1
|
Lu B, Avalos P, Svendsen S, Zhang C, Nocito L, Jones MK, Pieplow C, Saylor J, Ghiam S, Block A, Fernandez M, Ljubimov AV, Small K, Liao D, Svendsen CN, Wang S. GMP-grade human neural progenitors delivered subretinally protect vision in rat model of retinal degeneration and survive in minipigs. J Transl Med 2023; 21:650. [PMID: 37743503 PMCID: PMC10519102 DOI: 10.1186/s12967-023-04501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Stem cell products are increasingly entering early stage clinical trials for treating retinal degeneration. The field is learning from experience about comparability of cells proposed for preclinical and clinical use. Without this, preclinical data supporting translation to a clinical study might not adequately reflect the performance of subsequent clinical-grade cells in patients. METHODS Research-grade human neural progenitor cells (hNPC) and clinical-grade hNPC (termed CNS10-NPC) were injected into the subretinal space of the Royal College of Surgeons (RCS) rat, a rodent model of retinal degeneration such as retinitis pigmentosa. An investigational new drug (IND)-enabling study with CNS10-NPC was performed in the same rodent model. Finally, surgical methodology for subretinal cell delivery in the clinic was optimized in a large animal model with Yucatan minipigs. RESULTS Both research-grade hNPC and clinical-grade hNPC can survive and provide functional and morphological protection in a dose-dependent fashion in RCS rats and the optimal cell dose was defined and used in IND-enabling studies. Grafted CNS10-NPC migrated from the injection site without differentiation into retinal cell phenotypes. Additionally, CNS10-NPC showed long-term survival, safety and efficacy in a good laboratory practice (GLP) toxicity and tumorigenicity study, with no observed cell overgrowth even at the maximum deliverable dose. Finally, using a large animal model with the Yucatan minipig, which has an eye size comparable to the human, we optimized the surgical methodology for subretinal cell delivery in the clinic. CONCLUSIONS These extensive studies supported an approved IND and the translation of CNS10-NPC to an ongoing Phase 1/2a clinical trial (NCT04284293) for the treatment of retinitis pigmentosa.
Collapse
Affiliation(s)
- Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Soshana Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Changqing Zhang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Laura Nocito
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Cosmo Pieplow
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Joshua Saylor
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sean Ghiam
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Amanda Block
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Michael Fernandez
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Alexander V Ljubimov
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kent Small
- Macula& Retina Institute, Glendale, CA, 91203, USA
| | - David Liao
- Retina Vitreous Associates Medical Group, Beverly Hills, CA, 90211, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Shahin S, Lu B, Zhou Y, Xu H, Chetsawang J, Baloh RH, Wang S. MFN1 augmentation prevents retinal degeneration in a Charcot-Marie-Tooth type 2A mouse model. iScience 2023; 26:106270. [PMID: 36936780 PMCID: PMC10014277 DOI: 10.1016/j.isci.2023.106270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/30/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A), the most common inherited peripheral axonal neuropathy, is associated with more than 100 dominant mutations, including R94Q as the most abundant mutation in the Mitofusin2 (MFN2) gene. CMT2A is characterized by progressive motor and sensory loss, color-vision defects, and progressive loss of visual acuity. We used a well-established transgenic mouse model of CMT2A with R94Q mutation on MFN2 gene (MFN2 R94Q ) to investigate the functional and morphological changes in retina. We documented extensive vision loss due to photoreceptor degeneration, retinal ganglion cell and their axonal loss, retinal secondary neuronal and synaptic alternation, and Müller cell gliosis in the retina of MFN2 R94Q mice. Imbalanced MFN1/MFN2 ratio and dysregulated mitochondrial fusion/fission result in retinal degeneration via P62/LC3B-mediated mitophagy/autophagy in MFN2 R94Q mice. Finally, transgenic MFN1 augmentation (MFN2 R94Q :MFN1) rescued vision and retinal morphology to wild-type level via restoring homeostasis in mitochondrial MFN1/MFN2 ratio, fusion/fission cycle, and PINK1-dependent, Parkin-independent mitophagy.
