being done on the particular glutamine metabolic pathways in cancer cells.Further investigation into the function of glutamine in immune cells is warranted given the critical role these cells play in the fight against cancer. Immune cells use glutamine for a variety of biological purposes, including the growth, differentiation, and destruction of cancer cells. With the encouraging results of cancer immunotherapy in recent years, more investigation into the impact of glutamine metabolism on immune cell function in the cancer microenvironment could lead to the discovery of new targets and therapeutic approaches.Oral supplementation with glutamine also enhances the immune capabilities of cancer patients, improves the sensitivity to chemotherapy and radiotherapy, and improves prognosis. The unique metabolism of glutamine in cancer cells, its function in various immune cells, the impact of inhibitors of glutamine metabolism, and the therapeutic use of glutamine supplements are all covered in detail in this article.
Collapse
Affiliation(s)
- Ding Nan
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luanluan Huang
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiqi Liu
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyan Chen
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjie Xia
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hailong Sheng
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Xiaodong Liang
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanwei Lu
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Sapkota H, Dasgupta S, Roy B, Pathan EK. Human Commensal Bacteria: Next-generation Pro- and Post-biotics for Anticancer Therapy. Front Biosci (Elite Ed) 2025; 17:26809. [PMID: 40150985 DOI: 10.31083/fbe26809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 03/29/2025]
Abstract
Cancer is a common, deadly disease with an unknown etiology. Meanwhile, current therapeutic options possess significant risks. However, probiotic bacteria and their metabolites have been reported to have antiproliferative and apoptotic effects on cancer cells. Therefore, because of their selective specificity and lack of treatment-associated comorbidities, these bacteria and their metabolites could be potential alternatives to conventional chemical and radiation therapies. Given their superior immunomodulatory and anti-cancer effects and lack of side effects, commensal bacteria derived from healthy humans are currently used as next-generation probiotics. This review summarizes current findings on these probiotic properties and anti-cancer activities of healthy human commensal bacteria. Additionally, the review focuses on small metabolites, proteins, and enzymes secreted by human commensal bacteria for their therapeutic applications against cancer. Further, utilizing a protein engineering strategy to reduce the toxicity of L-asparaginase, an enzyme-based anti-leukemia drug used for the last forty years, is also discussed. A possible workflow outline for isolating, identifying, screening, and characterizing human commensal bacterial strains for their therapeutic applications in cancer treatment is also proposed. This review emphasizes the need to explore various human commensal bacteria, not just mainstream lactic acid bacteria, for novel cancer therapeutics that provide multiple health benefits.
Collapse
Affiliation(s)
- Himal Sapkota
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), 412115 Pune, Maharashtra, India
| | - Subrata Dasgupta
- RIKEN Center for Biosystems Dynamics Research, 230-0045 Yokohama, Kanagawa, Japan
| | - Bishnudeo Roy
- Department of Biosciences and Technology, MIT World Peace University, 411038 Pune, Maharashtra, India
| | - Ejaj K Pathan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), 412115 Pune, Maharashtra, India
| |
Collapse
|
12
|
Wang J, Yin J, Peng D, Zhang X, Shi Z, Li W, Shi Y, Sun M, Jiang N, Cheng B, Meng X, Liu R. 4-Nitrophenol at environmentally relevant concentrations mediates reproductive toxicity in Caenorhabditis elegans via metabolic disorders-induced estrogen signaling pathway. J Environ Sci (China) 2025; 147:244-258. [PMID: 39003044 DOI: 10.1016/j.jes.2023.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 07/15/2024]
Abstract
4-Nitrophenol (4-NP), as a toxic and refractory pollutant, has generated significant concern due to its adverse effects. However, the potential toxic effects and mechanism remained unclear. In this study, the reproduction, development, locomotion and reactive oxygen species (ROS) production of Caenorhabditis elegans were investigated to evaluate the 4-NP toxicity. We used metabolomics to assess the potential damage mechanisms. The role of metabolites in mediating the relationship between 4-NP and phenotypes was examined by correlation and mediation analysis. 4-NP (8 ng/L and 8 µg/L) caused significant reduction of brood size, ovulation rate, total germ cells numbers, head thrashes and body bends, and an increase in ROS. However, the oosperm numbers in uterus, body length and body width were decreased in 8 µg/L. Moreover, 36 differential metabolites were enriched in the significant metabolic pathways, including lysine biosynthesis, β-alanine metabolism, tryptophan metabolism, pentose phosphate pathway, pentose and glucuronate interconversions, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, galactose metabolism, propanoate metabolism, glycerolipid metabolism, and estrogen signaling pathway. The mechanism of 4-NP toxicity was that oxidative stress caused by the perturbation of amino acid, which had effects on energy metabolism through disturbing carbohydrate and lipid metabolism, and finally affected the estrogen signaling pathway to exert toxic effects. Moreover, correlation and mediation analysis showed glycerol-3P, glucosamine-6P, glucosamine-1P, UDP-galactose, L-aspartic acid, and uracil were potential markers for the reproduction and glucose-1,6P2 for developmental toxicity. The results provided insight into the pathways involved in the toxic effects caused by 4-NP and developed potential biomarkers to evaluate 4-NP toxicity.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Danhong Peng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaoqian Zhang
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Zhouhong Shi
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Weixi Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Beijing Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
13
|
Lu Y, Zhang Y, Jin Z, Cui S, Wu L, He Y. Chiral Amino Acids Mediate Mitochondria-Dependent Apoptosis of Human Proximal Tubular Epithelial Cells Under Oxidative Stress. Int J Mol Sci 2024; 25:13439. [PMID: 39769204 PMCID: PMC11677210 DOI: 10.3390/ijms252413439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Amino acids are the basic structural units of life, and their intake levels affect disease and health. In the case of renal disease, alterations in amino acid metabolism can be used not only as a clinical indicator of renal disease but also as a therapeutic strategy. However, the biological roles and molecular mechanisms of natural chiral amino acids in human proximal tubular epithelial cells (HK-2) remain unclear. In this study, cell viability assays revealed that chiral acidic amino acids (Glu and Asp) and aromatic amino acids (Trp and Phe) inhibited cell growth. The molecular mechanisms indicated that cell growth was closely related to ROS levels. Specifically, chiral Glu, Asp, Trp, and Phe induced oxidative stress and mitochondria-dependent apoptosis in HK-2 cells. This was manifested by elevated levels of intracellular ROS, 8-OHdG, and MDA, increased activities of antioxidant enzymes CAT, SOD, and GPx, decreased mitochondrial membrane potential, increased cytoplasmic Ca2+ concentration, and cell acidification. The expression levels of apoptosis-related molecules Caspase-9, Caspase-3, Cyt-C, and Bax were increased, and the expression level of anti-apoptotic molecule Bcl-2 was decreased. Moreover, L-Glu, D-Asp, L-Trp, and D-Phe exhibited a more pronounced inhibition of cell growth and elicited more substantial alterations in gene expression compared to the other configurations.
Collapse
Affiliation(s)
- Ying Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.L.); (Z.J.); (S.C.)
| | - Yang Zhang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Zhaoyang Jin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.L.); (Z.J.); (S.C.)
| | - Shuaishuai Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.L.); (Z.J.); (S.C.)
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.L.); (Z.J.); (S.C.)
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.L.); (Z.J.); (S.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
14
|
Hong J, Liu W, Xiao X, Gajendran B, Ben-David Y. Targeting pivotal amino acids metabolism for treatment of leukemia. Heliyon 2024; 10:e40492. [PMID: 39654725 PMCID: PMC11626780 DOI: 10.1016/j.heliyon.2024.e40492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Metabolic reprogramming is a crucial characteristic of cancer, allowing cancer cells to acquire metabolic properties that support their survival, immune evasion, and uncontrolled proliferation. Consequently, targeting cancer metabolism has become an essential therapeutic strategy. Abnormal amino acid metabolism is not only a key aspect of metabolic reprogramming but also plays a significant role in chemotherapy resistance and immune evasion, particularly in leukemia. Changes in amino acid metabolism in tumor cells are typically driven by a combination of signaling pathways and transcription factors. Current approaches to targeting amino acid metabolism in leukemia include inhibiting amino acid transporters, blocking amino acid biosynthesis, and depleting specific amino acids to induce apoptosis in leukemic cells. Different types of leukemic cells rely on the exogenous supply of specific amino acids, such as asparagine, glutamine, arginine, and tryptophan. Therefore, disrupting the supply of these amino acids may represent a vulnerability in leukemia. This review focuses on the pivotal role of amino acids in leukemia metabolism, their impact on leukemic stem cells, and their therapeutic potential.
