1
|
Babighian S, Zanella MS, Gattazzo I, Galan A, Gagliano C, D'Esposito F, Zeppieri M. Atrophic Macular Degeneration and Stem Cell Therapy: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:105-118. [PMID: 39259423 DOI: 10.1007/5584_2024_819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.
Collapse
Affiliation(s)
- Silvia Babighian
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Maria Sole Zanella
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Irene Gattazzo
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Alessandro Galan
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Caterina Gagliano
- Eye Clinic Catania University San Marco Hospital, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, Enna, EN, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
2
|
Zhou W, Chai Y, Lu S, Yang Q, Tang L, Zhou D. Advances in the study of tissue-engineered retinal pigment epithelial cell sheets. Regen Ther 2024; 27:419-433. [PMID: 38694444 PMCID: PMC11062139 DOI: 10.1016/j.reth.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
Regarded as the most promising treatment modality for retinal degenerative diseases, retinal pigment epithelium cell replacement therapy holds significant potential. Common retinal degenerative diseases, including Age-related Macular Degeneration, are frequently characterized by damage to the unit comprising photoreceptors, retinal pigment epithelium, and Bruch's membrane. The selection of appropriate tissue engineering materials, in conjunction with retinal pigment epithelial cells, for graft preparation, can offer an effective treatment for retinal degenerative diseases. This article presents an overview of the research conducted on retinal pigment epithelial cell tissue engineering, outlining the challenges and future prospects.
Collapse
Affiliation(s)
- Wang Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Yujiao Chai
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Shan Lu
- National Engineering Research Center of Human Stem Cells, Changsha, China
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Qiaohui Yang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Liying Tang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Di Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- National Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| |
Collapse
|
3
|
Prieto-López L, Pereiro X, Vecino E. The mechanics of the retina: Müller glia role on retinal extracellular matrix and modelling. Front Med (Lausanne) 2024; 11:1393057. [PMID: 39296899 PMCID: PMC11410058 DOI: 10.3389/fmed.2024.1393057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The retina is a highly heterogeneous tissue, both cell-wise but also regarding its extracellular matrix (ECM). The stiffness of the ECM is pivotal in retinal development and maturation and has also been associated with the onset and/or progression of numerous retinal pathologies, such as glaucoma, proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), epiretinal membrane (ERM) formation or uveitis. Nonetheless, much remains unknown about the biomechanical milieu of the retina, and specifically the role that Müller glia play as principal mechanosensors and major producers of ECM constituents. So far, new approaches need to be developed to further the knowledge in the field of retinal mechanobiology for ECM-target applications to arise. In this review, we focus on the involvement of Müller glia in shaping and altering the retinal ECM under both physiological and pathological conditions and look into various biomaterial options to more accurately replicate the impact of matrix stiffness in vitro.
Collapse
Affiliation(s)
- Laura Prieto-López
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
4
|
Daniele E, Bosio L, Hussain NA, Ferrari B, Ferrari S, Barbaro V, McArdle B, Rassu N, Mura M, Parmeggiani F, Ponzin D. Denuded Descemet's membrane supports human embryonic stem cell-derived retinal pigment epithelial cell culture. PLoS One 2023; 18:e0281404. [PMID: 36745611 PMCID: PMC9901769 DOI: 10.1371/journal.pone.0281404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Recent clinical studies suggest that retinal pigment epithelial (RPE) cell replacement therapy may preserve vision in retinal degenerative diseases. Scaffold-based methods are being tested in ongoing clinical trials for delivering pluripotent-derived RPE cells to the back of the eye. The aim of this study was to investigate human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells survival and behaviour on a decellularized Descemet's Membrane (DM), which may be of clinical relevance in retinal transplantation. DMs were isolated from human donor corneas and treated with thermolysin. The DM surface topology and the efficiency of the denudation method were evaluated by atomic force microscope, scanning electron microscopy and histology. hESC-RPE cells were seeded onto the endothelial-side surface of decellularized DM in order to determine the potential of the membrane to support hESC-RPE cell culture, alongside maintaining their viability. Integrity of the hESC-RPE monolayer was assessed by measuring transepithelial resistance. RPE-specific gene expression and growth factors secretion were assessed to confirm maturation and functionality of the cells over the new substrate. Thermolysin treatment did not affect the integrity of the tissue, thus ensuring a reliable method to standardize the preparation of decellularized DM. 24 hours post-seeding, hESC-RPE cell attachment and initial proliferation rate over the denuded DM were higher than hESC-RPE cells cultured on tissue culture inserts. On the new matrix, hESC-RPE cells succeeded in forming an intact monolayer with mature tight junctions. The resulting cell culture showed characteristic RPE cell morphology and proper protein localization. Gene expression analysis and VEGF secretion demonstrate DM provides supportive scaffolding and inductive properties to enhance hESC-RPE cells maturation. Decellularized DM was shown to be capable of sustaining hESC-RPE cells culture, thus confirming to be potentially a suitable candidate for retinal cell therapy.
Collapse
Affiliation(s)
- Elena Daniele
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Veneto Eye Bank Foundation, Venice, Italy
- * E-mail:
| | | | - Noor Ahmed Hussain
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | - Brian McArdle
- The Eye-Bank for Sight Restoration, Inc., New York City, New York, United States of America
| | - Nicolò Rassu
- Ophthalmic Unit, Ospedale dell’Angelo, Venice, Italy
| | - Marco Mura
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Parmeggiani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Padua, Italy
| | | |
Collapse
|
5
|
Molins B, Mesquida M, Adan A. Bioengineering approaches for modelling retinal pathologies of the outer blood-retinal barrier. Prog Retin Eye Res 2022:101097. [PMID: 35840488 DOI: 10.1016/j.preteyeres.2022.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Alterations of the junctional complex of the outer blood-retinal barrier (oBRB), which is integrated by the close interaction of the retinal pigment epithelium, the Bruch's membrane, and the choriocapillaris, contribute to the loss of neuronal signalling and subsequent vision impairment in several retinal inflammatory disorders such as age-related macular degeneration and diabetic retinopathy. Reductionist approaches into the mechanisms that underlie such diseases have been hindered by the absence of adequate in vitro models using human cells to provide the 3D dynamic architecture that enables expression of the in vivo phenotype of the oBRB. Conventional in vitro cell models are based on 2D monolayer cellular cultures, unable to properly recapitulate the complexity of living systems. The main drawbacks of conventional oBRB models also emerge from the cell sourcing, the lack of an appropriate Bruch's membrane analogue, and the lack of choroidal microvasculature with flow. In the last years, the advent of organ-on-a-chip, bioengineering, and stem cell technologies is providing more advanced 3D models with flow, multicellularity, and external control over microenvironmental properties. By incorporating additional biological complexity, organ-on-a-chip devices can mirror physiologically relevant properties of the native tissue while offering additional set ups to model and study disease. In this review we first examine the current understanding of oBRB biology as a functional unit, highlighting the coordinated contribution of the different components to barrier function in health and disease. Then we describe recent advances in the use of pluripotent stem cells-derived retinal cells, Bruch's membrane analogues, and co-culture techniques to recapitulate the oBRB. We finally discuss current advances and challenges of oBRB-on-a-chip technologies for disease modelling.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Marina Mesquida
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alfredo Adan
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Instituto Clínic de Oftalmología, Hospital Clínic Barcelona, C/ Sabino de Arana 1, 08028, Barcelona, Spain
| |
Collapse
|
6
|
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13:1446-1479. [PMID: 34786153 PMCID: PMC8567457 DOI: 10.4252/wjsc.v13.i10.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. Although it comprises several eye diseases, loss of retinal pigment epithelial (RPE) and photoreceptor cells are the major contributors to their pathogenesis. Early therapies included diverse treatments, such as provision of anti-vascular endothelial growth factor and many survival and trophic factors that, in some cases, slow down the progression of the degeneration, but do not effectively prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell replacement strategies for retina degeneration. Therapies using different types of SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal and of differentiating into multiple cell types, have gained ample support. Numerous preclinical studies have assessed transplantation of SC in animal models, with encouraging results. The aim of this work is to revise the different preclinical and clinical approaches, analyzing the SC type used, their efficacy, safety, cell attachment and integration, absence of tumor formation and immunorejection, in order to establish which were the most relevant and successful. In addition, we examine the questions and concerns still open in the field. The data demonstrate the existence of two main approaches, aimed at replacing either RPE cells or photoreceptors. Emerging evidence suggests that RPCs and iPSC are the best candidates, presenting no ethical concerns and a low risk of immunorejection. Clinical trials have already supported the safety and efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor formation, lack of attachment or integration of transplanted cells into host retinas, immunorejection, cell death, and also ethical. However, the amazing progress in the field in the last few years makes it possible to envisage safe and effective treatments to restore vision loss in a near future.
Collapse
Affiliation(s)
- Olga L German
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Harmonie Vallese-Maurizi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Tamara B Soto
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Nora P Rotstein
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Luis Enrique Politi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
7
|
Song Y, Overmass M, Fan J, Hodge C, Sutton G, Lovicu FJ, You J. Application of Collagen I and IV in Bioengineering Transparent Ocular Tissues. Front Surg 2021; 8:639500. [PMID: 34513910 PMCID: PMC8427501 DOI: 10.3389/fsurg.2021.639500] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Collagens represent a major group of structural proteins expressed in different tissues and display distinct and variable properties. Whilst collagens are non-transparent in the skin, they confer transparency in the cornea and crystalline lens of the eye. There are 28 types of collagen that all share a common triple helix structure yet differ in the composition of their α-chains leading to their different properties. The different organization of collagen fibers also contributes to the variable tissue morphology. The important ability of collagen to form different tissues has led to the exploration and application of collagen as a biomaterial. Collagen type I (Col-I) and collagen type IV (Col-IV) are the two primary collagens found in corneal and lens tissues. Both collagens provide structure and transparency, essential for a clear vision. This review explores the application of these two collagen types as novel biomaterials in bioengineering unique tissue that could be used to treat a variety of ocular diseases leading to blindness.