Collapse
Affiliation(s)
- Saba Shahin
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yueqin Zhou
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hui Xu
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jason Chetsawang
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert H. Baloh
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding author
| |
Collapse
|
3
|
Shahin S, Xu H, Lu B, Mercado A, Jones MK, Bakondi B, Wang S. AAV-CRISPR/Cas9 Gene Editing Preserves Long-Term Vision in the P23H Rat Model of Autosomal Dominant Retinitis Pigmentosa. Pharmaceutics 2022; 14:pharmaceutics14040824. [PMID: 35456659 PMCID: PMC9026811 DOI: 10.3390/pharmaceutics14040824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Retinitis pigmentosa (RP) consists of a group of inherited, retinal degenerative disorders and is characterized by progressive loss of rod photoreceptors and eventual degeneration of cones in advanced stages, resulting in vision loss or blindness. Gene therapy has been effective in treating autosomal recessive RP (arRP). However, limited options are available for patients with autosomal dominant RP (adRP). In vivo gene editing may be a therapeutic option to treat adRP. We previously rescued vision in neonatal adRP rats by the selective ablation of the Rhodopsin S334ter transgene following electroporation of a CRISPR/Cas9 vector. However, the translational feasibility and long-term safety and efficacy of ablation therapy is unclear. To this end, we show that AAV delivery of a CRISPR/Cas9 construct disrupted the Rhodopsin P23H transgene in postnatal rats, which rescued long-term vision and retinal morphology.
Collapse
|
4
|
Global Transcriptional Analyses of the Wnt-Induced Development of Neural Stem Cells from Human Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22147473. [PMID: 34299091 PMCID: PMC8308016 DOI: 10.3390/ijms22147473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
The differentiation of human pluripotent stem cells (hPSCs) to neural stem cells (NSCs) is the key initial event in neurogenesis and is thought to be dependent on the family of Wnt growth factors, their receptors and signaling proteins. The delineation of the transcriptional pathways that mediate Wnt-induced hPSCs to NSCs differentiation is vital for understanding the global genomic mechanisms of the development of NSCs and, potentially, the creation of new protocols in regenerative medicine. To understand the genomic mechanism of Wnt signaling during NSCs development, we treated hPSCs with Wnt activator (CHIR-99021) and leukemia inhibitory factor (LIF) in a chemically defined medium (N2B27) to induce NSCs, referred to as CLNSCs. The CLNSCs were subcultured for more than 40 passages in vitro; were positive for AP staining; expressed neural progenitor markers such as NESTIN, PAX6, SOX2, and SOX1; and were able to differentiate into three neural lineage cells: neurons, astrocytes, and oligodendrocytes in vitro. Our transcriptome analyses revealed that the Wnt and Hedgehog signaling pathways regulate hPSCs cell fate decisions for neural lineages and maintain the self-renewal of CLNSCs. One interesting network could be the deregulation of the Wnt/β-catenin signaling pathway in CLNSCs via the downregulation of c-MYC, which may promote exit from pluripotency and neural differentiation. The Wnt-induced spinal markers HOXA1-4, HOXA7, HOXB1-4, and HOXC4 were increased, however, the brain markers FOXG1 and OTX2, were absent in the CLNSCs, indicating that CLNSCs have partial spinal cord properties. Finally, a CLNSC simple culture condition, when applied to hPSCs, supports the generation of NSCs, and provides a new and efficient cell model with which to untangle the mechanisms during neurogenesis.
Collapse
|
5
|
Zhang CJ, Ma Y, Jin ZB. The road to restore vision with photoreceptor regeneration. Exp Eye Res 2020; 202:108283. [PMID: 33010290 DOI: 10.1016/j.exer.2020.108283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Neuroretinal diseases are the predominant cause of irreversible blindness worldwide, mainly due to photoreceptor loss. Currently, there are no radical treatments to fully reverse the degeneration or even stop the disease progression. Thus, it is urgent to develop new biological therapeutics for these diseases on the clinical side. Stem cell-based treatments have become a promising therapeutic for neuroretinal diseases through the replacement of damaged cells with photoreceptors and some allied cells. To date, considerable efforts have been made to regenerate the diseased retina based on stem cell technology. In this review, we overview the current status of stem cell-based treatments for photoreceptor regeneration, including the major cell sources derived from different stem cells in pre-clinical or clinical trial stages. Additionally, we discuss herein the major challenges ahead for and potential new strategy toward photoreceptor regeneration.