Collapse
Affiliation(s)
- Jiankun Hong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Babu Gajendran
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, 550014, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, PR China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| |
Collapse
|
15
|
Xiang H, Kasajima R, Azuma K, Tagami T, Hagiwara A, Nakahara Y, Saito H, Igarashi Y, Wei F, Ban T, Yoshihara M, Nakamura Y, Sato S, Koizume S, Tamura T, Sasada T, Miyagi Y. Multi-omics analysis-based clinical and functional significance of a novel prognostic and immunotherapeutic gene signature derived from amino acid metabolism pathways in lung adenocarcinoma. Front Immunol 2024; 15:1361992. [PMID: 39735553 PMCID: PMC11671776 DOI: 10.3389/fimmu.2024.1361992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/30/2024] [Indexed: 12/31/2024] Open
Abstract
Background Studies have shown that tumor cell amino acid metabolism is closely associated with lung adenocarcinoma (LUAD) development and progression. However, the comprehensive multi-omics features and clinical impact of the expression of genes associated with amino acid metabolism in the LUAD tumor microenvironment (TME) are yet to be fully understood. Methods LUAD patients from The Cancer Genome Atlas (TCGA) database were enrolled in the training cohort. Using least absolute shrinkage and selection operator Cox regression analysis, we developed PTAAMG-Sig, a signature based on the expression of tumor-specific amino acid metabolism genes associated with overall survival (OS) prognosis. We evaluated its predictive performance for OS and thoroughly explored the effects of the PTAAMG-Sig risk score on the TME. The risk score was validated in two Gene Expression Omnibus (GEO) cohorts and further investigated against an original cohort of chemotherapy combined with immune checkpoint inhibitors (ICIs). Somatic mutation, chemotherapy response, immunotherapy response, gene set variation, gene set enrichment, immune infiltration, and plasma-free amino acids (PFAAs) profile analyses were performed to identify the underlying multi-omics features. Results TCGA datasets based PTAAMG-Sig model consisting of nine genes, KYNU, PSPH, PPAT, MIF, GCLC, ACAD8, TYRP1, ALDH2, and HDC, could effectively stratify the OS in LUAD patients. The two other GEO-independent datasets validated the robust predictive power of PTAAMG-Sig. Our differential analysis of somatic mutations in the high- and low-risk groups in TCGA cohort showed that the TP53 mutation rate was significantly higher in the high-risk group and negatively correlated with OS. Prediction from transcriptome data raised the possibility that PTAAMG-Sig could predict the response to chemotherapy and ICIs therapy. Our immunotherapy cohort confirmed the predictive ability of PTAAMG-Sig in the clinical response to ICIs therapy, which correlated with the infiltration of immune cells (e.g., T lymphocytes and nature killer cells). Corresponding to the concentrations of PFAAs, we discovered that the high PTAAMG-Sig risk score patients showed a significantly lower concentration of plasma-free α-aminobutyric acid. Conclusion In patients with LUAD, the PTAAMG-Sig effectively predicted OS, drug sensitivity, and immunotherapy outcomes. These findings are expected to provide new targets and strategies for personalized treatment of LUAD patients.
Collapse
Affiliation(s)
- Huihui Xiang
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Rika Kasajima
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Center for Cancer Genome Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Koichi Azuma
- Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tomoyuki Tagami
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kanagawa, Japan
| | - Asami Hagiwara
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kanagawa, Japan
| | - Yoshiro Nakahara
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Feifei Wei
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Tatsuma Ban
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuyo Yoshihara
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shinya Sato
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shiro Koizume
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
16
|
Wang H, Zhan J, Zhao S, Jiang H, Jia H, Pan Y, Zhong X, Huo J. Interaction Between Liver Metabolism and Gut Short-Chain Fatty Acids via Liver-Gut Axis Affects Body Weight in Lambs. Int J Mol Sci 2024; 25:13386. [PMID: 39769152 PMCID: PMC11676651 DOI: 10.3390/ijms252413386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The gut-liver axis and its interactions are essential for host physiology. Thus, we examined the jejunal microbiota, fermentation parameters, digestive enzymes, morphology, and liver metabolic profiles in different growth development lambs to investigate the liver-gut axis's role in their development. One hundred male Hu lambs of similar birth weight and age were raised under the same conditions until they reached 180 days of age. Subsequently, the eight lambs with the highest (HADG) and lowest (LADG) average daily weight gains were slaughtered for index assessment. The study indicates that the body weight, carcass weight, propanoic acid, butyric acid, propanoic acid ratio, butyric acid ratio, and digestive enzymes (beta-glucosidase, microcrystalline cellulase, xylanase, and carboxymethyl cellulase) were significantly higher in HDAG lambs than in LADG lambs (p < 0.05). Additionally, there were no significant differences in the jejunal microbiota's structure and function among lambs at different growth development stages (p > 0.05). Overall, our analysis revealed that HADG lambs compared to LADG lambs exhibited an up-regulation of metabolites (such as spermine, cholic acid, succinic acid, betaine, etc.) that were positively correlated with the butyric acid ratio, propanoic acid ratio, propanoic acid, xylanase, microcrystalline cellulase, beta-glucosidase, amylase, carboxymethyl cellulase, carcass weight, and body weight, while these metabolites were negatively correlated with the kidney, acetic acid, acetic acid/ propanoic acid, and acetic acid ratio. Furthermore, there was a significant correlation between liver metabolism and jejunal microbiota. This study revealed significant differences in hepatic metabolites and jejunal fermentation among lambs at different growth stages, which may inform targeted regulation strategies to enhance lamb productivity.
Collapse
Affiliation(s)
- Haibo Wang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jinshun Zhan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Haoyun Jiang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Haobin Jia
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Yue Pan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Xiaojun Zhong
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Junhong Huo
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| |
Collapse
|
17
|
Zhou H, Xiang W, Zhou G, Rodrigues-Lima F, Guidez F, Wang L. Metabolic dysregulation in myelodysplastic neoplasm: impact on pathogenesis and potential therapeutic targets. Med Oncol 2024; 42:23. [PMID: 39644425 DOI: 10.1007/s12032-024-02575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Despite significant advancements in the research of the pathogenesis mechanisms of Myelodysplastic Neoplasm (MDS) in recent years, there are still many gaps to fill. The advancement of metabolomics studies has led to a research booming in clarifying the impact of metabolic abnormalities during the pathogenesis of MDS. The present review primarily focuses on the dysregulated metabolic pathways, exploring the influences on the pathogenesis of MDS and their roles during the course of the disease. Furthermore, we discuss the potential of relevant metabolic pathways as therapeutic targets, along with the latest metabolic-related treatment drugs and approaches.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenqiong Xiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Guangyu Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fernando Rodrigues-Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle Et Adaptative, 75013, Paris, France
| | - Fabien Guidez
- Université Paris Cité, Institut de Recherche Saint Louis INSERM UMR_S1131, 75010, Paris, France
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
18
|
Zha C, Yang X, Yang J, Zhang Y, Huang R. Immunosuppressive microenvironment in acute myeloid leukemia: overview, therapeutic targets and corresponding strategies. Ann Hematol 2024; 103:4883-4899. [PMID: 39607487 DOI: 10.1007/s00277-024-06117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Similar to other malignancies, immune dysregulation is a key feature of acute myeloid leukemia (AML), manifesting as suppressed anti-leukemia immune cells, immune evasion by leukemia blasts, and disease progression. Various immunosuppressive factors within the AML microenvironment contribute to the weakening of host immune responses and the efficacy of cellular immunotherapy. To address these challenges, strategies targeting immunosuppressive elements within the AML microenvironment aim to bolster host or adoptive immune effector cells, ultimately enhancing leukemia treatment. Additionally, the off-target effects of certain targeted drugs (venetoclax, sorafenib, ivosidenib, etc.) may also positively impact anti-AML immunity and immunotherapy. This review provides an overview of the immunosuppressive factors present in AML microenvironment and the strategies developed to rescue immune cells from immunosuppression. We also outline how targeted agents can alter the immune landscape in AML patients, and discuss the potential of targeted drugs to benefit host anti-leukemia immunity and immunotherapy for AML.
Collapse
Affiliation(s)
- Chenyu Zha
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyu Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yujie Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
19
|
Yang R, Zhang J, Xing X, Zhong S, Li W, Wen L, Zhang Y, Zhou H, Chen S, Chen W, Xiao Y, Chen L. The involvement of nicotinate and nicotinamide metabolism pathway in attenuating benzene-induced mouse hematotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117388. [PMID: 39603220 DOI: 10.1016/j.ecoenv.2024.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/02/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Benzene exposure has been linked to various adverse health effects. However, the effective strategy for prevention or treatment of benzene-induced hematotoxicity remains unsolved. We previously administrated hepatocyte-specific deletion of Ppp2r1a gene (encoding PP2A Aα subunit) mice with benzene via inhalation for 28 days, and found homozygote (HO) mice exhibited alleviative hematotoxicity compared with wild type (WT) mice. Here, we integrate untargeted metabolomics and transcriptomics data to identify the key metabolic pathways and metabolites attenuating benzene-induced hematotoxicity. Metabolomics analysis revealed the perturbation of nicotinate and nicotinamide metabolism, as well as taurine and hypotaurine metabolism pathways, were implicated in regulating benzene-induced hematotoxicity. Meanwhile, transcriptome analysis showed that immune-, inflammation-, and metabolism-related pathways were obviously disturbed in WT mice groups upon benzene exposure, while sirtuin signaling pathway, associated with nicotinate and nicotinamide metabolism, was activated in HO mice groups. Notably, combined metabolomics and transcriptomics analysis further confirmed the involvement of nicotinate and nicotinamide metabolism, taurine and hypotaurine metabolism pathways in relieving benzene-induced hematotoxicity. Specific metabolites, including 1-methylnicotinamide (MNA), nicotinamide (NA), β-nicotinamide mononucleotides (NMN), and taurine were identified as the potential metabolites alleviating benzene-induced adverse effects. In vitro experiments demonstrated the protective effect of MNA and NA against 1,4-benzoquinone (1,4-BQ)-caused cytotoxicity in HL-60 cells. In vivo, MNA supplementation in drinking water could effectively restore the decline in white blood cell (WBC), lymphocyte (LYMPH), and reticulocyte (RET) counts, also mitigate oxidative damage and genotoxicity in response to benzene exposure. These observations highlight the potential of MNA supplementation as a strategy for preventing benzene-caused hematotoxicity.