Collapse
Affiliation(s)
- Yihui Song
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Morgan Overmass
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jiawen Fan
- Key Laboratory of Myopia of State Health Ministry, Department of Ophthalmology and Vision Sciences, Eye and Ear, Nose, and Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chris Hodge
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- New South Wales (NSW) Tissue Bank, Sydney, NSW, Australia
- Vision Eye Institute, Chatswood, NSW, Australia
| | - Gerard Sutton
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- New South Wales (NSW) Tissue Bank, Sydney, NSW, Australia
- Vision Eye Institute, Chatswood, NSW, Australia
| | - Frank J. Lovicu
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jingjing You
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Maqueda M, Mosquera JL, García-Arumí J, Veiga A, Duarri A. Repopulation of decellularized retinas with hiPSC-derived retinal pigment epithelial and ocular progenitor cells shows cell engraftment, organization and differentiation. Biomaterials 2021; 276:121049. [PMID: 34332373 DOI: 10.1016/j.biomaterials.2021.121049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022]
Abstract
The retinal extracellular matrix (ECM) provides architectural support, adhesion and signal guidance that controls retinal development. Decellularization of the ECM affords great potential to tissue engineering; however, how structural retinal ECM affects in vitro development, differentiation and maturation of ocular cells remains to be elucidated. Here, mouse and porcine retinas were decellularized and the protein profile analyzed. Acellular retinal ECM (arECM) scaffolds were then repopulated with human iPSC-derived retinal pigment epithelial (RPE) cells or ocular progenitor cells (OPC) to assess their integration, proliferation and organization. 3837 and 2612 unique proteins were identified in mouse and porcine arECM, respectively, of which 93 and 116 proteins belong to the matrisome. GO analysis shows that matrisome-related proteins were associated with the extracellular region and cell junction and KEGG pathways related to signalling transduction, nervous and endocrine systems and cell junctions were enriched. Interestingly, mouse and porcine arECMs were successfully repopulated with both RPE and OPC, the latter exhibiting cell lineage-specific clusters. Retinal cells organized into different layers containing well-defined areas with pigmented cells, photoreceptors, Müller glia, astrocytes, and ganglion cells, whereas in other areas, conjunctival/limbal, corneal and lens cells re-arranged in cell-specific self-organized areas. In conclusion, our results demonstrated that decellularization of both mouse and porcine retinas retains common native ECM components that upon cell repopulation could guide similar ocular cell adhesion, migration and organization.
Collapse
Affiliation(s)
- Maria Maqueda
- Bioinformatics Unit, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Luis Mosquera
- Bioinformatics Unit, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca - VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Anna Veiga
- Pluripotent Stem Cell Therapy Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; National Stem Cell Bank-Barcelona Node, Biomolecular and Bioinformatics Resources Platform (PRB2), ISCIII, Madrid, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca - VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain; National Stem Cell Bank-Barcelona Node, Biomolecular and Bioinformatics Resources Platform (PRB2), ISCIII, Madrid, Spain.
| |
Collapse
|
9
|
The Evolution of Fabrication Methods in Human Retina Regeneration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optic nerve and retinal diseases such as age-related macular degeneration and inherited retinal dystrophies (IRDs) often cause permanent sight loss. Currently, a limited number of retinal diseases can be treated. Hence, new strategies are needed. Regenerative medicine and especially tissue engineering have recently emerged as promising alternatives to repair retinal degeneration and recover vision. Here, we provide an overview of retinal anatomy and diseases and a comprehensive review of retinal regeneration approaches. In the first part of the review, we present scaffold-free approaches such as gene therapy and cell sheet technology while in the second part, we focus on fabrication techniques to produce a retinal scaffold with a particular emphasis on recent trends and advances in fabrication techniques. To this end, the use of electrospinning, 3D bioprinting and lithography in retinal regeneration was explored.
Collapse
|
10
|
Marcos LF, Wilson SL, Roach P. Tissue engineering of the retina: from organoids to microfluidic chips. J Tissue Eng 2021; 12:20417314211059876. [PMID: 34917332 PMCID: PMC8669127 DOI: 10.1177/20417314211059876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Despite advancements in tissue engineering, challenges remain for fabricating functional tissues that incorporate essential features including vasculature and complex cellular organisation. Monitoring of engineered tissues also raises difficulties, particularly when cell population maturity is inherent to function. Microfluidic, or lab-on-a-chip, platforms address the complexity issues of conventional 3D models regarding cell numbers and functional connectivity. Regulation of biochemical/biomechanical conditions can create dynamic structures, providing microenvironments that permit tissue formation while quantifying biological processes at a single cell level. Retinal organoids provide relevant cell numbers to mimic in vivo spatiotemporal development, where conventional culture approaches fail. Modern bio-fabrication techniques allow for retinal organoids to be combined with microfluidic devices to create anato-physiologically accurate structures or 'retina-on-a-chip' devices that could revolution ocular sciences. Here we present a focussed review of retinal tissue engineering, examining the challenges and how some of these have been overcome using organoids, microfluidics, and bioprinting technologies.
Collapse
Affiliation(s)
- Luis F Marcos
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Samantha L Wilson
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| |
Collapse
|
11
|
Cell-Based Therapies for Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:265-293. [PMID: 33848006 DOI: 10.1007/978-3-030-66014-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. The pathogenesis of AMD involves dysfunction and loss of the retinal pigment epithelium (RPE), a monolayer of cells that provide nourishment and functional support for the overlying photoreceptors. RPE cells in mammals are not known to divide, renew or regenerate in vivo, and in advanced AMD, RPE loss leads to degeneration of the photoreceptors and impairment of vision. One possible therapeutic approach would be to support and replace the failing RPE cells of affected patients, and indeed moderate success of surgical procedures in which relatively healthy autologous RPE from the peripheral retina of the same eye was transplanted under the retina in the macular area suggested that RPE replacement could be a means to attenuate photoreceptor cell loss. This prompted exploration of the possibility to use pluripotent stem cells (PSCs) as a potential source for "healthy and young" RPE cells for such cell-based therapy of AMD. Various approaches ranging from the use of allogeneic embryonic stem cells to autologous induced pluripotent stem cells are now being tested within early clinical trials. Such PSC-derived RPE cells are either injected into the subretinal space as a suspension, or transplanted as a monolayer patch upon scaffold support. Although most of these approaches are at early clinical stages, safety of the RPE product has been demonstrated by several of these studies. Here, we review the concept of cell-based therapy of AMD and provide an update on current progress in the field of RPE transplantation.
Collapse
|
12
|
Ghareeb AE, Lako M, Steel DH. Coculture techniques for modeling retinal development and disease, and enabling regenerative medicine. Stem Cells Transl Med 2020; 9:1531-1548. [PMID: 32767661 PMCID: PMC7695644 DOI: 10.1002/sctm.20-0201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
Stem cell-derived retinal organoids offer the opportunity to cure retinal degeneration of wide-ranging etiology either through the study of in vitro models or the generation of tissue for transplantation. However, despite much work in animals and several human pilot studies, satisfactory therapies have not been developed. Two major challenges for retinal regenerative medicine are (a) physical cell-cell interactions, which are critical to graft function, are not formed and (b) the host environment does not provide suitable queues for development. Several strategies offer to improve the delivery, integration, maturation, and functionality of cell transplantation. These include minimally invasive delivery, biocompatible material vehicles, retinal cell sheets, and optogenetics. Optimizing several variables in animal models is practically difficult, limited by anatomical and disease pathology which is often different to humans, and faces regulatory and ethical challenges. High-throughput methods are needed to experimentally optimize these variables. Retinal organoids will be important to the success of these models. In their current state, they do not incorporate a representative retinal pigment epithelium (RPE)-photoreceptor interface nor vascular elements, which influence the neural retina phenotype directly and are known to be dysfunctional in common retinal diseases such as age-related macular degeneration. Advanced coculture techniques, which emulate the RPE-photoreceptor and RPE-Bruch's-choriocapillaris interactions, can incorporate disease-specific, human retinal organoids and overcome these drawbacks. Herein, we review retinal coculture models of the neural retina, RPE, and choriocapillaris. We delineate the scientific need for such systems in the study of retinal organogenesis, disease modeling, and the optimization of regenerative cell therapies for retinal degeneration.
Collapse
Affiliation(s)
- Ali E. Ghareeb
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation TrustSunderlandUK
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Majlinda Lako
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - David H. Steel
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation TrustSunderlandUK
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
13
|
Zhang CJ, Ma Y, Jin ZB. The road to restore vision with photoreceptor regeneration. Exp Eye Res 2020; 202:108283. [PMID: 33010290 DOI: 10.1016/j.exer.2020.108283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Neuroretinal diseases are the predominant cause of irreversible blindness worldwide, mainly due to photoreceptor loss. Currently, there are no radical treatments to fully reverse the degeneration or even stop the disease progression. Thus, it is urgent to develop new biological therapeutics for these diseases on the clinical side. Stem cell-based treatments have become a promising therapeutic for neuroretinal diseases through the replacement of damaged cells with photoreceptors and some allied cells. To date, considerable efforts have been made to regenerate the diseased retina based on stem cell technology. In this review, we overview the current status of stem cell-based treatments for photoreceptor regeneration, including the major cell sources derived from different stem cells in pre-clinical or clinical trial stages. Additionally, we discuss herein the major challenges ahead for and potential new strategy toward photoreceptor regeneration.