Collapse
Affiliation(s)
- Chang-Jun Zhang
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
6
|
Extracellular vesicle therapy for retinal diseases. Prog Retin Eye Res 2020; 79:100849. [PMID: 32169632 DOI: 10.1016/j.preteyeres.2020.100849] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EV), which include exosomes and microvesicles, are secreted from virtually every cell. EV contain mRNA, miRNA, lipids and proteins and can deliver this expansive cargo into nearby cells as well as over long distances via the blood stream. Great interest has been given to them for their role in cell to cell communication, disease progression, or as biomarkers, and more recent studies have interrogated their potential as a therapeutic that may replace paracrine-acting cell therapies. The retina is a conveniently accessible component of the central nervous system and the proposed paradigm for the testing of many cell therapies. Recently, several studies have been published demonstrating that the delivery of EV/exosomes into the eye can elicit significant therapeutic effects in several models of retinal disease. We summarize results from currently available studies, demonstrating their efficacy in multiple eye disease models as well as highlighting where future research efforts should be directed.
Collapse
|
7
|
Choi KA, Park HK, Hwang I, Jeong H, Park HS, Jang AY, Namkung Y, Hyun D, Lee S, Yoo BM, Kwon HJ, Seol KC, Kim JO, Hong S. Tissue inhibitor of metalloproteinase proteins inhibit teratoma growth in mice transplanted with pluripotent stem cells. Stem Cells 2019; 38:516-529. [PMID: 31778275 DOI: 10.1002/stem.3132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/25/2019] [Indexed: 11/11/2022]
Abstract
Pluripotent stem cells (PSCs) can serve as an unlimited cell source for transplantation therapies for treating various devastating diseases, such as cardiovascular diseases, diabetes, and Parkinson's disease. However, PSC transplantation has some associated risks, including teratoma formation from the remaining undifferentiated PSCs. Thus, for successful clinical application, it is essential to ablate the proliferative PSCs before or after transplantation. In this study, neural stem cell-derived conditioned medium (NSC-CM) inhibited the proliferation of PSCs and PSC-derived neural precursor (NP) cells without influencing the potential of PSC-NP cells to differentiate into neurons in vitro and prevented teratoma growth in vivo. Moreover, we found that the NSC-CM remarkably decreased the expression levels of Oct4 and cyclin D1 that Oct4 directly binds to and increased the cleaved-caspase 3-positive cell death through the DNA damage response in PSCs and PSC-NPs. Interestingly, we found that NSCs distinctly secreted the tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 proteins. These proteins suppressed not only the proliferation of PSCs in cell culture but also teratoma growth in mice transplanted with PSCs through inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 activity. Taken together, these results suggest that the TIMP proteins may improve the efficacy and safety of the PSC-based transplantation therapy.
Collapse
Affiliation(s)
- Kyung-Ah Choi
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Han-Kyul Park
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Insik Hwang
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Hyesun Jeong
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Hang-Soo Park
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Ah-Young Jang
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Yong Namkung
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Donghun Hyun
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Seulbee Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Byung Min Yoo
- Medical College of Seoul National University, Seoul, Republic of Korea
| | | | - Ki-Cheon Seol
- Institute of Stem Cell Research, Future Cell Therapy, Ahnyang, Republic of Korea
| | - Jeong-Ok Kim
- Institute of Stem Cell Research, Future Cell Therapy, Ahnyang, Republic of Korea
| | - Sunghoi Hong
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res 2019; 71:1-25. [DOI: 10.1016/j.preteyeres.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
9
|
Lorach H, Kang S, Dalal R, Bhuckory MB, Quan Y, Palanker D. Long-term Rescue of Photoreceptors in a Rodent Model of Retinitis Pigmentosa Associated with MERTK Mutation. Sci Rep 2018; 8:11312. [PMID: 30054542 PMCID: PMC6063887 DOI: 10.1038/s41598-018-29631-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
MERTK mutation reduces the ability of retinal pigment epithelial (RPE) cells to phagocytize the photoreceptor outer segments, which leads to accumulation of debris separating photoreceptors from RPE cells, resulting in their degeneration and loss of vision. In a rat model of Retinitis Pigmentosa due to MERTK mutation, we demonstrate that surgical removal of debris performed when about half of photoreceptors are lost (P38), allows the remaining photoreceptor cells to renew their outer segments and survive for at least 6 months - 3 times longer than in untreated eyes. In another set of experiments, patterned laser photocoagulation was performed before the debris formation (P19-25) to destroy a fraction of photoreceptors and thereby reduce the phagocytic load of shed outer segment fragments. This treatment also delayed the degeneration of the remaining photoreceptors. Both approaches were assessed functionally and morphologically, using electroretinography, optical coherence tomography, and histology. The long-term preservation of photoreceptors we observed indicates that MERTK-related form of inherited retinal degeneration, which has currently no cure, could be amenable to laser therapy or subretinal surgery, to extend the visual function, potentially for life.