Collapse
Affiliation(s)
- Rongfang Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaxin Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiyuan Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenxue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lixian Wen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuwei Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongwei Zhou
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
20
|
Bao Y, Qiao J, Gong W, Zhang R, Zhou Y, Xie Y, Xie Y, He J, Yin T. Spatial metabolomics highlights metabolic reprogramming in acute myeloid leukemia mice through creatine pathway. Acta Pharm Sin B 2024; 14:4461-4477. [PMID: 39525575 PMCID: PMC11544190 DOI: 10.1016/j.apsb.2024.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 11/16/2024] Open
Abstract
Acute myeloid leukemia (AML) is recognized as an aggressive cancer that is characterized by significant metabolic reprogramming. Here, we applied spatial metabolomics to achieve high-throughput, in situ identification of metabolites within the liver metastases of AML mice. Alterations at metabolite and protein levels were further mapped out and validated by integrating untargeted metabolomics and proteomics. This study showed a downregulation in arginine's contribution to polyamine biosynthesis and urea cycle, coupled with an upregulation of the creatine metabolism. The upregulation of creatine synthetases Gatm and Gamt, as well as the creatine transporter Slc6a8, resulted in a marked accumulation of creatine within tumor foci. This process further enhances oxidative phosphorylation and glycolysis of leukemia cells, thereby boosting ATP production to foster proliferation and infiltration. Importantly, we discovered that inhibiting Slc6a8 can counter these detrimental effects, offering a new strategy for treating AML by targeting metabolic pathways.
Collapse
Affiliation(s)
- Yucheng Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenjie Gong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanting Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan Xie
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
21
|
Rondeau V, Berman JM, Ling T, O'Brien C, Culp-Hill R, Reisz JA, Wunderlich M, Chueh Y, Jiménez-Camacho KE, Sexton C, Carter KM, Stillwell C, St-Germain J, Yendi D, Gupta A, Shi M, Bourdine A, Paralkar VR, Jahangiri S, Hope KJ, Tikhonova AN, Arruda A, Minden MD, Raught B, D'Alessandro A, Jones CL. Spermidine metabolism regulates leukemia stem and progenitor cell function through KAT7 expression in patient-derived mouse models. Sci Transl Med 2024; 16:eadn1285. [PMID: 39321266 DOI: 10.1126/scitranslmed.adn1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024]
Abstract
Acute myeloid leukemia (AML) is a devastating disease initiated and maintained by a rare subset of cells called leukemia stem cells (LSCs). LSCs are responsible for driving disease relapse, making the development of new therapeutic strategies to target LSCs urgently needed. The use of mass spectrometry-based metabolomics profiling has enabled the discovery of unique and targetable metabolic properties in LSCs. However, we do not have a comprehensive understanding of metabolite differences between LSCs and their normal counterparts, hematopoietic stem and progenitor cells (HSPCs). In this study, we used an unbiased mass spectrometry-based metabolomics analysis to define differences in metabolites between primary human LSCs and HSPCs, which revealed that LSCs have a distinct metabolome. Spermidine was the most enriched metabolite in LSCs compared with HSPCs. Pharmacological reduction of spermidine concentrations decreased LSC function but spared normal HSPCs. Polyamine depletion also decreased leukemic burden in patient-derived xenografts. Mechanistically, spermidine depletion induced LSC myeloid differentiation by decreasing eIF5A-dependent protein synthesis, resulting in reduced expression of a select subset of proteins. KAT7, a histone acetyltransferase, was one of the top candidates identified to be down-regulated by spermidine depletion. Overexpression of KAT7 partially rescued polyamine depletion-induced decreased colony-forming ability, demonstrating that loss of KAT7 is an essential part of the mechanism by which spermidine depletion targets AML clonogenic potential. Together, we identified and mechanistically dissected a metabolic vulnerability of LSCs that has the potential to be rapidly translated into clinical trials to improve outcomes for patients with AML.
Collapse
Affiliation(s)
- Vincent Rondeau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Jacob M Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Tianyi Ling
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Cristiana O'Brien
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Yun Chueh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Karina E Jiménez-Camacho
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Christina Sexton
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Katharine M Carter
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Cody Stillwell
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Duhan Yendi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Aarushi Gupta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Mary Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Aleksandra Bourdine
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Vikram R Paralkar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Soheil Jahangiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Kristin J Hope
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Anastasia N Tikhonova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Courtney L Jones
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229 USA
- University of Cincinnati Cancer Center, Cincinnati, OH 45229 USA
| |
Collapse
|
22
|
Ghosh S, Dutta R, Ghatak D, Goswami D, De R. Immunometabolic characteristics of Dendritic Cells and its significant modulation by mitochondria-associated signaling in the tumor microenvironment influence cancer progression. Biochem Biophys Res Commun 2024; 726:150268. [PMID: 38909531 DOI: 10.1016/j.bbrc.2024.150268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Dendritic cells (DCs) mediated T-cell responses is critical to anti-tumor immunity. This study explores immunometabolic attributes of DC, emphasizing on mitochondrial association, in Tumor Microenvironment (TME) that regulate cancer progression. Conventional DC subtypes cross-present tumor-associated antigens to activate lymphocytes. However, plasmacytoid DCs participate in both pro- and anti-tumor signaling where mitochondrial reactive oxygen species (mtROS) play crucial role. CTLA-4, CD-47 and other surface-receptors of DC negatively regulates T-cell. Increased glycolysis-mediated mitochondrial citrate buildup and translocation to cytosol with augmented NADPH, enhances mitochondrial fatty acid synthesis fueling DCs. Different DC subtypes and stages, exhibit variable mitochondrial content, membrane potential, structural dynamics and bioenergetic metabolism regulated by various cytokine stimulation, e.g., GM-CSF, IL-4, etc. CD8α+ cDC1s augmented oxidative phosphorylation (OXPHOS) which diminishes at advance effector stages. Glutaminolysis in mitochondria supplement energy in DCs but production of kynurenine and other oncometabolites leads to immunosuppression. Mitochondria-associated DAMPs cause activation of cGAS-STING pathway and inflammasome oligomerization stimulating DC and T cells. In this study, through a comprehensive survey and critical analysis of the latest literature, the potential of DC metabolism for more effective tumor therapy is highlighted. This underscores the need for future research to explore specific therapeutic targets and potential drug candidates.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
23
|
Ye W, Fang Y, Wei Z. Construction and validation of a comprehensive metabolism-associated prognostic model for predicting survival and immunotherapy benefits in ovarian cancer. J Cancer 2024; 15:5986-6001. [PMID: 39440060 PMCID: PMC11492998 DOI: 10.7150/jca.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Ovarian cancer (OV) is a prevalent malignancy among gynecological tumors. Numerous metabolic pathways play a significant role in various human diseases, including malignant tumors. Our study aimed to develop a prognostic signature for OV based on a comprehensive set of metabolism-related genes (MRGs). Method: To achieve this, a bioinformatics analysis was performed on the expression profiles of 51 MRGs. The OV individuals were subsequently categorized into two molecular clusters based on the expression levels of MRGs. Following this, differentially expressed genes (DEGs) were identified among these clusters. The DEGs aided in the classification of two gene clusters, with a total of 390 DEGs being identified between them. A prognostic signature, constructed using the DEGs, enabled the calculation of risk scores for OV patients. Results: This study revealed that patients classified as low-risk demonstrated a more favorable prognosis, increased immune cell infiltration, and superior response to chemotherapy in comparison to high-risk patients. Four signature genes, GDF6, KIF26A, P2RY14, and ALDH1A2, were identified as significant contributors to the prognostic signature. The expression levels of these signature genes were different between OV and normal ovary tissues through in vitro experiments. Additionally, P2RY14 protein was found to potentially influence the growth of OV cell lines. Conclusion: We have constructed a prognostic signature associated with MRGs that demonstrates exceptional efficacy in prognosis survival outcomes and therapeutic responses in patients diagnosed with OV. Downregulation of P2RY14 may contribute to an unfavorable prognosis in OV.
Collapse
Affiliation(s)
- Wei Ye
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yuanyuan Fang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
24
|
Zou Y, Guo S, Wen L, Lv D, Tu J, Liao Y, Chen W, Chen Z, Li H, Chen J, Shen J, Xie X. Targeting NAT10 inhibits osteosarcoma progression via ATF4/ASNS-mediated asparagine biosynthesis. Cell Rep Med 2024; 5:101728. [PMID: 39293390 PMCID: PMC11525028 DOI: 10.1016/j.xcrm.2024.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/17/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
Despite advances in treatment, the prognosis of patients with osteosarcoma remains unsatisfactory, and searching for potential targets is imperative. Here, we identify N4-acetylcytidine (ac4C) acetyltransferase 10 (NAT10) as a candidate therapeutic target in osteosarcoma through functional screening. NAT10 overexpression is correlated with a poor prognosis, and NAT10 knockout inhibits osteosarcoma progression. Mechanistically, NAT10 enhances mRNA stability of activating transcription factor 4 (ATF4) through ac4C modification. ATF4 induces the transcription of asparagine synthetase (ASNS), which catalyzes asparagine (Asn) biosynthesis, facilitating osteosarcoma progression. Utilizing virtual screening, we identify paliperidone and AG-401 as potential NAT10 inhibitors, and both inhibitors are found to bind to NAT10 proteins. Inhibiting NAT10 suppresses osteosarcoma progression in vivo. Combined treatment using paliperidone and AG-401 produces synergistic inhibition for osteosarcoma in patient-derived xenograft (PDX) models. Our findings demonstrate that NAT10 facilitates osteosarcoma progression through the ATF4/ASNS/Asn axis, and pharmacological inhibition of NAT10 may be a feasible therapeutic approach for osteosarcoma.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Siyao Guo
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lili Wen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Hongbo Li
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Wang Z, Liu M, Yang Q. Glutamine and leukemia research: progress and clinical prospects. Discov Oncol 2024; 15:391. [PMID: 39215845 PMCID: PMC11365919 DOI: 10.1007/s12672-024-01245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Leukemia is an abnormal proliferation of white blood cells that occurs in bone marrow and expands through the blood. It arises from dysregulated differentiation, uncontrolled growth, and inhibition of apoptosis. Glutamine (GLN) is a "conditionally essential" amino acid that promotes growth and proliferation of leukemic cells. Recently, details about the role of GLN and its metabolism in the diagnosis and treatment of acute myeloid, chronic lymphocytic, and acute lymphoblastic leukemia have emerged. The uptake of GLN by leukemia cells and the dynamic changes of glutamine-related indexes in leukemia patients may be able to assist in determining whether the condition of leukemia is in a state of progression, remission or relapse. Utilizing the possible differences in GLN metabolism in different subtypes of leukemia may help to differentiate between different subtypes of leukemia, thus providing a basis for accurate diagnosis. Targeting GLN metabolism in leukemia requires simultaneous blockade of multiple metabolic pathways without interfering with the normal cellular and immune functions of the body to achieve effective leukemia therapy. The present review summarizes recent advances, possible applications, and clinical perspectives of GLN metabolism in leukemia. In particular, it focuses on the prospects of GLN metabolism in the diagnosis and treatment of acute myeloid leukemia. The review provides new directions and hints at potential roles for future clinical treatments and studies.