Collapse
Affiliation(s)
- Chang-Jun Zhang
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
14
|
Straňák Z, Kousal B, Ardan T, Veith M. Innovative strategies for treating retinal diseases. ACTA ACUST UNITED AC 2020; 75:287-295. [PMID: 32911944 DOI: 10.31348/2019/6/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aim of this comprehensive paper is to acquaint the readers with innovative approaches in the treatment of retinal diseases, which could in the coming years to get into clinical practice. Retinal prostheses, retinal pigment epithelial (RPE) transplantation, gene therapy and optogenetics will be described in this paper. METHODOLOGY Describing the basic characteristics and mechanisms of different types of therapy and subsequently literary minireview clarifying the current state of knowledge in the area. RESULTS Retinal prostheses, RPE transplantation, gene therapy and optogenetics offer yet unexplored possibilities and are considered as the future of treatment of retinal diseases where classical pharmacotherapy or surgical treatment are no longer sufficient. However, all these methods challenge not only in the innovative technical implementation itself, but also for the ethical, administrative and economic demands. CONCLUSION There will be certainly interesting development in the treatment of retinal diseases, but it is not possible to fully estimate which modality of treatment will be dominant in the future.
Collapse
|
15
|
Shen Y. Stem cell therapies for retinal diseases: from bench to bedside. J Mol Med (Berl) 2020; 98:1347-1368. [PMID: 32794020 DOI: 10.1007/s00109-020-01960-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
As the human retina has no regenerative ability, stem cell interventions represent potential therapies for various blinding retinal diseases. This type of therapy has been extensively studied in the human eyes through decades of preclinical studies. The safety profiles shown in clinical trials thus far have indicated that these strategies should be further explored. There are still challenges with regard to cell source, cell delivery, immuno-related adverse events and long-term maintenance of the therapeutic effects. Retinal stem cell therapy is likely to be most successful with a combination of multiple technologies, such as gene therapy. The purpose of this review is to present a synthetical and systematic coverage of stem cell therapies that target retinal diseases from bench to bedside, intending to appeal to both junior specialists and the broader community of clinical investigators alike. This review will only focus on therapies that have already been studied in clinical trials. This review summarizes key concepts, highlights the main studies in human patients and discusses the current challenges and potential methods to reduce safety concerns while enhancing the therapeutic effects.
Collapse
Affiliation(s)
- Yuening Shen
- Institute of Ophthalmology, University College London , 11-43 Bath St, London, EC1V 9EL, UK. .,Department of Medical Retina, Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| |
Collapse
|
16
|
EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21124271. [PMID: 32560057 PMCID: PMC7349630 DOI: 10.3390/ijms21124271] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) and endothelial–mesenchymal transition (EndMT) are physiological processes required for normal embryogenesis. However, these processes can be hijacked in pathological conditions to facilitate tissue fibrosis and cancer metastasis. In the eye, EMT and EndMT play key roles in the pathogenesis of subretinal fibrosis, the end-stage of age-related macular degeneration (AMD) that leads to profound and permanent vision loss. Predominant in subretinal fibrotic lesions are matrix-producing mesenchymal cells believed to originate from the retinal pigment epithelium (RPE) and/or choroidal endothelial cells (CECs) through EMT and EndMT, respectively. Recent evidence suggests that EMT of RPE may also be implicated during the early stages of AMD. Transforming growth factor-beta (TGFβ) is a key cytokine orchestrating both EMT and EndMT. Investigations in the molecular mechanisms underpinning EMT and EndMT in AMD have implicated a myriad of contributing factors including signaling pathways, extracellular matrix remodelling, oxidative stress, inflammation, autophagy, metabolism and mitochondrial dysfunction. Questions arise as to differences in the mesenchymal cells derived from these two processes and their distinct mechanistic contributions to the pathogenesis of AMD. Detailed discussion on the AMD microenvironment highlights the synergistic interactions between RPE and CECs that may augment the EMT and EndMT processes in vivo. Understanding the differential regulatory networks of EMT and EndMT and their contributions to both the dry and wet forms of AMD can aid the development of therapeutic strategies targeting both RPE and CECs to potentially reverse the aberrant cellular transdifferentiation processes, regenerate the retina and thus restore vision.
Collapse
|
17
|
Ben M'Barek K, Bertin S, Brazhnikova E, Jaillard C, Habeler W, Plancheron A, Fovet CM, Demilly J, Jarraya M, Bejanariu A, Sahel JA, Peschanski M, Goureau O, Monville C. Clinical-grade production and safe delivery of human ESC derived RPE sheets in primates and rodents. Biomaterials 2019; 230:119603. [PMID: 31732225 DOI: 10.1016/j.biomaterials.2019.119603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration as well as some forms of Retinitis Pigmentosa (RP) are characterized by a retinal degeneration involving the retinal pigment epithelium (RPE). Various strategies were proposed to cure these disorders including the replacement of RPE cells using human pluripotent stem cells (hPSCs), an unlimited source material to generate in vitro RPE cells. The formulation strategy of the cell therapy (either a reconstructed sheet or a cell suspension) is crucial to achieve an efficient and long lasting therapeutic effect. We previously developed a hPSC-RPE sheet disposed on human amniotic membrane that sustained the vision of rodents with retinal degeneration compared to the same cells injected as a suspension. However, the transplantation strategy was difficult to implement in large animals. Herein we developed two medical devices for the preparation, conservation and implantation of the hPSC-RPE sheet in nonhuman primates. The surgery was safe and well tolerated during the 7-week follow up. The graft integrity was preserved in primates. Moreover, the hPSC-RPE sheet did not induce teratoma or grafted cell dispersion to other organs in rodent models. This work clears the way for the first cell therapy for RP patients carrying RPE gene mutations (LRAT, RPE65 and MERTK).
Collapse
Affiliation(s)
- Karim Ben M'Barek
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
| | - Stéphane Bertin
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Elena Brazhnikova
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France
| | - Céline Jaillard
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France
| | - Walter Habeler
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
| | - Alexandra Plancheron
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
| | | | | | - Mohamed Jarraya
- Banque de Tissus Humain, Hôpital Saint Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Ana Bejanariu
- CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
| | - José-Alain Sahel
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France; Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Marc Peschanski
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France.
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France.
| |
Collapse
|
18
|
Fields MA, Del Priore LV, Adelman RA, Rizzolo LJ. Interactions of the choroid, Bruch's membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier. Prog Retin Eye Res 2019; 76:100803. [PMID: 31704339 DOI: 10.1016/j.preteyeres.2019.100803] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
The three interacting components of the outer blood-retinal barrier are the retinal pigment epithelium (RPE), choriocapillaris, and Bruch's membrane, the extracellular matrix that lies between them. Although previously reviewed independently, this review integrates these components into a more wholistic view of the barrier and discusses reconstitution models to explore the interactions among them. After updating our understanding of each component's contribution to barrier function, we discuss recent efforts to examine how the components interact. Recent studies demonstrate that claudin-19 regulates multiple aspects of RPE's barrier function and identifies a barrier function whereby mutations of claudin-19 affect retinal development. Co-culture approaches to reconstitute components of the outer blood-retinal barrier are beginning to reveal two-way interactions between the RPE and choriocapillaris. These interactions affect barrier function and the composition of the intervening Bruch's membrane. Normal or disease models of Bruch's membrane, reconstituted with healthy or diseased RPE, demonstrate adverse effects of diseased matrix on RPE metabolism. A stumbling block for reconstitution studies is the substrates typically used to culture cells are inadequate substitutes for Bruch's membrane. Together with human stem cells, the alternative substrates that have been designed offer an opportunity to engineer second-generation culture models of the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Mark A Fields
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lucian V Del Priore
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA; Department of Surgery, Yale University School of Medicine, PO Box 208062, New Haven, CT, 06520-8062, USA.
| |
Collapse
|
19
|
García Delgado AB, de la Cerda B, Alba Amador J, Valdés Sánchez ML, Fernández-Muñoz B, Relimpio López I, Rodríguez de la Rúa E, Díez Lloret A, Calado SM, Sánchez Pernaute R, Bhattacharya SS, Díaz Corrales FJ. Subretinal Transplant of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium on Nanostructured Fibrin-Agarose. Tissue Eng Part A 2019; 25:799-808. [DOI: 10.1089/ten.tea.2019.0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ana B. García Delgado
- Regeneration and Cell Therapy Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Berta de la Cerda
- Regeneration and Cell Therapy Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Julia Alba Amador
- Unidad de Producción y Reprogramación Celular, Iniciativa Andaluza en Terapias Avanzadas, Sevilla, Spain
| | - Maria Lourdes Valdés Sánchez
- Regeneration and Cell Therapy Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Iniciativa Andaluza en Terapias Avanzadas, Sevilla, Spain
| | - Isabel Relimpio López
- University Hospital Virgen Macarena, Sevilla, Spain
- RETICS Oftared, Carlos III Institute of Health (Spain), Ministry of Health RD16/0008/0010, Sevilla, Spain
| | - Enrique Rodríguez de la Rúa
- University Hospital Virgen Macarena, Sevilla, Spain
- RETICS Oftared, Carlos III Institute of Health (Spain), Ministry of Health RD16/0008/0010, Sevilla, Spain
| | - Andrea Díez Lloret
- Regeneration and Cell Therapy Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Sofia M. Calado
- Regeneration and Cell Therapy Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Rosario Sánchez Pernaute
- Unidad de Producción y Reprogramación Celular, Iniciativa Andaluza en Terapias Avanzadas, Sevilla, Spain
| | - Shom S. Bhattacharya
- Regeneration and Cell Therapy Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Francisco J. Díaz Corrales
- Regeneration and Cell Therapy Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| |
Collapse
|
20
|
Cell Therapy for Retinal Dystrophies: From Cell Suspension Formulation to Complex Retinal Tissue Bioengineering. Stem Cells Int 2019; 2019:4568979. [PMID: 30809263 PMCID: PMC6364130 DOI: 10.1155/2019/4568979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/01/2019] [Indexed: 12/25/2022] Open
Abstract
Retinal degeneration is an irreversible phenomenon caused by various disease conditions including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). During the course of these diseases, photoreceptors (PRs) are susceptible to degeneration due to their malfunctions or to a primary dysfunction of the retinal pigment epithelium (RPE). Once lost, these cells could not be endogenously regenerated in humans, and cell therapy to replace the lost cells is one of the promising strategies to recover vision. Depending on the nature of the primary defect and the stage of the disease, RPE cells, PRs, or both might be transplanted to achieve therapeutic effects. We describe in this review the current knowledge and recent progress to develop such approaches. The different cell sources proposed for cell therapy including human pluripotent stem cells are presented with their advantages and limits. Another critical aspect described herein is the pharmaceutical formulation of the end product to be delivered into the eye of patients. Finally, we also outline the future research directions in order to develop a complex multilayered retinal tissue for end-stage patients.