Collapse
Affiliation(s)
- H Lorach
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA.
| | - S Kang
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - R Dalal
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - M B Bhuckory
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Y Quan
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - D Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Structural divergence of essential triad ribbon synapse proteins among placental mammals - Implications for preclinical trials in photoreceptor transplantation therapy. Exp Eye Res 2017; 159:156-167. [PMID: 28322827 DOI: 10.1016/j.exer.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/24/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022]
Abstract
As photoreceptor transplantation rapidly moves closer to the clinic, verifying graft efficacy in animal models may have unforeseen xenogeneic barriers. Although photoreceptor transplants have most convincingly exhibited functional synaptogenesis in conspecific studies, such evidence (while ruling out false-positives due to: viral graft labeling, fusion/cytosolic transfer, or neuroprotection) has not yet been shown for discordant xenografts. From this, a fundamental question should be raised: is useful xenosynaptogenesis likely between human photoreceptors and mouse retina? The triad ribbon synapse (TRS) that would normally form is unique and contains trans-synaptic proteins essential to its formation and function. Thus, could interspecific structural divergence be present that may inhibit this trans-synaptic bridge in discordant xenografts? In an effort to address this question computationally, we compared eight recently confirmed (including subcellular location) TRS specific (or predominantly expressed at the TRS) proteins among placental mammals (1-to-1 orthologs) using HyPhy selection analysis (a predictive measure of structural divergence) and by using Phyre2 tertiary structural modeling. Here, selection analysis revealed strong positive (diversifying) selection acting on a particularly important TRS protein: pikachurin. This positive selection was localized to its second Laminin-G (LG)-like domain and on its N-terminal domain - a putative region of trans-synaptic interaction. Localization of structural divergence to the N-terminus of each putative post-translational cleavage (PTC) product may suggest neofunctionalization from ancestral uncleaved pikachurin - this would be consistent with a recent counter-paradigm report of pikachurin cleavage predominating at the TRS. From this, we suggest a dual role after cleavage where the N-terminal fragment can still mediate the trans-synaptic bridge, while the C-terminal fragment may act as a diffusible trophic or "homing" factor for bipolar cell dendrite migration. Tertiary structural models mirrored the conformational divergence predicted by selection analysis. With human and mouse pikachurin (as well as other TRS proteins) likely to diverge considerably in structure among placental mammals - alongside known inter-mammalian variation in TRS phenotype and protein repertoire, high levels of diversifying selection acting on genes involving sensation, considerable timespans allowing for genetic drift that can create xenogeneic epistasis, and uncertainty surrounding the extent of xenosynaptogenesis in PPC transplant studies to date - use of distantly related hosts to test human photoreceptor graft therapeutic efficacy should be considered with caution.