Collapse
Affiliation(s)
- Zexin Wang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China.
| | - Miao Liu
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| | - Qiang Yang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| |
Collapse
|
26
|
Cheng L, Wang X, Liu A, Zhu Y, Cheng H, Yu J, Gong L, Liu H, Shen G, Liu L. Phenylalanine deprivation inhibits multiple myeloma progression by perturbing endoplasmic reticulum homeostasis. Acta Pharm Sin B 2024; 14:3493-3512. [PMID: 39220878 PMCID: PMC11365427 DOI: 10.1016/j.apsb.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 09/04/2024] Open
Abstract
Amino acid metabolic remodeling is a hallmark of cancer, driving an increased nutritional demand for amino acids. Amino acids are pivotal for energetic regulation, biosynthetic support, and homeostatic maintenance to stimulate cancer progression. However, the role of phenylalanine in multiple myeloma (MM) remains unknown. Here, we demonstrate that phenylalanine levels in MM patients are decreased in plasma but elevated in bone marrow (BM) cells. After the treatment, phenylalanine levels increase in plasma and decrease in BM. This suggests that changes in phenylalanine have diagnostic value and that phenylalanine in the BM microenvironment is an essential source of nutrients for MM progression. The requirement for phenylalanine by MM cells exhibits a similar pattern. Inhibiting phenylalanine utilization suppresses MM cell growth and provides a synergistic effect with Bortezomib (BTZ) treatment in vitro and murine models. Mechanistically, phenylalanine deprivation induces excessive endoplasmic reticulum stress and leads to MM cell apoptosis through the ATF3-CHOP-DR5 pathway. Interference with ATF3 significantly affects phenylalanine deprivation therapy. In conclusion, we have identified phenylalanine metabolism as a characteristic feature of MM metabolic remodeling. Phenylalanine is necessary for MM proliferation, and its aberrant demand highlights the importance of low-phenylalanine diets as an adjuvant treatment for MM.
Collapse
Affiliation(s)
- Longhao Cheng
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaoxue Wang
- Department of Pharmacy, China–Japan Friendship Hospital, Beijing 100029, China
| | - Aijun Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying Zhu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Hu Cheng
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Jiangling Yu
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Lili Gong
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Honglin Liu
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Guolin Shen
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing 100020, China
| | - Lihong Liu
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
- Department of Pharmacy, China–Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
27
|
Lopez-Delgado JC, Patel JJ, Stoppe C, McClave SA. Considerations for medical nutrition therapy management of the critically ill patient with hematological malignancies: A narrative review. Nutr Clin Pract 2024; 39:800-814. [PMID: 38666811 DOI: 10.1002/ncp.11152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 07/04/2024] Open
Abstract
Patients with hematological malignancies (HMs) are more frequently admitted now than in the past to the intensive care unit (ICU) due to more aggressive approaches in primary therapy of HMs and the need for critical care support. Pathophysiological alterations derived from HMs and the different hematological therapies, such as chemotherapy, negatively affect gastrointestinal (GI) function, metabolism, and nutrition status. Further, malnutrition strongly influences outcomes and tolerance of the different hematological therapies. In consequence, these critically ill patients frequently present with malnutrition and pathophysiological alterations that create challenges for the delivery of medical nutrition therapy (MNT) in the ICU. Frequent screening, gauging tolerance, and monitoring nutrition status are mandatory to provide individualized MNT and achieve nutrition objectives. The present review discusses how HM impact GI function and nutrition status, the importance of MNT in patients with HM, and specific considerations for guidance in providing adequate MNT to these patients when admitted to the ICU.
Collapse
Affiliation(s)
| | - Jayshil J Patel
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christian Stoppe
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital, Würzburg, Würzburg, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Stephen A McClave
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
28
|
Zhang GQ, Xi C, Ju NT, Shen CT, Qiu ZL, Song HJ, Luo QY. Targeting glutamine metabolism exhibits anti-tumor effects in thyroid cancer. J Endocrinol Invest 2024; 47:1953-1969. [PMID: 38386265 PMCID: PMC11266413 DOI: 10.1007/s40618-023-02294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/25/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Effective treatment for patients with advanced thyroid cancer is lacking. Metabolism reprogramming is required for cancer to undergo oncogenic transformation and rapid tumorigenic growth. Glutamine is frequently used by cancer cells for active bioenergetic and biosynthetic needs. This study aims to investigate whether targeting glutamine metabolism is a promising therapeutic strategy for thyroid cancer. METHODS The expression of glutaminase (GLS) and glutamate dehydrogenase (GDH) in thyroid cancer tissues was evaluated by immunohistochemistry, and glutamine metabolism-related genes were assessed using real time-qPCR and western blotting. The effects of glutamine metabolism inhibitor 6-diazo-5-oxo-l-norleucine (DON) on thyroid cancer cells were determined by CCK-8, clone formation assay, Edu incorporation assay, flow cytometry, and Transwell assay. The mechanistic study was performed by real time-qPCR, western blotting, Seahorse assay, and gas chromatography-mass spectrometer assay. The effect of DON prodrug (JHU-083) on thyroid cancer in vivo was assessed using xenograft tumor models in BALB/c nude mice. RESULTS GLS and GDH were over-expressed in thyroid cancer tissues, and GLS expression was positively associated with lymph-node metastasis and TNM stage. The growth of thyroid cancer cells was significantly inhibited when cultured in glutamine-free medium. Targeting glutamine metabolism with DON inhibited the proliferation of thyroid cancer cells. DON treatment did not promote apoptosis, but increased the proportion of cells in the S phase, accompanied by the decreased expression of cyclin-dependent kinase 2 and cyclin A. DON treatment also significantly inhibited the migration and invasion of thyroid cancer cells by reducing the expression of N-cadherin, Vimentin, matrix metalloproteinase-2, and matrix metalloproteinase-9. Non-essential amino acids, including proline, alanine, aspartate, asparagine, and glycine, were reduced in thyroid cancer cells treated with DON, which could explain the decrease of proteins involved in migration, invasion, and cell cycle. The efficacy and safety of DON prodrug (JHU-083) for thyroid cancer treatment were verified in a mouse model. In addition to suppressing the proliferation and metastasis potential of thyroid cancer in vivo, enhanced innate immune response was also observed in JHU-083-treated xenograft tumors as a result of decreased expression of cluster of differentiation 47 and programmed cell death ligand 1. CONCLUSIONS Thyroid cancer exhibited enhanced glutamine metabolism, as evidenced by the glutamine dependence of thyroid cancer cells and high expression of multiple glutamine metabolism-related genes. Targeting glutamine metabolism with DON prodrug could be a promising therapeutic option for advanced thyroid cancer.
Collapse
Affiliation(s)
- G-Q Zhang
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - C Xi
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - N-T Ju
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - C-T Shen
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Z-L Qiu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - H-J Song
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Q-Y Luo
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
29
|
Jiang Z, Gu Z, Lu X, Wen W. The role of dysregulated metabolism and associated genes in gastric cancer initiation and development. Transl Cancer Res 2024; 13:3854-3868. [PMID: 39145068 PMCID: PMC11319955 DOI: 10.21037/tcr-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
The review delves into the intricate interplay between metabolic dysregulation and the onset and progression of gastric cancer (GC), shedding light on a pivotal aspect of this prevalent malignancy. GC stands as one of the leading causes of cancer-related mortality worldwide, its trajectory influenced by a multitude of factors, among which metabolic dysregulation and aberrant gene expression play significant roles. The article navigates through the fundamental roles of metabolic dysregulation in the genesis of GC, unveiling phenomena such as aberrant glycolysis, epitomized by the Warburg effect, alongside anomalies in lipid and amino acid metabolism. It delineates how these disruptions fuel the cancerous process, facilitating uncontrolled cell proliferation and survival. Furthermore, the intricate nexus between metabolism and the vitality of GC cells is elucidated, underscoring the profound influence of metabolic reprogramming on tumor energy dynamics and the accrual of metabolic by-products, which further perpetuate malignant growth. A pivotal segment of the review entails an exploration of key metabolic-related genes implicated in GC pathogenesis. MYC and TP53 are spotlighted among others, delineating their pivotal roles in driving tumorigenesis through metabolic pathway modulation. These genetic pathways serve as critical nodes in the intricate network orchestrating GC development, providing valuable targets for therapeutic intervention. This review embarks on a forward-looking trajectory, delineating the potential therapeutic avenues stemming from insights into metabolic dysregulation in GC. It underscores the promise of targeted therapies directed towards specific metabolic pathways implicated in tumor progression, alongside the burgeoning potential of combination therapy strategies leveraging both metabolic and conventional anti-cancer modalities. In essence, this comprehensive review serves as a beacon, illuminating the intricate landscape of metabolic dysregulation in GC pathogenesis. Through its nuanced exploration of metabolic aberrations and their genetic underpinnings, it not only enriches our understanding of GC biology but also unveils novel therapeutic vistas poised to revolutionize its clinical management.