Collapse
|
21
|
Dorgau B, Felemban M, Hilgen G, Kiening M, Zerti D, Hunt NC, Doherty M, Whitfield P, Hallam D, White K, Ding Y, Krasnogor N, Al-Aama J, Asfour HZ, Sernagor E, Lako M. Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids. Biomaterials 2019; 199:63-75. [PMID: 30738336 DOI: 10.1016/j.biomaterials.2019.01.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/11/2019] [Accepted: 01/20/2019] [Indexed: 12/13/2022]
Abstract
Tissue specific extracellular matrices (ECM) provide structural support and enable access to molecular signals and metabolites, which are essential for directing stem cell renewal and differentiation. To mimic this phenomenon in vitro, tissue decellularisation approaches have been developed, resulting in the generation of natural ECM scaffolds that have comparable physical and biochemical properties of the natural tissues and are currently gaining traction in tissue engineering and regenerative therapies due to the ease of standardised production, and constant availability. In this manuscript we report the successful generation of decellularised ECM-derived peptides from neural retina (decel NR) and retinal pigment epithelium (decel RPE), and their impact on differentiation of human pluripotent stem cells (hPSCs) to retinal organoids. We show that culture media supplementation with decel RPE and RPE-conditioned media (CM RPE) significantly increases the generation of rod photoreceptors, whilst addition of decel NR and decel RPE significantly enhances ribbon synapse marker expression and the light responsiveness of retinal organoids. Photoreceptor maturation, formation of correct synapses between retinal cells and recording of robust light responses from hPSC-derived retinal organoids remain unresolved challenges for the field of regenerative medicine. Enhanced rod photoreceptor differentiation, synaptogenesis and light response in response to addition of decellularised matrices from RPE and neural retina as shown herein provide a novel and substantial advance in generation of retinal organoids for drug screening, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Birthe Dorgau
- Institute of Genetic Medicine, Newcastle University, UK
| | | | | | | | - Darin Zerti
- Institute of Genetic Medicine, Newcastle University, UK
| | | | | | | | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, UK
| | | | - Yuchun Ding
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, UK
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, UK
| | - Jumana Al-Aama
- Department of Genetic Medicine and Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research o Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, UK.
| |
Collapse
|
22
|
Fernandez-Godino R, Bujakowska KM, Pierce EA. Changes in extracellular matrix cause RPE cells to make basal deposits and activate the alternative complement pathway. Hum Mol Genet 2019; 27:147-159. [PMID: 29095988 DOI: 10.1093/hmg/ddx392] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/25/2017] [Indexed: 01/13/2023] Open
Abstract
The design of efficient therapies for age-related macular degeneration (AMD) is limited by our understanding of the pathogenesis of basal deposits, which form between retinal pigment epithelium (RPE) and Bruch's membrane (BrM) early in disease, and involve activation of the complement system. To investigate the roles of BrM, RPE and complement in an AMD, we generated abnormal extracellular matrix (ECM) using CRISPR-edited ARPE-19 cells. We introduced to these cells the p.R345W mutation in EFEMP1, which causes early-onset macular degeneration. The abnormal ECM binds active complement C3 and causes the formation of basal deposits by normal human fetal (hf)RPE cells. Human fetal RPE (hfRPE) cells grown on abnormal ECM or BrM explants from AMD donors show chronic activation of the alternative complement pathway by excessive deposition of C3b. This process is exacerbated by impaired ECM turnover via increased matrix metalloproteinase-2 activity. The local cleavage of C3 via convertase-independent mechanisms can be a new therapeutic target for early AMD.
Collapse
Affiliation(s)
- Rosario Fernandez-Godino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Ocular Genomics Institute, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02114, USA
| | - Kinga M Bujakowska
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Ocular Genomics Institute, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02114, USA
| | - Eric A Pierce
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Ocular Genomics Institute, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
23
|
Hunt NC, Hallam D, Chichagova V, Steel DH, Lako M. The Application of Biomaterials to Tissue Engineering Neural Retina and Retinal Pigment Epithelium. Adv Healthc Mater 2018; 7:e1800226. [PMID: 30175520 DOI: 10.1002/adhm.201800226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/16/2018] [Indexed: 12/21/2022]
Abstract
The prevalence of degenerative retinal disease is ever increasing as life expectancy rises globally. The human retina fails to regenerate and the use of human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) to engineer retinal tissue is of particular interest due to the limited availability of suitable allogeneic or autologous tissue. Retinal tissue and its development are well characterized, which have resulted in robust assays to assess the development of tissue-engineered retina. Retinal tissue can be generated in vitro from hESCs and hiPSCs without biomaterial scaffolds, but despite advancements, protocols remain slow, expensive, and fail to result in mature functional tissue. Several recent studies have demonstrated the potential of biomaterial scaffolds to enhance generation of hESC/hiPSC-derived retinal tissue, including synthetic polymers, silk, alginate, hyaluronic acid, and extracellular matrix molecules. This review outlines the advances that have been made toward tissue-engineered neural retina and retinal pigment epithelium (RPE) for clinical application in recent years, including the success of clinical trials involving transplantation of cells and tissue to promote retinal repair; and the evidence from in vitro and animal studies that biomaterials can enhance development and integration of retinal tissue.
Collapse
Affiliation(s)
- Nicola C. Hunt
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Dean Hallam
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Valeria Chichagova
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
- Biomedicine WestInternational Centre for LifeTimes SquareNewcastle upon Tyne NE1 4EP UK
| | - David H. Steel
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Majlinda Lako
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| |
Collapse
|
24
|
Cai H, Gong J, Del Priore LV, Tezel TH, Fields MA. Culturing of Retinal Pigment Epithelial Cells on an Ex Vivo Model of Aged Human Bruch's Membrane. J Vis Exp 2018. [PMID: 29708536 PMCID: PMC5933494 DOI: 10.3791/57084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aside from vitamins and antioxidants recommended by the Age-Related Eye Disease Study, there is no effective therapy for "dry," or atrophic age-related macular degeneration (AMD) which represents 90% of the cases. Therapies are needed to slow or retard the development of geographic atrophy (GA), and understanding Bruch's membrane pathology is part of this process. Alterations in human Bruch's membrane precede the progression of AMD by contributing to the damage of retinal pigment epithelial (RPE) cells. Given the lack of sufficient animal models to study AMD, ex vivo models of aged human Bruch's membrane serve as a useful tool to study the behavior of RPE cells from immortalized and primary cell lines as well as RPE lines derived from induced pluripotent stem cells (iPSCs). Here, we present a detailed method that allows one to determine the effects of RPE cell behavior seeded on harvested human Bruch's membrane explants from human donors, including attachment, apoptosis and proliferation, ability to phagocytize photoreceptor outer segments, establishment of polarity, and gene expression. This assay provides an ex vivo model of aged Bruch's membrane to assess the functional characteristics of RPE cells when seeded on aged/compromised extracellular matrix.
Collapse
Affiliation(s)
- Hui Cai
- Department of Ophthalmology and Visual Science, Yale School of Medicine
| | - Jie Gong
- Department of Ophthalmology and Visual Science, Yale School of Medicine
| | | | - Tongalp H Tezel
- Edward S. Harkness Eye Institute, Columbia University School of Medicine
| | - Mark A Fields
- Department of Ophthalmology and Visual Science, Yale School of Medicine;
| |
Collapse
|
25
|
Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, Lin CM, Mitra D, Zhu D, Thomas BB, Hikita ST, Pennington BO, Johnson LV, Clegg DO, Hinton DR, Humayun MS. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med 2018; 10:10/435/eaao4097. [DOI: 10.1126/scitranslmed.aao4097] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/28/2017] [Accepted: 03/23/2018] [Indexed: 11/02/2022]
|
26
|
da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, Vernon A, Daniels JT, Nommiste B, Hasan SM, Gooljar SB, Carr AJF, Vugler A, Ramsden CM, Bictash M, Fenster M, Steer J, Harbinson T, Wilbrey A, Tufail A, Feng G, Whitlock M, Robson AG, Holder GE, Sagoo MS, Loudon PT, Whiting P, Coffey PJ. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 2018; 36:328-337. [PMID: 29553577 DOI: 10.1038/nbt.4114] [Citation(s) in RCA: 465] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/28/2018] [Indexed: 01/12/2023]
Abstract
Age-related macular degeneration (AMD) remains a major cause of blindness, with dysfunction and loss of retinal pigment epithelium (RPE) central to disease progression. We engineered an RPE patch comprising a fully differentiated, human embryonic stem cell (hESC)-derived RPE monolayer on a coated, synthetic basement membrane. We delivered the patch, using a purpose-designed microsurgical tool, into the subretinal space of one eye in each of two patients with severe exudative AMD. Primary endpoints were incidence and severity of adverse events and proportion of subjects with improved best-corrected visual acuity of 15 letters or more. We report successful delivery and survival of the RPE patch by biomicroscopy and optical coherence tomography, and a visual acuity gain of 29 and 21 letters in the two patients, respectively, over 12 months. Only local immunosuppression was used long-term. We also present the preclinical surgical, cell safety and tumorigenicity studies leading to trial approval. This work supports the feasibility and safety of hESC-RPE patch transplantation as a regenerative strategy for AMD.