Collapse
|
11
|
Manthey AL, Liu W, Jiang ZX, Lee MHK, Ji J, So KF, Lai JSM, Lee VWH, Chiu K. Using Electrical Stimulation to Enhance the Efficacy of Cell Transplantation Therapies for Neurodegenerative Retinal Diseases: Concepts, Challenges, and Future Perspectives. Cell Transplant 2017; 26:949-965. [PMID: 28155808 DOI: 10.3727/096368917x694877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Disease or trauma-induced loss or dysfunction of neurons in any central nervous system (CNS) tissue will have a significant impact on the health of the affected patient. The retina is a multilayered tissue that originates from the neuroectoderm, much like the brain and spinal cord. While sight is not required for life, neurodegeneration-related loss of vision not only affects the quality of life for the patient but also has societal implications in terms of health care expenditure. Thus, it is essential to develop effective strategies to repair the retina and prevent disease symptoms. To address this need, multiple techniques have been investigated for their efficacy in treating retinal degeneration. Recent advances in cell transplantation (CT) techniques in preclinical, animal, and in vitro culture studies, including further evaluation of endogenous retinal stem cells and the differentiation of exogenous adult stem cells into various retinal cell types, suggest that this may be the most appropriate option to replace lost retinal neurons. Unfortunately, the various limitations of CT, such as immune rejection or aberrant cell behavior, have largely prevented this technique from becoming a widely used clinical treatment option. In parallel with the advances in CT methodology, the use of electrical stimulation (ES) to treat retinal degeneration has also been recently evaluated with promising results. In this review, we propose that ES could be used to enhance CT therapy, whereby electrical impulses can be applied to the retina to control both native and transplanted stem cell behavior/survival in order to circumvent the limitations associated with retinal CT. To highlight the benefits of this dual treatment, we have briefly outlined the recent developments and limitations of CT with regard to its use in the ocular environment, followed by a brief description of retinal ES, as well as described their combined use in other CNS tissues.
Collapse
|
12
|
Selvaraj K, Gowthamarajan K, Karri VVSR, Barauah UK, Ravisankar V, Jojo GM. Current treatment strategies and nanocarrier based approaches for the treatment and management of diabetic retinopathy. J Drug Target 2017; 25:386-405. [DOI: 10.1080/1061186x.2017.1280809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kousalya Selvaraj
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | | | - Uday K. Barauah
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | - Vanka Ravisankar
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | - Gifty M. Jojo
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| |
Collapse
|
13
|
Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina. Brain Res 2016; 1646:522-534. [PMID: 27369448 DOI: 10.1016/j.brainres.2016.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/27/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022]
Abstract
Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined.
Collapse
|
14
|
Tsai Y, Lu B, Bakondi B, Girman S, Sahabian A, Sareen D, Svendsen CN, Wang S. Human iPSC-Derived Neural Progenitors Preserve Vision in an AMD-Like Model. Stem Cells 2015; 33:2537-49. [PMID: 25869002 DOI: 10.1002/stem.2032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
Pluripotent stem cell-derived retinal pigment epithelial (RPE) cells are currently being tested for cell replacement in late-stage age-related macular degeneration (AMD). However, preserving vision at early-stages may also be possible. Here, we demonstrate that transplantation of neural progenitor cells (NPCs) derived from induced pluripotent stem cells (iNPCs) limits disease progression in the Royal College of Surgeons rat, a preclinical model of AMD. Grafted-iNPCs survived, remained undifferentiated, and distributed extensively in a laminar fashion in the subretinal space. Retinal pathology resulting from the accumulation of undigested photoreceptor outer segments (POS) was significantly reduced in iNPC-injected rats compared with controls. Phagosomes within grafted-iNPCs contained POS, suggesting that iNPCs had compensated for defective POS phagocytosis by host-RPE. The iNPC-treated eyes contained six to eight rows of photoreceptor nuclei that spanned up to 5 mm in length in transverse retinal sections, compared with only one row of photoreceptors in controls. iNPC treatment fully preserved visual acuity measured by optokinetic response. Electrophysiological recordings revealed that retina with the best iNPC-protected areas were 140-fold more sensitive to light stimulation than equivalent areas of contralateral eyes. The results described here support the therapeutic utility of iNPCs as autologous grafts for early-stage of AMD.