Collapse
Affiliation(s)
- Zhengyan Jiang
- Digestive Department, Jiangsu Second Chinese Medicine Hospital, Nanjing, China
| | - Zhengrong Gu
- Digestive Department, Jiangsu Second Chinese Medicine Hospital, Nanjing, China
| | - Xianyan Lu
- Digestive Department, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People’s Hospital), Suzhou, China
| | - Wei Wen
- Digestive Department, Jiangsu Second Chinese Medicine Hospital, Nanjing, China
| |
Collapse
|
30
|
Chen X, Jin J, Chang R, Yang X, Li N, Zhu X, Ma L, Li Y. Targeting the sulfur-containing amino acid pathway in leukemia. Amino Acids 2024; 56:47. [PMID: 39060524 PMCID: PMC11281984 DOI: 10.1007/s00726-024-03402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024]
Abstract
sulfur-containing amino acids have been reported to patriciate in gene regulation, DNA methylation, protein synthesis and other physiological or pathological processes. In recent years, metabolism-related molecules of sulfur-containing amino acids affecting the occurrence, development and treatment of tumors have been implicated in various disorders, especially in leukemia. Here, we summarize current knowledge on the sulfur-containing amino acid metabolism pathway in leukemia and examine ongoing efforts to target this pathway, including treatment strategies targeting (a) sulfur-containing amino acids, (b) metabolites of sulfur-containing amino acids, and (c) enzymes and cofactors related to sulfur-containing amino acid metabolism in leukemia. Future leukemia therapy will likely involve innovative strategies targeting the sulfur-containing amino acid metabolism pathway.
Collapse
Affiliation(s)
- Xiaoyan Chen
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jiahui Jin
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Rui Chang
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xing Yang
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Na Li
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xi Zhu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong new area, Shanghai, 201318, China
| | - Linlin Ma
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong new area, Shanghai, 201318, China.
| |
Collapse
|
31
|
Wang F, Zhou W, Yang M, Niu J, Huang W, Chen Z, Chen Y, Wang D, Zhang J, Wu S, Yan S. Structure-guided discovery of novel AflG inhibitors for aflatoxin contamination control in aspergillus flavus. Front Microbiol 2024; 15:1425790. [PMID: 39070265 PMCID: PMC11272468 DOI: 10.3389/fmicb.2024.1425790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Aflatoxins (AFs) are highly carcinogenic metabolites produced by Aspergillus species that can contaminate critical food staples, leading to significant health and economic risks. The cytochrome P450 monooxygenase AflG catalyzes an early step in AF biosynthesis, resulting in the conversion of averantin (AVN) to 5'-hydroxy-averantin. However, the molecular mechanism underlying the AflG-AVN interaction remains unclear. Here, we sought to understand the structural features of AflG in complex with AVN to enable the identification of inhibitors targeting the AflG binding pocket. To achieve this goal, we employed a comprehensive approach combining computational and experimental methods. Structural modeling and microsecond-scale molecular dynamics (MD) simulations yielded new insights into AflG architecture and unveiled unique ligand binding conformations of the AflG-AVN complex. High-throughput virtual screening of more than 1.3 million compounds pinpointed specific subsets with favorable predicted docking scores. The resulting compounds were ranked based on binding free energy calculations and evaluated with MD simulations and in vitro experiments with Aspergillus flavus. Our results revealed two compounds significantly inhibited AF biosynthesis. Comprehensive structural analysis elucidated the binding sites of competitive inhibitors and demonstrated their regulation of AflG dynamics. This structure-guided pipeline successfully enabled the identification of novel AflG inhibitors and provided novel molecular insights that will guide future efforts to develop effective therapeutics that prevent AF contamination.
Collapse
Affiliation(s)
- Fenghua Wang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weijie Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Jinlu Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenjie Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhaofu Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuanyuan Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Jun Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Shaowen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | |
Collapse
|
32
|
Nath K, Gupta PK, Basappa J, Wang S, Sen N, Lobello C, Tomar JS, Shestov AA, Orlovskiy S, Arias-Mendoza F, Rauert-Wunderlich H, Nelson DS, Glickson JD, Wasik MA. Impact of therapeutic inhibition of oncogenic cell signaling tyrosine kinase on cell metabolism: in vivo-detectable metabolic biomarkers of inhibition. J Transl Med 2024; 22:622. [PMID: 38965536 PMCID: PMC11225145 DOI: 10.1186/s12967-024-05371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/02/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly. Noninvasive 1H magnetic resonance spectroscopy (MRS) can measure in vitro and in vivo concentration of key metabolites which may potentially serve as biomarkers of response to kinase inhibition. METHODS We employed mantle cell lymphoma (MCL) cell lines demonstrating markedly diverse sensitivity of inhibition of Bruton's tyrosine kinase (BTK) regarding their growth and studied in-depth effects of the inhibition on various aspects of cell metabolism including metabolite synthesis using metabolomics, glucose and oxidative metabolism by Seahorse XF technology, and concentration of index metabolites lactate, alanine, total choline and taurine by 1H MRS. RESULTS Effective BTK inhibition profoundly suppressed key cell metabolic pathways, foremost pyrimidine and purine synthesis, the citrate (TCA) cycle, glycolysis, and pyruvate and glutamine/alanine metabolism. It also inhibited glycolysis and amino acid-related oxidative metabolism. Finally, it profoundly and quickly decreased concentration of lactate (a product of mainly glycolysis) and alanine (an indicator of amino acid metabolism) and, less universally total choline both in vitro and in vivo, in the MCL xenotransplant model. The decrease correlated directly with the degree of inhibition of lymphoma cell expansion and tumor growth. CONCLUSIONS Our results indicate that BTK inhibition exerts a broad and profound suppressive effect on cell metabolism and that the affected index metabolites such as lactate, alanine may serve as early, sensitive, and reliable biomarkers of inhibition in lymphoma patients detectable by noninvasive MRS-based imaging method. This kind of imaging-based detection may also be applicable to other kinase inhibitors, as well as diverse lymphoid and non-lymphoid malignancies.
Collapse
Affiliation(s)
- Kavindra Nath
- Department of Radiology, University of Pennsylvania, 423 Curie Blvd, Philadelphia, PA, 19104-6069, USA.
| | - Pradeep K Gupta
- Department of Radiology, University of Pennsylvania, 423 Curie Blvd, Philadelphia, PA, 19104-6069, USA
| | - Johnvesly Basappa
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111-2497, USA
| | - Shengchun Wang
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111-2497, USA
| | - Neil Sen
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111-2497, USA
| | - Cosimo Lobello
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111-2497, USA
| | - Jyoti S Tomar
- Department of Radiology, University of Pennsylvania, 423 Curie Blvd, Philadelphia, PA, 19104-6069, USA
| | - Alexander A Shestov
- Department of Radiology, University of Pennsylvania, 423 Curie Blvd, Philadelphia, PA, 19104-6069, USA
| | - Stepan Orlovskiy
- Department of Radiology, University of Pennsylvania, 423 Curie Blvd, Philadelphia, PA, 19104-6069, USA
| | - Fernando Arias-Mendoza
- Department of Radiology, University of Pennsylvania, 423 Curie Blvd, Philadelphia, PA, 19104-6069, USA
- Advanced Imaging Research, Inc., Cleveland, OH, USA
| | | | - David S Nelson
- Department of Radiology, University of Pennsylvania, 423 Curie Blvd, Philadelphia, PA, 19104-6069, USA
| | - Jerry D Glickson
- Department of Radiology, University of Pennsylvania, 423 Curie Blvd, Philadelphia, PA, 19104-6069, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111-2497, USA.
| |
Collapse
|
33
|
Shahi A, Kidane D. Starving cancer cells to enhances DNA damage and immunotherapy response. Oncotarget 2024; 15:392-399. [PMID: 38900609 PMCID: PMC11197973 DOI: 10.18632/oncotarget.28595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Prostate cancer (PCa) poses significant challenges in treatment, particularly when it progresses to a metastatic, castrate-resistant state. Conventional therapies, including chemotherapy, radiotherapy, and hormonal treatments, often fail due to toxicities, off-target effects, and acquired resistance. This research perspective defines an alternative therapeutic strategy focusing on the metabolic vulnerabilities of PCa cells, specifically their reliance on non-essential amino acids such as cysteine. Using an engineered enzyme cyst(e)inase to deplete the cysteine/cystine can induce oxidative stress and DNA damage in cancer cells. This depletion elevates reactive oxygen species (ROS) levels, disrupts glutathione synthesis, and enhances DNA damage, leading to cancer cell death. The combinatorial use of cyst(e)inase with agents targeting antioxidant defenses, such as thioredoxins, further amplifies ROS accumulation and cytotoxicity in PCa cells. Overall, in this perspective provides a compressive overview of the previous work on manipulating amino acid metabolism and redox balance modulate the efficacy of DNA repair-targeted and immune checkpoint blockade therapies in prostate cancer.
Collapse
Affiliation(s)
- Aashirwad Shahi
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Dawit Kidane
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
34
|
Lin X, Yang P, Wang M, Huang X, Wang B, Chen C, Xu A, Cai J, Khan M, Liu S, Lin J. Dissecting gastric cancer heterogeneity and exploring therapeutic strategies using bulk and single-cell transcriptomic analysis and experimental validation of tumor microenvironment and metabolic interplay. Front Pharmacol 2024; 15:1355269. [PMID: 38962317 PMCID: PMC11220201 DOI: 10.3389/fphar.2024.1355269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 07/05/2024] Open
Abstract
Gastric cancer, the fifth most prevalent cancer worldwide, is often diagnosed in advanced stages with limited treatment options. Examining the tumor microenvironment (TME) and its metabolic reprogramming can provide insights for better diagnosis and treatment. This study investigates the link between TME factors and metabolic activity in gastric cancer using bulk and single-cell RNA-sequencing data. We identified two molecular subtypes in gastric cancer by analyzing the distinct expression patterns of 81 prognostic genes related to the TME and metabolism, which exhibited significant protein-level interactions. The high-risk subtype had increased stromal content, fibroblast and M2 macrophage infiltration, elevated glycosaminoglycans/glycosphingolipids biosynthesis, and fat metabolism, along with advanced clinicopathological features. It also exhibited low mutation rates and microsatellite instability, associating it with the mesenchymal phenotype. In contrast, the low-risk group showed higher tumor content and upregulated protein and sugar metabolism. We identified a 15-gene prognostic signature representing these characteristics, including CPVL, KYNU, CD36, and GPX3, strongly correlated with M2 macrophages, validated through single-cell analysis and an internal cohort. Despite resistance to immunotherapy, the high-risk group showed sensitivity to molecular targeted agents directed at IGF-1R (BMS-754807) and the PI3K-mTOR pathways (AZD8186, AZD8055). We experimentally validated these promising drugs for their inhibitory effects on MKN45 and MKN28 gastric cells. This study unveils the intricate interplay between TME and metabolic pathways in gastric cancer, offering potential for enhanced diagnosis, patient stratification, and personalized treatment. Understanding molecular features in each subtype enriches our comprehension of gastric cancer heterogeneity and potential therapeutic targets.