Collapse
Affiliation(s)
- Lyndon da Cruz
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences (WEISS), Charles Bell House, London, UK
| | - Kate Fynes
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Odysseas Georgiadis
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Julie Kerby
- Pfizer, Granta Park, Cambridge, UK
- Cell and Gene Therapy Catapult, London, UK
| | - Yvonne H Luo
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Ahmad Ahmado
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Amanda Vernon
- Cells for Sight, Transplantation & Research Program, UCL Institute of Ophthalmology, London, UK
| | - Julie T Daniels
- Cells for Sight, Transplantation & Research Program, UCL Institute of Ophthalmology, London, UK
| | - Britta Nommiste
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Shazeen M Hasan
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Sakina B Gooljar
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Amanda-Jayne F Carr
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Anthony Vugler
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Conor M Ramsden
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | | - Adnan Tufail
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | | | - Anthony G Robson
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Graham E Holder
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mandeep S Sagoo
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Paul Whiting
- Pfizer, Granta Park, Cambridge, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Peter J Coffey
- The London Project to Cure Blindness, ORBIT, Institute of Ophthalmology, University College London (UCL), London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- Center for Stem Cell Biology and Engineering, NRI, UC, Santa Barbara, California, USA
| |
Collapse
|
27
|
Cellular regeneration strategies for macular degeneration: past, present and future. Eye (Lond) 2018; 32:946-971. [PMID: 29503449 PMCID: PMC5944658 DOI: 10.1038/s41433-018-0061-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 01/12/2023] Open
Abstract
Despite considerable effort and significant therapeutic advances, age-related macular degeneration (AMD) remains the commonest cause of blindness in the developed world. Progressive late-stage AMD with outer retinal degeneration currently has no proven treatment. There has been significant interest in the possibility that cellular treatments may slow or reverse visual loss in AMD. A number of modes of action have been suggested, including cell replacement and rescue, as well as immune modulation to delay the neurodegenerative process. Their appeal in this enigmatic disease relate to their generic, non-pathway-specific effects. The outer retina in particular has been at the forefront of developments in cellular regenerative therapies being surgically accessible, easily observable, as well as having a relatively simple architecture. Both the retinal pigment epithelium (RPE) and photoreceptors have been considered for replacement therapies as both sheets and cell suspensions. Studies using autologous RPE, and to a lesser extent, foetal retina, have shown proof of principle. A wide variety of cell sources have been proposed with pluripotent stem cell-derived cells currently holding the centre stage. Recent early-phase trials using these cells for RPE replacement have met safety endpoints and hinted at possible efficacy. Animal studies have confirmed the promise that photoreceptor replacement, even in a completely degenerated outer retina may restore some vision. Many challenges, however, remain, not least of which include avoiding immune rejection, ensuring long-term cellular survival and maximising effect. This review provides an overview of progress made, ongoing studies and challenges ahead.
Collapse
|
28
|
Peng CH, Chuang JH, Wang ML, Jhan YY, Chien KH, Chung YC, Hung KH, Chang CC, Lee CK, Tseng WL, Hwang DK, Hsu CH, Lin TC, Chiou SH, Chen SJ. Laminin modification subretinal bio-scaffold remodels retinal pigment epithelium-driven microenvironment in vitro and in vivo. Oncotarget 2018; 7:64631-64648. [PMID: 27564261 PMCID: PMC5323104 DOI: 10.18632/oncotarget.11502] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
Abstract
Advanced age-related macular degeneration (AMD) may lead to geographic atrophy or fibrovascular scar at macular, dysfunctional retinal microenvironment, and cause profound visual loss. Recent clinical trials have implied the potential application of pluripotent cell-differentiated retinal pigment epithelial cells (dRPEs) and membranous scaffolds implantation in repairing the degenerated retina in AMD. However, the efficacy of implanted membrane in immobilization and supporting the viability and functions of dRPEs, as well as maintaining the retinal microenvironment is still unclear. Herein we generated a biomimetic scaffold mimicking subretinal Bruch's basement from plasma modified polydimethylsiloxane (PDMS) sheet with laminin coating (PDMS-PmL), and investigated its potential functions to provide a subretinal environment for dRPE-monolayer grown on it. Firstly, compared to non-modified PDMS, PDMS-PmL enhanced the attachment, proliferation, polarization, and maturation of dRPEs. Second, PDMS-PmL increased the polarized tight junction, PEDF secretion, melanosome pigment deposit, and phagocytotic-ability of dRPEs. Third, PDMS-PmL was able to carry a dRPEs/photoreceptor-precursors multilayer retina tissue. Finally, the in vivo subretinal implantation of PDMS-PmL in porcine eyes showed well-biocompatibility up to 2-year follow-up. Notably, multifocal ERGs at 2-year follow-up revealed well preservation of macular function in PDMS-PmL, but not PDMS, transplanted porcine eyes. Trophic PEDF secretion of macular retina in PDMS-PmL group was also maintained to preserve retinal microenvironment in PDMS-PmL eyes at 2 year. Taken together, these data indicated that PDMS-PmL is able to sustain the physiological morphology and functions of polarized RPE monolayer, suggesting its potential of rescuing macular degeneration in vivo.
Collapse
Affiliation(s)
- Chi-Hsien Peng
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital & Fu-Jen Catholic University, Taipei Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Hua Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yong-Yu Jhan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Ke-Hung Chien
- Department of Ophthalmology, Tri-Service General Hospital & National Defense Medical Center, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chien Chung
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Hsuan Hung
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taipei, Taiwan
| | - Chao-Kuei Lee
- Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Lien Tseng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Tai-Chi Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
29
|
White CE, Olabisi RM. Scaffolds for retinal pigment epithelial cell transplantation in age-related macular degeneration. J Tissue Eng 2017; 8:2041731417720841. [PMID: 28794849 PMCID: PMC5524239 DOI: 10.1177/2041731417720841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/22/2017] [Indexed: 01/18/2023] Open
Abstract
In several retinal degenerative diseases, including age-related macular degeneration, the retinal pigment epithelium, a highly functionalized cell monolayer, becomes dysfunctional. These retinal diseases are marked by early retinal pigment epithelium dysfunction reducing its ability to maintain a healthy retina, hence making the retinal pigment epithelium an attractive target for treatment. Cell therapies, including bolus cell injections, have been investigated with mixed results. Since bolus cell injection does not promote the proper monolayer architecture, scaffolds seeded with retinal pigment epithelium cells and then implanted have been increasingly investigated. Such cell-seeded scaffolds address both the dysfunction of the retinal pigment epithelium cells and age-related retinal changes that inhibit the efficacy of cell-only therapies. Currently, several groups are investigating retinal therapies using seeded cells from a number of cell sources on a variety of scaffolds, such as degradable, non-degradable, natural, and artificial substrates. This review describes the variety of scaffolds that have been developed for the implantation of retinal pigment epithelium cells.
Collapse
Affiliation(s)
- Corina E White
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
30
|
Chirco KR, Worthington KS, Flamme-Wiese MJ, Riker MJ, Andrade JD, Ueberheide BM, Stone EM, Tucker BA, Mullins RF. Preparation and evaluation of human choroid extracellular matrix scaffolds for the study of cell replacement strategies. Acta Biomater 2017; 57:293-303. [PMID: 28483697 DOI: 10.1016/j.actbio.2017.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/20/2017] [Accepted: 05/04/2017] [Indexed: 11/24/2022]
Abstract
Endothelial cells (ECs) of the choriocapillaris are one of the first cell types lost during age-related macular degeneration (AMD), and cell replacement therapy is currently a very promising option for patients with advanced AMD. We sought to develop a reliable method for the production of human choroidal extracellular matrix (ECM) scaffolds, which will allow for the study of choroidal EC (CEC) replacement strategies in an environment that closely resembles the native tissue. Human RPE/choroid tissue was treated sequentially with Triton X-100, SDS, and DNase to remove all native cells. While all cells were successfully removed from the tissue, collagen IV, elastin, and laminin remained, with preserved architecture of the acellular vascular tubes. The ECM scaffolds were then co-cultured with exogenous ECs to determine if the tissue can support cell growth and allow EC reintegration into the decellularized choroidal vasculature. Both monkey and human ECs took up residence in the choriocapillary tubes of the decellularized tissue. Together, these data suggest that our decellularization methods are sufficient to remove all cellular material yet gentle enough to preserve tissue structure and allow for the optimization of cell replacement strategies. STATEMENT OF SIGNIFICANCE Age-related macular degeneration (AMD) is a devastating disease affecting more than 600 million people worldwide. Endothelial cells of the choriocapillaris (CECs) are among the first cell types lost in early AMD, and cell replacement therapy is currently the most promising option for restoring vision in patients with advanced AMD. In order to study CEC replacement strategies we have generated a 3D choroid scaffold using a novel decellularization method in human RPE/choroid tissue. To our knowledge, this is the first report describing decellularization of human RPE/choroid, as well as recellularization of a choroid scaffold with CECs. This work will aid in our development and optimization of cell replacement strategies using a tissue scaffold that is similar to the in vivo environment.