Collapse
Affiliation(s)
- Yuchun Tsai
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Bin Lu
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Benjamin Bakondi
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sergey Girman
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anais Sahabian
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dhruv Sareen
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Clive N Svendsen
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shaomei Wang
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
15
|
Jankowiak W, Kruszewski K, Flachsbarth K, Skevas C, Richard G, Rüther K, Braulke T, Bartsch U. Sustained Neural Stem Cell-Based Intraocular Delivery of CNTF Attenuates Photoreceptor Loss in the nclf Mouse Model of Neuronal Ceroid Lipofuscinosis. PLoS One 2015; 10:e0127204. [PMID: 25992714 PMCID: PMC4439090 DOI: 10.1371/journal.pone.0127204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/13/2015] [Indexed: 01/10/2023] Open
Abstract
A sustained intraocular administration of neurotrophic factors is among the strategies aimed at establishing treatments for currently untreatable degenerative retinal disorders. In the present study we have analyzed the neuroprotective effects of a continuous neural stem (NS) cell-based intraocular delivery of ciliary neurotrophic factor (CNTF) on photoreceptor cells in the nclf mouse, an animal model of the neurodegenerative lysosomal storage disorder variant late infantile neuronal ceroid lipofuscinosis (vLINCL). To this aim, we genetically modified adherently cultivated NS cells with a polycistronic lentiviral vector encoding a secretable variant of CNTF together with a Venus reporter gene (CNTF-NS cells). NS cells for control experiments (control-NS cells) were modified with a vector encoding the reporter gene tdTomato. Clonal CNTF-NS and control-NS cell lines were established using fluorescent activated cell sorting and intravitreally grafted into 14 days old nclf mice at the onset of retinal degeneration. The grafted cells preferentially differentiated into astrocytes that were attached to the posterior side of the lenses and the vitreal side of the retinas and stably expressed the transgenes for at least six weeks, the latest post-transplantation time point analyzed. Integration of donor cells into host retinas, ongoing proliferation of grafted cells or adverse effects of the donor cells on the morphology of the host eyes were not observed. Quantitative analyses of host retinas two, four and six weeks after cell transplantation revealed the presence of significantly more photoreceptor cells in eyes with grafted CNTF-NS cells than in eyes with grafted control-NS cells. This is the first demonstration that a continuous intraocular administration of a neurotrophic factor attenuates retinal degeneration in an animal model of neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Wanda Jankowiak
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Kruszewski
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Flachsbarth
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christos Skevas
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisbert Richard
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Rüther
- Department of Ophthalmology, Sankt Gertrauden-Krankenhaus, Berlin, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children’s Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
16
|
Alonso-Alonso ML, Srivastava GK. Current focus of stem cell application in retinal repair. World J Stem Cells 2015; 7:641-648. [PMID: 25914770 PMCID: PMC4404398 DOI: 10.4252/wjsc.v7.i3.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/06/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
The relevance of retinal diseases, both in society’s economy and in the quality of people’s life who suffer with them, has made stem cell therapy an interesting topic for research. Embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adipose derived mesenchymal stem cells (ADMSCs) are the focus in current endeavors as a source of different retinal cells, such as photoreceptors and retinal pigment epithelial cells. The aim is to apply them for cell replacement as an option for treating retinal diseases which so far are untreatable in their advanced stage. ESCs, despite the great potential for differentiation, have the dangerous risk of teratoma formation as well as ethical issues, which must be resolved before starting a clinical trial. iPSCs, like ESCs, are able to differentiate in to several types of retinal cells. However, the process to get them for personalized cell therapy has a high cost in terms of time and money. Researchers are working to resolve this since iPSCs seem to be a realistic option for treating retinal diseases. ADMSCs have the advantage that the procedures to obtain them are easier. Despite advancements in stem cell application, there are still several challenges that need to be overcome before transferring the research results to clinical application. This paper reviews recent research achievements of the applications of these three types of stem cells as well as clinical trials currently based on them.
Collapse
|
17
|
Mead B, Berry M, Logan A, Scott RAH, Leadbeater W, Scheven BA. Stem cell treatment of degenerative eye disease. Stem Cell Res 2015; 14:243-57. [PMID: 25752437 PMCID: PMC4434205 DOI: 10.1016/j.scr.2015.02.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 12/16/2022] Open
Abstract
Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment.