Collapse
Affiliation(s)
- XianTao Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Ping Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - MingKun Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiuting Huang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Baiyao Wang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chengcong Chen
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Anan Xu
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiazuo Cai
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Muhammad Khan
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Sha Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
35
|
Guarnera L, Visconte V. The metabolic fuel of paroxysmal nocturnal haemoglobinuria. Br J Haematol 2024; 204:2162-2164. [PMID: 38719212 DOI: 10.1111/bjh.19510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 06/15/2024]
Abstract
Metabolic reprogramming has been investigated in haematological malignancies. To date, a few studies have analysed the metabolic profile of paroxysmal nocturnal haemoglobinuria (PNH). The study by Chen and colleagues sheds light on the involvement of metabolic changes in the proliferation of PNH clones. Commentary on: Chen et al. The histone demethylase JMJD1C regulates CPS1 expression and promotes the proliferation of PNH clones through cell metabolic reprogramming. Br J Haematol 2024;204:2468-2479.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
36
|
Duan N, Hua Y, Yan X, He Y, Zeng T, Gong J, Fu Z, Li W, Yin Y. Unveiling Alterations of Epigenetic Modifications and Chromatin Architecture Leading to Lipid Metabolic Reprogramming during the Evolutionary Trastuzumab Adaptation of HER2-Positive Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309424. [PMID: 38460162 PMCID: PMC11095153 DOI: 10.1002/advs.202309424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Indexed: 03/11/2024]
Abstract
Secondary trastuzumab resistance represents an evolutionary adaptation of HER2-positive breast cancer during anti-HER2 treatment. Most current studies have tended to prioritize HER2 and its associated signaling pathways, often overlooking broader but seemingly less relevant cellular processes, along with their associated genetic and epigenetic mechanisms. Here, transcriptome data is not only characterized but also examined epigenomic and 3D genome architecture information in both trastuzumab-sensitive and secondary-resistant breast cancer cells. The findings reveal that the global metabolic reprogramming associated with trastuzumab resistance may stem from genome-wide alterations in both histone modifications and chromatin structure. Specifically, the transcriptional activities of key genes involved in lipid metabolism appear to be regulated by variant promoter H3K27me3 and H3K4me3 modifications, as well as promoter-enhancer interactions. These discoveries offer valuable insights into how cancer cells adapt to anti-tumor drugs and have the potential to impact future diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Ningjun Duan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yijia Hua
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Xueqi Yan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yaozhou He
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Tianyu Zeng
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Jue Gong
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Ziyi Fu
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Wei Li
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yongmei Yin
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| |
Collapse
|
37
|
Zhang D, Czapinska H, Bochtler M, Wlodawer A, Lubkowski J. RrA, an enzyme from Rhodospirillum rubrum, is a prototype of a new family of short-chain L-asparaginases. Protein Sci 2024; 33:e4920. [PMID: 38501449 PMCID: PMC10949315 DOI: 10.1002/pro.4920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/20/2024]
Abstract
L-Asparaginases (ASNases) catalyze the hydrolysis of L-Asn to L-Asp and ammonia. Members of the ASNase family are used as drugs in the treatment of leukemia, as well as in the food industry. The protomers of bacterial ASNases typically contain 300-400 amino acids (typical class 1 ASNases). In contrast, the chain of ASNase from Rhodospirillum rubrum, reported here and referred to as RrA, consists of only 172 amino acid residues. RrA is homologous to the N-terminal domain of typical bacterial class 1 ASNases and exhibits millimolar affinity for L-Asn. In this study, we demonstrate that RrA belongs to a unique family of cytoplasmic, short-chain ASNases (scASNases). These proteins occupy a distinct region in the sequence space, separate from the regions typically assigned to class 1 ASNases. The scASNases are present in approximately 7% of eubacterial species, spanning diverse bacterial lineages. They seem to be significantly enriched in species that encode for more than one class 1 ASNase. Here, we report biochemical, biophysical, and structural properties of RrA, a member of scASNases family. Crystal structures of the wild-type RrA, both with and without bound L-Asp, as well as structures of several RrA mutants, reveal topologically unique tetramers. Moreover, the active site of one protomer is complemented by two residues (Tyr21 and Asn26) from another protomer. Upon closer inspection, these findings clearly outline scASNases as a stand-alone subfamily of ASNases that can catalyze the hydrolysis of L-Asn to L-Asp despite the lack of the C-terminal domain that is present in all ASNases described structurally to date.
Collapse
Affiliation(s)
- Di Zhang
- Center for Structural BiologyNational Cancer InstituteFrederickMarylandUSA
| | - Honorata Czapinska
- Laboratory of Structural BiologyInternational Institute of Molecular and Cell BiologyWarsawPoland
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Matthias Bochtler
- Laboratory of Structural BiologyInternational Institute of Molecular and Cell BiologyWarsawPoland
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Alexander Wlodawer
- Center for Structural BiologyNational Cancer InstituteFrederickMarylandUSA
| | - Jacek Lubkowski
- Center for Structural BiologyNational Cancer InstituteFrederickMarylandUSA
| |
Collapse
|
38
|
Lin LQ, Lv SY, Ren HZ, Li RR, Li L, Pang YQ, Wang J. Evodiamine inhibits EPRS expression to regulate glutamate metabolism and proliferation of oral squamous cell carcinoma cells. Kaohsiung J Med Sci 2024; 40:348-359. [PMID: 38243370 DOI: 10.1002/kjm2.12803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
The effects of evodiamine (EVO) on oral squamous cell carcinoma (OSCC) are not yet understood. Based on our earlier findings, we hypothesized that evodiamine may affect OSCC cell proliferation and glutamate metabolism by modulating the expression of EPRS (glutamyl-prolyl-tRNA synthetase 1). From GEPIA, we obtained EPRS expression data in patients with OSCC as well as survival prognosis data. An animal model using Cal27 cells in BALB/c nude mice was established. The expression of EPRS was assessed by immunofluorescence, Western blotting, and quantitative PCR. Glutamate measurements were performed to evaluate the impact of evodiamine on glutamate metabolism of Cal27 and SAS tumor cells. transient transfection techniques were used to knock down and modulate EPRS in these cells. EPRS is expressed at higher levels in OSCC than in normal tissues, and it predicts poor prognosis in patients. In a nude mouse xenograft model, evodiamine inhibited tumor growth and the expression of EPRS. Evodiamine impacted cell proliferation, glutamine metabolism, and EPRS expression on Cal27 and SAS cell lines. In EPRS knockdown cell lines, both cell proliferation and glutamine metabolism are suppressed. EPRS's overexpression partially restores evodiamine's inhibitory effects on cell proliferation and glutamine metabolism. This study provides crucial experimental evidence supporting the potential therapeutic application of evodiamine in treating OSCC. Evodiamine exhibits promising anti-tumor effects by targeting EPRS to regulate glutamate metabolism.
Collapse
Affiliation(s)
- Li-Qi Lin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Si-Yi Lv
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Hao-Zhe Ren
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Rong-Rong Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Yun-Qing Pang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, Gansu Province, China
| | - Jing Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, Gansu Province, China
| |
Collapse
|
39
|
Zhou X, He R, Hu WX, Luo S, Hu J. Targeting myeloma metabolism: How abnormal metabolism contributes to multiple myeloma progression and resistance to proteasome inhibitors. Neoplasia 2024; 50:100974. [PMID: 38364355 PMCID: PMC10881428 DOI: 10.1016/j.neo.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Multiple myeloma is a hematological malignancy that has evolved from antibody-secreting B lymphocytes. Like other types of cancers, myeloma cells have acquired functional capabilities which are referred to as "Hallmarks of Cancer", and one of their most important features is the metabolic disorders. Due to the high secretory load of the MM cells, the first-line medicine proteasome inhibitors have found their pronounced effects in MM cells for blocking the degradation of misfolded proteins, leading to their accumulation in the ER and overwhelming ER stress. Moreover, proteasome inhibitors have been reported to be effective in myeloma by targeting glucose, lipid, amino acid metabolism of MM cells. In this review, we have described the abnormal metabolism of the three major nutrients, such as glucose, lipid and amino acids, which participate in the cellular functions. We have described their roles in myeloma progression, how they could be exploited for therapeutic purposes, and current therapeutic strategies targeting these metabolites, hoping to uncover potential novel therapeutic targets and promote the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Xiang Zhou
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Rui He
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Wei-Xin Hu
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Saiqun Luo
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China.
| | - Jingping Hu
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China.
| |
Collapse
|
40
|
Dong N, Ma HX, Liu XQ, Li D, Liu LH, Shi Q, Ju XL. Histidine re-sensitizes pediatric acute lymphoblastic leukemia to 6-mercaptopurine through tetrahydrofolate consumption and SIRT5-mediated desuccinylation. Cell Death Dis 2024; 15:216. [PMID: 38485947 PMCID: PMC10940622 DOI: 10.1038/s41419-024-06599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Despite progressive improvements in the survival rate of pediatric B-cell lineage acute lymphoblastic leukemia (B-ALL), chemoresistance-induced disease progression and recurrence still occur with poor prognosis, thus highlighting the urgent need to eradicate drug resistance in B-ALL. The 6-mercaptopurine (6-MP) is the backbone of ALL combination chemotherapy, and resistance to it is crucially related to relapse. The present study couples chemoresistance in pediatric B-ALL with histidine metabolism deficiency. Evidence was provided that histidine supplementation significantly shifts the 6-MP dose-response in 6-MP-resistant B-ALL. It is revealed that increased tetrahydrofolate consumption via histidine catabolism partially explains the re-sensitization ability of histidine. More importantly, this work provides fresh insights into that desuccinylation mediated by SIRT5 is an indispensable and synergistic requirement for histidine combination therapy against 6-MP resistance, which is undisclosed previously and demonstrates a rational strategy to ameliorate chemoresistance and protect pediatric patients with B-ALL from disease progression or relapse.