Collapse
|
31
|
Abstract
Purpose of review Progress in stem cell research for blinding diseases over the past decade is now being applied to patients with retinal degenerative diseases and soon perhaps, glaucoma. However, the field still has much to learn about the conversion of stem cells into various retinal cell types, and the potential delivery methods that will be required to optimize the clinical efficacy of stem cells delivered into the eye. Recent findings Recent groundbreaking human clinical trials have demonstrated both the opportunities and current limitations of stem cell transplantation for retinal diseases. New progress in developing in vitro retinal organoids, coupled with the maturation of bio-printing technology, and non-invasive high-resolution imaging have created new possibilities for repairing and regenerating the diseased retina and rigorously validating its clinical impact in vivo. Summary While promising progress is being made, meticulous clinical trials with cells derived using good manufacturing practice, novel surgical methods, and improved methods to derive all of the neuronal cell types present in the retina will be indispensable for developing stem cell transplantation as a paradigm shift for the treatment of blinding diseases.
Collapse
|
32
|
Bracha P, Moore NA, Ciulla TA. Induced pluripotent stem cell-based therapy for age-related macular degeneration. Expert Opin Biol Ther 2017; 17:1113-1126. [PMID: 28664762 DOI: 10.1080/14712598.2017.1346079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION In age-related macular degeneration (AMD), stem cells could possibly replace or regenerate disrupted pathologic retinal pigment epithelium (RPE), and produce supportive growth factors and cytokines such as brain-derived neurotrophic factor. Induced pluripotent stem cells (iPSCs)-derived RPE was first subretinally transplanted in a neovascular AMD patient in 2014. Areas covered: Induced PSCs are derived from the introduction of transcription factors to adult cells under specific cell culture conditions, followed by differentiation into RPE cells. Induced PSC-derived RPE cells exhibit ion transport, membrane potential, polarized VEGF secretion and gene expression that is similar to native RPE. Despite having similar in vitro function, morphology, immunostaining and microscopic analysis, it remains to be seen if iPSC-derived RPE can replicate the myriad of in vivo functions, including immunomodulatory effects, of native RPE cells. Historically, adjuvant RPE transplantation during CNV resections were technically difficult and complicated by immune rejection. Autologous iPSCs are hypothesized to reduce the risk of immune rejection, but their production is time-consuming and expensive. Alternatively, allogenic transplantation using human leukocyte antigen (HLA)-matched iPSCs, similar to HLA-matched organ transplantation, is currently being investigated. Expert opinion: Challenges to successful transplantation with iPSCs include surgical technique, a pathologic subretinal microenvironment, possible immune rejection, and complications of immunosuppression.
Collapse
Affiliation(s)
- Peter Bracha
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Nicholas A Moore
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Thomas A Ciulla
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA.,b Retina Service , Midwest Eye Institute , Indianapolis , IN , USA
| |
Collapse
|
33
|
Extracellular matrix nitration alters growth factor release and activates bioactive complement in human retinal pigment epithelial cells. PLoS One 2017; 12:e0177763. [PMID: 28505174 PMCID: PMC5432172 DOI: 10.1371/journal.pone.0177763] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/03/2017] [Indexed: 12/18/2022] Open
Abstract
Purpose We have shown previously that non-enzymatic nitration (NEN) of the extracellular matrix (ECM), which serves as a model of Bruch’s membrane (BM) aging, has a profound effect on the behavior of the overlying retinal pigment epithelial (RPE) cells, including altered phagocytic ability, reduced cell adhesion, and inhibition of proliferation. We know that transplanted RPE monolayers will encounter a hostile sub-RPE environment, including age-related alterations in BM that may compromise cell function and survival. Here we use our previous NEN model of BM aging to determine the effects of NEN of the ECM on growth factor release and complement activation in RPE cells. Methods Human induced-pluripotent stem cells (iPSCs) were differentiated into RPE cells, and confirmed by immunohistochemistry, confocal microscopy, and polymerase chain reaction. IPSC-derived RPE cells were plated onto RPE-derived ECM under untreated or nitrite-modified conditions. Cells were cultured for 7 days and barrier function measured by transepithelial resistance (TER). Vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), and complement component C3a were measured using enzyme-linked immunosorbent assay (ELISA). Results On average nitrite-modified ECM increased VEGF release both apically and basally by 0.15 ± 0.014 ng/mL (p <0.0001) and 0.21 ± 0.022 ng/mL (p <0.0001), respectively, in iPSC-derived RPE cells. Nitrite-modified ECM increased PEDF release in iPSC-derived RPE cells apically by 0.16 ± 0.031 ng/mL (p <0.0001), but not basally (0.27 ± 0.015 vs. 0.32 ± 0.029 ng/mL, (p >0.05)). Nitrite-modified ECM increased production of C3a in iPSC-derived RPE cells by 0.52 ± 0.123 ng/mL (p <0.05). Conclusion Nitrite-modified ECM increased VEGF, PEDF release, and C3a production in human iPSC-derived RPE cells. This model demonstrates changes seen in the basement membrane can lead to alterations in the cell biology of the RPE cells that may be related to the development of age-related macular degeneration.
Collapse
|
34
|
Potential of Induced Pluripotent Stem Cells (iPSCs) for Treating Age-Related Macular Degeneration (AMD). Cells 2016; 5:cells5040044. [PMID: 27941641 PMCID: PMC5187528 DOI: 10.3390/cells5040044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022] Open
Abstract
The field of stem cell biology has rapidly evolved in the last few decades. In the area of regenerative medicine, clinical applications using stem cells hold the potential to be a powerful tool in the treatment of a wide variety of diseases, in particular, disorders of the eye. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are promising technologies that can potentially provide an unlimited source of cells for cell replacement therapy in the treatment of retinal degenerative disorders such as age-related macular degeneration (AMD), Stargardt disease, and other disorders. ESCs and iPSCs have been used to generate retinal pigment epithelium (RPE) cells and their functional behavior has been tested in vitro and in vivo in animal models. Additionally, iPSC-derived RPE cells provide an autologous source of cells for therapeutic use, as well as allow for novel approaches in disease modeling and drug development platforms. Clinical trials are currently testing the safety and efficacy of these cells in patients with AMD. In this review, the current status of iPSC disease modeling of AMD is discussed, as well as the challenges and potential of this technology as a viable option for cell replacement therapy in retinal degeneration.
Collapse
|
35
|
Koss MJ, Falabella P, Stefanini FR, Pfister M, Thomas BB, Kashani AH, Brant R, Zhu D, Clegg DO, Hinton DR, Humayun MS. Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: a feasibility and safety study in Yucatán minipigs. Graefes Arch Clin Exp Ophthalmol 2016; 254:1553-1565. [PMID: 27335025 DOI: 10.1007/s00417-016-3386-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 12/28/2022] Open
Abstract
PURPOSE A subretinal implant termed CPCB-RPE1 is currently being developed to surgically replace dystrophic RPE in patients with dry age-related macular degeneration (AMD) and severe vision loss. CPCB-RPE1 is composed of a terminally differentiated, polarized human embryonic stem cell-derived RPE (hESC-RPE) monolayer pre-grown on a biocompatible, mesh-supported submicron parylene C membrane. The objective of the present delivery study was to assess the feasibility and 1-month safety of CPCB-RPE1 implantation in Yucatán minipigs, whose eyes are similar to human eyes in size and gross retinal anatomy. METHODS This was a prospective, partially blinded, randomized study in 14 normal-sighted female Yucatán minipigs (aged 2 months, weighing 24-35 kg). Surgeons were blinded to the randomization codes and postoperative and post-mortem assessments were performed in a blinded manner. Eleven minipigs received CPCB-RPE1 while three control minipigs underwent sham surgery that generated subretinal blebs. All animals except two sham controls received combined local (Ozurdex™ dexamethasone intravitreal implant) and systemic (tacrolimus) immunosuppression or local immunosuppression alone. Correct placement of the CPCB-RPE1 implant was assessed by in vivo optical coherence tomography and post-mortem histology. hESC-RPE cells were identified using immunohistochemistry staining for TRA-1-85 (a human marker) and RPE65 (an RPE marker). As the study results of primary interest were nonnumerical no statistical analysis or tests were conducted. RESULTS CPCB-RPE1 implants were reliably placed, without implant breakage, in the subretinal space of the minipig eye using surgical techniques similar to those that would be used in humans. Histologically, hESC-RPE cells were found to survive as an intact monolayer for 1 month based on immunohistochemistry staining for TRA-1-85 and RPE65. CONCLUSIONS Although inconclusive regarding the necessity or benefit of systemic or local immunosuppression, our study demonstrates the feasibility and safety of CPCB-RPE1 subretinal implantation in a comparable animal model and provides an encouraging starting point for human studies.