Collapse
Affiliation(s)
- Ben Mead
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK; School of Dentistry, University of Birmingham, B4 6NN, UK.
| | - Martin Berry
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Robert A H Scott
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Wendy Leadbeater
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Ben A Scheven
- School of Dentistry, University of Birmingham, B4 6NN, UK
| |
Collapse
|
18
|
Zhao JJ, Ouyang H, Luo J, Patel S, Xue Y, Quach J, Sfeir N, Zhang M, Fu X, Ding S, Chen S, Zhang K. Induction of retinal progenitors and neurons from mammalian Müller glia under defined conditions. J Biol Chem 2014; 289:11945-11951. [PMID: 24523410 DOI: 10.1074/jbc.m113.532671] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vision impairment caused by loss of retinal neurons affects millions of people worldwide, and currently, there is no effective treatment. Müller glia of mammalian retina may represent an under-recognized and potential source for regeneration of a wide range of retinal cell types, including retinal ganglion cells and photoreceptors. Here, we demonstrated that mouse Müller glia cells have the capacity to be reprogrammed into the retinal neuronal cell fate and are competent to give rise to photoreceptors under a defined culture condition. Inactivation of p53 released proliferation restriction of Müller glia and significantly enhanced the induction of retinal progenitor from Müller glia in culture. Moreover, following the ocular transplantation, the Müller glia-derived progenitors were differentiated toward the fates of photoreceptors and retinal ganglion cells. Together, these results demonstrate the feasibility of using Müller glia as a potential source for retinal repair and regeneration.
Collapse
Affiliation(s)
- Jack Jiagang Zhao
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093.
| | - Hong Ouyang
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - Jing Luo
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 41001, China
| | - Sherrina Patel
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - Yuanchao Xue
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - John Quach
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - Nicole Sfeir
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - Meixia Zhang
- Molecular Medicine Research Center, West China Hospital, Chengdu, Sichuan 610041, China
| | - Xiangdong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - Sheng Ding
- Gladstone Institutes, University of California, San Francisco, San Francisco, California 94158-2261
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093
| | - Kang Zhang
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093; Veterans Administration Healthcare System, San Diego, California 92161.
| |
Collapse
|
19
|
Tsai Y, Lu B, Ljubimov AV, Girman S, Ross-Cisneros FN, Sadun AA, Svendsen CN, Cohen RM, Wang S. Ocular changes in TgF344-AD rat model of Alzheimer's disease. Invest Ophthalmol Vis Sci 2014; 55:523-34. [PMID: 24398104 DOI: 10.1167/iovs.13-12888] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by progressive decline in learning, memory, and executive functions. In addition to cognitive and behavioral deficits, vision disturbances have been reported in early stage of AD, well before the diagnosis is clearly established. To further investigate ocular abnormalities, a novel AD transgenic rat model was analyzed. METHODS Transgenic (Tg) rats (TgF344-AD) heterozygous for human mutant APPswe/PS1ΔE9 and age-matched wild type (WT) rats, as well as 20 human postmortem retinal samples from both AD and healthy donors were used. Visual function in the rodent was analyzed using the optokinetic response and luminance threshold recording from the superior colliculus. Immunohistochemistry on retinal and brain sections was used to detect various markers including amyloid-β (Aβ) plaques. RESULTS As expected, Aβ plaques were detected in the hippocampus, cortex, and retina of Tg rats. Plaque-like structures were also found in two AD human whole-mount retinas. The choroidal thickness was significantly reduced in both Tg rat and in AD human eyes when compared with age-matched controls. Tg rat eyes also showed hypertrophic retinal pigment epithelial cells, inflammatory cells, and upregulation of complement factor C3. Although visual acuity was lower in Tg than in WT rats, there was no significant difference in the retinal ganglion cell number and retinal vasculature. CONCLUSIONS In this study, we observed pathological changes in the choroid and in RPE cells in the TgF344-AD rat model; choroidal thinning was observed further in human AD retina. Along with Ab deposition, the inflammatory response was manifested by microglial recruitment and complement activation. Further studies are needed to elucidate the significance and mechanisms of these pathological changes [corrected].
Collapse
Affiliation(s)
- Yuchun Tsai
- Cedars-Sinai Regenerative Medicine Institute, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|