Collapse
Affiliation(s)
- Na Dong
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Hui-Xian Ma
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Xue-Qin Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Ling-Hong Liu
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Xiu-Li Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
41
|
Zhang Z, Liang X, Yang X, Liu Y, Zhou X, Li C. Advances in Nanodelivery Systems Based on Metabolism Reprogramming Strategies for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6689-6708. [PMID: 38302434 DOI: 10.1021/acsami.3c15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Tumor development and metastasis are closely related to the complexity of the metabolism network. Recently, metabolism reprogramming strategies have attracted much attention in tumor metabolism therapy. Although there is preliminary success of metabolism therapy agents, their therapeutic effects have been restricted by the effective reaching of the tumor sites of drugs. Nanodelivery systems with unique physical properties and elaborate designs can specifically deliver to the tumors. In this review, we first summarize the research progress of nanodelivery systems based on tumor metabolism reprogramming strategies to enhance therapies by depleting glucose, inhibiting glycolysis, depleting lactic acid, inhibiting lipid metabolism, depleting glutamine and glutathione, and disrupting metal metabolisms combined with other therapies, including chemotherapy, radiotherapy, photodynamic therapy, etc. We further discuss in detail the advantages of nanodelivery systems based on tumor metabolism reprogramming strategies for tumor therapy. As well as the opportunities and challenges for integrating nanodelivery systems into tumor metabolism therapy, we analyze the outlook for these emerging areas. This review is expected to improve our understanding of modulating tumor metabolisms for enhanced therapy.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
42
|
Li X, Zhang HS. Amino acid metabolism, redox balance and epigenetic regulation in cancer. FEBS J 2024; 291:412-429. [PMID: 37129434 DOI: 10.1111/febs.16803] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Amino acids act as versatile nutrients driving cell growth and survival, especially in cancer cells. Amino acid metabolism comprises numerous metabolic networks and is closely linked with intracellular redox balance and epigenetic regulation. Reprogrammed amino acid metabolism has been recognized as a ubiquitous feature in tumour cells. This review outlines the metabolism of several primary amino acids in cancer cells and highlights the pivotal role of amino acid metabolism in sustaining redox homeostasis and regulating epigenetic modification in response to oxidative and genetic stress in cancer cells.
Collapse
Affiliation(s)
- Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
43
|
Li XQ, Yin SQ, Chen L, Tulamaiti A, Xiao SY, Zhang XL, Shi L, Miao XC, Yang Y, Xing X. Identification of a novel m6A-related lncRNAs signature and immunotherapeutic drug sensitivity in pancreatic adenocarcinoma. BMC Cancer 2024; 24:116. [PMID: 38262966 PMCID: PMC10804632 DOI: 10.1186/s12885-024-11885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PDAC) ranks as the fourth leading cause for cancer-related deaths worldwide. N6-methyladenosine (m6A) and long non-coding RNAs (lncRNAs) are closely related with poor prognosis and immunotherapeutic effect in PDAC. The aim of this study is to construct and validate a m6A-related lncRNAs signature and assess immunotherapeutic drug sensitivity in PDAC. METHODS RNA-seq data for 178 cases of PDAC patients and 167 cases of normal pancreatic tissue were obtained from TCGA and GTEx databases, respectively. A set of 21 m6A-related genes were downloaded based on the previous report. Co-expression network was conducted to identify m6A-related lncRNAs in PDAC. Cox analyses and least absolute shrinkage and selection operator (Lasso) regression model were used to construct a risk prognosis model. The relationship between signature genes and immune function was explored by single-sample GSEA (ssGSEA). The tumor immune dysfunction and exclusion (TIDE) score and tumor mutation burden (TMB) were utilized to evaluate the response to immunotherapy. Furthermore, the expression levels of 4 m6A-related lncRNAs on PDAC cell lines were measured by the quantitative real-time PCR (qPCR). The drug sensitivity between the high- and low-risk groups was validated using PDAC cell lines by Cell-Counting Kit 8 (CCK8). RESULTS The risk prognosis model was successfully constructed based on 4 m6A-related lncRNAs, and PDAC patients were divided into the high- and low-risk groups. The overall survival (OS) of the high-risk groups was more unfavorable compared with the low-risk groups. Receiver operating characteristic (ROC) curves demonstrated that the risk prognosis model reasonably predicted the 2-, 3- and 5-year OS of PDAC patients. qPCR analysis confirmed the decreased expression levels of 4 m6A-related lncRNAs in PDAC cells compared to the normal pancreatic cells. Furthermore, CCK8 assay revealed that Phenformin exhibited higher sensitivity in the high-risk groups, while Pyrimethamine exhibited higher sensitivity in the low-risk groups. CONCLUSION The prognosis of patients with PDAC were well predicted in the risk prognosis model based on m6A-related lncRNAs, and selected immunotherapy drugs have potential values for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xia-Qing Li
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China
| | - Shi-Qi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China
| | - Lin Chen
- Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Aziguli Tulamaiti
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Yu Xiao
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiao-Cao Miao
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Yang
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Xin Xing
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China.
- Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.
| |
Collapse
|
44
|
Peng YC, Xu JX, You XM, Huang YY, Ma L, Li LQ, Qi LN. Specific gut microbiome signature predicts hepatitis B virus-related hepatocellular carcinoma patients with microvascular invasion. Ann Med 2023; 55:2283160. [PMID: 38112540 PMCID: PMC10986448 DOI: 10.1080/07853890.2023.2283160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND We aimed to assess differences in intestinal microflora between patients with operable hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) with microvascular invasion (MVI) and those without MVI. Additionally, we investigated the potential of the microbiome as a non-invasive biomarker for patients with MVI. METHODS We analyzed the preoperative gut microbiomes (GMs) of two groups, the MVI (n = 46) and non-MVI (n = 56) groups, using 16S ribosomal RNA gene sequencing data. At the operational taxonomic unit level, we employed random forest models to predict MVI risk and validated the results in independent validation cohorts [MVI group (n = 17) and non-MVI group (n = 15)]. RESULTS β diversity analysis, utilizing weighted UniFrac distances, revealed a significant difference between the MVI and non-MVI groups, as indicated by non-metric multidimensional scaling and principal coordinate analysis. We also observed a significant correlation between the characteristic intestinal microbial communities at the genus level and their main functions. Nine optimal microbial markers were identified, with an area under the curve of 79.76% between 46 MVI and 56 non-MVI samples and 79.80% in the independent verification group. CONCLUSION This pioneering analysis of the GM in patients with operable HBV-HCC with and without MVI opens new avenues for treating HBV-HCC with MVI. We successfully established a diagnostic model and independently verified microbial markers for patients with MVI. As preoperative targeted biomarkers, GM holds potential as a non-invasive tool for patients with HBV-HCC with MVI.