Collapse
Affiliation(s)
- Michael J Koss
- Department of Ophthalmology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- USC Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, 90033-4682, USA.
| | - Paulo Falabella
- USC Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, 90033-4682, USA
| | - Francisco R Stefanini
- Department of Ophthalmology, Federal University of São Paulo UNIFESP, Rua Botucatu 821, 04023-062, São Paulo, Brazil
| | - Marcel Pfister
- USC Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, 90033-4682, USA
| | - Biju B Thomas
- USC Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, 90033-4682, USA
| | - Amir H Kashani
- USC Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, 90033-4682, USA
| | - Rodrigo Brant
- Department of Ophthalmology, Federal University of São Paulo UNIFESP, Rua Botucatu 821, 04023-062, São Paulo, Brazil
| | - Danhong Zhu
- USC Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, 90033-4682, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, 90033-4682, USA
| | - Dennis O Clegg
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106-9625, USA
| | - David R Hinton
- USC Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, 90033-4682, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, 90033-4682, USA
| | - Mark S Humayun
- USC Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, 90033-4682, USA
- Institute of Biomedical Therapeutics, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, 90033-4682, USA
| |
Collapse
|
36
|
Hotaling NA, Khristov V, Wan Q, Sharma R, Jha BS, Lotfi M, Maminishkis A, Simon CG, Bharti K. Nanofiber Scaffold-Based Tissue-Engineered Retinal Pigment Epithelium to Treat Degenerative Eye Diseases. J Ocul Pharmacol Ther 2016; 32:272-85. [PMID: 27110730 PMCID: PMC4904235 DOI: 10.1089/jop.2015.0157] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/24/2016] [Indexed: 12/16/2022] Open
Abstract
Clinical-grade manufacturing of a functional retinal pigment epithelium (RPE) monolayer requires reproducing, as closely as possible, the natural environment in which RPE grows. In vitro, this can be achieved by a tissue engineering approach, in which the RPE is grown on a nanofibrous biological or synthetic scaffold. Recent research has shown that nanofiber scaffolds perform better for cell growth and transplantability compared with their membrane counterparts and that the success of the scaffold in promoting cell growth/function is not heavily material dependent. With these strides, the field has advanced enough to begin to consider implementation of one, or a combination, of the tissue engineering strategies discussed herein. In this study, we review the current state of tissue engineering research for in vitro culture of RPE/scaffolds and the parameters for optimal scaffold design that have been uncovered during this research. Next, we discuss production methods and manufacturers that are capable of producing the nanofiber scaffolds in such a way that would be biologically, regulatory, clinically, and commercially viable. Then, a discussion of how the scaffolds could be characterized, both morphologically and mechanically, to develop a testing process that is viable for regulatory screening is performed. Finally, an example of a tissue-engineered RPE/scaffold construct is given to provide the reader a framework for understanding how these pieces could fit together to develop a tissue-engineered RPE/scaffold construct that could pass regulatory scrutiny and can be commercially successful.
Collapse
Affiliation(s)
- Nathan A. Hotaling
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Vladimir Khristov
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Qin Wan
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Ruchi Sharma
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Balendu Shekhar Jha
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Mostafa Lotfi
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Arvydas Maminishkis
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Carl G. Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
37
|
Guo X, Zhu D, Lian R, Han Y, Guo Y, Li Z, Tang S, Chen J. Matrigel and Activin A promote cell-cell contact and anti-apoptotic activity in cultured human retinal pigment epithelium cells. Exp Eye Res 2016; 147:37-49. [PMID: 27130547 DOI: 10.1016/j.exer.2016.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 03/12/2016] [Accepted: 04/25/2016] [Indexed: 01/07/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness among the aging population. Currently, replacement of diseased retinal pigment epithelium (RPE) cells with transplanted healthy RPE cells could be a feasible approach for AMD therapy. However, maintaining cell-cell contact and good viability of RPE cells cultured in vitro is difficult and fundamentally determines the success of RPE cell transplantation. This study was conducted to examine the role of Matrigel and Activin A (MA) in regulating cell-cell contact and anti-apoptotic activity in human RPE (hRPE) cells, as assessed by atomic force microscopy (AFM), scanning electron microscope (SEM), immunofluorescence staining, quantitative polymerase chain reaction (qPCR) analysis, Annexin V/propidium iodide (PI) analysis, mitochondrial membrane potential (△Ψ m) assays, intracellular reactive oxygen species (ROS) assays and Western blotting. hRPE cells cultured in vitro could maintain their epithelioid morphology after MA treatment over at least 4 passages. The contact of N-cadherin to the lateral cell border was promoted in hRPE cells at P2 by MA. MA treatment also enhanced the expression of tight junction-associated genes and proteins, such as Claudin-1, Claudin-3, Occludin and ZO-1, as well as polarized ZO-1 protein distribution and barrier function, in cultured hRPE cells. Moreover, MA treatment decreased apoptotic cells, ROS and Bax and increased △Ψ m and Bcl2 in hRPE cells under serum withdrawal-induced apoptosis. In addition, MA treatment elevated the protein expression levels of β-catenin and its target proteins, including Cyclin D1, c-Myc and Survivin, as well as the gene expression levels of ZO-1, β-catenin, Survivin and TCF-4, all of which could be down-regulated by the Wnt/β-catenin pathway inhibitor XAV-939. Taken together, MA treatment could effectively promote cell-cell contact and anti-apoptotic activity in hRPE cells, partly involving the Wnt/β-catenin pathway. This study will benefit the understanding of hRPE cells and future cell therapy.
Collapse
Affiliation(s)
- Xiaoling Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Deliang Zhu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Ruiling Lian
- The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou 510632, China
| | - Yuting Han
- The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou 510632, China
| | - Yonglong Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Zhijie Li
- Institute of Ophthalmology, Medical College, Jinan University, Jinan University, Guangzhou 510632, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Furong Middle Road 198#, Changsha 410015, China.
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China; Institute of Ophthalmology, Medical College, Jinan University, Jinan University, Guangzhou 510632, China; The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
38
|
Di Foggia V, Makwana P, Ali RR, Sowden JC. Induced Pluripotent Stem Cell Therapies for Degenerative Disease of the Outer Retina: Disease Modeling and Cell Replacement. J Ocul Pharmacol Ther 2016; 32:240-52. [PMID: 27027805 DOI: 10.1089/jop.2015.0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stem cell therapies are being explored as potential treatments for retinal disease. How to replace neurons in a degenerated retina presents a continued challenge for the regenerative medicine field that, if achieved, could restore sight. The major issues are: (i) the source and availability of donor cells for transplantation; (ii) the differentiation of stem cells into the required retinal cells; and (iii) the delivery, integration, functionality, and survival of new cells in the host neural network. This review considers the use of induced pluripotent stem cells (iPSC), currently under intense investigation, as a platform for cell transplantation therapy. Moreover, patient-specific iPSC are being developed for autologous cell transplantation and as a tool for modeling specific retinal diseases, testing gene therapies, and drug screening.
Collapse
Affiliation(s)
- Valentina Di Foggia
- 1 UCL Institute of Child Health, University College London , London, United Kingdom
| | - Priyanka Makwana
- 1 UCL Institute of Child Health, University College London , London, United Kingdom
| | - Robin R Ali
- 2 UCL Institute of Ophthalmology , London, United Kingdom
| | - Jane C Sowden
- 1 UCL Institute of Child Health, University College London , London, United Kingdom
| |
Collapse
|
39
|
Heller JP, Kwok JCF, Vecino E, Martin KR, Fawcett JW. A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases. Front Cell Neurosci 2015; 9:449. [PMID: 26635529 PMCID: PMC4654064 DOI: 10.3389/fncel.2015.00449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022] Open
Abstract
Diseases such as age-related macular degeneration (AMD) affect the retinal pigment epithelium (RPE) and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 min yielded 4 × 10(4) viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch's membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch's membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases.
Collapse
Affiliation(s)
- Janosch P. Heller
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College LondonLondon, UK
| | - Jessica C. F. Kwok
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| | - Elena Vecino
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
- Department of Cellular Biology, University of the Basque CountryLeioa, UPV/EHU, Bizkaia, Spain
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
- Department of Ophthalmology, NIHR Biomedical Research Centre and Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of CambridgeCambridge, UK
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| |
Collapse
|
40
|
Moreira EF, Cai H, Tezel TH, Fields MA, Del Priore LV. Reengineering Human Bruch's Membrane Increases Rod Outer Segment Phagocytosis by Human Retinal Pigment Epithelium. Transl Vis Sci Technol 2015; 4:10. [PMID: 26557417 DOI: 10.1167/tvst.4.5.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/14/2015] [Indexed: 12/21/2022] Open
Abstract
PURPOSE We have shown previously that Bruch's membrane (BM) aging decreases retinal pigment epithelium (RPE) phagocytosis. Herein, we determine the effects of BM reengineering on RPE phagocytosis. METHODS BM explants were dissected from young and old donor eyes. Some old BM explants were reengineered by cleaning with Triton X-100 and/or coating with extracellular matrix (ECM) ligands. ARPE-19 cell-derived ECM (ARPE-ECM) modified ("aged") by sodium nitrite was subjected to similar treatments. ARPE-19 cells were then cultured to confluence onto the different surfaces. Fluorescently-labeled bovine rod outer segments (ROS) were fed to cells with or without αVβ5 integrin antibody. Image acquisition and phagocytosis quantification was performed by fluorescence microscopy and ImageJ analysis. RESULTS Cleaning old donor-derived BM with detergent does not increase the uptake of ROS, but a combination of cleaning and coating with ECM ligands significantly increases RPE phagocytosis (54.9 ± 6.2 vs. 83.5 ± 6.5 arbitrary units; P < 0.05) to levels closer to young donor BM (123.6 ± 9.9 arbitrary units). Similar effects were observed on nitrite-modified ARPE-ECM subjected to the same treatments. Incubation of αVβ5 blocking antibody with ROS significantly decreased RPE phagocytosis. CONCLUSIONS The detrimental effects of aging BM on RPE phagocytosis can be reversed by reengineering the BM surface with detergent cleaning and recoating with ECM ligands. TRANSLATION RELEVANCE These results demonstrate that the therapeutic success of transplanted RPE cells may require, at least in part, reengineering of diseased BM to make it a more suitable environment for attachment, survival and proper functioning of the RPE.