Collapse
Affiliation(s)
- Yu-Chong Peng
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jing-Xuan Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Xue-Mei You
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Yi-Yue Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| |
Collapse
|
45
|
Singh AK, Prasad P, Cancelas JA. Mesenchymal stromal cells, metabolism, and mitochondrial transfer in bone marrow normal and malignant hematopoiesis. Front Cell Dev Biol 2023; 11:1325291. [PMID: 38169927 PMCID: PMC10759248 DOI: 10.3389/fcell.2023.1325291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Hematopoietic stem cell (HSC) transplantation-based treatments are in different phases of clinical development, ranging from current therapies to a promise in the repair and regeneration of diseased tissues and organs. Mesenchymal stromal/stem cells (MSCs), which are fibroblast-like heterogeneous progenitors with multilineage differentiation (osteogenic, chondrogenic, and adipogenic) and self-renewal potential, and exist in the bone marrow (BM), adipose, and synovium, among other tissues, represent one of the most widely used sources of stem cells in regenerative medicine. MSCs derived from bone marrow (BM-MSCs) exhibit a variety of traits, including the potential to drive HSC fate and anti-inflammatory and immunosuppressive capabilities via paracrine activities and interactions with the innate and adaptive immune systems. The role of BM-MSC-derived adipocytes is more controversial and may act as positive or negative regulators of benign or malignant hematopoiesis based on their anatomical location and functional crosstalk with surrounding cells in the BM microenvironment. This review highlights the most recent clinical and pre-clinical findings on how BM-MSCs interact with the surrounding HSCs, progenitors, and immune cells, and address some recent insights on the mechanisms that mediate MSCs and adipocyte metabolic control through a metabolic crosstalk between BM microenvironment cells and intercellular mitochondrial transfer in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Abhishek K. Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Parash Prasad
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
46
|
Ni Y, Wang W, Liu Y, Jiang Y. Causal associations between liver traits and Colorectal cancer: a Mendelian randomization study. BMC Med Genomics 2023; 16:316. [PMID: 38057864 PMCID: PMC10699049 DOI: 10.1186/s12920-023-01755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the causal associations between several liver traits (liver iron content, percent liver fat, alanine transaminase levels, and liver volume) and colorectal cancer (CRC) risk using a Mendelian randomization (MR) approach to improve our understanding of the disease and its management. METHODS Genetic variants were used as instrumental variables, extracted from genome-wide association studies (GWAS) datasets of liver traits and CRC. The Two-Sample MR package in R was used to conduct inverse variance weighted (IVW), MR Egger, Maximum likelihood, Weighted median, and Inverse variance weighted (multiplicative random effects) MR approaches to generate overall estimates of the effect. MR analysis was conducted with Benjamini-Hochberg method-corrected P values to account for multiple testing (P < 0.013). MR-PRESSO was used to identify and remove outlier genetic variants in Mendelian randomization (MR) analysis. The MR Steiger test was used to assess the validity of the assumption that exposure causes outcomes. Leave-one-out validation, pleiotropy, and heterogeneity testing were also conducted to ensure the reliability of the results. Multivariable MR was utilized for validation of our findings using the IVW method while also adjusting for potential confounding or pleiotropy bias. RESULTS The MR analysis suggested a causal effect between liver volume and a reduced risk of CRC (OR 0.60; 95% CI, 0.44-0.82; P = 0.0010) but did not provide evidence for causal effects of liver iron content, percent liver fat, or liver alanine transaminase levels. The MR-PRESSO method did not identify any outliers, and the MR Steiger test confirmed that the causal direction of the analysis results was correct in the Mendelian randomization analysis. MR results were consistent with heterogeneity and pleiotropy analyses, and leave-one-out analysis demonstrated the overall values obtained were consistent with estimates obtained when all available SNPs were included in the analysis. Multivariable MR was utilized for validation of our findings using the IVW method while also adjusting for potential confounding or pleiotropy bias. CONCLUSION The study provides tentative evidence for a causal role of liver volume in CRC, while genetically predicted levels of liver iron content, percent liver fat, and liver alanine transaminase levels were not associated with CRC risk. The findings may inform the development of targeted therapeutic interventions for colorectal liver metastasis (CRLM) patients, and the study highlights the importance of MR as a powerful epidemiological tool for investigating causal associations between exposures and outcomes.
Collapse
Affiliation(s)
- Ying Ni
- Beijing Normal University, 100875, Beijing, China
| | - Wenkai Wang
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 200021, Shanghai, China
| | - Yongming Liu
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 200021, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, 200021, Shanghai, China
| | - Yun Jiang
- Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
47
|
Wang Y, Bin T, Tang J, Xu XJ, Lin C, Lu B, Sun TT. Construction of an acute myeloid leukemia prognostic model based on m6A-related efferocytosis-related genes. Front Immunol 2023; 14:1268090. [PMID: 38077322 PMCID: PMC10704160 DOI: 10.3389/fimmu.2023.1268090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Background One of the most prevalent hematological system cancers is acute myeloid leukemia (AML). Efferocytosis-related genes (ERGs) and N6-methyladenosine (m6A) have an important significance in the progression of cancer, and the metastasis of tumors. Methods The AML-related data were collected from The Cancer Genome Atlas (TCGA; TCGA-AML) database and Gene Expression Omnibus (GEO; GSE9476, GSE71014, and GSE13159) database. The "limma" R package and Venn diagram were adopted to identify differentially expressed ERGs (DE-ERGs). The m6A related-DE-ERGs were obtained by Spearman analysis. Subsequently, univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) were used to construct an m6A related-ERGs risk signature for AML patients. The possibility of immunotherapy for AML was explored. The pRRophetic package was adopted to calculate the IC50 of drugs for the treatment of AML. Finally, the expression of characterized genes was validated by quantitative reverse transcription-PCR (qRT-PCR). Results Based on m6A related-DE-ERGs, a prognostic model with four characteristic genes (UCP2, DOCK1, SLC14A1, and SLC25A1) was constructed. The risk score of model was significantly associated with the immune microenvironment of AML, with four immune cell types, 14 immune checkpoints, 20 HLA family genes and, immunophenoscore (IPS) all showing differences between the high- and low-risk groups. A total of 56 drugs were predicted to differ between the two groups, of which Erlotinib, Dasatinib, BI.2536, and bortezomib have been reported to be associated with AML treatment. The qRT-PCR results showed that the expression trends of DOCK1, SLC14A1 and SLC25A1 were consistent with the bioinformatics analysis. Conclusion In summary, 4 m6A related- ERGs were identified and the corresponding prognostic model was constructed for AML patients. This prognostic model effectively stratified the risk of AML patients.
Collapse
Affiliation(s)
- Ying Wang
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ting Bin
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jing Tang
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiao-Jun Xu
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chao Lin
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Bo Lu
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Tian-Tian Sun
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
48
|
Arévalo C, Rojas L, Santamaria M, Molina L, Arbeláez L, Sánchez P, Ballesteros-Ramírez R, Arevalo-Zambrano M, Quijano S, Cala MP, Fiorentino S. Untargeted metabolomic and lipidomic analyses reveal lipid dysregulation in the plasma of acute leukemia patients. Front Mol Biosci 2023; 10:1235160. [PMID: 38028534 PMCID: PMC10667492 DOI: 10.3389/fmolb.2023.1235160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Acute leukemias (AL) are aggressive neoplasms with high mortality rates. Metabolomics and oxidative status have emerged as important tools to identify new biomarkers with clinical utility. To identify the metabolic differences between healthy individuals (HI) and patients with AL, a multiplatform untargeted metabolomic and lipidomic approach was conducted using liquid and gas chromatography coupled with quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS or GC-QTOF-MS). Additionally, the total antioxidant capacity (TAC) was measured. A total of 20 peripheral blood plasma samples were obtained from patients with AL and 18 samples from HI. Our analysis revealed 135 differentially altered metabolites in the patients belonging to 12 chemical classes; likewise, the metabolic pathways of glycerolipids and sphingolipids were the most affected in the patients. A decrease in the TAC of the patients with respect to the HI was evident. This study conducted with a cohort of Colombian patients is consistent with observations from other research studies that suggest dysregulation of lipid compounds. Furthermore, metabolic differences between patients and HI appear to be independent of lifestyle, race, or geographic location, providing valuable information for future advancements in understanding the disease and developing more global therapies.
Collapse
Affiliation(s)
- Cindy Arévalo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Rojas
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mary Santamaria
- MetCore—Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | | | - Lina Arbeláez
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Paula Sánchez
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Ricardo Ballesteros-Ramírez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Mónica P. Cala
- MetCore—Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
49
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X, Zhuang A. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res 2023; 42:291. [PMID: 37924140 PMCID: PMC10623764 DOI: 10.1186/s13046-023-02845-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| |
Collapse
|
50
|
Zhang ZJ, Wu QF, Ren AQ, Chen Q, Shi JZ, Li JP, Liu XY, Zhang ZJ, Tang YZ, Zhao Y, Yao NN, Zhang XY, Liu CP, Dong G, Zhao JX, Xu MJ, Yue YQ, Hu J, Sun F, Liu Y, Ao QL, Zhou FL, Wu H, Zhang TC, Zhu HC. ATF4 renders human T-cell acute lymphoblastic leukemia cell resistance to FGFR1 inhibitors through amino acid metabolic reprogramming. Acta Pharmacol Sin 2023; 44:2282-2295. [PMID: 37280363 PMCID: PMC10618259 DOI: 10.1038/s41401-023-01108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Abnormalities of FGFR1 have been reported in multiple malignancies, suggesting FGFR1 as a potential target for precision treatment, but drug resistance remains a formidable obstacle. In this study, we explored whether FGFR1 acted a therapeutic target in human T-cell acute lymphoblastic leukemia (T-ALL) and the molecular mechanisms underlying T-ALL cell resistance to FGFR1 inhibitors. We showed that FGFR1 was significantly upregulated in human T-ALL and inversely correlated with the prognosis of patients. Knockdown of FGFR1 suppressed T-ALL growth and progression both in vitro and in vivo. However, the T-ALL cells were resistant to FGFR1 inhibitors AZD4547 and PD-166866 even though FGFR1 signaling was specifically inhibited in the early stage. Mechanistically, we found that FGFR1 inhibitors markedly increased the expression of ATF4, which was a major initiator for T-ALL resistance to FGFR1 inhibitors. We further revealed that FGFR1 inhibitors induced expression of ATF4 through enhancing chromatin accessibility combined with translational activation via the GCN2-eIF2α pathway. Subsequently, ATF4 remodeled the amino acid metabolism by stimulating the expression of multiple metabolic genes ASNS, ASS1, PHGDH and SLC1A5, maintaining the activation of mTORC1, which contributed to the drug resistance in T-ALL cells. Targeting FGFR1 and mTOR exhibited synergistically anti-leukemic efficacy. These results reveal that FGFR1 is a potential therapeutic target in human T-ALL, and ATF4-mediated amino acid metabolic reprogramming contributes to the FGFR1 inhibitor resistance. Synergistically inhibiting FGFR1 and mTOR can overcome this obstacle in T-ALL therapy.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qi-Fang Wu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - An-Qi Ren
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qian Chen
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jiang-Zhou Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
- School of Science, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xi-Yu Liu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhi-Jie Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yu-Zhe Tang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yuan Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ning-Ning Yao
- Peking-Tsinghua Center for Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiao-Yu Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chang-Peng Liu
- Department of Medical Records, Office for DRGs (Diagnosis Related Groups), Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Ge Dong
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jia-Xuan Zhao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Mei-Jun Xu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yun-Qiang Yue
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jia Hu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Fan Sun
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yu Liu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qi-Lin Ao
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology, School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fu-Ling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hong Wu
- Peking-Tsinghua Center for Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Hai-Chuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Science, Wuchang University of Technology, Wuhan, 430223, China.
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, College of Life Science, Wuchang University of Technology, Wuhan, 430223, China.
| |
Collapse
|