Collapse
Affiliation(s)
- Ernesto F Moreira
- Department of Ophthalmology Storm Eye Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Hui Cai
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Tongalp H Tezel
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Mark A Fields
- Department of Ophthalmology Storm Eye Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Lucian V Del Priore
- Department of Ophthalmology Storm Eye Institute, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
41
|
Haneef AS, Downes S. Assessing the Suitability of Electrospun Poly(Ethylene Terephthalate) and Polystyrene as Cell Carrier Substrates for Potential Subsequent Implantation as a Synthetic Bruch's Membrane. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2014.945206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Abstract
The human retinal pigment epithelium forms early in development and subsequently remains dormant, undergoing minimal proliferation throughout normal life. Retinal pigment epithelium proliferation, however, can be activated in disease states or by removing retinal pigment epithelial cells into culture. We review the conditions that control retinal pigment epithelial proliferation in culture, in animal models and in human disease and interpret retinal pigment epithelium proliferation in context of the recently discovered retinal pigment epithelium stem cell that is responsible for most in vitro retinal pigment epithelial proliferation. Retinal pigment epithelial proliferation-mediated wound repair that occurs in selected macular diseases is contrasted with retinal pigment epithelial proliferation-mediated fibroblastic scar formation that underlies proliferative vitreoretinopathy. We discuss the role of retinal pigment epithelial proliferation in age-related macular degeneration which is reparative in some cases and destructive in others. Macular retinal pigment epithelium wound repair and regression of choroidal neovascularization are more pronounced in younger than older patients. We discuss the possibility that the limited retinal pigment epithelial proliferation and latent wound repair in older age-related macular degeneration patients can be stimulated to promote disease regression in age-related macular degeneration.
Collapse
Affiliation(s)
- Jeffrey Stern
- Neural Stem Cell Institute, One Discovery Drive, Rensselaer, New York 12144, USA Capital Region Retina, PLLC, Washington Avenue, Albany, New York 12206, USA
| | - Sally Temple
- Neural Stem Cell Institute, One Discovery Drive, Rensselaer, New York 12144, USA
| |
Collapse
|
43
|
Regenerating Retinal Pigment Epithelial Cells to Cure Blindness: A Road Towards Personalized Artificial Tissue. CURRENT STEM CELL REPORTS 2015; 1:79-91. [PMID: 26146605 DOI: 10.1007/s40778-015-0014-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retinal pigment epithelium (RPE) is a polarized monolayer tissue that functions to support the health and integrity of retinal photoreceptors (PRs). RPE atrophy has been linked to pathogenesis of age-related macular degeneration (AMD), a leading cause of blindness in elderly in the USA. RPE atrophy in AMD leads to the PR cell death and vision loss. It is thought that replacing diseased RPE with healthy RPE tissue can prevent PR cell death. Retinal surgical innovations have provided proof-of-principle data that autologous RPE tissue can replace diseased macular RPE and provide visual rescue in AMD patients. Current efforts are focused on developing an in vitro tissue using natural and synthetic scaffolds to generate a polarized functional RPE monolayer. In the future, these tissue-engineering approaches combined with pluripotent stem cell technology will lead to the development of personalized and "off-the-shelf" cell therapies for AMD patients. This review summarizes the historical development and ongoing efforts in surgical and in vitro tissue engineering techniques to develop a three-dimensional therapeutic native RPE tissue substitute.
Collapse
|
44
|
|
45
|
Olmos LC, Nazari H, Rodger DC, Humayun MS. Stem Cell Therapy for the Treatment of Dry Age-Related Macular Degeneration. CURRENT OPHTHALMOLOGY REPORTS 2015. [DOI: 10.1007/s40135-014-0058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Dang Y, Zhang C, Zhu Y. Stem cell therapies for age-related macular degeneration: the past, present, and future. Clin Interv Aging 2015; 10:255-64. [PMID: 25609937 PMCID: PMC4298283 DOI: 10.2147/cia.s73705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the developed world, age-related macular degeneration (AMD) is one of the major causes of irreversible blindness in the elderly. Although management of neovascular AMD (wet AMD) has dramatically progressed, there is still no effective treatment for nonneovascular AMD (dry AMD), which is characterized by retinal pigment epithelial (RPE) cell death (or dysfunction) and microenvironmental disruption in the retina. Therefore, RPE replacement and microenvironmental regulation represent viable treatments for dry AMD. Recent advances in cell biology have demonstrated that RPE cells can be easily generated from several cell types (pluripotent stem cells, multipotent stem cells, or even somatic cells) by spontaneous differentiation, coculturing, defined factors or cell reprogramming, respectively. Additionally, in vivo studies also showed that the restoration of visual function could be obtained by transplanting functional RPE cells into the subretinal space of recipient. More importantly, clinical trials approved by the US government have shown promising prospects in RPE transplantation. However, key issues such as implantation techniques, immune rejection, and xeno-free techniques are still needed to be further investigated. This review will summarize recent advances in cell transplantation for dry AMD. The obstacles and prospects in this field will also be discussed.
Collapse
Affiliation(s)
- Yalong Dang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China ; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China ; Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China ; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yu Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
47
|
Heller JP, Martin KR. Enhancing RPE Cell-Based Therapy Outcomes for AMD: The Role of Bruch's Membrane. Transl Vis Sci Technol 2014. [DOI: 10.1167/tvst.3.4.4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Kozlowski MR. The ARPE-19 cell line: mortality status and utility in macular degeneration research. Curr Eye Res 2014; 40:501-9. [PMID: 24977298 DOI: 10.3109/02713683.2014.935440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The present report examines several subcultures of a single sample of ARPE-19 cells to determine their status with respect to cell mortality. If a transformation from mortal to immortal has occurred in these cells, it may impact their characteristics and, thereby, their utility for modeling natural retinal pigment epithelial (RPE) cells. METHODS Five separate subcultures of ARPE-19 cells were grown as recommended by the supplier. During the course of culture, they were periodically monitored for signs of mortality including erosion of telomeres, increased senescence-associated beta-galactosidase (SABG) staining, altered morphology and reduced viability with an increased population doubling level (PDL). There were also observed for signs of immortality including continuous growth to very high population doubling levels and maintenance of short telomere lengths. RESULTS Each of the subcultures showed both mortal and immortal characteristics. Telomere erosion, increased SABG staining, changes in cell morphology and a modest drop in cell viability took place within a range of population doublings (59-77) in which cell senescence would be expected to occur. The cultures, however, continued to proliferate even after signs of senescence had appeared, with one subculture propagating to 257 population doublings. In addition, little further telomere erosion occurred at high PDL. CONCLUSION These results suggest that the ARPE-19 subcultures contained both mortal and immortal cells. Since no transformation event was witnessed during the study, it appears likely that both types of cells were present in the original sample. Based on the proportion of cells demonstrating senescence-related changes, the mortal cells were estimated to comprise approximately 27% of the total culture. Because of the differences that can exist between normal and immortalized cells, and given the large proportion of ARPE-19 cells that are immortalized, discretion should be exercised when using ARPE-19 cells to model native RPE cells for the study of retinal diseases such as AMD.
Collapse
|
49
|
Lee GY, Kang SJ, Lee SJ, Song JE, Joo CK, Lee D, Khang G. Effects of small intestinal submucosa content on the adhesion and proliferation of retinal pigment epithelial cells on SIS-PLGA films. J Tissue Eng Regen Med 2014; 11:99-108. [DOI: 10.1002/term.1882] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/28/2013] [Accepted: 01/31/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Ga Young Lee
- Department of BIN Fusion Technology, Department of Polymer Nano Science and Technology and Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| | - Su Ji Kang
- Department of BIN Fusion Technology, Department of Polymer Nano Science and Technology and Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| | - So Jin Lee
- Department of BIN Fusion Technology, Department of Polymer Nano Science and Technology and Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| | - Jeong Eun Song
- Department of BIN Fusion Technology, Department of Polymer Nano Science and Technology and Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science, College of Medicine; Catholic University; Seoul Korea
| | - Dongwon Lee
- Department of BIN Fusion Technology, Department of Polymer Nano Science and Technology and Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| | - Gilson Khang
- Department of BIN Fusion Technology, Department of Polymer Nano Science and Technology and Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| |
Collapse
|
50
|
Heller JP, Martin KR. Enhancing RPE Cell-Based Therapy Outcomes for AMD: The Role of Bruch's Membrane. Transl Vis Sci Technol 2014; 3:11. [PMID: 25068093 PMCID: PMC4108298 DOI: 10.1167/tvst.3.3.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 02/09/2014] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of legal blindness in older people in the developed world. The disease involves damage to the part of the retina responsible for central vision. Degeneration of retinal pigment epithelial (RPE) cells, photoreceptors, and choriocapillaris may contribute to visual loss. Over the past decades, scientists and clinicians have tried to replace lost RPE cells in patients with AMD using cells from different sources. In recent years, advances in generating RPE cells from stem cells have been made and clinical trials are currently evaluating the safety and efficiency of replacing the degenerated RPE cell layer with stem cell-derived RPE cells. However, the therapeutic success of transplantation of stem cell-derived RPE cells may be limited unless the transplanted cells can adhere and survive in the long term in the diseased eye. One hallmark of AMD is the altered extracellular environment of Bruch's membrane to which the grafted cells have to adhere. Here, we discuss recent approaches to overcome the inhibitory environment of the diseased eye and to enhance the survival rate of transplanted RPE cells. Our aim is to highlight novel approaches that may have the potential to improve the efficacy of RPE transplantation for AMD in the future.
Collapse
Affiliation(s)
- Janosch P. Heller
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, United Kingdom
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Department of Ophthalmology, NIHR Biomedical Research Centre and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, United Kingdom
| |
Collapse
|